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ABSTRACT

This report proposes a new and novel attack on McEliece’s cryptosystem
that improves on the probability of attacks formerly proposed by Stern, and
Lee and Brickell.

Modern day encryption standards have been long since proven insecure
to quantum attack, and quantum-resistant cryptosystems are now at the
forefront of research. Since 2016, the National Institute of Standards and
Technology (NIST) has presided over a public competition to establish new
standards for public-key encryption that will secure our data in the post-
quantum world. Now in its final round, one of the remaining candidates
is McEliece’s cryptosystem, a code-based cryptosystem proposed in 1978
by Robert J. McEliece. With a few minor alterations since its conception,
McEliece’s cryptosystem has, so far, proven resistant to quantum attacks,
making it an ideal finalist candidate. The cryptosystem has not, however,
escaped the attention of attack and, over the last four decades, a variety
of algorithms have been proposed with the intention of exploiting it to
recover the plaintext.

This paper initially provides an overview of McEliece’s cryptosystem
and two existing attacks proposed by Stern, and Lee and Brickell in the
1980s. Observations are made on the shared probabilistic nature of Stern’s
algorithm, and Lee and Brickell’s attack. It is noted that the first step of both
algorithms involves the random selection of a subset of n indexes. In Stern’s
algorithm, n−k of n columns in amatrixH are chosen at random and, in Lee
andBrickell’s attack, k ofnbits of the ciphertext are selected, also at random.
This relationship is exploited to compound the two attacks and propose
a new, novel attack. The complexity and probability of the new attack are
discussed and an analysis is conducted to compare it against both Stern’s
algorithm and Lee and Brickell’s attack.

This analysis suggests that the probability of successful attack comes
close to combining those of the two original attacks. Furthermore, the
results suggest that the novel attack can successfully recover a message
faster than Stern’s algorithm. Improvements to the attack are suggested,
concluding that further study should be conducted into fully analysing it
and its implications on the security of McEliece’s cryptosystem.
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1. Introduction

1.1. Post-quantum cryptography

The emergence of quantum computers over the past half-century poses a frighteningly realistic threat
to current day cryptography of which, in spite of the severe ramifications, many are unaware. Mod-
ern day encryption standards have existed since the 1970s with Diffie and Hellman introducing the
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concept of public-key encryption in 1976 [6], and Rivest, Shamir and Adleman exploiting number
theory to create the famous RSA cryptosystem in 1978 [15]. Typically, cryptosystems such as RSA
rely on the intractability of a number theoretic problem for which it is computationally infeasible to
solve, such as factorizing a large prime number into its two prime factors. Problems such as these are
considered unsolvable on classical computers, thereforemaking them suitable candidates for the basis
of cryptosystems as they cannot be cracked by conventional methods. However, quantum algorithms
solving these problems have existed as early as the 1990s, with Shor providing a polynomial-time
algorithm in 1994 for solving both prime factorization and the discrete logarithm problem on a quan-
tum computer [16]. The potential consequence of this is insurmountable; being that, at the advent
of widespread quantum computers, all cryptographic standards currently unbreakable by classical
computers will be rendered obsolete.

In 2016, the National Institute of Standards and Technology (NIST) produced a report surmiz-
ing that the aforementioned advent of quantum computers may be reached in as little as 20 years
[13]. The report defined post-quantum cryptography and its goal to be ‘the [development] of cryp-
tographic systems that are secure against both quantum and classical computers, and can interoperate
with existing communications protocols and networks’ and called upon cryptographers and academics
to design quantum-resistant cryptosystems that are resilient to attack by quantum algorithms, such as
Shor’s or Grover’s [8]. These were to be submitted into a public competition to decide upon the new
standards for public-key cryptography that will secure our information in the rapidly approaching
post-quantum world.

1.2. McEliece’s cryptosystem

Code-based cryptography also finds its origins in the 1970s when, in 1978, Robert J. McEliece
proposed a public-key cryptosystem based on algebraic coding theory [11]. Unlike RSA and other
public-key cryptosystems which derive from number theory, McEliece’s proposition utilized coding
theory and the hard problem of decoding a linear code to which errors have been added.

Coding theory itself was initially developed for the purpose of communication over unreliable
channels, particularly with respect to error-correction. However, in the context of code-based cryp-
tography, errors are not of concern, but rather privacy. In this way, McEliece utilized coding theory
in the context of a reliable, but insecure channel where errors can be artificially inserted during
encryption without affecting communication.

