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Abstract
We obtain estimates on nonlocal quantities appearing in the volume preserving mean curva-
ture flow (VPMCF) in the closed, Euclidean setting. As a result we demonstrate that blowups
of finite time type I singularities of VPMCF are ancient solutions to mean curvature flow
(MCF), prove that monotonicity methods may always be applied at these finite times and
obtain information on the asymptotics of the flow. In the case of type II singularities, asymp-
totic flows corresponding to ’Hamilton’s rescaling procedures’ are eternal solutions of the
MCF.

Mathematics Subject Classification 53E10 · 53C42 · 53C21

1 Introduction

A key question for the study of Volume Preserving Mean Curvature Flow (VPMCF) is the
extent to which it has similar properties to the Mean Curvature Flow (MCF). It is now
known that the extra nonlocal term in VPMCF causes significant differences. For example,
Cabezas-Rivas andMiquel [13] prove that key properties used in manyMCFmethods do not
hold for VPMCF, such as preservation of mean convexity (along with most other curvature
conditions bar convexity). This demonstrates the need to a VPMCF specific methods, and in
this paper we begin to develop some of these. In this paper, we give evidence that there are
still significant links between singularities of these two flows: We show that blowups of type
I finite time singularities of VPMCF are indeed ancient solutions to MCF (compare with [13,
point (c), p 288]). Finite time type II singularities of the VPMCF look like eternal solutions
of MCF after a suitable parabolic blowup procedure (first used by Hamilton [29]). This is
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particularly interesting in the light of the significant progress has been made in recent years
in the classification of such singularities – see for example [3, 8, 14, 15].

In order to study these blowup solutions we needed to get control over the (nonlocal)
Lagrange parameter in the equation. We found links between L2-bounds on the (nonlocal)
averaged mean curvature and the extrinsic diameter along the flow. These estimates play
an important role in the monotonicity formula, and essentially allow initial results on the
analysis of singularities to be proven without assuming any further bounds on H .

The VPMCF of n dimensional hypersurfaces in R
n+1 is the L2-gradient flow of the area

functional under the constraint that the (n + 1)-dimensional enclosed volume is fixed. This
flow was introduced by Gage [25] for curves and by Huisken [30] for hypersurfaces. We
consider the closed setting, meaning that Mn is a smooth, orientable, compact n-dimensional
manifold without boundary. Then a smooth family of immersions X : Mn ×[0, T ) → R

n+1

is a solution of the VPMCF if
⎧
⎨

⎩

dX

dt
= −(H − H)ν , onMn × [0, T ),

X(·, t) = X0 on Mn,

where X0 : Mn → R
n+1 is a given immersion. Here, ν is a unit normal along X(·, t) =: Mt ,

hi j = −〈∂i∂ j X , ν〉 are the local coefficients of the second fundamental form A, gi j =〈
Xi , X j

〉
is the induced metric and H = ∑

gi j hi j is the mean curvature. Furthermore, H =
´
Hdμt
|Mt | is the Lagrange parameter of the above mentioned geometric variational problem.

Thus, d
dt |Mt | ≤ 0 and d

dt V (t) = 0 is satisfied along the flow (for the precise definition of
the enclosed volume V (t) see Sect. 2). Note that the formulation of the VPMCF does not
depend on the choice of the unit normal. If it is possible to choose between an “inner” and
“outer” unit normal with respect to Mt , then we choose the outer unit normal, so that H > 0
for round spheres.

We collect some known results about the VPMCF. Gage (for n = 1) and Huisken (for n ≥
2) proved that convex solutions of the VPMCF stay convex and do not develop singularities.
They converge smoothly to a round sphere enclosing the same amount of volume as the initial
hypersurface. In [23], Escher and Simonett proved that hypersurfaces being h1+β close to a
round sphere converge to (possibly another) round sphere with the same enclosed volume as
the initial surface. Li obtained related results in [37]. For example, he proved convergence

to a round sphere if the integrated trace-free second fundamental form
◦
Ai j = hi j − H

n gi j
of the initial surface is small enough in L2. The needed smallness depends on max |A|(0),
H(0) > 0 and V (0) > 0, see [37, Theorem 1]. Further results about the VPMCF in a
non-Euclidean ambient manifold can be found for example in [2, 11, 12, 21, 33, 44].

Athanassenas, later with Kandanaarachchi, studied in [4–6] the VPMCF of a rotational
symmetric surface with and without boundary conditions. For example, in [6] it is shown
that a height bound on the generating curve for the rotational symmetric surfaces prevents
the flow from developing a singularity. The hypersurfaces then converge to a sphere (or a
half-sphere in the considered boundary setting). Note that rotational symmetry (additionally
to convexity) is one the of few properties that is known to be preserved under the VPMCF.

For curves, we expect stronger results compared to the hypersurface case because themain
part of the Lagrange parameter has a geometric interpretation – the term

´
κds is scaling

invariant and measures the turn of the angle of a curve. In the closed setting, this is just 2πm

withm ∈ N (the index of a closed curve). So an L∞-in-time bound on κ =
´

κdst
Lt

is immediate
if one controls the length from below (e.g. by an isoperimetric inequality). Inspired by [16],
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Escher and Ito proved in [22] the existence of singularities of the VPMCF for curves under
some conditions on the initial curve.One scenario of the initial curve leading to a singularity is
that the enclosed volume of the initial curve with 1

2π

´
κds ≥ 1 is negative. Inspired by [22],

the second author proved in [40] an analogous result for curves in the (volume preserving)
free boundary setting. In this setting,

´
κds is not bounded a priori, but still, an L∞-in-time

bound proven earlier in [39] is used in the proof of existence of singularities. In [39], the
second author had introduced the (Neumann) free boundary setting for the VPMCF in detail
(for curves and surfaces) and proved convergence to a stationary solution for (non-closed)
curves under some conditions on the initial curve. The most advanced result about closed
curves can be found in [19]. There, Dittberner was able to derive a comparison principle
between the intrinsic and extrinsic distance – based on previous work of Huisken [32] for
the MCF – to show convergence to a sphere of a closed curve under the condition that the
initial curve is embedded and satisfies

´ y
x κds ≥ −π for all x, y. This can be seen as the

analogue of Grayson’s theorem – which says that the MCF first makes every embedded,
closed curve convex and then shrinks it to a point while becoming more and more round,
see [24, 27]. Without assuming

´ y
x κds ≥ −π for all x, y we cannot expect that such a

strong result holds because there is an example, already suggested by Gage [25] and also
studied by Dittberner [19] where this condition is violated and a self-intersections develops
after starting the VPMCF. Numerical computations in fact indicate that then a singularity
appears for this initial curve, see Mayer [42]. For curves, it was also shown recently, that a
star-shaped, centrosymmetric set keeps this properties and converges to a round sphere, see
[26].

Whether star-shapedness is perserved in general seems to be an open questions. In the
work ofKim andKwon certain approximating solutions of theVPMCF are considered. Using
them, it is proven that a strong version of star-shapedness is preserved [34]. In [43], Mugnai,
Seis and Spadaro presented a distributional formulation of the VPMCF using the setting
of Caccioppoli sets. They show global-in-time existence of their weak flow. A phase field
method of the VPMCF was studied for example in the work of Takasao [46, 47], see also the
references therein. In which generality these weak flows or limits of approximating sets can
be applied to any initially smoothly immersed surfaces in unclear to the authors. An immersed
surface does not need to bound a domain, see also the definition of Alexandrov immersions
below. Recently, Laux showed in in [36] that a (strong) solution where the hypersurfaces
bound a domain agrees with a distributional solution he defines (as long as the smooth one
exists).

We now point out the structure of the paper and formulate the main results. Due to the
lack of preserved quantities under the VPMCF we need to work in a quite general setting. In
Sect. 3, we study the connection between (extrinsic) diameter bounds and L2-estimates of

H(t) =
´
Hdμt
|Mt | . One of our results is the following:

If the initial immersion has non-vanishing enclosed volume V0 
= 0, then there
are constants c and C only depending on M0 such that´ t

0 H
2
(τ )dτ ≤ C(1 + t2)ec

√
t .

Weprovide an example of a convex, embedded curvewhere the diameter is growing for a short
time (note the contrast to the classical MCF). In Sect. 4, we re-prove a monotonicity formula
for the VPMCF already shown in [38] and study consequences for finite time singularities.
In the monotonicity formula it is important that the L2-norm of H is appearing in form of

exp(− 1
2

´ t
0 H

2
(τ )dτ) as a multiplicative factor in front of the usual integrated Gaußian in

Huisken’s monotonicity formula [31]. Consequently, the L2-control from Sect. 3 allows us
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to get properties of asymptotic flows appearing after suitable parabolic blowups at finite time
singularities. One result is:

Parabolic blowups of VPMCF about finite time singularities of type I (max |A|2 ≤ C
T−t )

produce properly immersed, ancient, non-compact homothetically
shrinking solutions of MCF.

Finite type II blowups are eternal solutions of the MCF after Hamilton’s parabolic
rescaling.

In Sect. 4.3, we illustrate that an L∞-bound on H in fact implies that the diameter of |Mt |
along the VPMCF always stays uniformly bounded for all times.

Section 5 contains statements about the VPMCFwith infinite life-span and uniform diam-
eter bound. We introduce a new “extended isoperimetric ratio” by

I(Mt ) := n + 1

n
H
V (t)

|Mt | .

Note that I of the round sphere is equal to one. We motivate this definition with the
Alexandrov-Fenchel inequalities proven for k-convex, star-shaped domains in [28]. Themain
result of Sect. 5 is the following:

If V0 
= 0 and Mt satisfies a uniform diameter bound along the VPMCF with T = ∞,

then, for each ti → ∞, there exists a subsequence (not relabeled) such that
either I(Mti ) → 0 or I(Mti ) → 1.

As a corollary of the Alexandrov-Fenchel inequalities [28] we get that

Any mean convex, star-shaped solution of the VPMCF with uniformly bounded curvature
exists for all times and converges to a round sphere.

In Sect. 6, we remind the reader of the notion of anAlexandrov immersion, which is—roughly
speaking—an n-dimensional immersion that bounds an (n+1)-dimensional manifold that is
immersed inRn+1 (seeDefinition 1 for the precise definition). Alexandrov immersions bound
an (n + 1)-dimensional “domain” that is allowed to have a certain kind of self-overlaps. The
definition goes back to Alexandrov [1] in his work about closed surfaces of constant mean
curvature in Euclidean space.1 It has also been used successfully for example by Brendle
in his work about minimal tori in S

3, see [7]. Using maximum principle arguments in a
“one-sided situation” we prove the following result:

The property of being Alexandrov immersed is preserved under the VPMCF as long as
H ≥ 0 (using the outer unit normal for the definition of H).

