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Group field theory (GFT) models for quantum gravity coupled to a massless scalar field give rise to

cosmological models that reproduce the (expanding or contracting) dynamics of homogeneous and

isotropic spacetimes in general relativity at low energies, while including high-energy corrections that lead

to singularity resolution by a “bounce.” Here we investigate two possibilities for obtaining stationary

solutions in GFT cosmology, which could be useful as an analog of Minkowski spacetime. We first focus

on a limit in which interactions are neglected and the effective Newton’s constant in GFT cosmology is

taken to zero. In this limit, we derive an effective Friedmann equation that shows no stationary solutions but

departures from the trivial classical dynamics falling off rapidly, similar to the usual correction terms

responsible for the bounce. Since the effective Newton’s constant needs to be exactly zero, the scenario is

fine-tuned. A more satisfactory approach is obtained in a weakly interacting model: we find bound states

with sharply peaked volume, representing a stationary semiclassical cosmology, and show that coherent

states peaked around the minimum of the potential remain stable with small quantum fluctuations, and only

small oscillations around a nearly constant volume. These coherent states realize the idea of a “quantum

gravity condensate.”

DOI: 10.1103/PhysRevD.108.026001

I. INTRODUCTION

Many approaches to quantum gravity entertain the idea

that space and time are not fundamental structures that all

of physics is built on, but themselves “emergent” from

other quantum or discrete degrees of freedomwith no initial

spacetime continuum [1]. A fundamental challenge is then

to show how the usual classical, continuum nature of space

and time might be recovered, at least in an approximation

or perhaps in one out of different possible phases of a

statistical description (see, e.g., Ref. [2] for the example of

causal dynamical triangulations). One might look at other

examples of emergence in physics such as a macroscopic

electromagnetic field defined as a coherent state in quantum

electrodynamics, or an effective continuum superfluid

description of Bose-Einstein condensates in a quantum

field theory of atoms. The latter in particular has served as

an inspiration for looking for spacetime as a kind of Bose-

Einstein condensate of quantum gravity “atoms,” i.e., a

nonperturbative ground state away from the usual (Fock)

vacuum [3]. In the group field theory (GFT) approach to

quantum gravity [4], following this approach seems rather

natural since the fundamental degrees of freedom of the

“group field” are directly interpreted as quanta of space-

time, or elementary building blocks of spin networks in the

language of loop quantum gravity [5]. The initial (pertur-

bative) GFT vacuum contains no quanta, and hence no

spacetime, as is manifest by the fact that quantities like

areas or volumes vanish; a macroscopic geometry must be

built up from many excitations over this initial vacuum.

The idea that continuum spacetime could emerge from a

phase transition to GFT condensate was proposed in earlier

papers [6] and then implemented concretely by building on

a particular prescription for canonical quantization [7]. One

basic question in an emergent spacetime scenario is how to

define dynamics in a system without any fundamental
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notion of time. Here one can follow ideas from canonical

quantum gravity and quantum cosmology [8] and introduce

matter degrees of freedom that can play the role of a

(relational) clock. Following this idea and coupling a

massless “clock” scalar field to gravity in GFT, emergent

Friedmann equations for the relational volume (i.e., for a

volume of space given as a function of the scalar field) can

be derived, showing agreement with general relativity at

large volumes and singularity resolution by a bounce [9].

The resulting cosmology resembles very closely that of

loop quantum cosmology, raising the hope that GFT could

provide an embedding of loop quantum cosmology into full

quantum gravity.

The results of Ref. [9] were obtained using a number of

simplifying assumptions; in particular, one usually restricts

to a single mode in the expansion of the group field into

Peter-Weyl modes, and interactions are (initially)