Almost half a century after being proposed, McEliece’s cryptosystem still remains secure and
unbroken, by both conventional and quantum attacks. Whilst a series of possible attacks have been
devised [2–5,10,17] , their exploitations target the parameters chosen to construct the code, rather
than exploiting the nature of the algorithm itself. For this reason, an adapted version of McEliece’s
original cryptosystem (dubbed Classic McEliece) stands as a finalist candidate in the fourth round
of NIST’s post-quantum cryptography standardization process [14], alongside two other code-based
cryptosystems, BIKE and HQC, which stand as alternative candidates.

2. McEliece’s cryptosystem

The following sections rely on background knowledge in some underlying concepts of coding theory
and cryptography, particularly error-correcting codes and public key cryptography. Menezes et al.
provide a comprehensive introduction to cryptography in their book [12].

McEliece’s cryptosystem also relies on binary Goppa Codes, a class of error correcting code,
devised in 1970, by Valerii Densovich Goppa (in Russian) [1,7].

They are constructed from the following components [9]:

• ‘The Support’: a list L = (a1, . . . an) of n distinct elements in Fq

• ‘The Goppa Polynomial’: a polynomial g(x) ∈ Fq[x] of degree t satisfying the following properties:
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– g(x) is irreducible over Fq, i.e. cannot be broken down into two (or more) composite factors
– g(a) �= 0 for all a ∈ L.

The corresponding binary Goppa code Ŵ(L, g) is defined by

{c ∈ F
n
2 |S(c) =

n
∑

i=1

ci

x − ai
≡ 0 mod g(x)}. (1)

This, therefore, produces a linear code of length n. The code is able to correct up to t errors and has a
minimum hamming distance of d = 2t+ 1. The relationship between errors and minimum distance
is therefore t = d−1

2 .
Codewords can also be produced by a k × n generator matrixG. The parameters n and k also cor-

respond to the lengths of the plaintext message and their codewords respectively, and the exact values
of n and k are variable on the specific construction of the Goppa code. The codeword c corresponding
to messagem is obtained from the product of the message vectorm and the generator matrix G

c = mG

AcodeC also has, associatedwith it, the n × (n − k) parity checkmatrixH. If a codeword c belongs to
codeC, the product of cH, known as the syndrome, is a vector of length (n − k)with hamming weight
0. However, if a codeword c′ does not belong to the code C, the hamming weight of the syndrome
vector will be greater than 0. Furthermore, the product of GH is always a matrix of 0s.

These details expanded upon further in the literature [1,7,9].

2.1. Key generation and encryption

McEliece’s cryptosystem relies on a binary irreducible Goppa code C with the ability to correct up to

t errors. The codeC can be derived from the k × n generator matrixG. The public key is a tuple (Ĝ, t)

consisting of a randompermutation Ĝ of the aforementioned generatormatrix and a value t ∈ N. The

code associated with the permuted generator matrix Ĝ has the same parameters and error correcting

capability as the original code. The permuted generator matrix Ĝ is computed from the product of a
random binary k × k non-singular matrix S and a random n × n permutation matrix P.

Ĝ = SGP

To obtain the ciphertext c′ from a binary message vectorm of length k, we compute

c′ = mĜ + z

where z is a randombinary error vector ofweight t and lengthn. Themessagem is therefore encrypted
to a binary vector c′ of lengthn. The decryption of c′ tom is only possiblewith knowledge of thematri-
ces S and P along with the error-correction algorithm for the code C, generated by G. It is therefore
these values fromwhich the private key is composed (S,G,P) (Or alternatively (S,DG,P)whereDG is
the decoding algorithm for C). Note that c′ is used to denote the ciphertext as, in this paper, c denotes
the codewords belonging to the Goppa code C.

2.2. Decryption

An n-length vector ĉ is computed from the product of the ciphertext c′ and P−1, the inverse of the
matrix P.

ĉ = c′P−1

As ĉ = c′P−1 = (mG + z)P−1 = (mSGP + z)P−1 = (mS)G + zP−1, and zP−1 is a vector with
weight t (i.e. a permutation of the error vector z), the error-correction algorithm for the code C
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Algorithm 1:McEliece’s Cryptosystem

Key Generation: With parameters n, t ∈ N, where t ≪ n,
Generate the following matrices:

G : k × n generator matrix for Goppa code C able to correct up to t errors and with
minimum distance d = 2t + 1

S : k × k random binary non-singular matrix
P : n × n random permutation matrix

Compute the k × nmatrix Ĝ = SGP
Public Key: (Ĝ, t)
Private Key: (S,G,P)

(Or (S,DG,P), where DG is an efficient decoding algorithm for G)
Encryption: To encrypt a binary messagem of length k to ciphertext c′ of length n...