Unfortunately,we found an (even embedded) examplewhere H ≥ 0 is lost along theVPMCF.
We explain this example in Appendix A.

1 Note that being Alexandrov immersed is not called like this in [1], of course. Also, the property that the
(n + 1)-dimensional domain is immersed in Rn+1 is missing in this paper (there, only the expression smooth
mapping is used). But it is meant to be part of the definition as it is used in the proof.
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2 Notation

We complement the definitions from the introduction with the formula of the signed volume
on the immersion Mt

V (t) := Vol(Mt ) = 1

n + 1

ˆ

Mt

〈X , ν〉 dμ.

The defining property of VPMCF is that it preserves this volume, that is,

Voln+1(Mt ) = Voln+1(M0) =: V0 .

In particular if�t ⊂ R
n+1 is a domain with smooth boundary ∂�t = Mt , then the divergence

theorem implies that Voln+1(Mt ) = Ln+1(�t ) where Ln+1 is the (n + 1)–dimensional
Lebesgue measure.

We will regularly use the extrinsic diameter of the immersion Mt defined by

diam(Mt ) := diamext(Mt ) = max
(x,y)∈Mn×Mn

|X(x, t) − X(y, t)| . (1)

This is distinct to the intrinsic metric diameter ofMt , diamint(Mt )where we have the inequal-
ity diam(Mt ) ≤ diamint(Mt ).

3 Diameter bounds and L2-bounds of the Lagrange parameter

Lemma 1 Let X : Mn × [0, T ) → R
n+1 be a closed VPMCF for t ∈ [0, T ). Then the

extrinsic diameter (as in Eq. 1) is Lipschitz continuous and therefore differentiable almost
everywhere in [0, T ). For a time of differentiability t it satisfies

d

dt
diam(Mt ) = 〈−(H(x, t) − H(t))ν(x, t) + (H(y, t) − H(t))ν(y, t), X(x,t)−X(y,t)

|X(x,t)−X(y,t)| 〉,
where (x, y) ∈ Mn × Mn are points where the maximum of the diameter is attained.

Proof First we note that the map (x, y, t) 
→ |X(x, t)− X(y, t)|2 is smooth and Mn ×Mn is
compact. Thus, Mantegazza’s version of ’Hamilton’s trick’2 [41, Lemma 2.1.3] tells us that
t 
→ max(x,y)∈Mn×Mn |X(x, t) − X(y, t)|2 is Lipschitz and therefore differentiable almost
everywhere in [0, T ). For such a time t , the derivative can be computed as

d

dt
max

(x,y)∈Mn×Mn
|X(x, t) − X(y, t)|2 = ∂

∂t
|X(x, t) − X(y, t)|2∣∣

(x,y)=(x∗,y∗),

where (x∗, y∗) is a pair such that the maximum in max(x,y)∈Mn×Mn |X(x, t) − X(y, t)|2
is attained. Note that |X(x∗, t) − X(y∗, t)|2 > 0, otherwise X(·, t) is just a point which
contradicts the fact that X(·, t) is an immersion. So, when t is such a time of differentiabil-
ity of u(t) := max(x,y)∈Mn×Mn |X(x, t) − X(y, t)|2, then also diam(Mt ) is differentiable
and d

dt diam(Mt ) = ∂t u(t)
2 diam(Mt )

. This shows that t 
→ diam(Mt ) is differentiable almost
everywhere in [0, T ) and

d

dt
diam(Mt ) = 1

|X(x, t) − X(y, t)| 〈∂t X(x, t) − ∂t X(y, t), X(x∗, t) − X(y, t)〉

2 An alternative to working with the smooth map (x, y, t) 
→ |X(x, t) − X(y, t)|2 is to differentiate the
diameter directly and use the results in [17, Section 2] or [18, Section 2] to see that t 
→ max |X(x, t)−X(y, t)|
is in W 1,1 and that one can compute d

dt diam by evaluation ∂t |X(x, t) − X(y, t)| in any point of maximality.
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= 〈−(H(x, t) − H(t))ν(x, t) + (H(y, t) − H̄(t))ν(y, t), X(x,t)−X(y,t)
|X(x,t)−X(y,t)| 〉,

where (x, y) ∈ Mn×Mn are points where the maximum in u(t) und thus also in the diameter
is attained. ��
Lemma 2 Let X : Mn × [0, T ) → R

n+1 be a closed VPMCF for t ∈ [0, T ). Then the
extrinsic diameter satisfies for almost every time t ∈ [0, T )

d

dt
diam(Mt ) ≤ H

[
〈νx , X(x,t)−X(y,t)

|X(x,t)−X(y,t)| 〉 − 〈ν y,
X(x,t)−X(y,t)

|X(x,t)−X(y,t)| 〉
]

− 4n

diam(Mt )

≤ 2|H | − 4n

diam(Mt )
.

Proof Wework againwith the smooth squared distance function ϕ : Mn×Mn×[0, T ) → R,
ϕ(x, y, t) := |X(x, t) − X(y, t)|2 as in the proof of Lemma 1. We write (z1, . . . , z2n) :=
(x1, . . . , xn, y1, . . . , yn) if needed. We leave out the time dependence in the notation from
now on. We calculate the second derivatives of ϕ. But we only want to use them for x and y
such that the maximum in diam(Mt )

2 = max(x,y)∈Mn×Mn |X(x, t) − X(y, t)|2 is attained.
Thus, we compute

∂xi ϕ = 2
〈
∂xi X(x), X(x) − X(y)

〉
, ∂yi ϕ = −2

〈
∂yi X(y), X(x) − X(y)

〉

∇2
xi x j ϕ = −2hi j (x) 〈ν(x), X(x) − X(y)〉 + 2gi j (x)

∇2
xi y j ϕ = −2

〈
∂xi X(x), ∂y j X(y)

〉

∇2
yi y j ϕ = 2hi j (y) 〈ν(y), X(x) − X(y)〉 + 2gi j (y)

At almost every time t , diam(Mt )
2 is differentiable, and by Hamilton’s trick [41, Lemma

2.1.3], we know that

d

dt
diam(Mt )

2 = 2〈−(H(x) − H)ν(x) + (H(y) − H̄)ν(y), X(x) − X(y)〉
for x and y attaining the maximum. At such points we have that 0 = ∂xi ϕ = ∂yi ϕ and
0 ≥ ∇2

zi z j
ϕ. This particularly implies that X(x) − X(y) is normal to the surface in x and y,

so the tangent spaces at x and y are parallel and we may take local orthonormal coordinates
so that ∂xi X(x) = ∂yi X(y) = ei . Furthermore,

0 ≥
∑

i

∇2
exi −eyi ,exi −eyi

ϕ = −2 〈ν(x), X(x) − X(y)〉 H(x) + 2 〈ν(y), X(x) − X(y)〉 H(y) + 8n

which implies

d

dt
diam2(Mt ) ≤ 2H [〈ν(x), X(x) − X(y)〉 − 〈ν(y), X(x) − X(y)〉] − 8n.

Since diam(Mt ) = |X(x, t) − X(y, t)| > 0, we get

d

dt
diam(Mt ) ≤ H

[〈

ν(x),
X(x) − X(y)

|X(x) − X(y)|
〉

−
〈

ν(y),
X(x) − X(y)

|X(x) − X(y)|
〉]

− 4n

diam(Mt )

=: 2
(

Hσ − 2n

diam(Mt )

)

≤ 2

(

|H | − 2n

diam(Mt )

)

(2)
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as stated in the lemma. Here, σ ∈ {1, 0,−1} depends on the configuration of normals and
positions. ��
Remark 1 Lemma2 implies that the diameter along theVPMCF is bounded on every bounded
time interval [0, T ), T < ∞, if one is able to show a bound supt∈[0,T ) |H(t)| ≤ c. Unfor-
tunately, such a bound is hard to get in a very general setting. See Proposition 15 for a
weakening of this condition.

Remark 2 The above calculation is to some extent optimal in bounding diameter, even in the
case of convex curves. Indeed, even in the convex setting, the nonlocal term can force the
diameter to increase initially, before converging back to a circle. See Example 1 for details.

Definition 1 An immersion X : Mn → R
n+1 is Alexandrov immersed if there exists an

(n + 1)-dimensional manifold � with ∂� = Mn and an immersion G : � → R
n+1 such

that G|∂� also parametrises Im(X).

Remark 3 For an Alexandrov immersion, there is obviously a natural notion of an an inner
unit normal ν̃ (the one where G∗(ν̃) shows into �) and an outer unit normal −ν̃.

Corollary 3 Let X : Mn × [0, T ) → R
n+1 be a closed VPMCF for t ∈ [0, T ) that is an

Alexandrov immersion for all t ∈ [0, T ). Then we choose ν to be the outer unit normal. In
this case

〈

ν(x),
X(x) − X(y)

|X(x) − X(y)|
〉

−
〈

ν(y),
X(x) − X(y)

|X(x) − X(y)|
〉

= 2

for x(t) and y(t) such that the maximum in the definition of the diameter is attained. As a
consequence, we have that

d

dt
diam(Mt ) ≤ 2

(

H − 2n

diam(Mt )

)

for almost every t ∈ [0, T ).

Proof Since there are no points X(x̃) that are further apart from X(y) in R
n+1 than X(x),

the outer unit normal ν(x) must agree with X(x)−X(y)
|X(x)−X(y)| . For X(y), an analogous argument

works. ��
Corollary 4 Let X : Mn ×[0, T ) → R

n+1 be a closed VPMCF that is Alexandrov-immersed
for all t ∈ [0, T ) and H ≤ 0 on t ∈ [0, T ), where H is computed with respect to the outer

unit normal. Then T ≤ diam(M0)
2

8n .

Proof The assumption H ≤ 0 and Corollary 3 imply

d

dt
diam(Mt ) ≤ − 4n

diam(Mt )
, t ∈ [0, T )

which is equivalent to

diam(Mt )
2 ≤ diam(M0)

2 − 8nt for t ∈ [0, T )

via integration. So we have that

lim sup
t→T

diam(Mt )
2 ≤ diam(M0)

2 − 8nT

which leads to a contradiction for T >
diam(M0)

2

8n . ��
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Remark 4 This above statement should be interpreted in the following way: If we know the
flow exists for quite some time and stays Alexandrov immersed, then H ≤ 0 is not preserved.
For more on this see also Theorem 16.

