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Abstract. Graphs are useful in analysing histopathological images as they are 

able to represent neighbourhood interactions and spatial relationships. Typically 

graph nodes represent cells and the vertices are constructed by applying a nearest 

neighbor algorithm to cell’s locations. When passing these graphs through one 

graph neural network (GNN) message passing step, each node can only utilise 

features from nodes within its immediate neighbourhood to make a classification. 

To overcome this, we introduce two levels of hierarchically connected nodes that 

we term “supernodes”. These supernodes, used in conjunction with at least four 

GNN message passing steps, allow for cell node classifications to be influenced 

by a wider area, enabling the entire graph to learn tissue-level structures. The 

method is evaluated on a supervised task to classify individual cells as belonging 

to a specific tissue class. Results demonstrate that the inclusion of supernodes 

with multiple GNN message passing steps increases model accuracy. 

Keywords: graph neural network, node classification, digital pathology. 

1 Introduction 

The phenotype and topological distribution of tissue components may influence can-

cer progression as well as patient prognosis and response to therapy [1, 2]. Convolu-

tional neural networks (CNNs) have demonstrated to be effective at common computer 

vision tasks such as image classification and segmentation [3]. However, traditional 

CNNs only model local relations and are applied to data in a grid structure with fixed 

connectivity. When applying CNNs to patches from multi-gigabyte whole slide images 

(WSIs) this limits the model from learning wider representations and doesn’t consider 

the interactions between entities within the tumour microenvironment. This paper tack-

les this issue by representing tissue as a graph structure which conserves spatial rela-

tions. We augment the graphs with multiple levels of hierarchy to increase the radius 

of spatial context that each node can utilise.   
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Graphs inherently capture relationships between entities making them appropriate 

for representing the tumour microenvironment. Graph neural networks (GNNs) are a 

variation of deep learning that accept graphs as input. These GNNs are able to capture 

different neighbourhood relations and accept irregular sized inputs. Furthermore, they 

have shown comparable accuracies to CNNs when performing disease classification [4, 

5], and tissue segmentation [6]. One subclass of GNNs is a graph attention network 

(GAT) [7] which leverages masked self-attention layers to learn different weights for 

specific nodes within a neighbourhood of arbitrary size.  

Propagating a graph through a GNN once is often referred to as one message passing 

step. In one GNN message passing step, information from nodes one hop away influ-

ence the learnt node embeddings. With every additional T GNN message passing step, 

information from nodes T hops away influence the learnt node embeddings [8]. How-

ever, there is currently no guidance regarding the number of message passing steps 

required for ‘optimal’ learning of node representations, specifically when applied to 

hierarchical graphs. 

Several approaches have been made to develop adequate tissue-representations us-

ing graphs and GNNs. Zhou, Y., et al. (2019) [4] captured the tumour cell microenvi-

ronment using cell-graphs (graphs whose nodes represent cells), while others have used 

a number of clustering methods to represent tissue-level structures [1, 5, 6]. However, 

independent of the graph formation method, whilst only using one GNN message pass-

ing step, learnt node embeddings will be limited to the influence of its immediate neigh-

bours. P. Pati, et al. (2021) [1] suggested a hierarchical graph structure which intro-

duced connectivity between cells and larger, non-overlapping tissue regions. Although 

this method was successful at increasing context and capturing multi-scale information, 

the number of nodes representing the tissue level structures in conjunction with only 

two GNN message passing steps, limits the context that can be learnt. Furthermore, 

there was no suggested method for introducing additional layers of hierarchical con-

nections.  

In P. Pati, et al., (2021) [1]  and Anklin, V., et al. [6] node features were obtained by 

passing forward image patches through a pre-trained CNN to produce features that are 

abstract and exposed to bias arising from variability in colour and scanner-specific at-

tributes across pathology slides [9]. Whereas, Zhou, Y., et al. (2019) [4] extracted mor-

phological cell features which are independent of these biases.  

In this paper, we propose a method that applies the concept of hierarchical graph 

formation to cell-graphs to increase the contextual information when learning tissue-

level representations. We introduce two sets of sparsely distributed, regularly spaced 

nodes termed “supernodes” which form edge connections in a hierarchical manner. To 

produce an optimal result from these nodes, we can demonstrate that a GNN model’s 
architecture should be composed of multiple (at least four) GNN message passing steps. 