(a) Randomly choose a vector z of length n and weight t

(b) Compute c′ = mĜ
⊕

z

Decryption: To decrypt ciphertext c′ to messagem...
(a) Compute ĉ = c′P−1

(b) Use the decoding algorithm DG to decode ĉ to m̂
(c) Computem = m̂S−1

Figure 1. Security analysis of McEliece public key sizes [9].

can be applied to ĉ to produce a k-length vector m̂, equal to mS. The original message vector m
is subsequently computed from the product of m̂ and S−1, the inverse of the matrix S.

m = m̂S−1

The full key generation, encryption and decryption algorithms are summarized in Algorithm 1

2.3. Parameter sizes

McEliece originally proposed parameters of n = 1024 = 210, t = 50, and consequently a dimension
of approximately k = 1024 − 50 × 10 = 524 [11], corresponding to around 10149 Goppa polynomi-
als, and an ‘astronomical number of choices’ for S and P. These parameters have since been adjusted
and result in a public key that can range from 100 kB upwards to over 1 MB. In her 2018 lecture at
PQCRYPTO, Lange [9] summarized the security analysis of public key sizes shown in Figure 1.

3. Stern’s attack

In 1989, Jacques Stern proposed a probabilistic method of finding codewords of low weight in linear
codes [17]. Whilst not directly targeted towards breaking McEliece’s cryptosystem, it was found that
the ability to locate codewords of specific weight could be used to determine the error vector, of
known weight, added during encryption. Stern’s algorithm has been improved upon multiple times
since its conception in 1989, specifically with the intention of attacking McEliece’s cryptosystem.
Notably, Canteaut and Chabaud [4], Canteaut and Sendrier [5], and Bernstein, Lange and Peters [2]
all propose improvements on Stern’s algorithm, or otherwise present their own attacks based on the
principle of recovering minimum-weight codewords.
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3.1. Stern’s algorithm

The algorithm relies on the parameters p, l ∈ N, which are chosen by the attacker. The choices of
these parameters incur implications on both the complexity of the attack and probability of successful
message recovery, which is discussed later in Subsection 2.3.

The algorithm is as follows:

Parameters:

• n, k ∈ N, where k ≪ n
• H, the n × k parity check Matrix
• C, the set of columns in H
• Columnsmi ∈ C
• Rows ki ofH. In the algorithm, each row ki can be ‘marked’; in doing so, the row is added to a list

of visited indices (as in Step 1-e) and is used as a test condition throughout the algorithm
• p, l ∈ N, algorithm parameters chosen by attacker.

Step 1: Perform Gaussian elimination on the matrix H as follows:
• for i: = 1 to n−k:

(a) (a)Randomly choose, from a continuous uniformdistribution, a columnmi of thematrix
H, from the columns C that have not yet been chosen

(b) (b)Select the first non-zero element in the columnmi, belonging to row ki
(c) (c)If row ki is marked, repeat (b) for the remaining non-zero elements inmi

(d) (d)If all non-zero elements inmi belong to a marked row, return to a and choose a new
column

(e) (e)When a non-zero element belonging to un-unmarked row ki is chosen, mark the row
ki

(f) (f)Transform the remaining elements in mi to 0, excluding row ki, through linear
combination

(g) (g)Addmi to the set Z.
Step 2: Assign the indexes of the remaining columns of H to either of two sets X or Y with a

probability of 1/2
Step 3: Randomly choose a set J ⊆ {x ∈ N | x ≤ n − k} of l indices with values ≤ (n − k)
Step 4: For all p-element subsets A of X (n.b. subsets A of X with p elements):

(a) (a)Obtain the submatrix of H defined by (Hj,m)j∈J,m∈A where the elements of J are the
indexes of the rows and the elements of A are the indexes of the columns that make up
the submatrix of H

(b) (b)Compute the l-bit vector π(A) by adding the columns of the submatrix obtained in (a)
(c) (c)Perform the same operations for all p-element subsets B of Y.

Step 5: For all pairs π(A) = π(B):
(1) Sum the columns of H given by the indexes in A ∪ B to produce a n−k length vector V
(2) If V has a hamming weight of w−2p, return the vector x as follows:

(a) (a)For all indexesm in x, set xm to 1 ifm ∈ A ∪ B
(b) (b)For all indexes ki of V that equal 1, return the index mi of the column z in H, where

zki = 1 and z ∈ Z. Set xmi to 1.