neglected. One also works in a mean-field approximation,

assuming a type of coherent state. The last approximation is

inspired by the idea of a quantum gravity condensate and

by the requirement that any cosmology emergent from

quantum gravity should be semiclassical, with small

fluctuations over expectation values for geometric observ-

ables. However, if interactions are neglected, what leads to

the emergence of a macroscopic geometry is not so much a

process of condensation but rather an instability in the free

(linear) theory: in this approximation the dynamics of a

single field mode resembles that of an upside-down

harmonic oscillator, whose classical solutions grow or

decay exponentially, just as the volume of the correspond-

ing classical cosmology. This exponential behavior of

solutions was studied more explicitly, e.g., in Ref. [10],

and a more general analysis of the quantum theory in a

deparametrized approach was given in Ref. [11]. Here, by

choosing the scalar matter field as a clock before quantiza-

tion, one obtains a standard Hamiltonian acting on a Fock

space generated from creation and annihilation operators

associated to the upside-down harmonic oscillator. The

Hamiltonian is quadratic in these and corresponds to a

squeezing operator (realizing the proposal of Ref. [12]).

The Fock “vacuum” defined by âJj0i ¼ 0 for a mode J is

unstable and the number of quanta with respect to it grows

exponentially under time evolution. It is then not surprising

that almost any quantum state in this truncation leads to an

effective Friedmann equation for the expectation value of

the volume that reduces to that of general relativity at low

energies and includes a bounce [13]. The requirement that

the state be semiclassical at late times is nontrivial and still

suggests that one should work, e.g., with Fock coherent

states.

To extend the results of Ref. [9] beyond the approxi-

mation of negligible interactions, the effect of certain

interaction terms was included into the derivation of

effective Friedmann equations in Ref. [14]. Other assump-

tions, in particular the mean-field approximation, were

maintained. One finds that any monomial interaction term

in GFT can be mapped to an additional term in the effective

Friedmann equation, analogous to a perfect fluid contri-

bution whose equation of state is related to the field power

in the interaction. In this way, effective contributions

corresponding to dust, dark energy, or other matter may

in principle be obtained. However, given that these new

terms become relevant when interactions are strong, one

expects the mean-field approximation to break down, as

explained in Ref. [9] and shown explicitly in Ref. [13].

The recovery of expanding solutions that mimic the

dynamics of classical general relativity coupled to a

massless scalar field is an important result, but one might

be interested in stationary solutions as well. Given that the

expansion in usual GFT cosmology is driven by the energy

density in the scalar field, is there a way to switch it off?

Here we consider two approaches towards addressing this

question. The first corresponds to the idea of taking a

“G → 0” limit in GFT cosmology, as is sometimes con-

sidered in other approaches to quantum gravity [15].

Newton’s constantG appears emergent from a combination

of fundamental couplings in the GFT action [9,10], so this

is the limit of a vanishing coupling in the GFT action. We

find that this procedure does indeed modify the late-time

behavior of GFT cosmology in the expected way, leading to

an asymptotically stationary geometry. However, there are

still high-energy corrections similar to the ones causing the

bounce in usual GFT cosmology, so we do not obtain a

truly stationary solution. These results are perhaps

expected, but they involve some interesting subtleties. In

particular, we now need to introduce creation and annihi-

lation operators for a system analogous to a free particle in

quantum mechanics, which requires using an arbitrary

length scale (see, e.g., Ref. [16]). This length scale enters

geometric observables in GFT, whose meaning is hence

ambiguous. The assumption of an exactly vanishing cou-

pling also constitutes fine-tuning.

A different approach is to include interactions and look

for dynamically stationary solutions. Our approach follows

the one of Ref. [14] without relying on a mean-field

approximation: we are looking for exact solutions of the

interacting theory. Finding such solutions requires numeri-

cal methods, but can be done to arbitrary precision. We can

identify bound states in which all expectation values remain

constant, so they might be seen as representing a stationary

cosmology. While these states are not peaked on a

particular value of the group field, they have small

fluctuations in the cosmologically more relevant volume

(or number of quanta) and can hence be seen as semi-

classical. We also turn to the familiar proposal of coherent

states, peaked around the minimum of the potential. We

show that these states are stable with small quantum

fluctuations, even though they are not exactly stationary

and show small oscillations in quantities like the volume.

Both the exact bound state solutions and the coherent states
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we have constructed are promising candidates for an

emergent semiclassical and stationary or almost stationary

spacetime; they represent a cosmology in which the

contribution to the effective energy density coming from

GFT interactions cancels the terms usually responsible for

expansion. This proposal could be argued to be the most

explicit realization of a “quantum gravity condensate”

achieved so far, albeit in a relatively simple toy model.