Lemma 5 Let X : Mn × [0, T ) → R
n+1 be a VPMCF with enclosed volume V0 
= 0. Then

we can express H as

H =
´
M 〈∂t X , X − x〉 dμ + n|Mt |

(n + 1)V0
(3)

for any x = x(t) ∈ R
n+1.

Proof We have that �|X − x |2 = −2H 〈ν, X − x〉 + 2n and so by the divergence theorem

|Mt | = 1

n

ˆ

M
H 〈ν, X − x〉 dμ . (4)

The formula for the signed volume enclosed by Mt reads V (t) = 1
n+1

´
Mt

〈X − x, ν〉 dμ for

any x = x(t) ∈ R
n+1. We compute

ˆ

M
〈Xt , X − x〉 dμ = H

ˆ

M
〈ν, X − x〉 dμ −

ˆ

M
H 〈ν, X − x〉 dμ

and so

H =
´
M 〈∂t X , X − x〉 dμ + ´

M H 〈ν, X − x〉 dμ
´
M 〈ν, X − x〉 dμ

=
´
M 〈∂t X , X − x〉 dμ + n|Mt |

(n + 1)V0

using the volume preserving property. ��
Proposition 6 Suppose that (Mt )t∈[0,T ) satisfies V0 
= 0 and diam(Mt ) < R(t) with R(s) ≤
R(t) for s < t ≤ T . Then we have for t ∈ [0, T ),

ˆ t

0
H

2
(τ )dτ ≤ 2|M0|2

V 2
0 (n + 1)2

(R(t)2 + n2t)

Proof First we choose x(t) ∈ R
n+1 to be any point such that Mt ⊂ BR(x(t)). We have that

d

dt
|Mt | = −

ˆ

M
H(H − H)dμ = −

ˆ

M
(H − H)2dμ = −

ˆ

M
|∂t X |2dμ.

Formula (3) implies

|H | ≤ 1

(n + 1)|V0|

(√ˆ

M
|∂t X |2dμ

√ˆ

M
|X − x |2dμ + n|M0|

)

.

and thus

H
2 ≤ 2

(n + 1)2V 2
0

(

− d

dt
|Mt |

ˆ

M
|X − x |2dμ + n2|M0|2

)

.

Estimating |X − x |2∣∣s ≤ diam2 (Ms) ≤ R2(s) ≤ R2(t) for s < t and using |Ms | ≤ |M0|
again, we know now

ˆ t

0
H

2
ds ≤ 2

V 2
0 (n + 1)2

|M0|2(R2(t) + n2t) .

��
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Proposition 7 Let X : Mn×[0, T ) → R
n+1 be a closed VPMCF for t ∈ [0, T )with enclosed

volume V0 
= 0. Then there are constants c,C only depending on M0 such that

diam(Mt ) ≤ C(1 + t)ec
√
t

for t ∈ [0, T )

Proof We have
d

dt
diam(Mt ) ≤ 2|H | − 4n

diam(Mt )
≤ 2|H |

and from (3)

|H | ≤ 1

(n + 1)|V0|

(√

− d

dt
|Mt |

√|M0| diam(Mt ) + n|M0|
)

:= c1 + c2 diam(Mt )

√

− d

dt
|Mt |.

We pick

logψ = −2c2

ˆ t

0

√

− d

dt
|Mt | ≥ −2c2

√
t(|M0| − |Mt |) 1

2 ≥ −2c2
√
t |M0| 12 (5)

so that

1

ψ

d

dt
(diam(Mt )ψ) = d

dt
diam(Mt ) − 2c2 diam(Mt )

√

− d

dt
|Mt | ≤ 2c1

and thus (using that ψ ≤ 1 and (5))

diam(Mt ) ≤ 1

ψ(t)
diam(M0) + 2c1

1

ψ(t)

ˆ t

0
ψ(τ)dτ

≤ (diam(M0) + 2c1t)
1

ψ(t)

≤ C(1 + t)e2c2|M0|
1
2
√
t .

��
Corollary 8 Let X : Mn × [0, T ) → R

n+1 be a closed VPMCF for t ∈ [0, T ) with enclosed
volume V0 
= 0. Then there are constants c,C > 0 only depending on n, V0 and M0 such
that

ˆ t

0
H

2
(s)ds ≤ C(1 + t2)ec

√
t .

Proof Put together Propositions 6 and 7. ��
Remark 5 (1) In general, we can not expect to have a bound of the form

´ t
0 H

2
(s)ds ≤ C ,

where C is independent of t because round spheres are (stationary) solutions of the

VPMCF, and they satisfy
´ t
0 H

2
(s)ds = c2t . We do not know whether the e

√
t -growth

can be improved (e.g. to a linear growth in t) in this very general setting.
(2) Integrability conditions of a Lagrange multiplier was successfully used earlier, see for

example the work of Rupp [45] on the volume preserving Willmore flow. But there, the
fixed-enclosed-volume constraint is of lower order compared to the order of the flow,
therefore Rupp was able to get strong results with the integrability.
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3.1 Optimality of diameter bounds

In this subsection we consider a curve γ : S1 → R
2, where ∂s is differentiation with respect

to arclength and ν = −J∂sγ is the rotation of the tangent ∂sγ by π
2 in negative direction. In

order to be consistent with the definitions for surfaces, we use the definition κ = −〈∂2s γ, ν〉.
The area preserving curve shortening flow reads

∂tγ = −(κ − κ)ν

for κ :=
´

κds
L(γt )

. Here, ds = |∂xγ |dx denotes integration with respect to arclength and L(γt )

is the length of γt := γ (·, t) for the family γ : S1 × [0, T ) → R
2. Of course, as γ is closed

and
´

κds is the turn of the tangents, we have that κ = 2πm
L(γt )

. If γ0 is embedded, thenm = 1.

On a general curve we have that

κ0(x) = κ0(y),
γ0(x) − γ0(y)

|γ0(x) − γ0(y)| = ν0(x),
γ0(x) − γ0(y)

|γ0(x) − γ0(y)| = −ν0(y), (6)

where x, y ∈ S
1 are such that the maximum in diam(γ0) is attained. Note that for a positively

oriented curve γ0, ν0 is the outer unit normal. The proof of Lemma 2 shows that

0 ≥ −2〈ν0(x), γ0(x) − γ0(y)〉κ0(x) + 2〈ν0(y), γ0(x) − γ0(y)〉κ0(y) + 8.

Then (6) implies that

〈ν0(x), γ0(x) − γ0(y)〉 = |γ0(x) − γ0(y)| = diam(γ0)

〈ν0(y), γ0(x) − γ0(y)〉 = −|γ0(x) − γ0(y)| = − diam(γ0)

and thus

κ0(x) ≥ 2

diam(γ0)
. (7)

This inequality can be interpreted geometrically: The curvature at the points where the max-
imum is attained cannot be smaller than 2

diam(γ0)
– otherwise the straight line realising the

maximal distance would be attained at other points (tilting that line would increase the dis-
tance). Bearing this is mind, we construct a somehow sharp example.

We now provide an example demonstrating, somewhat counter-intuitively, that even on
a convex curve, (which we know will converge to a round circle in infinite time [30]), the
diameter will initially increase while the curvature at extremal points initially decreases.

Example 1 In this example we show that d
dt diam(γt )

∣
∣
t=0 > 0 can occur, even on closed

convex curves. We construct an explicit example as in Figure 1 as follows: First we set
diam(γ0) = 1. We put a circle with radius r := 1

2 at the midpoint of the line realising the
maximal distance (w.l.o.g. {0} × [0, 1] ⊂ R

2). So we use very short arcs of the circle at the
points (0, 1) = γ0(x) and (0, 0) = γ0(y). Thus, in x and y, the curvature is precisely equal
to 2. We close this curve (smoothly) by straight lines (going from south to north and the other
way round at the end of the arcs). The diameter is clearly realised by the points x and y.

In Example 1 we have equality in Eq. (7). With Lemma 1, we know that

d

dt
diam(γt )

∣
∣
t=0 = 〈−2(κ0(x) − κ0)ν0(x),

γ0(x) − γ0(y)

|γ0(x) − γ0(y)| 〉 = −4(1 − π

L(γ0)
)
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γ0

γ0(y)

γ0(x)

Fig. 1 An embedded, convex initial curve for which the diameter increases

taking into account our situation. The length of γ0 can be chosen to be L(γ0) = 2 + ε. The
curve only needs to satisfy L(γ0) < π to get an example where d

dt diam(γt )
∣
∣
t=0 > 0, in

particular κ0(x) − κ(0) < 0.
There is something else worth noticing about the above example: The evolution equation

of the curvature along the area preserving curve shortening flow is

∂tκ = ∂2s κ + (κ − κ)κ2.

We use this for our initial curve γ0 at the points x and y (where the maximal distance is
attained). Since κ ≡ 2 on a small neighborhood around x and y, we know ∂2s κ(x) = 0 =
∂2s κ(y) and hence

∂tκ(x)
∣
∣
t=0 = ∂tκ(y)

∣
∣
t=0 = (κ0(x) − κ(0))κ2(x) < 0.

This means that, at the points γ0(x) and γ0(y), the curve becomes even a bit flatter, and
the diameter grows a bit. This is surprising, because eventually, this curve converges to a
round circle. This example shows that the short-time behavior of the flow can be somehow
counterintuitive.

4 Finite time singularities andmonotonicity results

4.1 Monotonicity formula

Wederive amonotonicity formula for VPMCF and demonstrate various corollaries following
a similar course to [20]. This has been calculated by the second author in [38] already, inspired
by [5]. Note that also [46] contains a version of a monotonicity formula.

The evolution equation of the area measure is

d

dt
dμ = −(H − H)Hdμ .
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  202 Page 12 of 32 B. Lambert, E. Mäder-Baumdicker

We now set � = �(x0,t0) the standard (appropriately rescaled version of the) “ambient
backward heat kernel”,

�(x0,t0)(x, t) := 1

(4π(t0 − t))
n
2
e
− |x−x0 |2

4(t0−t) , x ∈ R
n+1, t < t0,

where in the following calculation we will suppress the subscript for simplicity of notation.