3.2. Applying Stern’s algorithm toMcEliece’s cryptosystem

If binary vector c′ (of length n) has a distance w from a codeword c ∈ C, the weight of the vector
z = c

⊕

c′ will also bew. Moreover, z is an element ofC
⊕

c′, which can be regarded as the code that
results from adding the vector c′ to each element c ∈ C.

An Eavesdropper, Eve, knows both the ciphertext c′, and the number of errors t added during
encryption. She therefore knows that c′ has a distance t from its closest codeword c ∈ C, and that the
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code C has a minimum distance of d = 2t+ 1, as it can correct up to t errors. There is therefore a
unique codeword c with distance t from the ciphertext c′. She also knows Ĝ, the permuted generator

matrix for code C. Because Eve knows the code Ĉ (generated by Ĝ), she can then compute Ĉ
⊕

c′

in which the only codeword with a weight t will be z = c
⊕

c′, since the weight of their sum is pre-

cisely their distance from each other. Therefore, knowing the weight of z ∈ Ĉ, Eve can apply Stern’s
algorithm to recover it probabilistically and, from this, derive the codeword c ∈ C used in encryption.
This is not quite the full plaintext recovery, but decoding the codeword c ∈ C to its corresponding
message vectorm is a trivial matter, which is discussed later.

3.3. Probability and complexity

The probability of recovering successful parameters during Stern’s algorithm is given as the product
of the following three equations:

(

w

2p

)(

n − w

k − 2p

)

/

(

n

k

)

(2)

(

2p

p

)

/4p (3)

(

n − k − w + 2p

l

)

/

(

n − k

l

)

(4)

With the parameters presented by Stern (n = 300, k = 150, w = 20, p = 3, l = 12) the probability
of successfully finding a codeword of weight w is 0.0031. However, replacing these with McEliece’s
parameters (n = 1024, k = 524, w = 50) and retaining the values p = 3, l = 12, this becomes
2×10−10. The probability increases with larger values of p and smaller values of l but, additionally,
the complexity also increases.

Stern acknowledges the steps with the highest complexity to be step 1 (Equation 5), step 4
(Equation 8) and step 5 (Equation 7).

1/2(n − k)3 + k(n − k)2 (5)

2lp

(

k/2

p

)

(6)

2p(n − k)

(

k/2

p

)2

/2l (7)

With Stern’s parameters (n = 300, k = 150, w = 20, p = 3, l = 12), the number of operations
become 5 × 106 for step 1, 5 × 105 for step 4 and 109 for step 5. With McEliece’s parameters, how-
ever, this becomes 2 × 108 for both steps 1 and 4 and 6 × 1012 for step 5. Again, decreasing p and
increasing l reduces the complexity of these steps, but also makes a successful attack less probable,
therefore introducing a substantial tradeoff between complexity and probability.

4. Lee and Brickell’s Attack

One year before Stern, in 1988, Lee and Brickell also proposed a probabilistic attack on McEliece’s
cryptosystem [10]. This attack built upon McEliece’s suggestion of randomly choosing k bits from
the ciphertext in hope that none would be in error.

An attacker can randomly select k bits from the n-length ciphertext c′ to form the k-length vec-

tor ck. They can also recover the k × k submatrix Ĝk, where the columns of Ĝk correspond to the k

columns of the generator matrix Ĝ. If there is no error in the k bits chosen to make up the vector ck,

the original messagem can be recovered fromm = ckĜ
−1
k .
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The codeword c ∈ Ĉ corresponding tom can be found from c = (ckĜ
−1
k )Ĝ, which is equivalent to

c = mĜ if and only ifm = ckĜ
−1
k . As discussed in Section 3.2, if a vector c′ has a hamming distance

t from its closest codeword c ∈ C, the weight of the vector z = c
⊕

c′ will also be t. Therefore, if

m = ckĜ
−1
k , the vector z ofweight t can be found from z = c′

⊕

(ckĜ
−1
k )Ĝ. This principle can be used

to systematically check the choice of ck as, ifm �= ckĜ
−1
k , the hamming weight of z = c′

⊕

(ckĜ
−1
k )Ĝ

will be greater than t. A new choice of k can be made repeatedly until the weight of z becomes t.
Lee and Brickell further generalize this by introducing a k-length error vector ek, which is added

to ck during the attack.

4.1. Lee and Brickell’s Algorithm

The algorithm relies on the parameter j, which is chosen by the attacker. Once again, the value of this
parameter affects the complexity of the attack and the probability of successful message recovery.

