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Phase field modelling of hopper 
crystal growth in alloys
P. C. Bollada 1*, P. K. Jimack 1 & A. M. Mullis 2

Here we use phase field to model and simulate “hopper” crystals, so named because of their 
underlying cubic structure but with a hopper-like depression on each of the six faces. Over the 
past three decades simulations of single phase solidification have successfully explored dendritic 
structures, in two and three dimensions, formed under high undercooling from a slight perturbation 
in anisotropy. More recently we see the modelling of faceted structures at near equilibrium, and 
also, under high undercooling, the formation of dendritic-like structures in two dimensions which 
retain some faceting in the dendrite arms. A cubic hopper crystal appears to be a hybrid structure, 
somewhere between a perfect cube and a dendrite, and, to date, has not appeared in the modelling 
literature. In this paper we describe a model for faceted cubic growth and explore results, necessarily 
in three dimensions, that include perfect cube, hopper and dendritic. We also touch briefly on one 
other morphology—octahedral.

The established view in modelling crystal growth is that the morphology of equilibrium crystals are convex Wulff 
shapes corresponding to a given surface energy1–5, so it follows that growth of non-convex crystals must be non-
equilibrium phenomena produced under non-equilibrium solidification conditions. Dendrites, for example, are 
by their very nature non-convex. Moreover, it has also been shown in6,7 that even crystals with underlying faceted 
morphology grow dendritic-like structures under rapid solidification conditions. This might mark the end of 
the subject if it was not for the variety of 3D structures that seem to be neither dendritic nor convex. For exam-
ple, in8 back-scatter electron images of heterogeneously nucleated Cu6Sn5 in Sn-Cu-Al solders reveals several 
morphologies that might fall under the better description: skeletal crystals. In figure 5 of8 the Cu-Al intermetallic 
forms deep depressions in the faces of a cube, alongside Cu-Sn which forms a long hollow channel. The authors’ 
description of the depicted images as having depressions near their facet centre, hardly fits the description of 
“dendrite”. So it remains a puzzle as to the origin of morphology that seems to fit neither equilibrium-faceted 
nor a dendritic description. In8 the authors put forward a mechanism for these particular shapes: most likely due 
to slower growth in facet centres and faster growth at edges and corners where solute diffusion is more effective at 
preventing solute build-up. This growth instability then promotes hopper crystals...  . Other possible mechanisms 
put forward for hopper crystal formation include9–11 but the current state of understanding is probably best 
described in12: The growth of hopper crystals is observed for many substances, but the mechanism of their forma-
tion remains ill understood.

A hopper crystal is one of the more commonly seen skeletal crystals, and is so named because the faces 
resemble a hopper machine - large at the input and small at the exit.

In general hopper crystals can form in different materials under different physical scenarios: (1) intermetallic 
alloy solidification; (2) single component materials such as bismuth, quartz (called skeletal or fenster crystals), 
gold, calcite, and (3) common salt crystal formation from salt solution. However, there are an abundance of 
materials that are never seen as hopper crystal: all of the solid solution alloys for example. So what singles out 
the mechanism for hopper growth as opposed to faceted or dendritic growth?

One of the earliest descriptions of hopper growth can be found in14, and is that of growth resembling a spi-
rally terraced hill. In15 there is an example of the terracing in an optical photomicrograph. SEM images of calcite 
hopper crystals are reproduced in16 revealing both the hollowing and terracing. As imaging methods improved17 
examined PbS crystals synthesized by hydrothermal reaction and an FESEM image also reveals partly formed 
hopper crytals with a characteristic break in the edge. Perhaps the most ubiquitous hopper crystals are found 
in salt crystals:18 give an overview SEM image of NaCl spherulites with hollow spherical architecture forming 
in crate-like groups, and therefore exhibiting very low average density. Salt crystals are also observed in12 and19. 
Also20 have observed images that correspond closely to the hopper crystals described in14, occasionally growing in 
pairs or blocks. This is also seen in21, which also discusses an important application of hopper crystal—catalysis. 
This is in large part due to a high surface area which raises the possibility of other applications, for example, of 
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lightweight materials, or enhancing the delivery of poorly soluble pharmaceuticals. In the case of hopper shaped 
salt, the increased surface area is reported to give an enhancement of taste (per unit salt used)- an image of a 
typical salt hopper crystal can be seen in Fig. 15b of13.