Proposition 9 (Monotonicity formula) Suppose that Mt satisfies smooth VPMCF. We define

ψ(t) := e− 1
2

´ t
0 H

2
(s)ds

and let φ be a C2-function that is either defined on Mn ×[0, T ) or on a neighborhood of Mt

in R
n+1. Then we have that

d

dt

(

ψ

ˆ

Mt

φ�dμ

)

= ψ

ˆ

Mt

�

(
d

dt
− �

)

φdμ + ψ

ˆ

∂Mt

�∇μφ − φ∇μ�dμ∂

− ψ

2

ˆ

Mt

[∣
∣
∣
∣(H − H) − 〈ν, x − x0〉

2(t0 − t)

∣
∣
∣
∣

2

+
∣
∣
∣
∣H − 〈ν, x − x0〉

2(t0 − t)

∣
∣
∣
∣

2
]

× φ�dμ .

Proof The proof can be found in [38], see also [39, Remark before Proposition 4.10]. For the
convenience of the reader we repeat it here. For general functionsφ and� : Rn+1×[0, T ) →
R we have that

d

dt

ˆ

Mt

φ�dμ =
ˆ

Mt

�

(
d

dt
− �

)

φ + div(�∇φ − φ∇�)

+ φ

(
d�

dt
+ ��

)

− H(H − H)φ�dμ

=
ˆ

Mt

�

(
d

dt
− �

)

φ + div(�∇φ − φ∇�)dμ

+
ˆ

Mt

[
1

�

((
∂

∂t
+ �

)

� − ∇2
νν�

− (H − H)∇ν� − H∇ν�

)

− H(H − H)

]

φ�dμ.

For our choice of �, we get that

∂�

∂t
=

(
n

2(t0 − t)
− |x − x0|2

4(t0 − t)2

)

�, ∇V� = −〈V , x − x0〉
2(t0 − t)

�,

∇2
VW� =

( 〈V , x − x0〉 〈W , x − x0〉
4(t0 − t)2

− 〈V ,W 〉
2(t0 − t)

)

� .

In particular we have

(
∂

∂t
+ �

)

� = −1

2(t0 − t)
�, ∇2

νν� =
(( 〈ν, x − x0〉

2(t0 − t)

)2

− 1

2(t0 − t)

)

�
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and so the contents of the square brackets in the last integrand above are

−
( 〈ν, x − x0〉

2(t0 − t)

)2

+ (H − H)
〈ν, x − x0〉
2(t0 − t)

+ H
〈ν, x − x0〉
2(t0 − t)

− H(H − H)

= −1

2

∣
∣
∣
∣(H − H) − 〈ν, x − x0〉

2(t0 − t)

∣
∣
∣
∣

2

− 1

2

∣
∣
∣
∣H − 〈ν, x − x0〉

2(t0 − t)

∣
∣
∣
∣

2

+ 1

2
H

2
.

We have chosen ψ(t) = e− 1
2

´ t
0 H

2
(s)ds so that dψ

dt = − 1
2H

2
which yields

d

dt

ˆ

Mt

ψφ�dμ =
ˆ

Mt

ψ�

(
d

dt
− �

)

φdμ + ψ

ˆ

∂Mt

�∇μφ − φ∇μ�dμ∂

− ψ

2

ˆ

Mt

[∣
∣
∣
∣(H − H) − 〈ν, x − x0〉

2(t0 − t)

∣
∣
∣
∣

2

+
∣
∣
∣
∣H − 〈ν, x − x0〉

2(t0 − t)

∣
∣
∣
∣

2
]

φ�dμ .

��
Remark 6 We have that

d

dt
log |Mt | = −

 

Mt

H2dμ + H
2

and so we may rewrite

ψ(t) =
√

|M0|
|Mt | e

´ t
0

ffl
Ms

H2dμds

Remark 7 Consider a parabolic rescaling ofMt , M̃s where t = λ2s+ t0, andMt = λM̃s +x0.
Then H(M̃s) = λH(Mt ) and we have that

log ψ̃(s) =
ˆ s

0
H(M̃ŝ)

2dŝ =
ˆ s

0
λ2H(Mt(ŝ))

2dŝ =
ˆ t

t0
H(Mt̂ )

2dt̂ = logψ(t) ,

which implies that our object to differentiate is invariant under parabolic rescaling.

4.2 VPMCF blowups are ancient MCFs

We will use the following MCF terminology.

Definition 2 Given any X(x, t) satisfying VPMCF the parabolic rescaling about a point
p ∈ R

n+1 at time T given by

Xλ
p(x, τ ) := λ(X(x, λ−2τ + T ) − p)

for τ ≤ 0. Equivalently we may write this as

Mλ,p
τ = λ(Mλ−2τ+T − p) .

Aparabolic rescaling of VPMCF gives another solution of VPMCF (althoughwith a different
fixed volume).

Definition 3 Let Mt be a mean curvature flow on the time interval [0, T ), and suppose that
the second fundamental form blows up at time T that is, lim supt→T supMt

|A| = ∞. Then
we say that this is a singularity of VPMCF where
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  202 Page 14 of 32 B. Lambert, E. Mäder-Baumdicker

(i) the singularity is of type I if there exists a C > 0 such that

sup
Mt

|A|2 ≤ C

T − t

for all t < T and
(ii) the singularity is of type II otherwise.

Definition 4 Let Mt be a mean curvature flow on the time interval [0, T ). Then

(i) Suppose we are given a point p ∈ R
n+1 and a sequence λi → ∞. Then a type I (or

centred) blow up sequence is the sequence of solutions to VPMCF given by

Mi
τ = λi (Mλ−2

i τ+T − p)

for τ ∈ [−λ2i T , 0).
(ii) Assuming that the second fundamental formblows up as t → T , thenwe followHamilton

[29] and define a type II blow up sequence by a sequence times ti and points xi ∈ Mti
such that

λi := λ2i (T − i−1 − ti ) = max
(x,t)∈Mn×[0,T−i−1]

|A(x, t)|2(T − i−1 − t)

Then the type II blow up along (xi , ti ) is given by

Mi
τ = λi (Mti+λ−2

i τ
− xi )

for τ ∈ [−λ2i ti , λ
2
i (T − i−1 − ti ))

Remark 8 Once we have uniformly bounded curvature, H is bounded and Shi-type estimates
hold to all orders, as in [20, Proposition 3.22]. As a result, if a type I singularity occurs, then
any type I blowup sequencewill converge locally smoothly to a smooth flow for τ ∈ (−∞, 0)
(which is possibly empty depending on the p). This will be referred to as an ancient flow.
Later in Lemma 11 we will see that this is a self similar solution of MCF. If we have a type II
singularity then the type II blowup sequence converges smoothly to a flow for τ ∈ (−∞,∞)

[29].

We are now in a position to prove the following:

Theorem 10 Suppose that a singularity of VPMCF occurs at a finite time. Then

(a) If the singularity is type I then any locally smoothly converging subsequence of the type
I blow up sequence is an ancient solution to MCF.

(b) If the singularity if type II then any locally smoothly converging subsequence of a type
II blow up sequence yields an eternal solution to MCF.

Proof We first consider the type I blow up case: By dilating we may assume wlog that
|A|2(x, t) < 1

T−t . By Corollary 8, we know that for any finite T
ˆ T

0
H

2
(t)dt < C .

By continuous dependence of an integral on it’s domain of definition (Lebesgue’s differen-
tiation theorem) we have that there exist Ti → T such that

ˆ T

Tj

H
2
dt = j−1 (8)
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and therefore, writing t = λ−2
i (τ + T ) then

j−1 =
ˆ T

Tj

H
2
(t)dt =

ˆ 0

−λ2(T−Tj )

λ−2H
2
(τ )dτ =

ˆ 0

−λ2i (T−Tj )

(H
i
)2(τ )dτ .

where H
i
is the average mean curvature of Mi

τ of the type I blowup. Due to the type I
singularity hypothesis, the second fundamental form of Mi

τ satisfies

|Ai (x, τ )|2 ≤ 1

|τ | .

Furthermore, we have that
∣
∣
∣
∣
d

dt
H

i
∣
∣
∣
∣ =

∣
∣
∣
∣

 
(Hi − H

i
)|Ai |2 − Hi (Hi − H

i
)2dμ

∣
∣
∣
∣ ≤ 4

|τ |3 (9)

Given any a < b < 0, if λi is so large that [a, b] ⊂ [−max{λ2i (T − Tj ), λ
2
i T }, 0) then

we have that there is a constant C1 = C1(a, b) such that

H
i
< C1(a, b) j−1

where we used the estimate (9). Therefore, for any smoothly converging subsequence, H
i →

0 uniformly on [a, b] and so the flow converges smoothly on [a, b] to a solution to MCF,

dX∞

dt
= −H∞ν∞ .

Note that the above argument implies that for any subsequence such that the blow up sequence
converges in C2, we still get a mean curvature flow.

The argument for the type II blow up is similar: Suppose that we have a converging
subsequence of a type II blow up. Then, defining Tj as in (8) then substituting t = ti +λ−2

i τ

j−1 =
ˆ T

Tj

H
2
(t)dt ≥

ˆ λ2i (T−ti−i−1)

λ2i (Tj−ti )
λ−2
i H

2
(τ )dτ =

ˆ λ2i (T−ti−i−1)

λ2i (Tj−ti )
H

2
i (τ )dτ .

By the type II hypothesis we know that λ2i (T − ti − i−1) → ∞, see for example [41, p. 89],
while wemay assume that for i large enough Tj < ti and so λ2i (Tj −ti ) → −∞. This time, by
our choice of blow up sequence, |Ai (x, t)| ≤ 1 on the time interval [−λ2i ti , λ

2
i (T − i−1− ti ))

and so, estimating similarly to (9), on this time interval | ddt H | ≤ 4.As a result, given any finite
time interval [a, b] ⊂ R, if i is large enough so that [a, b] ⊂ [λ2i (Tj − ti ), λ2i (T − ti − i−1)]
then there exists a C2 = C2(b − a) such that H

i
< C2 j−1. As we know that the type II

sequence converges locally smoothly, we see that on [a, b] we Hi → 0 uniformly and again
the limit is a solution to MCF. ��
Lemma 11 Suppose that a singularity of VPMCF occurs at a finite time T which is of
type I. Then the asymptotic limit flow from the above theorem is a (possibly trivial) properly
immersed, non-compact homothetically shrinking solution of the Mean Curvature Flow.