The algorithm is as follows:

Parameters:

• n, k ∈ N,where k ≪ n
• j ∈ N, algorithm parameter chosen by the attacker
• c′, the n-bit ciphertext
• Ĝ, the permuted generator matrix, as in Algorithm 1.

Step 1: Randomly select k bits from the n-bit ciphertext c′ to form the k-bit vector ck. Set Ĝk to the

submatrix of Ĝ, where each column in Ĝk corresponds to the k columns in Ĝ.
Step 2: For all k-bit error vectors ek with weight less than or equal to j:

(1) • If the weight of (c + ckĜ
−1
k G) + ek(Ĝ

−1
k Ĝ) is less than or equal to t:

m = (ck + ek)Ĝ
−1
k .

(2) Step 3: If all k-bit error vectors ek have been used, return to step 1.

4.2. Probability and complexity

Lee and Brickell state that the probability of the chosen k-bit vector ck containing i errors is given by

Qi =

(

t

i

)(

n − t

k − i

)

/

(

n

k

)

(8)

And that therefore the probability of a successful attack is

∑

j
i=0Qi (9)

Additionally the number of executions in step 2 is equal to the number of k-bit error vectors with
weight less than or equal to j

Nj

∑

j
i=0

(

k

i

)

(10)

Increasing the value of the parameter j therefore results in a greater likelihood of a successful attack,
but also increases the complexity of the algorithm by introducing a greater number of k-length error
vectors to be iterated through in step 2. With McEliece’s parameters (n = 1024, k = 524, t = 50),
and a small value of j = 3, the probability of a successful attack (Equation 9) is 1 × 10−13 and the
complexity of step 2 (Equation 10) is 2 × 107.
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5. A novel attack

This section presents a new, novel attack onMcEliece’s cryptosystem, adapting and building upon the
two attacks reviewed above. Characteristics shared by both Stern’s, and Lee and Brickell’s attacks are
exploited to create a new algorithm. This attack is subsequently analysed and suggestions for further
improvement presented.

5.1. Overview

The probabilistic nature shared by Stern’s algorithm and Lee and Brickell’s attack can be exploited
to combine the two attacks into one. Specifically, during Gaussian elimination in step 1 of Stern’s
algorithm (see Section 3.1), n−k of the n columns in the parity check matrixH are chosen randomly,
leaving a remaining k columns unselected (n − (n − k) = k). In step 1 of Lee and Brickell’s attack
(see Section 4.1), k bits of the n-length ciphertext c′ are chosen, also at random. Therefore, the first
step of both algorithms is practically identical.

TheGaussian elimination performed in Stern’s algorithm randomly selects n−k of n columns inH
and therefore inadvertently chooses k of n columns, also randomly, by not selecting them. Therefore,
after randomly selecting n−k columns, the indexes of the remaining k columns can then be used to
obtain the k-length vector ck in step 1 of Lee and Brickell’s attack. After completing the Gaussian
elimination in step 1 of Stern’s attack, Lee and Brickell’s attack can consequently be performed by
using the k bits obtained as discussed above.

As the k indexes used in Lee and Brickell’s attack are dependent on the output of Stern’s first
step, an additional adjustment is made. Previous selections of the k bits are stored in a cache and if
the k columns chosen by Gaussian elimination have already been used previously, Lee and Brickell’s
attack will not run for that iteration. This is to ensure that Lee and Brickell’s attack does not run
unnecessarily if a particular selection of k bits has already been examined.

A further addition can be seen in Step 2(c). In Lee and Brickell’s attack, the message vector m

is recovered by (m = (ck + ek)Ĝ
−1
k ). However, in Step 1 of the adapted attack, the ciphertext c′ is

appended to the rows of the generator matrix Ĝ, resulting in a (k + 1) × n generator matrix, and so
the originalmeans of recoveringm becomes invalid.Whilst the operations could be performed on the
original generatormatrix, the output of Step 2(c) (vector z of weight t) is the error vector added during
encryption. Stern’s algorithm also outputs the same error vector and proceeds to decode c = c′

⊕

z

to m. Therefore, after successfully recovering the codeword z by Lee and Brickell’s attack, the same

decoder is used as in Stern’s. This saves the operation (ck + ek)Ĝ
−1
k from having to be performed.

5.2. The algorithm

The new attack can be generalized as follows:

Parameters:

• n, k ∈ N,where k ≪ n
• c′, the n-bit ciphertext
• Ĝ, the permuted generator matrix as in Algorithm 1
• p, l, j ∈ N, algorithm parameters chosen by attacker
• K, a set initialized to ∅.