Higher conductivity materials Iron-Carbon-Silicon as shown in13, Ceasium based alloys in22, and Cu6Sn6 
observed in8 are also possible and raise the question whether the mechanism in metals is the same or similar as 
the formation of salt crystal from solution. Hopper-like growth need not be restricted to cubic, < 111 > , mor-
phology, and there are observations of related skeletal growth in the SEM observations of23,24.

The other ubiquitous hopper crystal found in nature is that of bismuth, a reproduction of which is found 
in10. This is used as an illustration alongside a discussion of the mechanism of formation of different crystal 
surfaces attributed to the relative latent heat of fusion, l ≡ L/(RT) , where L is the latent heat of fusion, T is the 
equilibrium melting temperature, and R the molar gas constant. When l is low dendritic growth building on 
rough surfaces is preferred; and when high—smooth growth; with hopper growth illustrated by a bismuth hop-
per crystal—a midway case.

It should be observed that10 long predated the introduction of anisotropy into phase field modelling. Indeed, 
modelling faceted crystal growth is only a relatively recent development6, with the ideas, in the context of more 
general morphologies only becoming clear in25. Since then, as far as we are aware, there has been no modelling 
or simulation of out of equilibrium 3D faceted growth, and particular hopper growth simulation has not been 
attempted.

Without modelling, the mechanism for formation of hopper crystals cannot be properly understood, with the 
current explanation being that growth is inhibited on the faces by build up of a condition detrimental to growth, 
but which leaves edges and vertices unrestricted. Key players in the mechanism are thought to be enthalpy of 
crystallisation and surface energy, but to date it is not clear whether thermodynamic considerations alone are 
sufficient to describe this morphology.

The above observations motivate the simulation of solidification under non-equilibrium conditions, where 
the equilibrium shape is faceted and we seek amongst the resulting morphologies those with a hollow crystal 
appearance. We investigate whether it is possible to simulate alloy growth into a hopper shape, whilst assuming 
high (indeed infinite) thermal conductivity by imposing a constant thermal field.

The paper is set out as follows: we first state the phase field model as used, including all free parameters in 
section “The phase field model”, but without a discussion of the surface energy, which is addressed separately 
in section “Phase field modelling of faceted anisotropy”. The treatment of anisotropy is an approximation to the 
method presented in25, and meets the computational challenge of approximating a function defined as a maxi-
mum of a list of functions. The results are presented in section “Results” and there is supplementary material 
with appendices, A to E, that elaborate on statements made in the text.

The phase field model
The non-dimensional phase field model used in this paper (see supplementary Sec. B of the supplementary 
material for its association with standard dimensional units, e.g. S.I.) is given by the evolution equation for 
phase, φ ∈ [0, 1]

where the double well potential, � and interpolation function, g are given as

The anisotropy, A is a function of Cartesian components of ∇φ and is discussed in section “Phase field model-
ling of faceted anisotropy”.

For chemical potential the equation used is given by

where D ≡ φDL + (1− φ)DS , �c ≡ cL − cS with coupling constant

The constant parameter, a, is given in Table 1 and arises via a Legendre transformation to the grand potential 
energy formulation, equivalent to the Kim, Kim, Suzuki model,26,27 with bulk free energy given by

Note that the model here is quadratic and that we avoid more detailed forms of free energy curves using, for 
example, Redlich-Kister expressions28, so that we may focus on the mechanism for crystal morphology forma-
tion. This is reasonable because beginning with a full Redlich-Kister model one can often extract a common 
tangent for the two phases and approximate the two free energy curves at the common tangent points by two 
second order polynomials. This is essentially the method as advocated and generalised in29—see Sec. D of the 
supplementary material for detail of the transformation between chemical potential and solute formulations.

The initial condition for the phase, φ , at time t = 0 is given in terms of the Cartesian coordinates, x, y, z as
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and for chemical potential

where c̄ = αcS + (1− α)cL . This means that in the solid the chemical potential equals µ0 , and at the far boundary 
the value of the chemical potential is µ∞ = µ0 − a(c̄ − cS) The constants used have the values given in Table 1

Before discussing the choice of anisotropy function we make the following observations about the model. 