Proof The proof works as in the case of type I singularities of the Mean Curvature Flow.
We sketch the proof for the convenience of the reader. Note that the Monotonicity formula
implies

d

dt

(

ψ(t)
ˆ

Mt

�(x0,T )(x, t) dμn
t

)

≤ 0,
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thus the limit limt→T �(x0,T )(t) exists, where

�(x0,T )(t) := ψ(t)
ˆ

Mt

�(x0,T )(x, t) dμn
t .

By parabolic rescaling we have that

�(x0,T )(t) = ψ(t)
ˆ

Mt

�(x0,T )(x, t) dμt = ψi (τ )

ˆ

Mi
τ

�(0,0)(y, τ ) dμi
τ =: �i

(0,0)(τ ) ,

where t = T + τ

λ2i
. We apply the rescaled monotonicity formula and estimate for τ1 < τ2

0 ≤ 1

2

ˆ τ2

τ1

ψi (τ )

ˆ

Mi
τ

∣
∣
∣
∣H

i + 〈y, ν〉
2τ

∣
∣
∣
∣

2

�0,0 dμn
τdτ

≤ 1

2

ˆ τ2

τ1

ψi (τ )

ˆ

Mi
τ

{∣
∣
∣
∣H

i − H
i + 〈y, ν〉

2τ

∣
∣
∣
∣

2

+
∣
∣
∣
∣H

i + 〈y, ν〉
2τ

∣
∣
∣
∣

2
}

× �0,0 dμn
τdτ

≤ �i
(0,0)(τ1) − �i

(0,0)(τ2)

= �(x0,T )

(

T + τ1

λ2i

)

− �(x0,T )

(

T + τ2

λ2i

)

for all i . Since

T + τl

λ2i
→ T

for i → ∞ and l = 1, 2, the right-hand side of the above converges to 0 for i → ∞. The
flows

((
Mi

τ

)

τ∈[τ1,τ2]
)

i∈N converge smoothly along a subsequence and on compact subsets

of Rn+1 to a smooth flow
(
M∞

τ

)

τ∈[τ1,τ2]. Let R > 0. There exists a i0 ∈ N so that for all

i ≥ i0, Mi
τ ∩ BR(0) can be parametrised over M∞

τ ∩ BR(0). That is, there exist immersions
Yi : M∞

τ ∩ BR(0) → R
n+1 with

Mi
τ ∩ BR(0) = Yi (M

∞
τ ∩ BR(0))

and Yi → id for i → ∞. From the above we have that

�(x0,T )

(

T + τ1

λ2i

)

− �(x0,T )

(

T + τ2

λ2i

)

≥ 1

2

ˆ τ2

τ1

ψi (τ )

ˆ

Mi
τ ∩BR(0)

∣
∣
∣
∣H

i + 〈y, ν〉
2τ

∣
∣
∣
∣

2

�0,0 dμn
τdτ .

Taking a lim inf and applying Fatou’s lemma,

0 = lim inf
i→∞

ˆ τ2

τ1

ˆ

Mi
τ ∩BR(0)

ψi (τ )

2

∣
∣
∣
∣H

i + 〈y, νi 〉
2τ

∣
∣
∣
∣

2

�0,0 dμi
τdτ

= lim inf
i→∞

ˆ τ2

τ1

ˆ

Mi
τ ∩BR(0)

ψi (τ )

2

∣
∣
∣
∣H

i + 〈y, νi 〉
2τ

∣
∣
∣
∣

2

�0,0

√
det(DYi ) dxdτ

≥
ˆ τ2

τ1

ˆ

M∞
τ ∩BR(0)

lim inf
i→∞

(
ψi (τ )

2

∣
∣
∣
∣H

i + 〈Yi , νi 〉
2τ

∣
∣
∣
∣

2

�0,0

√
det(DYi )

)

dxdτ
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= 1

2

ˆ τ2

τ1

ˆ

M∞
τ ∩BR(0)

∣
∣
∣
∣H

∞ + 〈y, ν∞〉
2τ

∣
∣
∣
∣

2

�0,0 dμ∞
τ dτ ,

where we have used that H
i → 0 uniformly as shown in the proof of Theorem 10, and thus

ψi (τ ) → 1. Since R > 0 was arbitrary, we deduce

ˆ τ2

τ1

ˆ

M∞
τ

∣
∣
∣
∣H

∞ + 〈y, ν∞〉
2τ

∣
∣
∣
∣

2

�0,0 dμτdτ = 0 .

Since the convergence is smooth, and sending τ1 → −∞ and τ2 → 0 yields

∣
∣
∣
∣H

∞ + 〈y, ν∞〉
2τ

∣
∣
∣
∣

2

= 0

for every τ ∈ (−∞, 0) and every y ∈ M∞
τ , so M∞

τ is a homothetically shrinking (possibly
trivial) solution of the Mean Curvature Flow.
It remains to show that the limit flow is proper and non-compact. The rescaled monotonicity
formula and the L2-bound on H implies

ˆ

Mi
τ

�(0,0)(y, τ )dμn
τ ≤ C

for all τ ∈ (−∞, 0) and for all i . Fatou’s lemma on ambient balls yields

C ≥
ˆ

M∞
τ ∩BR(0)

�(0,0)dμ∞
τ

≥ 1

(−4πτ)
n
2
exp

(

− R2

−4τ

)

|M∞
τ ∩ BR(0)|,

which implies thatM∞
τ is proper. The enclosed volume of the rescaled flows is V i = λn+1

i V0.
Since V0 
= 0, this clearly blows up as λi → ∞. If the limit flow were compact, it would
be contained in a ball with finite radius (for each τ ). But because of the properness of the
limiting hypersurface M∞

τ there can only be finite volume contained in that ball which is a
contradition. Thus, the limiting ancient flow is non-compact. ��

Remark 9 See [10] for examples of non-compact self-shrinkers of arbitrary genus.

4.3 Density estimates and the clearing out lemma

In this section we demonstrate that the monotonicity arguments in [20, Chapter 4] may be
modified to the case of VPMCF with essentially minor additional assumptions depending
only on the L2 norm of H . Throughout this section we will assume that our flow is smooth
and properly immersed up to the final, possibly singular, time.

From the Monotonicity formula we have that

d

dt

(

ψ

ˆ

Mt

φ�(x0,t0)dμ

)

≤ ψ

ˆ

Mt

�(x0,t0)

(
d

dt
− �

)

φdμ .

and from Corollary 8 we have that 1 = ψ(0) ≥ ψ(t) ≥ ε(t) > 0 for some strictly positive
function ε(t), and by the dominated convergence theorem, ψ(t) is continuous.
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Definition 5 The space-time track of a flow is defined by

M := ∪t∈[0,T )Mt × {t} ⊂ R
n+1 × [0, T ) .

The Gaussian density on M is determined by

�(M, x0, t0) := lim
t↗t0

ˆ

Mt

�(x0,t0)dμt

where, as usual, integration also counts multiplicities in M.

Indeed, by the monotonicity formula (with φ = 1) we see that
ˆ

Mt

�(x0,t0)dμt ≤ 1

ψ(t)

ˆ

M0

�(x0,t0)dμ0 =: C0(M0)

ψ(t)

and so by dominated convergence theorem, the density converges everywhere. It is also useful
to define a localised density, and so we consider the localisation function

φ(x0,t0),ρ(x, t) :=
(

1 − |x − x0|2 + 2n(t − t0)

ρ2

)3

+
then we have that on the support of φ(x0,t0),ρ(x, t),

(
d

dt
− �

)

φ(x0,t0),ρ(x, t) = − 6

ρ2 H 〈x − x0, ν〉 φ
2
3
(x0,t0),ρ

≤ 6

ρ
|H |

and so by the monotonicity formula

d

dt

(

ψ(t)
ˆ

Mt

φ(x0,t0),ρ�(x0,t0)dμ

)

≤ 6

ρ
|H |

ˆ

Mt

ψ(t)�(x0,t0)dμ ≤ 6

ρ
|H |C0(M0)

wherewe apply themonotonicity formula to estimate the integral in terms ofM0. In particular,
we may estimate that for any t2 < t3,

ψ(t3)
ˆ

Mt3

φ(x0,t0),ρ�(x0,t0)dμ

≤ ψ(t2)
ˆ

Mt2

φ(x0,t0),ρ�(x0,t0)dμ + 6C0(M0)

√
t3 − t2

ρ2

√ˆ t3

t2
H

2
dt . (10)

With some abuse of notation, we define localised monotonicity to be

�(M, x0, t0) := lim
t↗t0

ˆ

Mt

φ(x0,t0),ρ�(x0,t0)dμt ,

and note that, by (10), this limit always exists and we may estimate that for t ∈ (t0 − ρ2, t0)

�(M, x0, t0) ≤ ψ(t)

ψ(t0)

ˆ

Mt

φ(x0,t0),ρ�(x0,t0)dμ + 6
C0(M0)

ψ(t0)

√
t0 − t

ρ2

√ˆ t0

t
H

2
dt . (11)

Lemma 12 (Upper semicontinuity of �) �(M, x0, t0) is upper semi continuous in time and
space. Explicitly, if x j → x0, t j ↗ t0 then

lim sup
j→∞

�(M, x j , t j ) ≤ �(M, x0, t0) .
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Proof We have that for any t ∈ (t0 − ρ2, t0), if j is large enough then

�(M, x j , t j ) ≤ ψ(t)

ψ(t j )

ˆ

Mt

φ(x j ,t j ),ρ�(x j ,t j )dμ + 6
C0(M0)

ψ(t j )

√
t j − t

ρ2

√ˆ t j

t
H

2
dt .

so, taking a limsup,

lim sup
j→∞

�(M, x j , t j ) ≤ ψ(t)

ψ(t0)

ˆ

Mt

φ(x0,t0),ρ�(x0,t0)dμ + +6
C0(M0)

ψ(t0)

√
t0 − t

ρ2

√ˆ t0

t
H

2
dt

and limiting t → t0 yields the required inequality (as ψ is continuous). ��
Corollary 13 For any point (x0, t0) reached by a smooth properly immersed flow,

�(M, x0, t0) ≥ 1

Proof On any smooth manifold with x j ∈ Mtj , �(M, x j , t j ) = 1, so the statement follows
from upper semicontinuity. ��
Proposition 14 (The clearing out lemma) Suppose that Mt is smooth and properly immersed
for t ∈ [t0 − ρ2

0 , t0). We suppose that for positive constants C0 and L
ˆ t0

t0−ρ2
0

H
2
dt ≤ L ψ(t0 − ρ2

0 )

ˆ

M
t0−ρ20

�(x0,t0)dμ ≤ C0 .