Step 1: (a) (a)Append the n-length ciphertext c′ to the rows of the generator matrix Ĝ and compute

the parity check matrix H corresponding to Ĝ.
(b) (b)Perform Stern’s Gaussian elimination on the matrixH (Subsection 3.1: step 1).
(c) (c)Add the indexes of the k columns not selected by Gaussian elimination to the set K.
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Step 2: If set K has not been selected previously. . .
(a) (a)Obtain the k-bit vector ck by selecting k bits of the ciphertext c′ corresponding to the

elements in set K
(b) (b)Set Ĝk to the submatrix of Ĝ, where each column in Ĝk corresponds to the k columns in

Ĝ
(c) (c)For all k-bit error vectors ek with weight less than or equal to j:

(a) If the weight of n-length vector z = (c′ + ckĜ
−1
k G) + ek(Ĝ

−1
k Ĝ) is less than or equal

to t:
(b) z is the error-vector added during encryption, therefore c = c′

⊕

z

(c) Jump to Step 4.
(d) (d)If nom found, add K to a cache of previously selected values for K and proceed to Step

3. The next random selection of ck is performed at the next iteration if Stern’s attack fails.

Step 3: Perform the remaining steps of Stern’s algorithm Section (3.1: steps 2 – 5)
(a) (a)If Stern’s algorithm outputs a vector z of weight t:

(a) z is the error-vector added during encryption, therefore c = c′
⊕

z

(b) Jump to Step 4
(b) (b)If no output found, return to Step 1.

Step 4: Decode c tom according to the code Ĉ defined by Ĝ.

5.3. Probability and complexity

As discussed above, randomly selecting n−k columns of the parity checkmatrix is precisely the selec-
tion of k out of n indexes, andwe can take these k indexes as our random selection for the Lee–Brickell
algorithm. We can therefore talk about the success of the two algorithms on the same trial. Witness
cases suggest that there are some cases in which both succeed, so the probability of success of the
novel algorithm does not necessarily attain the theoretical maximum of the sum of the probabilities
of the two original algorithms. We estimate the probability experimentally.

Assuming each trial is independently distributed, and that the probability p of success is constant
on each trial, one can show that the expected number of trials until success is 1/p. To estimate this
success probability, we average the number of trials until success on several iterations of the algorithm,
calculating a mean N. Assuming this gives us a good estimate for the true expected number of trials
until success, we estimate the probability of success of an individual trial as 1/N. We can compare this
to the theoretical success probabilities of each algorithm, as well as their sum, which is the theoretical
maximum success probability of our algorithm.

The best-case probability of Stern’s attack is detailed in Section 3.3 as the product of Equa-
tions (2), (3) and (4). Similarly, the probability of success for Lee and Brickell’s attack is detailed
in Section 4.2 and given by Equation (9).

A theoretical maximum for the probability of successful attack when combining the two algo-
rithms is therefore the sum of these two probabilities (Equation 2×Equation 3×Equation 4+
Equation 9)

(w
2p

)(n−w
k−2p

)

(n
k

) ×

(2p
p

)

4p
×

(n−k−w+2p
l

)

(n−k
l

)
+

∑

j
i=0Qi (11)

However, combining these two algorithms also incurs a penalty with respect to complexity, outlined
for both Stern’s algorithm and Lee and Brickell’s attack in Sections 3.3 and 4.2. Whilst this is a draw-
back, the parameters of p, l and j can be adjusted to increase or decrease the complexity of either
attack, making the system overall rather flexible and adjustable.
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Table 1. Expected analysis: n = 254, k = 94, t = 20,
p = 2, l = 12, j = 2.

Stern Lee & Brickell Combined

Probability 0.0052 0.0059 0.0111
Iterations 190.69 170.11 89.91

Table 2. Expected analysis: n = 1024, k = 524, t = 50, p = 2,
l = 12, j = 2.

Stern Lee & Brickell Combined

Probability 3.45 × 10−12 1.24 × 10−13 3.57 × 10−12

Iterations 2.90 × 1011 8.08 × 1012 2.70 × 1011

Table 3. Expected analysis: n = 1024, k = 524, t = 50, p = 4,
l = 12, j = 4.