	 1.	 We have chosen to deploy a simple model so as to strip away as much complexity and so leave more clarity 
to see the basic mechanism of hopper crystal formation.

	 2.	 Using α ∈ [0, 1] results in µ∞ ∈ [1,− 0.6] , with the two values explored here: µ∞ = 0.2 and µ∞ = 0.04.
	 3.	 The constant critical radius is so named because an initial radius, R0 < Rc in an isotropic model will theo-

retically melt—see30.
	 4.	 µ0 is the equilibrium chemical potential and an analogue of melting temperature in temperature driven 

solidification.
	 5.	 The parameter, a, originates in the coefficient of the quadratic term in the liquid and solid quadratic free 

energies as a function of solute concentration—see Sec. D of the supplementary materials.
	 6.	 DL,DS are the diffusivity values for the liquid and solid respectively. On varying the mobility and identify-

ing a revised characteristic diffusivity we found it more effective to (equivalently) vary these parameters 
and keep mobility, M, fixed at unity—see Sec. C of the supplementary material.

	 7.	 The coupling constant, � , governing the relative surface and bulk free energy contributions.
	 8.	 The model does not include nucleation, so we introduce an initial small seed of radius, R0.
	 9.	 The parameter δ , known as the interface width lies at the heart of the phase field method and is so named 

because an equilibrium 1D simulation has a resulting interface width directly proportional to δ . Under 
non equilibrium conditions though the analytical connection between δ and the resulting interface width 
is loosened.

	10.	 It may be noticed that the chemical potential model presented here is practically indistinguishable from 
a thermal model for pure metal solidification. There is a key difference though: as well as there being no 
appreciable difference of thermal conductivity (diffusion) between a metal solid and liquid, the value of 
thermal conductivity in metals is much higher than solute diffusion (Lewis number typically ≈ 10, 000 ). 
This suggests that solidification of faceted cubic-type pure materials with analogously sufficiently small 
heat diffusivity, e.g. Bismuth, a semi-metal (wherein generally the melt is more metallic than the solid) 
may well exhibit similar solidification characteristics.

Phase field modelling of faceted anisotropy
Surface energy is not a standard part of the thermodynamic description of the phases and it is necessary to find 
other means or rationale to construct this part of the free energy density. We follow the methods of Bollada et al25 
that advocate the construction of the surface energy associated with arbitrary faceted crystal formation by using 
as a starting point the specification of the vertices (in 3D or 2D)—not the face normals. This is a departure from 
the standard way of forming faceted anisotropy functions, see for example31, and a later generalisation of this 
approach in32. The former is a 2D construction and precursor to6 and therefore also practically indistinguish-
able from25.

(6)φt=0 =
1

1+ exp
[

−(
√

x2 + y2 + z2 − R0)/δ
]

(7)µt=0 = µ0 − φa(c̄ − cS),

Table 1.   Constant values for the phase field model.

Model parameters

Variable Description Value

M Characteristic diffusivity/mobility 1.0

cL Equilibrium liquid concentration 0.9

cS Equilibrium solid concentration 0.5

µ0 Equilibium chemical potential 1

a Curvature of free energy 4

DL Liquid diffusivity range [0.1, 10]

DS Solid diffusivity 10
−4

DL

� Coupling constant �c
2

Rc Critical radius 10

R0 Initial radius 20

δ Interfacial width 2

α Controls the boundary value for µ∞ [0, 1]

ǫ Anisotropy stability factor 0.02
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In Sec. A of the supplementary material we show the connection with (and differences from) the spherical 
harmonic expansion method discussed in33 in the context of non-faceted dentritic solidification.

In25 the authors advocate two approaches to numerical implementation of this function, which is discontinu-
ous in the first derivative. One is to approximate derivatives of max function using a finite difference scheme. The 
other to approximate the max function (infinity norm) by a large, but finite valued, p-norm, which eliminates 
the issue occurring on a flat face. A separate issue for phase field is that of the sharp corners where the normal 
is not defined. Both problems may be tackled by the methods of6 or25, which approach the problem using a two 
pronged approach: namely, to make the faces (edges in 2D) curved; and make the vertices rounded. We find 
that for a special case of a cube one approach may be used, which allows a single parameter, ǫ , to generate both 
rounded faces and corners.