Then there exists a constant β0 = β0(n,C0, L) such that for any β ∈ (0, β0) there exists a
constant θ(β, n) such that for any ρ ∈ (0, ρ0)

Hn(Mt0−βρ2 ∩ Bρ)

ρn
≥ θe− L

2
.

Proof By Corollary 13 and (11) we have that for t ∈ (t0 − σ 2, t0) where σ ∈ (0, ρ0),

1 ≤ ψ(t)

ψ(t0)

ˆ

Mt

φ(x0,t0),σ �(x0,t0)dμ + 6
C0(M0)

ψ(t0)

√
t0 − t

σ 2

√ˆ t0

t
H

2
dt .

Rewriting, and setting t0 − t = ασ 2 for some α ∈ (0, 1],

1 − 6
C0(M0)

ψ(t0)

√
t0 − t

σ 2

√ˆ t0

t
H

2
dt

≤ ψ(t)

ψ(t0)

ˆ

Mt

(

1 − |x − x0|2 + 2n(t − t0)

σ 2

)3

+
1

(4π(t0 − t))
n
2
e
− |x−x0 |2

4(t0−t) dμ

≤ ψ(t)

ψ(t0)

(1 + 2nα)3

(4πασ 2)
n
2
Hn(Mt0−ασ 2 ∩ B√

1+2nασ (x0)) .

We wish to change constants from (α, σ ) to (β, ρ) by setting ρ = √
1 + 2nασ and βρ2 =

ασ 2. For this to be possible, we need β < 1
2n at which point we have that

β = α

1 + 2nα
α = β

1 − 2nβ
σ = √

1 − 2nβρ
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Therefore,

(4πβ)
n
2

(1 + 2nα)3

(
1 − 6

√
αC0

√
Le

L
2

)
≤ e

L
2
Hn(Mt0−βρ2 ∩ Bρ)

ρn
.

To get a positive density we want α = min{ e−L

144C2
0 L

, 1} which corresponds to

β ≤ min

{
1

144C2
0 Le

L + 2n
,

1

1 + 2n

}

=: β0 .

Finally we obtain,

θ(n, β)e− L
2 := 1

2
(4πβ)

n
2 (1 − 2nβ)3e− L

2 ≤ Hn(Mt0−βρ2 ∩ Bρ(x0))

ρn
.

��

4.4 A condition for a uniform diameter bound

In this section we apply the clearing out lemma to obtain conditions under which we may
ensure a uniform curvature bound.

Proposition 15 Suppose that there exists constants h,C > 0 such that for all t ∈ [0, T − h)

ˆ t+h

t
H

2
dt < C . (12)

Then there exists a constant R = R(C, n, M0) such that for all t ∈ [0, T )

diam(Mt ) < R .

Proof We apply the clearing out lemma (Proposition 14) with ρ0 = √
h on any time interval

of the form [t, t + h). On such an interval by assumption we have the L2-bound on H , and
the second assumption is automatically fulfilled for someC0 = C0(M0) by the monotonicity

formula. Therefore we have: for β = β0(n,C,M0)
2 there is a θ̃ = θ(β, n)e− C

2 such that
Hn(Mt0−βρ2 ∩ Bρ) ≥ θ̃ρn .

Suppose that t > hβ. We have that |Mt | ≤ |M0| and there exists ρ0
4 ≤ ρ < ρ0 such that

diam(Mt ) = 2Nρ for N ∈ N. Then there must be at least N disjoint ambient balls of radius
ρ whose centers lie on Mt . We use the area of Mt in these balls as lower bounds. We see that
(as t > βρ2)

|M0| > |Mt−βρ2 | > N θ̃ρn = 1
2 θ̃ρn−1 diam(Mt ).

As ρ ≥ ρ0
4 and θ̃ is fixed, we see that diam(Mt ) ≤ 2θ̃−1ρ1−n

0 4n−1|M0|.
If t < hβ, we may instead apply Proposition 7 to see that diam(Mt ) ≤ C(M0, h, β). ��

Remark 10 The condition (12) in the above Proposition may also be replaced by´ t+h
t

´
Mt

H2dμdt < C or equivalently | ddt |Mt || < C . Clearly a uniform bound on H also
implies this condition.
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5 Long time behaviour of VPMCF

In this section we consider the flow under the assumptions that

a) the flow exists for all time, and
b) the diameter is uniformly bounded, that is, there exists an R0 > 0 such that

diam(Mt ) ≤ R0 (13)

for all t ∈ [0,∞).

By Proposition 15 we can replace (13) with (12). Both of the above assumptions are therefore
implied by a curvature bound on the flow which is uniform in time.

Definition 6 We define a “Newton inequality-like” extended isoperimetric ratio by the scale
invariant quantity

I(Mt ) = n + 1

n
H
Voln+1(Mt )

|Mt | .

Remark 11 This isoperimetric ratio appears to be a natural one to consider: If we think of
the Alexandrov–Fenchel inequalities as an “averaged” version of the Mclaurin inequalities
for symmetric polynomials, then the above would be a ratio similar to an “averaged” New-
ton inequalities. Importantly, the Newton inequalities hold without any assumptions on the
curvature cone.

Remark 12 Denoting ωn for the area of the n-sphere, if we write vn+1 = n+1
ωn

Voln+1(Mt ),

vn = |Mt | and vn−1 = 1
n

´
Mt

Hdμ then, while Mt is mean convex and starshaped, then
it bounds some domain �t and we know that, by the Alexandrov–Fenchel inequalities,

v
1

n+1
n+1 ≤ v

1
n
n ≤ v

1
n−1
n−1 with equalities if and only if Mt is a sphere (see [28] – here we are

writing, vn+1−k = Vn+1−k (�t )
Vn+1−k (B)

in that paper). Applying these we have that

1 ≤ vn+1

v
n+1
n

n

≤ I(Mt ) = vn−1vn+1

v2n
≤ vn−1

v
n−1
n

n

= 1

I1(�t )n−1 ,

where I1(�t ) is the first Quermass integral [28, equation (6)]. Equalities hold in the above if
and only if Mt is a sphere. Therefore if Mt is starshaped and mean convex with I(Mt ) = 1,
Mt is a round sphere.

Under the above assumptionswemay improve the assumptions of Sect. 3 to get the following:

Theorem 16 Suppose that Mt satisfies VPMCF for all t > 0 with V0 
= 0 and has uniformly
bounded diameter as in (13). Then for any sequence ti → ∞ there exists a subsequence (not
relabeled) such that either

I(Mti ) → 1 or I(Mti ) → 0

as i → ∞. Equivalently, there exists a subsequence such that the extended isoperimetric
ratio goes to that of a constant mean curvature surface or of a minimal surface.

Corollary 17 Let X be a mean convex embedded starshaped solution of the VPMCF with
uniformly bounded curvature for all times. Then X(·, t) converges smoothly to a round
sphere with enclosed volume V (X(·, 0)) for t → ∞.
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Proof of Corollary 17 We first note that the uniform curvature bound implies that the diameter
is bounded by Proposition 15. The area remains also bounded due to the gradient flow
property. This allows us to use Shi-type estimates as sketched in Remark 8 to get uniform
estimates on all derivatives of curvature.

We now pick a sequence of points and times (pi , ti ) such that Mti =: Mi is starshaped
over pi . We denote Xi : Sn → R

n+1 to be the immersion for Mi translated so that pi is
moved to the origin. We may now apply the compactness theorem of Breuning [9] and get
a limiting immersion X̃ : M̃ → R

n+1 and smooth subconvergence of Xi to X̃ on compact
subsets of M̃n with the following properties: a) M̃n is connected and a topological sphere
because the domain enclosed by Xi is starshaped around 0 for all i – so M̃n can be assumed
to be Mn = S

n (we compose with appropriate diffeomorphisms if necessary, see [9]); b) in
fact, the convergence is uniform because Mn is compact.
For the convenience of the reader, we sketch the above compactness result under our stronger
assumptions (which include having a sequence of immersions on a fixed manifold): Due to
the curvature bound there exists an r > 0 such that for any i , Mi may be locally written as
graphs over a ball B3r ⊂ TpMi for any p ∈ Mi . As a result we claim that there exists an
N such that for all i , Mi may be covered by N graphs over Br tangent balls. Take all such
balls of radius Br

5
then by the Vitali covering lemma there exists a countable subcollection

of balls of radius r with centres pi1, p
i
2, . . . such that Br ⊂ Tpi Mi cover Mi and the graphs

over Br
5
are disjoint. Each of the Br

5
graphs contribute a fixed amount of area and so there

can only be a finite number N given by our (uniform-in-i) area bound. Writing pi1, . . . , p
i
N

for the tangent space centres on Mi , using that Mi stays in a bounded region given by the
diameter bound, and by compactness of Sn = Gr(Rn;Rn+1), we may choose a subsequence
(also labelled with i) so that these centres and the tangent spaces converge to a sequence
of points p∞

1 , . . . , p∞
N , so that graphs over B2r cover a smooth manifold M∞. After taking

further subsequences, Arzelà–Ascoli implies the convergence is smooth and that for i large
enough, images of the Xi may be written as smooth local graphs over the p∞

i converging to
M∞. However we immediately see that for i large enough M∞ has the same topology as Mi ,
which due to starshapedness must be a topological sphere.

As
〈
x
|x | , ν

〉
≥ 0 on the Mi , we get I(Mi ) ≥ 1, which implies I(M∞) ≥ 1. By applying

Theorem 16, we conclude I(M∞) = 1. Therefore, as in Remark 12, we know that M∞
is a round sphere. Finally, picking a ti0 so that Mi0 is (smoothly) close enough to M∞, and
restarting the flow from ti0 wemay nowapply [23] to see that the flowconverges exponentially
and smoothly to a round sphere. But now by smooth convergence it must be M∞, which is
a round sphere at finite distance from pi0 . So the translating procedure can be reversed and
the original immersions X(·, t) converge to a round sphere for t → ∞.

Remark 13 • If we have a VPMCF that stays Alexandrov immersed for all times and
|A| ≤ C uniformly, then for each t j → ∞, the flow subconverges smoothly to a closed
limiting surface with constant mean curvature (H(·, t̃ j ) must converge to H∞ see e.g.
[30]). In this Alexandrov immersed case the limiting object must be a sphere – and thus
I(M∞) = 1. This follows from Alexandrov’s theorem: A closed Alexandrov immersion
having constant mean curvature must be a sphere [1]. We can also improve subconver-
gence to convergence by [23] again.