II. BRIEF OVERVIEW OF GFT COSMOLOGY

Here we review the derivation of effective cosmological

dynamics from GFT in the deparametrized approach of

Ref. [11]. Although this formalism differs in its assump-

tions and motivations from the “algebraic” canonical

quantization first proposed in Refs. [5,7], at the level of

effective cosmology the two approaches lead to rather

similar results; see, e.g., Ref. [17] for a recent review

comparing the two. What is important to obtain a

particular cosmology is whether interactions or multiple

field modes are included, as well as whether one assumes

a coherent state. We will restrict to a single field mode

throughout.

For GFT models for quantum gravity coupled to a

massless scalar field, a common starting point is a (real)

field φ whose arguments are four SUð2Þ group elements,

corresponding to parallel transport variables of discrete

gravity in the Ashtekar-Barbero formalism, and a real-

valued argument χ corresponding to the matter scalar field.

The field is usually assumed to satisfy the “gauge invari-

ance” property

φðg1;…; g4; χÞ ¼ φðg1h;…; g4h; χÞ ð1Þ

for any h ∈ SUð2Þ. If we picture the elementary excita-

tions of this quantum field as spin-network vertices

(labeled by χ) with four open links labeled by the gI ,
this property ensures that GFT states are invariant with

respect to discrete SUð2Þ gauge transformations acting on

these vertices.

Assuming that φ is square integrable on SUð2Þ4, we can
define a Peter-Weyl decomposition as

φðgI;χÞ¼
X

jI ;mI ;nI ;ι

φ
jI ;ι
mI
ðχÞI jI ;ι

nI

Y

4

a¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jaþ1
p

D
ja
manaðgaÞ; ð2Þ

where jI ∈ f0; 1
2
; 1…g are irreducible representations of

SUð2Þ, mI and nI are magnetic indices taking values

between −jI and jI, and I are a basis of intertwiners

(indexed by ι) compatible with the chosen jI , which are

needed in order to satisfy Eq. (1).D
j
mnðgÞ are the WignerD

matrices in the representation j. It is very convenient to

introduce a multi-index J ≡ ðjI; mI; ιÞ so that the field

modes in Eq. (2) become more simply φJðχÞ.

Following Ref. [11] we will assume an action

S¼ 1

2

Z

d4gdχφðgI;χÞðKð0ÞþKð2Þ
∂
2
χÞφðgI;χÞ−V½φ�;

¼ 1

2

X

J

Z

dχφ−JðχÞðKð0Þ
J þK

ð2Þ
J ∂

2
χÞφJðχÞ−V½φ�; ð3Þ

where in the second line we have used the Peter-Weyl

decomposition and −J ≡ ðjI;−mI; ιÞ denotes flipping of

the magnetic indices (needed to ensure a real Lagrangian).

Kð0Þ and Kð2Þ can contain derivative operators with respect

to the SUð2Þ variables, in particular Laplace-Beltrami

operators, which become diagonal in the second line, so

that K
ð0Þ
J and K

ð2Þ
J are just J-dependent numbers. More

generally, higher order derivatives in χ could be present, but

one can see Eq. (3) as a truncation in derivatives (as

proposed in Ref. [9]) or as a definition of the fundamental

theory. A first derivative term is forbidden by the symmetry

of the action under χ → −χ which is required as a

symmetry of relativistic matter fields. V½φ� includes all

interactions, i.e., terms higher than second order in φ,

whose structure is model dependent.

One can now proceed with canonical quantization based

on promoting φJ and its conjugate momentum

πJ ≔
∂L

∂ð∂χφJÞ
¼ −K

ð2Þ
J ∂χφJ ð4Þ

to operators satisfying the usual ½φ̂JðχÞ; π̂J0ðχÞ� ¼ iδJ;J0 . In

other words, the scalar field variable χ is now treated as a

conventional time variable. The quadratic part of the

Hamiltonian is a sum of single-mode Hamiltonians,

Ĥ ¼ −
1

2

X

J

�

π̂Jπ̂−J

K
ð2Þ
J

þK
ð0Þ
J φ̂Jφ̂−J

�

þ V½φ̂�;

≕

X

J

ĤJ þ V½φ̂�: ð5Þ

For modes for which K
ð0Þ
J and K

ð2Þ
J have the same sign, this

quadratic part is the Hamiltonian of a harmonic oscillator

(potentially with an unusual minus sign), whereas for

opposite signs the Hamiltonian is that of an upside-down

harmonic oscillator with negative quadratic potential. It is

the second case which is relevant for cosmology since it has

exponentially growing solutions, and most of the literature

is focused on this case.