The main contributions of this paper are: 

• A novel method for creating hierarchical graphs that increases contextual infor-

mation without being limited by the size of tissue regions or exposed to bias arising 

from variation across histopathology slides; 
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• The use of multiple, (at least four) independently-weighted GNN message passing 

steps to utilise the hierarchically connected supernodes within the graph; 

 

• An evaluation of the proposed methods in a node classification task to segment tissue 

regions in 54 HE-stained cores containing tumour regions from patients with stage 

II/IIIb gastric cancer. 

2 Method 

2.1 Data 

The dataset used in this paper was composed of 2 haematoxylin-eosin (HE) stained 

tissue-microarrays (TMAs) containing 54 3mm diameter tissue cores sampled from tu-

mour regions from patients with stage II/IIIb gastric cancer. Using the HeteroGenius 

MIM Cell-Analysis Add-On (HeteroGenius, Leeds, UK) which is a U-NET-based cell 

detector and classifier trained on over 50,000 annotated cells, the centroid position of 

every cell nucleus within the cores were detected along with 14 other features. These 

included size (μm), elongation, mean intensity, standard deviation of intensity, angle 
and the cell’s probability of being one of the following cell types: tumour, lymphocyte, 

granulocyte, plasma cell, fibroblast, muscle, endothelium, normal epithelium, and 

other. Within the two TMAs this resulted in ~2.6 million cells detected with their 14 

corresponding features. 

 The specific task this method was applied to was node classification to identify 

large tissue structures. Four output classes were identified with a pathologist. These 

classes were: cancer, muscle, stroma and follicle (aggregates of lymphocytes). Regions 

were manually annotated by a pathologist to define the ground truths. Roughly ~2.5% 

(~67,000) of the total cells were labelled. For each core, the cells were randomly as-

signed to a train-test split of 80% and 20%, respectively. 

2.2 Cell-Graph Formation 

A graph is defined as G = (V, E) where V are a set of nodes (vertices) with correspond-

ing features and E are the edges connecting two nodes. These have corresponding fea-

tures that represent their interaction. To form the cell-graph, each cell was represented 

as a node. Assuming that cell interactions occur between adjacent cells, edge connec-

tions were formed by applying the k-d tree nearest-neighbor algorithm to all cell coor-

dinates in the individual TMA cores, with k-neighbours=5 and the number of leaf nodes 

set to n=3. 

2.3 Supernodes 

To increase the context of a cell node's learnt embedding, we introduce two levels 

of hierarchically connected supernodes. To define the first level of supernodes (L1), a 

square grid of edge length 200μm is superimposed onto the TMA core. The locations 
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of the grid's vertices define the locations of the L1 supernodes. Edges are formed with 

every cell node and other L1 supernodes within a 200μm radius. The L1 supernode 

features are calculated as the average of the cell node features whom it shares an edge 

with.  

For the second level of supernodes (L2), a square grid of edge length 400μm, aligned 

with the same coordinate space as the L1 grid, is superimposed onto the TMA core. 

The locations of this grid's vertices define the locations of the L2 supernodes. Edges 

are formed with every L1 supernode within a 200μm radius. Fig. 1 provides a visuali-

zation of the locations of the two levels of supernodes and one set of hierarchically 

connected nodes.  

 
 

Fig. 1. A visualization of the supernodes’ positions and an example of one L2 supernode and its 

hierarchical connections (connected nodes shown in red). The HE-stained slide is included for 

reference. 

Introducing the supernodes significantly increases the number of edge connections. 

Across the 54 TMA cores, Table 1 shows the average number of cells, L1 supernodes, 

and L2 supernodes, as well as the number of cumulative edges as the supernodes are 

introduced. The number of edges includes shown in Table 1 includes self-loops.    

Table 1. For each node type, the number of nodes and edges are the average over the 54 TMA 

cores. The number of edges include self-loops. 

Node Type Number of Nodes Number of Edges 

Cell Nodes Only 30,205 85,899 

Cell Nodes + L1 30,373 175,888 

Cell Nodes + L1 + L2 30,416 176,224 

2.4 Model Architecture 

The method in this work uses a GAT with one attention head that contains a 2-layer 

feed forward neural network within one GNN message passing step. The feed forward 

network is shown in Equation (1) where hi is the set of input node features for the i-th 

node, hi’ is the corresponding transformed output, Wk are learnable sets of weights, and 
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tanh is the hyperbolic tangent activation function. The activation function tanh was 

used over LeakyReLU due to its superior performance during experimentation.  

The input node features had size 17 which consisted of the 14 output features from 

the HeteroGenius MIM cell-analysis tool along with a one-hot encoding of the node’s 
supernode status. Cell nodes were encoded as [1,0,0], L1 supernodes as [0,1,0], and  L2 

supernodes as [0,0,1].  