• In general, if no singularity appears, i.e. T = ∞ and |A| ≤ C (uniformly in t),
then I(Mtj ) → 0 cannot happen because any limiting surface satisfies |M∞| > 0,
so I(Mt̃ j ) → 0 would imply we found a closed minimal surface as limiting object which
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is clearly impossible. At this point we do not knowwhether I(M∞) = 1 implies thatM∞
is a sphere. We only know this for the starshaped case and for Alexandrov immersions.

In order to show Theorem 16 we first improve our estimates on H
2
in the two cases of

I(Mt ) ≤ 1 (where I(Sn) = 1) and I(Mt ) ≥ 1.

Proposition 18 Suppose that Mt as in (13) and V0 
= 0. Let α ∈ (0, 1), and suppose that on
the time interval [t1, t2] we may estimate

H(n + 1)V0 ≤ αn|Mt | .

Then we have that
ˆ t2

t1
|H |2dt ≤ max

(
α2

(1 − α)2
, 1

)
R2
0

2(n + 1)2V 2
0

|Mt1 |2 .

Note that α2

(1−α)2
≥ 1 if and only if α ≥ 1

2 .

Proof In Proposition 6, we estimated H using Young’s inequality. Here we estimate more
carefully using the above assumption.

Using (4), we note that,
ˆ

Mt

〈Xt , X − x〉 dμ = H
ˆ

M
〈ν, X − x〉 dμ −

ˆ

M
H 〈ν, X − x〉 dμ

= H(n + 1)V0 − n|Mt |
≤ −n(1 − α)|Mt |

(14)

We set b = n|Mt | and a = − ´
Mt

〈Xt , X − x〉 dμ ≥ 0. Thenwe consider two cases. First, we
assume that a < b. We use a = αa+ (1−α)a ≥ (1−α)b which implies |b− a| = b− a ≤

α
1−α

a = α
1−α

|a|. On the other hand, if a > b, then we know that |b − a| = a − b < a = |a|
because b > 0. Putting this together, we get that |b − a| ≤ max(1, α

1−α
)|a| and thus

∣
∣
∣
∣

ˆ

Mt

〈Xt , X − x〉 dμ + n|Mt |
∣
∣
∣
∣ ≤ max

(
α

1 − α
, 1

) ∣
∣
∣
∣

ˆ

M
〈Xt , X − x〉 dμ

∣
∣
∣
∣

and

|H | ≤ max

(
α

1 − α
, 1

) ∣
∣
´
M 〈Xt , X − x〉 dμ

∣
∣

(n + 1)|V0| .

Estimating as before we have

|H |2 ≤ max

(
α2

(1 − α)2
, 1

) ´
M |H − H |2dμ

´
M |X |2dμ

(n + 1)2V 2
0

≤ −max

(
α2

(1 − α)2
, 1

)
R2
0

2(n + 1)2V 2
0

d

dt
|Mt |2 .

And so
ˆ t2

t1
|H |2dt ≤ max

(
α2

(1 − α)2
, 1

)
R2
0

2(n + 1)2V 2
0

[|Mt1 |2 − |Mt2 |2] .

��
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Wemay now repeat this but for the opposite inequality of the (extended) isoperimetric (or
Alexandrov-Fenchel) inequality.

Proposition 19 Suppose that Mt has diam(Mt ) ≤ R and V0 
= 0. If on the time interval
[t1, t2] we may estimate

H(n + 1)V0 ≥ (1 + β)n|Mt | ,

for some β > 0, then we have that
ˆ t2

t1
|H |2dt ≤ R2(1 + β−1)2

2(n + 1)2V 2
0

|Mt1 |2 .

Proof We note that from the assumption,
ˆ

Mt

〈Xt , X − x〉 dμ = H(n + 1)V0 − n|Mt |
≥ βn|Mt | .

This time, may directly estimate using the triangle inequality that

|H | ≤ (1 + β−1)
∣
∣
´
M 〈Xt , X − x〉 dμ

∣
∣

(n + 1)|V0| .

so, as above

|H |2 ≤ − R2
0(1 + β−1)2

2(n + 1)2V 2
0

d

dt
|Mt |2 ,

and so
ˆ t2

t1
|H |2dt ≤ R2

0(1 + β−1)2

2(n + 1)2V 2
0

[|Mt1 |2 − |Mt2 |2] .

��
Proof of Theorem 16 Suppose not. Then there exists a T , ε > 0 such that for all t > T ,
I(Mt ) ∈ (−∞,−ε) ∪ (ε, 1 − ε) ∪ (1 + ε,∞). By continuity we have that I(Mt ) is in one
of the intervals (−∞,−ε), (ε, 1 − ε) or (1 + ε,∞) for all t > T . We particularly have that
H(n+1)V0 = n|Mt |I(Mt ) is either not larger than (1−ε)n|Mt | or not less than (1+ε)n|Mt |.
As a result, by applying Propositions 18 and 19 we have one of

ˆ ∞

T
H

2
dt ≤ max

(
ε2

(1 − ε)2
, 1

)
R2
0

2(n + 1)2V 2
0

|Mt1 |2 .

or
ˆ ∞

T
H

2
dt ≤ R2

0(1 + ε−1)2

2(n + 1)2V 2
0

|Mt1 |2 .

Using the isoperimetric inequality, we have that |H | = n|Mt |
(n+1)|V0| |I(Mt )| ≥ c > 0 in both

cases. This is clearly impossible.

Corollary 20 If a solution exists for all t ≥ 0 and for all this time H(n + 1)V0 ≤ αn|Mt | for
some α ∈ (0, 1) then there exist ti such that H(ti ) → 0 as i → ∞.
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6 Barriers and preservation of Alexandrov immersions

In Corollary 4 we already saw that the property of being Alexandrov immersed and having
H ≤ 0 is not preserved for long under theVPMCF.Nowwewill study underwhich conditions
the property of being Alexandrov immersed is preserved for all times. We will also describe
how barriers for the VPMCF can be constructed.

We start by introducing some notation. We will use descriptive superscripts to distinguish
between manifold, e.g. Mouter

t , M Inner and so on. For example, we let f ∗ : [0, T ) → R be
some smooth function.

Definition 7 We will say a flow M∗
t satisfies Forced Mean Curvature Flow with forcing

term f ∗ (and write this as FMCF( f ∗)) if it has a time dependent parametrisation X∗ :
Nn × [0, T ) → R

n+1 (and chosen normal ν∗) so that
〈
dX∗

dt
+ H∗ν∗, ν∗

〉

= f ∗ .

We will use this to produce barriers for the flow.

Definition 8 Suppose that M1
t satisfies FMCF( f 1) and M2

t satisfies FMCF( f 2). Suppose
that there is an open ball Br (x) so that M1

t has non-trivial intersection with Br (x) so that
Br (x) \ M1

t is made up of two connected components.
We define the component which the normal points away from to be the local interior of

M1
t , and the component the normal points into to be the local exterior of M1

t .
We will say that M2

t is locally inside M1
t if it is contained in the local interior of M1

t . We
will say that M2

t is locally outside M1
t if it is contained in the local exterior of M1

t

Lemma 21 Suppose that Mout
t satisfies FMCF( f out) and Min

t satisfies FMCF( f in). Suppose
that in open some ball B2r (x), Min

0 is locally inside Mout
0 . Given σ ∈ {1,−1}, suppose that

f out − σ f in ≥ 0 .

Then Min
t ∩ Br (x) cannot intersect Mout

t ∩ Br (x) for the first time with
〈
νin, νout

〉 = σ at an
interior point.

Proof Step 1: The graph equation. We describe the evolution of a graphical piece of a surface
moving by FMCF( f gr):
We consider a solution Mgr

t to FMCF( f gr) locally as a graph of the function graph function
ugr in direction en+1 (possibly after rotation). Then we calculate with respect to unit normal
μgr showing upwards in the graphical setting (the graphical normal μgr may not be the same
normal as the a priori chosen νgr)

vgr =
√
1 + |Dugr|2, μgr = v−1

gr (−Dugr + en+1),

gi j = δi j + Diu
grDju

gr, gi j = δi j − v−2
gr DiugrD jugr,

and

hgri j = −v−1
gr D2

i j u
gr, H = −v−1

gr (δi j − v−2
gr DiugrD jugr)D2

i j u
gr

and so
〈
ugrt en+1 − v−1

gr (δi j − v−2DiugrD jugr)D2
i j u

grνgr, νgr
〉
= f gr

〈
νgr, μgr〉
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or

ugrt = (δi j − v−2
gr DiugrD jugr)D2

i j u
gr + vgr f gr

〈
νgr, μgr〉 .

Here (while hypersurface is graphical), 〈νgr, μgr〉 ∈ {1,−1}.
Step 2: Proof of the statement.
Suppose not. Suppose that the first point of intersection is (p0, t0) for some t0 > 0. Then
after rotation we may assume that νout(p0, t0) = en+1 and so νin(p0, t0) = ±en+1. For some
ε > 0 we can write both Mout

t and M in
t graphically on Bε(p0) × (t0 − ε, t0] where

uoutt = (δi j − v−2
outD

iuoutD juout)D2
i j u

out + vout f out ,

and

uint = (δi j − v−2
in DiuinD juin)D2

i j u
in + vin f in

〈
νin, μin〉 .

Due to our definitions we have that w := uout − uin > 0 for t < t0 and

wt = ai j D2
i jw + b̂i Diw +

√
1 + |Duout|2 f out −

√
1 + |Duin|2 〈

νin, μin〉 f in

= ai j D2
i jw + b̂i Diw +

√
1 + |Duout|2( f out −

〈
νN , μN

〉
f )

+ (
√
1 + |Duout|2 −

√
1 + |Duin|2) 〈

νin, μin〉 f in

= ai j D2
i jw + b̂i Diw +

√
1 + |Duout|2( f out − 〈

νin, μin〉 f )

+ (Diuout + Diuin)(Diuout − Diuin)
√
1 + |Duin|2 + √

1 + |Duin|2
〈
νin, μin〉 f in

= ai j D2
i jw + bi Diw +

√
1 + |Duout|2( f out − 〈

νin, μin〉 f in)

where ai j and bi are the usual terms and we have computed the additional terms to need-
less accuracy. We know that

〈
νin, μin

〉 = 〈
νin(p0, t0), νout(p0, t0)

〉 = σ . Therefore as
f out − 〈

νin, μin
〉
f in ≥ 0, we have a contradiction to the strong maximum principle. ��

Lemma 22 Suppose that M1
t satisfies FMCF( f 1) and Mout

t satisfies FMCF( f out). Suppose
that in a ball Br (x)wehave that M1

0 is locally outside M
in
0 . Suppose that for someσ ∈ {1,−1}

f 1 − σ f out ≤ 0

Then M1
t ∩ Br (x) cannot intersect Mout

t ∩ Br (x) for the first time with
〈
ν1, νout

〉 = σ at an
interior point.