Introducing for each J an annihilation operator

âJ ¼
1
ffiffiffiffiffiffiffiffi

2ωJ

p ðωJφ̂J þ iπ̂†JÞ ð6Þ

and its conjugate (creation operator) â†J, where ωJ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jKð0Þ
J K

ð2Þ
J j

q

, the quadratic Hamiltonian for one of the

unstable modes becomes
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ĤJ ¼
1

2
MJðâ†Jâ†−J þ âJâ−JÞ; ð7Þ

with MJ ≔ −sgnðKð0Þ
J Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jKð0Þ
J =K

ð2Þ
J j

q

(see Ref. [11] for

details). If we neglect the effect of interactions contained

in V½φ̂� for now, we see that this Hamiltonian takes the form

of a squeezing operator in that the time evolution with

respect to ĤJ transforms the vacuum into a squeezed state

(or more general initial states into generalized squeezed

states). If one works in the Heisenberg picture, then the

operators âJ and â†J are time dependent with

âJðχÞ ¼ âJð0Þ coshðMJχÞ − iâ†
−Jð0Þ sinhðMJχÞ;

â†JðχÞ ¼ â†Jð0Þ coshðMJχÞ þ iâ−Jð0Þ sinhðMJχÞ: ð8Þ

Likewise, the number operator N̂J ≔ â†JâJ can be written as

N̂JðχÞ¼
1

2
ðN̂Jð0Þþ N̂−Jð0Þþ1Þcoshð2MJχÞ

þ1

2
ðN̂Jð0Þ− N̂−Jð0Þ−1Þ

þ i

2
ðâJð0Þâ−Jð0Þ− â†Jð0Þâ†−Jð0ÞÞsinhð2MJχÞ ð9Þ

showing explicitly that the particle number grows expo-

nentially in χ for arbitrary initial states. The quanta

generated by actions of â†J are interpreted as “atoms” of

geometry in the sense of loop quantum gravity [5], which

are assigned a volume VJ dependent on the representation

labels J. If one assumes that only a single field mode is

excited, then the total volume is simply proportional to the

number of quanta, hV̂i ¼ VJhN̂Ji. This assumption is most

easily made self-consistent by focusing on a mode for

which all magnetic indices vanish, so that J ¼ −J; Eq. (9)
then refers to operators for a single mode only.

For this case, one can easily show that VðχÞ ≔ hV̂ðχÞi
satisfies the differential equation [13]

�

V 0ðχÞ
VðχÞ

�

2

¼ 4M2
J

�

1þ VJ

VðχÞ þ
K2

0
− VJVð0Þ − Vð0Þ2

VðχÞ2
�

ð10Þ

with K0 ≔
i
2
VJðhâJð0Þâ−Jð0Þi − hâ†Jð0Þâ†−Jð0ÞiÞ. This is

the analog of the Friedmann equation and can be used to

interpret the expectation value VðχÞ of the volume in

cosmological terms.

Comparing Eq. (10) with its general relativity analog

ðV 0=VÞ2 ¼ 12πG, the first observation is that Eq. (10)

reduces to general relativity at large volume, provided that

M2
J ¼ 3πG whereG is Newton’s constant. In this sense, we

can say that Newton’s constant is emergent from funda-

mental GFT couplings. At smaller volumes, there are

corrections to general relativity, in particular a 1=V2 term

which is almost always repulsive [there are fine-tuned

initial conditions for which K2

0
− VJVð0Þ − Vð0Þ2 can

vanish, otherwise its sign is negative]. When it is repulsive,

it will dominate at small volume, leading to a bounce that

resolves the classical singularity; in other words, VðχÞ
never reaches zero.