Stern Lee & Brickell Combined

Probability 1.10 × 10−8 3.20 × 10−11 1.09 × 10−8

Iterations 9.21 × 107 3.12 × 1010 9.18 × 107

With Goppa code parameters n = 254, t = 20, k = 94 and algorithm parameters p = 2, l = 12,
j = 2 (used later in analysis), the best-case probability and expected number of iterations to a suc-
cessful attack is given in Table 1. A similar analysis is shown for McEliece’s full parameters in Table 2,
which maintains the values for p = 2, l = 12, j = 2. With these parameters, the complexity for step
5 of Stern’s algorithm (Equation 7) is 5 × 108. Increasing the algorithm parameters to p = 4, p = 12,
j = 4 greatly increases the probability of successful attack, shown in Table 3. However, this also
raises the complexity of Equation (7) to 3 × 1016. The implications of this are discussed further in
Section 5.5.

This is, however, just a fundamental speculation of the probability and complexity incurred by
combining the two attacks and further study should be conducted into analysing the method more
comprehensively.

5.4. Analysis

Three separate analyses were conducted on each algorithm with the aim of experimentally analysing
both their probabilities for successful message recovery, as well as their complexities. Due to con-
straints in both time and resources, attacks could not be performed onMcEliece’s cryptosystem using
the full parameters proposed (n = 1024, t = 50, k = 524). Instead, smaller parameterswere used that
would allow for an attack to be performed in a feasible amount of time, whilst aiming to remain large
enough for a comparison to still be made.

5.4.1. Analysis 1

In accordance with the argument proposed in Section 5.3, each algorithm was run 50 times and an
average taken for the time and number of iterations performed for a successful attack. After each run,
a new public key, private key andmessage vector were randomly generated to avoid any potential bias
that may arise from specific configurations of keys or messages.

The parameters chosen were n = 254, t = 20, k = 94, and the variable algorithm parameters p,
l, j remained constant within each attack. The chosen values for Stern’s variables were p = 2, l = 12,
and the value chosen for Lee and Brickell’s variable was j = 2. The values of p, l, j were chosen to
reduce the complexity of each algorithm.
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Table 4. Analysis: n = 254, k = 94, t = 20, p = 2,
l = 12, j = 2.

Stern Lee & Brickell Novel

Av. Iterations 194.37 149.25 71.42
Av. Time 1467.10 1098.76 1149.93

Table 5. Stern.

j \ p 2 3 4 5 (Theory)

2 0.0146 0.0021 0.0001 0.00001
3 0.0146 0.0021 0.0001 0.00001
4 0.0146 0.0021 0.0001 0.00001
5 0.0146 0.0021 0.0001 0.00001

Table 6. Lee & Brickell.

j \ p 2 3 4 5

2 0.484 0.484 0.484 0.484
3 0.833 0.833 0.833 0.833
4 0.909 0.909 0.909 0.909
5 0.937 0.937 0.937 0.937

Table 7. Novel.

j \ p 2 3 4 5

2 0.400 0.556 0.390 0.484
3 0.667 0.698 0.732 0.750
4 0.833 0.937 0.833 0.937
5 0.968 0.968 0.937 0.967

5.4.1.1. Remarks. The results produced in Table 4 align with the expected values (Table 1) to per-
forma successful attack onMcEliece’s cryptosystemwith parametersn = 254, k = 94, t = 20, p = 2,
l = 12, j = 2.

Additionally, the results of 50 runs suggest that the novel attack is able to successfully recover a
message faster than Stern’s algorithm, although this speculation is limited to the specific parame-
ters chosen for n, k, t. This analysis does, however, suggest that the Novel attack is slower than Lee
and Brickell’s attack but, in spite of this, the number of iterations to successful attack are still greatly
reduced from Lee and Brickell’s

5.4.2. Analysis 2

Each algorithm was run 30 times for varying values of p and j, ranging from 2 to 5, whilst the value of
l remained constant at l = 12. The chosen code parameters were n = 128, k = 23, t = 15. Although
it is acknowledged that these parameters are small, and not necessarily representative of the full val-
ues proposed by McEliece, the method provides a rudimentary insight to the performance of each
algorithm across varying values of p and j.

The results for Stern’s algorithm are shown in Table 5. It should be noted that the results for p = 5
are calculated theoretically (see Section 3.3). The results for Lee and Brickell’s algorithm are shown
in Table 6, and the results for the Novel algorithm are shown in Table 7. The results of Stern’s, and
Lee and Brickell’s probability analysis were added together to produce Table 8, which represents the
theoretical maximum for the Novel attack.

5.4.2.1. Remarks. With the reduced parameters of n, k, t, it appears that Lee and Brickell’s algorithm
dominates Stern’s, as evidenced by comparing Tables 5 and 6. Nonetheless, the results shown in the
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Table 8. p(Stern)+p(Lee & Brickell).

j \ p 2 3 4 5

2 0.498 0.486 0.484 0.484
3 0.848 0.835 0.833 0.833
4 0.924 0.911 0.909 0.909
5 0.952 0.885 0.883 0.883

Table 9. Analysis 3: n = 512, k = 332, t = 20, p = 2, l = 12,
j = 2.