 ℎ⃗ 𝑖′ = 𝑡𝑎𝑛ℎ (𝑾3𝑡𝑎𝑛ℎ (𝑾2𝑡𝑎𝑛ℎ(𝑾1ℎ⃗ 𝑖)))                              (1) 

The input also included 3 edge features. These were: the difference in x-coordinates; 

the difference in y-coordinates; and the Euclidean distance between the source and tar-

get node. For all nodes, self-loops were included with edge features equal to 0.  

The attention mechanism within the network was modified to account for edge fea-

tures. In Equation (2), the edge features eij corresponding to the edge connecting the i-

th node and its j-th neighbor are concatenated with the transformed node features [10], 

where 𝑎 is the attention weight vector and 𝛼𝑖𝑗  is the multi-head attention coefficient.  

 𝛼𝑖𝑗 = 𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢(�⃗� 𝑇[ℎ⃗⃗ 𝑖′‖ℎ⃗⃗ 𝑗′‖𝑒 𝑖𝑗]))∑ (𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢(�⃗� 𝑇[ℎ⃗⃗ 𝑖′‖ℎ⃗⃗ 𝑗′‖𝑒 𝑖𝑗])))𝑘∈𝒩𝑖   (2) 

Mentioned in Xu, K., et al. (2018) [11] and evident in Equation (2), one GNN message 

passing step allows information from immediately connected neighbours (one hop 

away) to influence the i-th node’s representation. To embed information from nodes T 

hops away, information would have to pass sequentially through T GNN message pass-

ing steps, where each message passing step is comprised of a new set of weights. This 

makes it unfeasible to embed distant information by stacking tens of message passing 

steps end-to-end as the number of parameters would either be too large to train, making 

it subject to computational limits or be subject to vanishing and exploding gradients. 

Furthermore, nodes that are tens of hops away would have negligible influence on 

node’s learnt representations compared with nodes fewer hops away. However, by us-

ing two levels of supernodes in conjunction with multiple (four) GNN message passing 

steps, information is able to travel from one cell node up to a L2 supernode and back 

down to another cell node that exists a maximum distance of 800μm away. Fig. 2. 

demonstrates this concept of information travelling from one cell node to a L1 and L2 

supernode, then travelling back down to a separate L1 supernode and cell node, using 

four GNN message passing steps. 

 

 

Fig. 2. Above shows how information from Cell Node 1 can be influence the learnt node embed-

ding of Cell Node 2 by being passing information through 4 GNN message passing steps. 
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Although the GAT model allows for the implementation of multiple attention heads 

and the inclusion of a multi-layer feed forward network, both of which can increase the 

accuracy of the learnt representation, this would not achieve the same function as mul-

tiple GNN message passing steps. Increasing the number of attention heads and layers 

in the feed forward network would continue to aggregate information one hop away 

and not allow for the influence of nodes multiple hops away.  

2.5 Experiential Evaluation 

To assess the influence of supernodes on the learnt node representations and evaluate 

the effect of using multiple GNN message passing steps, two experiments were carried 

out. One was to assess how the addition of L1 supernodes and L2 supernodes influence 

the overall accuracy. The other was to assess how the number of GNN message passing 

steps influence the accuracy of the model when using two levels of supernodes. During 

training the loss function used was a masked, weighted MSE loss. Each model was 

trained for 10,000 epochs with a learning rate of 1e-3. 

3 Results 

3.1 The Inclusion of Supernodes 

Firstly, all models used in this experiment had 4 GNN message passing steps. The node 

feature sizes from the input (17) to output (4) were 17, 64, 64, 64 and 4. For comparison, 

three models were trained and tested on the data containing different levels of hierarchy. 

Specifically the three sets of data were: cell nodes with no supernodes; cell nodes with 

L1 supernodes; and cell nodes with both L1 and L2 supernodes. No further cross vali-

dation was carried out. Table 2 shows the accuracy of the three models on the train and 

test sets.  

Table 2. The model accuracy when trained and tested with and without the existence of super-

nodes. ‘Node Type’ represents the additional presence of the L1 and L2 supernodes. 

Node Type Train Accuracy Test Accuracy 

Cell Nodes Only 73.66 73.15 

Cell Nodes + L1 90.69 90.50 

Cell Nodes + L1 + L2 93.80 93.40 

 

It is clear in Table 2 that with the addition of supernodes, there was a significant in-

crease in accuracy. Fig. 3 provides a visual demonstration of how the model’s output 

was affected when including the different levels of supernodes. Fig. 3a) shows a clear 

presence of localized noise, and the classifications appear to be more locally clustered. 