These conclusions do not depend on a choice of state;

however, for a semiclassical interpretation one should also

require that fluctuations in quantities like the volume are

small at late times, ΔV ≪ hV̂i, which suggests that one

should choose, e.g., a Fock coherent state satisfying (again

in the Heisenberg picture) [13]

âJð0Þjαi ¼ αjαi: ð11Þ

If either multiple field modes or interactions in V½φ̂� are
included, then the situation is more complicated; in the first

case and without interactions, one still has Eq. (9) for each

mode and while deriving an equation for ðV 0=VÞ2 is still

straightforward, the right-hand side is complicated and

does not admit a simple cosmological interpretation as in

Eq. (10). Interactions would generally couple different

modes and spoil the property of independent evolution. As

a first step, one can study toy models with a single self-

interacting mode as done, e.g., in Refs. [13,14]; we will

study such a toy model below. In this case, one deals with

the quantum theory of an upside-down harmonic oscillator

with a higher-order potential, for which there are generally

no analytic solutions. One can still propose a mean-field

approximation to solve essentially classical equations as in

Ref. [14], although such an approximation will break down

once interactions become important. Numerical studies as

in Ref. [13] are an alternative possibility.

III. VANISHING NEWTON’S CONSTANT

An interesting question which has so far escaped

detailed attention is what happens in the case that MJ

vanishes, i.e., the case where K
ð0Þ
J is zero for a particular

mode J. Given that the indices contained in J are discrete,

there is no particular reason to expect that such a J exists,

but one might assume that it does. In this case, while the

Legendre transform leading to a Hamiltonian (5) can be

defined as before, the creation and annihilation operators

used above become ill-defined since ωJ → 0. Indeed, one

now faces the problem of defining creation and annihi-

lation operators for a system equivalent to a free particle in

quantum mechanics, rather than a (regular or upside-

down) harmonic oscillator.

For simplicity, we restrict to a single mode with J ¼ −J,

and assume that K
ð0Þ
J vanishes. We will, for now, also

neglect interactions. With all these approximations we

obtain a quadratic Hamiltonian
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ĤJ ¼ −
1

2

π̂2J

K
ð2Þ
J

; ð12Þ

which is the Hamiltonian of a free particle in one

dimension whose quantum theory is, of course, well

known. However, here we are interested in the interpre-

tation of the corresponding GFT cosmology, which

requires defining a number operator N̂J ¼ â†JâJ in terms

of some suitable ladder operators âJ and â
†
J. The definition

(6) cannot be applied in this case, but one can define

âJ ¼
1
ffiffiffiffiffiffiffiffi

2ω0

p ðω0φ̂J þ iπ̂JÞ; ð13Þ

where ω0 is now an arbitrary scale rather than derived

from the Hamiltonian. We then have

ĤJ ¼
ω0

4K
ð2Þ
J

ðâ†J − âJÞ2; ð14Þ

which decomposes into the difference of a squeezing

operator similar to Eq. (7) and a standard harmonic

oscillator Hamiltonian ∝ ðâ†JâJ þ âJâ
†
JÞ, i.e., the differ-

ence of an operator with continuous and one with discrete

spectrum. The overall spectrum is of course continuous,

but the number operator â†JâJ has the usual spectrum given

by the non-negative integers, since that simply derives

from the algebraic relation ½âJ; â†J� ¼ 1. We can then go

ahead and define an effective volume operator V̂ ¼ VJN̂J

as in usual GFT cosmology.

The Heisenberg equations of motion are now

dâJ

dχ
¼ −i

ω0

2K
ð2Þ
J

ðâ†J − âJÞ ð15Þ

and its Hermitian conjugate, with solution

âJðχÞ ¼ âJð0Þ −
ffiffiffiffiffiffi

ω0

2

r

1

K
ð2Þ
J

π̂χ ð16Þ

and Hermitian conjugate; π̂ is time independent since it

commutes with the Hamiltonian. This solution of course

represents the linear relation between “position” and “time”

expected for the free particle.