The model we adopt for inclusion in Eq. (1) is given by

where Xi ≡
∂φ

∂xi
, i = 1 . . . 3 . The parameter, ǫ (see Table 1, has the effect of regularising (smoothing) the corners 

of the cube and allowing the equilibrium cube surfaces and edges to be convex. Setting ǫ = 0 formally sets the 
equilibrium anisotropy to a perfect cube with consequent numerical instability. That is:

where pi , i = 1 . . . 8 are the vertices of a cube: (±1,±1,±1).

Numerical considerations
We adopt the numerical approach of34 and all but one of the simulations use a mesh size and interface width 
parameter, �x = δ = 2 . Adaptive time stepping, �t , is adjusted to be as large as possible without affecting the 
stability and was typically in the range [0.001, 0.01] for the larger step size, �x = 2 . The number of time steps in 
a simulation are typically < 105 giving a dimensionless simulation time t < 1000 . To save computation time we 
use an eighth domain with symmetry condition at the boundaries through the origin and also at the far boundary, 
set large enough to not compromise the chemical potential field (at least twice the size of the crystal surface).

Results
Hopper crystals.  As discussed in Sec. C of the supplementary material, in this non dimensional model, a 
reduction in diffusivity is equivalent to an increase in mobility: the response to a given driving force. The balance 
between the rate of growth and the rate of chemical diffusion reaches a critical point when a hollow forms in a 
flat face inhibiting diffusion and allowing build up of solute. Moving from the top of the left hand column Fig. 1 
shows the growth from seed towards a mature hopper crystal, where the characteristic stepping is clearly shown. 
The parameters used in Fig. 1 are µ∞ = 0.04,DL = 1/12.

In Fig. 2 we again fix the chemical potential at the boundary, to be µ∞ = 0.04 , but vary the diffusivity—
both DL = 1/12 and DL = 4 . The effect of the higher diffusivity of chemical potential is that the hopper crystal 
becomes more dendritic in morphology. But note that this is a < 111 > dendrite (i.e. 8-pronged, growing towards 
the corners of the cube) rather than the more conventional < 100 > dendrite (i.e. 6-pronged, growing towards 
the faces of the cube). These figures included a cross sectional plane so as to examine chemical potential away 
from the surface. Here we see the low diffusivity in the hopper crystal traps the layer close to the surface whereas 
the high diffusivity extends substantially far from the solid surface (n.b. these plots are in perspective and as such 
falsely appear to make the cross section dendrite extend further than the cube edge).

In Fig. 4 we reproduced the hopper DL = 1/12,µ∞ = 0.04 (depicted in Fig. 1 at �x = 2 ) at a twice higher 
resolution mesh, �x = 1 , to examine the possibility of numerical artefacts or contributions to the results. The 
hopper morphology was unaffected by this, confirming the mesh size was sufficient for examining the hopper 
morphology. The surface value for µ is close to the equilibrium value µ0 = 1 , as expected, but inside the dendrite 
larger values of µ > 1 are achieved.

Here we note that the fractal appearance of Fig. 3 is associated with a relative diffusivity (see Sec. C of the 
supplementary material for further discussion of our use of the term “relative diffusivity”) halfway between solute 
diffusion and phase mobility (see Sec. C in the supplementary material) where the interplay between solute and 
phase change is more complex. Figures 3 and 1 also serve to illustrate the scale of the simulation from, in this 
case, a nucleus of radius 20 to a size about ten times larger. As noted, the crystal image in Fig. 15b of13, presents 
a hopper crystal in salt, which, we may assume, has a narrow boundary layer of depleted salt solution formed 
around the hopper crystal face inhibiting growth. In alloys, a similar mechanism is that the face advances faster 
than the solute can redistribute and consequentially inhibits the growth at the centre of the face, which it turn 
restricts growth further.

Though being a reasonable explanation for departure from a flat face, this does not fully explain the formation 
of a hopper morphology, which appears to maintain the integrity of the edges of the cube. One might expect that 
as the driving forces increase, then the edge too will be unable to reject excess solute. This does not appear to be 
the case: in Fig. 2, we see that as mobility decreases the morphology changes from hopper to a smooth 8-cornered 
dendritic. A case, intermediate between these two, is the highly fractal 8-cornered dendrite shown in Fig. 3, and 
bears some similarity with the images found in8.