Proof Suppose not. This time, we may take en+1 = ν1(p0, t0) = σνout(p0, t0) (as otherwise
one would have been locally inside the other). This time w = u1 − uout < 0 and

wt = ai j D2
i jw + bi Diw +

√
1 + |Du1|2( f 1 − σ f out) .

Again we get a contradiction to the strong maximum principle. ��
Proposition 23 (Outer Barriers) Suppose that Mout

t is a solution for FMCF( f out) which is
embedded for all time and bounds the compact region �(t), and νN points out of �(t).

Suppose that Mt satisfies VPMCF and M0 ⊂ ◦
�(0) and for all t ∈ [0, T )

f out ≥ |H |.
Then for all t ∈ [0, T ), Mt ⊂ �(t).
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Proof Suppose not. We have that for σ ∈ {1,−1},
f out − σH ≥ f out − |H | ≥ 0

and so by Lemma 21, at a first time of intersection the two normals cannot be multiples of
each other, a contradiction. ��

Proposition 24 (Inner Barriers) Suppose that Nt is a solution for FMCF( f ) which is embed-
ded for all time and bounds the compact region �(t), and νN points out of �(t). Suppose
that M0 ∩ �(0) = ∅, and for all t ∈ [0, T )

f ≤ −|H |.
Then for all t ∈ [0, T ), Mt ∩ �(0) = ∅.

Proof Suppose not. For any σ ∈ {1,−1}
f 1 − σH ≤ f 1 + |H | ≤ 0

and so by Lemma 22, at a first time of intersection the two normals cannot be multiples of
each other, a contradiction. ��

We need the following corollary from our previous paper:

Corollary 25 ([35, Corollary 5]) A compact flowing manifold with bounded curvature may
only loose the property of being Alexandrov immersed at time T if there exist points
pandq(t) ∈ Mn so that |X(p, t) − X(q(t), t)| goes to zero with 〈ν(p, t), ν(q(t), t)〉 = −1
and where 〈ν(p), X(q(t), t) − X(p, t)〉 < 0 and 〈ν(q, t), X(p, t) − X(q(t), t)〉 < 0 for
T − δ < t < T .

Theorem 26 Let M0 be Alexandrov immersed Mt the VPMCF starting from M0. As long as
H ≥ 0, the flow stays Alexandrov immersed.

Proof From Corollary 25 we know that at a time where Alexandrov immersion property is
lost two disjoint pieces of the flowmust intersect, with the normals are in opposite directions.
In Lemma 21 this corresponds to σ = −1 while f out = f in = H , and so we immediately
see that this cannot happen. ��

A natural question to ask is when H ≥ 0 is preserved if we know that Mt is Alexandrov
immersed. This is not always true without further assumptions – see the Example 2 below.
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Appendix A: The Trilobite - an example in which H ≥ 0 is lost

A natural hope, given the previous section, is to attempt to show that under Alexandrov
immersed VPMCF, H(t) ≥ 0 is preserved. The following example demonstrates that this is
not the case without further assumptions on the flow.

The evolution equation for H is given by

dH

dt
=
 

(H − H)|A|2 + (H − H)(−H2 + HH)dμ =
 

(H − H)|A|2 − (H − H)2Hdμ.

So, for surfaces (n = 2), if H(0) = 0, then

dH

dt

∣
∣
∣
∣
t=0

=
 

H(|A|2 − H2)dμ
∣
∣
t=0 = −2

 
HKdμ

∣
∣
t=0

using the Gauss equations. We now describe initial data such that
´
M Hdμ = 0 and´

M K Hdμ > 0, meaning that H ≥ 0 is not preserved.
Our example is constructed from rotationally symmetric pieces. If γ is the profile curve

(parametrised by arclength) of a rotationally symmetric surface (rotated about the y-axis)
then we have that the curvatures are given by

κ1 = κ, κ2 =
〈
γ̇ , ey

〉

x
= ẏ

x
, H = ẏ

x
+ κ, K = ẏκ

x

and we may see that dμ = 2πxds.
Therefore we have that (for I = [a, b])
ˆ

M
Hdμ = 2π

ˆ

γ

xκds + 2π(y(b) − y(a)),

ˆ

M
HKdμ = 2π

ˆ

γ

ẏκ2 + κ
ẏ2

x
ds .

(15)

We calculate the above for various profiles.
Onahemisphere Eρ of radiusρ:Wehave that κ1 = κ2 = ρ−1 and so in this case H = 2ρ−1,
K = ρ−2,

ˆ

Eρ

H = 4πρ,

ˆ

Eρ

HKdμ = 4πρ−1 .

On a cylinder Cρ,l of radius ρ and length l: We have that κ1 = 0, κ2 = ρ−1 and so in this
case H = ρ−1, K = 0,

ˆ

Cρ,l

H = 2πl,
ˆ

Cρ,l

H Kdμ = 0 .
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Fig. 2 The construction of the Trilobite example in pictorial form

On a rotated arc I θ1,θ2
(x̃,ỹ),ρ ⊂ R+ centred at (x̃, ỹ) through angles [θ1, θ2] from the hori-

zontal: Parametrising as γ (s) = (ρ cos(ρ−1s) + x̃, ρ sin(ρ−1s) + ỹ) for s ∈ [ρθ1, ρθ2], we
have that κ = ρ−1 so

ˆ

I
θ1,θ2
(x̃,ỹ),ρ

H = 2πρ−1
ˆ ρθ2

ρθ1

ρ cos(ρ−1s) + x̃ds + 2πρ(sin(θ2) − sin(θ1))

= 4πρ[sin(θ2) − sin(θ1)] + 2π x̃(θ2 − θ1)

while
ˆ

I
θ1,θ2
(x̃,ỹ),ρ

HKdμ = 2πρ−1
ˆ ρθ2

ρθ1

cos(ρ−1s)ρ−1 + cos2(ρ−1s)

ρ cos(ρ−1s) + x̃
ds

= 2π
ˆ θ2

θ1

cos2(t)

ρ cos(t) + x̃
dt + 2πρ−1[sin(θ2) − sin(θ1)] .

As
´ θ2
θ1

cos2(t)dt = 1
4 [sin(2θ2) − sin(2θ1)] + 1

2 [θ2 − θ1] we may estimate the integral as

π

1
2 [sin(2θ2) − sin(2θ1)] + [θ2 − θ1]

x̃ + ρ
≤ 2π

ˆ θ2

θ1

cos2(t)

ρ cos(t) + x̃
dt

≤ π

1
2 [sin(2θ2) − sin(2θ1)] + [θ2 − θ1]

x̃ − ρ

Example 2 (The Trilobite) We construct a family of embedded surfaces inR3 as follows. We
start with a construction that is C1 everywhere and smooth away from 1 dimensional glueing
points (Fig. 2).
Step 1 - Capped cylinders, Qρ,l We start with a hemisphere of radius ρ, Eρ , attach this to a

long cylinder Cρ,l and then attach this to the plane using a quarter circle I
( π
2 ,π)

(2ρ,−ρ),ρ of radius
ρ, as shown. We will call this entire union Qρ,l . In our constuction, we will choose out
normals to point into the cylinders meaning that they contribute negatively to both integrals.
We calculate

We get that
ˆ

Qρ,l

Hdμ = 2π [−(4 − π)ρ − l],
ˆ

Qρ,l

K Hdμ ≥ −6πρ−1
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´
Hdμ

´
HKdμ

E1
ρ −4πρ −4πρ−1

Cρ,l −2πl 0

I
( π
2 ,π)

(2ρ,−ρ),ρ
2πρ(π − 2) ≥ π2

6ρ − 2πρ−1

Step 2 - Attach n capped cylinders to a diskWe now attach n of these to a flat disk of radius
2nρ which we may always do (e.g. in a line). We will refer to this modified disk as Pρ,l,n

where we note that the integrals over H and HK on this disk are just n times those on Qρ,l .
Step 3 - Glue into a final rotationally symmetric surfaceWe now attach this to the rotationally

symmetric surface given by taking another third of a circle I
− π

6 , π
2

(2nρ,−l),l before closing the

surface with a cone of slope
√
3 which we will denote O√

3. We round off the point of the
cone using a spherical cap of radius r denoted Ar .
Step 4 - A careful choice of constants and smoothing In the above, altering l in the cylinders
Qρ,l changes only

´
H , and by increasing n sufficiently, we will see below see that this may

be used to ensure that in the above we have
´
H = 0. Unfortunately, the caps and joins add

a significant negative quantity to
´
HK . However Ar has only negligable

´
H contribution

while adding an arbitrarily large amount to
´
HK . Balancing these (see calculations below)

mean we can ensure that
´
H = 0 while

´
HK can be made arbitrarily large. However, we

would like a smooth manifold - to do this we smooth only locally to the joins, perturbing´
H ,

´
HK by an arbitrarily small amount. Away from the joins, the interior of the cylinders

are still cylinders and so shortening or lengthening one of these slightly will again restore´
H = 0.
We now do the accountancy and calculate the following contributions to the integrals:

´
Hdμ

´
HKdμ

Pρ,l,n 2nπ [−(4 − π)ρ − l] ≥ −6nπρ−1

I
− π

6 , π
2

(2nρ,−l),l 6πl + 8
3nπ2ρ positive

O√
3 2nρ + l − r 0

Ar 2π(2 − √
3)r 2π(2 − √

3)r−1

so
ˆ

Hdμ = 2π[(3 + (2π)−1 − n)l + (
11

3
π + π−1 − 4)nρ + (2 − √

3 − (2π)−1)r ]
ˆ

HKdμ ≥ 2π(2 − √
3)r−1 − 6nπρ−1 .

Therefore we may pick (for example) ρ = 1, n ≥ 4 (e.g. n = 7), and choose

l(r) = ( 113 π + π−1 − 4)nρ + (2 − √
3 − (2π)−1)r

n − 3 − (2π)−1 .

Then, by setting r to sufficiently small (compared to n−1ρ)wemaymake
´
HKdμ arbitrarily

large.
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