For the number operator N̂J ¼ â†JâJ we then find

N̂JðχÞ ¼ N̂Jð0Þ −
ffiffiffiffiffiffi

ω0

2

r

1

K
ð2Þ
J

ðâ†Jð0Þπ̂ þ π̂âJð0ÞÞχ

−
ω0

K
ð2Þ
J

ĤJχ
2 ð17Þ

and hence quadratic growth in the volume with respect to χ.

Since there are no states of zero energy (a putative

eigenstate of zero momentum would not be normalizable),

this general behavior applies to all states and there no

exactly stationary solutions. On the other hand, one can

derive an effective Friedmann equation

�

V 0ðχÞ
VðχÞ

�

2

¼ −
4ω0E

K
ð2Þ
J

VJ

VðχÞ þ
ω0

K
ð2Þ
J

A
V2
J

VðχÞ2 ; ð18Þ

A ¼ C2

0

2K
ð2Þ
J

þ 4N0E; ð19Þ

where VðχÞ ¼hV̂ðχÞi as before, E¼hĤJi is the expectation
value of the Hamiltonian, N0 ¼ hN̂Jð0Þi is the average

initial particle number, and C0 ¼ hâ†Jð0Þπ̂ þ π̂âJð0Þi. Since
the inequality hN̂JðχÞi ≥ 0 for all χ implies A ≤ 0, the 1=V2

term in the effective Friedmann equation is repulsive for

small volumes and generically (for A < 0) guarantees that

the volume never reaches zero.

At late (or very early) times when the volume is large, the

right-hand side of Eq. (18) goes to zero and the emergent

spacetime geometry becomes approximately flat: the

terms on the right-hand side of Eq. (18) are of the same

form as the subleading corrections in Eq. (10). In both

cases, these can be seen as quantum gravity corrections

to the correct classical limit. In this sense, the general

structure of Eq. (18) might be expected: while the emergent

Newton’s constant could be fine-tuned to zero, there is not a

single limit in the quantum gravity framework of GFT that

would also make all the subleading corrections vanish.

These subleading corrections are suppressed by inverse

powers in the number of GFT quanta, which we expect to

be large for a semiclassical interpretation.

From Eq. (17) we see that at late (or very early) times, the

relative uncertainty in the volume asymptotes to

ðΔVÞ2
VðχÞ2 ¼

hV̂2ðχÞi − V2

V2
→

ðΔHÞ2
E2

ð20Þ

[where we use the notation ðΔOÞ2 ≔ hÔ2i − hÔi2], which
can be made arbitrarily small by choosing states sharply

peaked around an average energy value E. Hence there

exists a large class of states that evolve into semiclassical,

asymptotically flat effective geometries.

This notion of semiclassicality, based on relative uncer-

tainty in the volume, does not mean that states remain

sharply peaked in quantities such as the field φJ or

momentum πJ. For instance, if we define coherent states

as proposed in Ref. [16], then we can see that uncertainties

grow as we move away from the initial time χ ¼ 0,

ðΔφJ
Þ2 ¼ 1

2

�

1

ω0

þ ω0

K
ð2Þ
J

χ2
�

; ð21Þ

ðΔπJ
Þ2 ¼ ω0

2
: ð22Þ
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From these expressions we can readily see that Fock

coherent states do not stay coherent, as ΔφJ
ΔπJ

¼ 1

2
only

at the initial time. This behavior seems to be general for

Hamiltonians that do not commute with N̂J. Due to

Eq. (20), such states can still be made sharply peaked

around a given volume for early and late times.

Given the use of χ as a clock, the energy E is usually

interpreted as representing the momentum conjugate to

the scalar matter field [13]. It seems puzzling that in this

model the energy is restricted to be negative, so that this

momentum would have a preferred sign in contrast with

classical cosmology, where it is simply related to the time

derivative in the scalar field which can take either sign.

Moreover, Eq. (18) also depends explicitly on the arbitrary

scale ω0, since the number operator itself required this scale

for its definition. In this sense, the meaning of GFT

geometric observables in this scenario seems ambiguous,

so that it would seem difficult to extract any phenomenol-

ogy from it. This is in contrast to the usual case Eq. (10)

which involves no additional arbitrary scales.