In these simulations (e.g. Fig. 2) we see, by inspection of the colour bar, that despite the chemical potential 
playing a role virtually identical to that of temperature27, the solid region existing above the equilibrium chemi-
cal potential, µ > µ0 = 1 . The likely reason for this is the much lower chemical diffusivity seen here compared 

(8)A =
∑

i

√

X2
i + ǫ2

(

X2
1 + X2

2 + X2
3
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,
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to thermal conductivity in metal solidification, combined with the hopper morphology trapping the chemical 
potential within narrow regions. For evidence of this within our simulations, see the region in the cross sectional 
area of left hand plot of Fig. 2 which has µ > µ0 , but which is not present in the ( 48× ) higher diffusivity plot 
on the right of Fig. 2.

Other (intermediate) morphologies.  A key result of this paper is that cubic hopper crystals lie at the 
other extreme from the equilibrium cube and yet there is a plethora of other morphologies lying between the two 
extremes (please see also the video supplied in the supplementary materials). In the previous subsection we fixed 

Figure 1.   Growth of hopper crystal from seed in time intervals proportional to powers of 2 for parameters 
DL = 1/12,µ∞ = 0.04.

Figure 2.   For chemical potential fixed at µ∞ = 0.04 (at the final time step from Fig. 1), the results compare 
diffusivity, DL = 1/12 (left), with DL = 4 (right) along a projection normal to a Cartesian axis and through the 
origin (together with the surface of the crystal). This results supports the claim that the narrow boundary layer 
around the hopper crystal, being much smaller for lower diffusivity, is critical for this morphology.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12637  | https://doi.org/10.1038/s41598-023-38741-2

www.nature.com/scientificreports/

the boundary value for chemical potential at µ∞ = 0.04 (and all other parameters) and varied only the relative 
diffusivity between solute and phase field. One difficulty we experienced when straying too far from this series of 
results with fixed µ∞ is that the resulting interface begins to vary with subsequent unstable results either caused 
by too small an interface width or, indeed, too large.

By extending our simulations to parameters beyond those depicted in Fig. 2 to those shown in Fig. 5, we see 
a narrow band where hopper growth appears. This suggests that it will be difficult, if not impossible, to grow in 
most pure metal alloys, even with underlying faceted morphology (at the very least one requires chemical dif-
fusion, which of course is absent in a pure metal as there is no chemical species to diffuse to balance the innate 
mobility of the alloy). The hopper images observed in8 confirm that metal alloy solidification can also produce 

Figure 3.   A fractal looking 8-vertex dendrite is produced for a diffusivity, DL = 1/2 , intermediate between the 
cases illustrated in Fig. 2 ( DL = 1/12 and DL = 4).

Figure 4.   A cut out of the hopper crystal DL = 1/12,µ∞ = 0.04 showing the tight boundary layer around the 
cross sectional dendrite and also the stepping (both in the surface and the black contour line at φ = 1

2
 in the 

cross section).
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hopper crystals. Non-faceted solid-solution alloys cannot form hopper crystals since faceted anisotropy near 
equilibrium is a prerequisite for hopper formation. The question remaining is whether all alloys which can form 
(e.g. cubic) faceted morphology (e.g. intermetallic) can also form hopper-like structures. In a simulation we have 
the luxury of adjusting the diffusivity (formally identical to adjusting the mobility in this model), but in physical 
alloys we may only control temperature gradients and alloy concentration.

We now address the effect of changing the interface width on the resulting morphology. The results are 
not invariant under change of input interface width, δ though qualitatively the results are the same but trans-
lated. For example a hopper crystal can be found with δ = 1.8 ( 90% the value for the simulation in Fig. 1) 
at DL = 0.07,µ∞ = −0.024 . On the other hand, consider again the parameters that return a hopper crystal: 
µ∞ = 0.04;DL = 1/12; δ = 2,Rc = 10,R0 = 20 . We find that the following parameters also return a hopper 
crystal: µ∞ = 0.04;DL = 1/12; δ = 1,Rc = 5,R0 = 10 . That is to say, a change of δ , when interpreted as a mere 
change of length and time scale, leaves the equations formally unchanged—see Sec. E of the supplementary 
material for further discussion.