Stern Lee & Brickell Novel

Iterations 361 221 139
1 / Iterations 2.77 × 10−3 4.52 × 10−3 7.19 × 10−3

Table 10. Analysis 3: n = 1024, k = 524, t = 50,
p = 2, l = 12, j = 2.

Stern Lee & Brickell Novel

Iterations 22 52 16
1 / Iterations 0.045 0.019 0.063

analysis of theNovel attack (Table 7) are very close to the expected values, represented by Table 8, with
a greatest difference of 0.181 at p = 2, j = 3. It is therefore suggested that theNovel attack comes close
to combining the two algorithms’ probabilities; however, this should be experimented further on a
larger set of values for n, k, t and a greater range of values of p, l, j for any concrete conclusion to be
drawn.

5.4.3. Analysis 3

Whilst unable to successfully recover amessagewhen attacking larger parameters, each algorithmwas
still able to run, albeit not to completion. Therefore, to gain an insight to the algorithms’ performance
against larger parameters, each attack was run for exactly 24 hours and the number of iterations N
performed within this period was recorded.

We therefore naively estimate that the expected number of iterations E until success is greater
than N.

E > N (12)

As discussed in Section 5.3, under certain assumptions the probability for successfulmessage recovery
p is equal to the reciprocal of the number of trials until success. For the expected number of trials,
the probability is expressed as

p = 1/E (13)

Therefore, using Equations (12) and (13), we can derive an estimate for an upper bound on the
probability as

p < 1/N (14)

Each attack was run for 24 hours with fixed algorithm parameters of p = 2, l = 12, j = 2. This was
performed firstly on parameters n = 512, k = 332, t = 20 and then onMcEliece’s proposed param-
eters of n = 1024, k = 524, t = 50. The results of these are shown in Tables 9 and 10 respectively,
which display both the number of iterations N and the reciprocal 1/N.
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5.5. Further improvements

The relationships between the parameters p, l, j, and the probability and complexity of the attack is
discussed in Section 5.3 and also earlier in Sections 3.3 and 4.2. It is also suggested by the second
analysis (Section 5.4.2) that these perform differently on different code sizes; where, in Table 5, it can
be seen that lower values of p produce a higher probability when attacking the smaller parameters
n = 128, k = 23, t = 15. It is clear that each of these algorithm parameters has a great bearing on
probability and complexity and, therefore, the attack would benefit from optimizing these parameters
prior to beginning the algorithm. Further study could be made into the relationship between these
parameters and their optimal values. From this, a preamble to the attack could be created, in which
these parameters are adaptively optimized according to resources available and the size of the code
being attacked.

Additionally, whilst step 2 of the algorithm is dependent on the output of step 1, the rest of the
algorithm (steps 3–4) do not depend on step 2. Therefore, after step 1 is complete, step 2 can run
parallel to the rest of the algorithm until completion, resulting in a substantial speed up.

Extensive study has already been conducted on both Stern’s algorithm and Lee andBrickell’s attack
and the novel attack proposed in this report would benefit from incorporating improvements that
have already been made in prior study. In particular, Bernstein, Lange and Peters made improve-
ments to Stern’s algorithm resulting in a successful attack being performed in 260.55 bit operations
[2], eclipsing improvements made previously by Canteaut and Sendrier [5] (264.1 bit operations).
On a normal computer, a successful attack is cited to take 7,400,000 days, but this is reduced to 2
months on a larger computer cluster. These improvements to Stern’s algorithm can be incorporated
into the attack proposed here and would greatly reduce the complexity and increase the probability
of successful message recovery.

5.6. Concluding remarks

This report proposes a novel attack on McEliece’s cryptosystem that combines those proposed by
Stern, and Lee and Brickell. A basic analysis suggests that the probability of successful attack com-
pounds those of Stern’s, andLee andBrickell’s attacks. Additionally, the results of Section 5.4.1 suggest
that the Novel attack may be able to successfully recover a message faster than Stern’s algorithm,
although slower than Lee and Brickell’s.Whilst the analysis conducted provides no concrete evidence
that the Novel attack has any advantage over the two original algorithms, it was most appropriate for
the scope of the research, accommodating for limitations in both time and resources. It should also be
noted that McEliece’s cryptosystem still remains unbroken, and the inability to conduct a thorough
analysis on significant parameters is a supporting argument for its continued security.
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