Whereas, in Fig. 3c) larger scale structures such as tissue regions are evident, showing 

an increase in context in the learnt node embeddings.  
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Fig. 3. An example of the model’s outputs when trained on a) only the cell-graph, b) the cell-

graphs with the inclusion of L1 supernodes, and c) the cell-graph with the inclusion of L1 and 

L2 supernodes. 

3.2 Multiple GNN Message Passing Steps 

The second experiment was to determine how the number of GNN message passing 

steps influences the model’s performance when used in conjunction with 2 levels of 

supernodes. Four models were trained for comparison. For each model, the number of 

input features were 17 and output features were 4. For models composed of >1 GNN 

message passing step, the intermediate node features were 64. These are shown in Ta-

ble 3.   

Table 3. The accuracy of the model composed of n message passing steps where n = 1,2,3,4. 

Number of Message Passing Steps Node Features Train Accuracy Test Accuracy 

1 17, 4 72.77 73.15 

2 17, 64, 4 89.38 88.12 

3 17, 64, 64, 4 90.31 90.50 

4 17, 64, 64, 64, 4 93.80 93.40 

 

The results in Table 3 suggest that increasing the number of GNN message passing 

steps increases the accuracy when applied to hierarchical graphs containing two levels 

of supernodes. 

4 Discussion 

P. Pati, et al. (2021) [1] introduced applying hierarchically connected nodes to histo-

pathology slides. They determined nodes as the centres of tissue regions that were con-

nected to cells lying within those tissue regions. This was demonstrated to be effective 

at increasing context in a graph classification task. However, no method was proposed 

for further increasing the context through more hierarchical connections. As a result, 

the learnt node representations were limited by the size of tissue regions and the number 
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of GNN message passing steps (two).  Furthermore, the node features were extracted 

from passing patches of HE-stained slides through a pretrained network. These features 

were abstract and uninterpretable with no clinical context.  

W. Lu, et al. (2020) [5] defined nodes as the centres of cell clusters. Similarly to the 

methods presented in this work, the features of these nodes were an average of the cell 

node features within the cluster. This allowed for tissue-level structures to be repre-

sented but could not capture higher resolution information from a cellular level. Whilst 

this presented an efficient method of learning graph representations, there was no pro-

posed method for developing hierarchical connections nor was there a suggested num-

ber of GNN message passing steps to optimize the potentially learnt node embeddings. 

 The method proposed in this paper allows for the representation of granular infor-

mation from the cells and provides a method for creating indefinite levels of hierarchi-

cally connected nodes that we termed “supernodes”. These supernodes have shown to 

increase context in a node classification task, allowing for tissue-level structures to be 

learnt on a cellular level. We demonstrate that to optimize the outcomes from using two 

levels of supernodes, multiple (at least four) GNN message passing steps are required.  

When comparing the number of message passing steps, it is likely that the increase 

in performance seen in Table 2 was a result of including more learnable parameters. 

However, we demonstrated that with the inclusion of 2 levels of hierarchically con-

nected supernodes, this number of GNN message passing steps enabled the graph to 

learn from an increased context. In addition, the model accuracy is high (>90%) and 

only considered 17 input node features, all of which held clinical relevance.   

One limitation of this work lies in the labelled output classes. With the tumour-mi-

croenvironment being complex and heterogeneous [8, 12], in many scenarios there are 

more than four tissue classes. Likewise, these tissue regions don’t consistently maintain 

hard boundaries which makes the assignment of a single class subjective and incon-

sistent. However, this was not inherent to the model but to the labelling system. A fur-

ther limitation lies within the quantity of annotated data (~2.5% of all cell nodes). This 

is significantly lower than that proposed in Gao, J.P., et al., (2018) [8] who demon-

strated the effect of incomplete labels on a graph-based segmentation task, with the 

lowest percentage of annotated data covering 5% of the total pixels within the tissue. 

5 Conclusion 

In this paper, we have presented a novel method for increasing the contextual infor-

mation when performing node classification on cell-graphs containing tumour regions. 

We introduced the concept of supernodes that can be connected hierarchically. From 

comparing the accuracy of models trained on cell nodes alone, cell nodes with one level 

of supernodes, and cell nodes with two levels of supernodes, we can conclude that the 

inclusion of supernodes increases the contextual information learnt by cell nodes. 

Through a separate comparison, the accuracy was compared between four models com-

posed of 1-4 GNN message passing steps. The model with 4 GNN message passing 

steps achieved the highest performance implying that this architecture is required to 

utilise two levels of supernodes. 
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