Once we have found a single hopper crystal we extended the result to a series of hopper crystals located along 
the line extending from (DL = 0.2,µ∞ = −0.05) to (DL = 0.04,µ∞ = 0.12) . The existence of such a relation is 
also suggested by a rescaling argument whereby a given pair of values, DL and µ∞ can be transformed to another 
pair by choosing a new diffusion scale and interface width, δ.

Observations on the variety of morphologies.  We have included as supplementary material a single 
video which sequentially explores part of Fig. 5. Initially, the diffusivity is large ( DL = 20 ) and so the chemical 
potential field spreads out beyond the crystal surface and the resulting morphology is a near equilibrium cube. 
As the diffusivity is reduced, the µ-field develops a tighter boundary layer eventually becoming comparable in 
width to the phase field interface width itself. The limiting case is the hopper figure itself, beyond which the 
crystal begins to break up (not shown). Intermediate between the equilibrium cube and hopper crystal are 
dendritic-like structures with an increasing fractal like surface. The animation then explores the lateral direc-
tion by incrementally bringing the boundary chemical potential, µ∞ towards µ0 = 1 via the parameter α = 0.4 
to 0.7 (using µ∞ = (8α − 3)/5 so that µ∞ ∈ [0.04, 0.54] ). The result morphologies are quite distinct from the 
morphologies produced by changing diffusivity alone. The mechanism behind the rich variety of morphologies 
is not easy to classify quantitatively. Yet, together with the observation that the equilibrium morphology (cube 
in this case) is achieved via either high enough diffusivity or small driving force due to small enough difference 
�µ ≡ |µ0 − µ = µ∞| , the other extreme is the hopper morphology beyond which the simulation is unstable

Figure 5.   Morphology plot for a two parameter range of both µ∞ ∈ [− 0.05, 0.2] and DL ∈ [0.02, 16] . There is 
a line of hopper crystals in the lower left of the diagram enclosed by a dashed box. Moving to the left creates a 
larger driving force; moving vertically down represents an increased mobility.
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Octahedral “hopper” shapes
The foregoing study of out of equilibrium driven cubic morphology poses the question of other primi-
tive crystal structures. On application of the same thermodynamic model that returns the hopper cube 
( µ∞ = 0.04, dL = 1/12 to an octahedral anisotropy (perfect octahedron under near equilibrium conditions) 
we find the result depicted in Fig. 6. An octahedron can be seen as the opposite of cubic growth where the strong 
growth directions of the cube are the weak directions of octahedron, and vice versa.

Such morphology has been observed in figure 1h of35 by SEM at a scale of about 1 µ m for each crystal. In 
both35 and Fig. 6 we observe that the inward pointing faces must necessarily align (closely) with an allowed 
facet direction and, as such, appears to create an inverted triangle in the hollow. Thus, suggests that in the cubic 
hopper growth, the apparent alignment of the hollow to its adjacent outer edge is due to the symmetry in the 
cubic faces and that growth must remain (at least approximately) in the allowed outward normal directions only.

Summary and comment
The central result of this paper is the final frame of the series of simulation results in Fig. 1, but the primary 
message is that we have established that hopper morphology can arise theoretically in faceted materials for alloys 
that can form facets. The other major player in the model is kinetic mobility, as there is an intimate relation 
between the effective diffusivity of chemical potential and the kinetic mobility. In our model we only found a 
limited combination of parameters, within the set we chose, to allow hopper growth. It may still be the case that, 
given a particular intermetallic alloy capable of faceting, it will not be able to produce a hopper crystal since, in 
that case, we will only have a boundary solute condition and undercooling to vary. Thus, it remains a subject of 
further research to examine real materials together with necessarily estimates for the kinetic mobility.

Figure 6.   Octahedral growth using the same bulk parameters as for cubic growth.
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Data availability
Reproduction of the results in this paper can be obtained from our code at https://​github.​com/​prepcb/​Phase​Field. 
Improvements to the code for general public use are ongoing and are projected to be complete by the end of 2023.
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