Perhaps the most unphysical aspect of this scenario is the

fine-tuning in setting K
ð0Þ
J to zero. As we mentioned, there

will generically be no J which satisfies this property; even

if there is such a J, K
ð0Þ
J will be nonzero for other modes

and there will generally still be modes satisfying Eq. (9) and

growing exponentially. The model has to be set up in a

specific way for no such modes to exist, and would be

unstable under inclusion of other modes.

IV. INTERACTING GFT MODEL

To address some of the issues with the GFT cosmology

scenario obtained from tuning K
ð0Þ
J to zero, we turn to a

second approach, in which the quadratic Hamiltonian is

unchanged, but one now includes interaction terms as well.

The idea is that the exponential instability seen in Eq. (9),

which arises from a quadratic Hamiltonian unbounded

from below, is an artifact of neglecting interactions; the full

theory should have a Hamiltonian that is bounded from

below. This viewpoint was advocated in Ref. [14], in the

context of a mean-field approximation, and used to derive

an effective GFT cosmology for a simple interacting toy

model. Here we will present numerical evolution of the

quantum theory, which can help to understand the validity

of the mean-field approximation.

As before, we restrict the analysis to a single Peter-Weyl

mode with J ¼ −J. We then add a φ4 interaction term to the

Hamiltonian (7) to obtain

ĤJ ¼
1

2
MJðâ†Jâ†J þ âJâJÞ þ

g

4
jMJjðâJ þ â†JÞ4; ð23Þ

where 0 < g ≪ 1, and we now assume K
ð0Þ
J > 0 and

K
ð2Þ
J < 0 (the opposite sign choice can be treated

analogously). In most GFT models for quantum gravity,

interactions couple different modes, e.g., to encode match-

ing conditions expected from gluing tetrahedra to higher-

dimensional structures [4]. We take this “local” interaction

in J as a general toy model for quantum behavior of the

GFT field, keeping in mind that choosing particularly

symmetric GFT states can reduce more general interactions

to local ones [9].

The previous interacting Hamiltonian is equivalent to a

quantum mechanical system in terms of φ̂J and π̂J,

ĤJ ¼ −
1

2

�

π̂2J

K
ð2Þ
J

þK
ð0Þ
J φ̂2

J

�

þ g̃

4
φ̂4
J; ð24Þ

g̃ ¼ 4g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðKð0Þ
J Þ3Kð2Þ

J j
q

: ð25Þ

In a mean-field approximation, we would replace π̂J and φ̂J

by their respective expectation values pJ and ϕJ. We then

obtain an effectively classical Hamiltonian

H ¼ −
1

2

�

p2
J

K
ð2Þ
J

þK
ð0Þ
J ϕ2

J

�

þ g̃

4
ϕ4
J: ð26Þ

Stationary solutions of the resulting equations of motion

correspond to extrema of this Hamiltonian in ϕJ, for

pJ ¼ 0, given by ϕJ ¼ 0 and

ϕJ ¼ ϕ
ð�Þ
J ¼ �

ffiffiffiffiffiffiffiffiffi

K
ð0Þ
J

g̃

s

: ð27Þ

This mean field model is equivalent to a classical system

with a potential U½ϕJ� ¼ −
K

ð0Þ
J

2
ϕ2
J þ g̃

4
ϕ4
J, usually referred

to as double well potential (see Fig. 1). The values of the

field at the bottom of the potential imply a minimum value

for the energy and volume

FIG. 1. Schematic plot of the potential for our GFT toy model

Hamiltonian.
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Emin ¼ Uj
ϕJ¼ϕ

ð�Þ
J

¼ −
jMJj
16g

; ð28Þ

Vmin ¼
VJωJ

2
ϕ2
JjϕJ¼ϕ

ð�Þ
J

¼ VJ

8g
: ð29Þ

We can attempt an interpretation of this stabilizing

behavior in terms of GFT cosmology, as was done in

Ref. [13] using a classical analog system in which one

treats the independent quadratic combinations â2J, ðâ†JÞ2,
and â†JâJ as classical variables, ignoring higher order

corrections coming from commutators of such variables.

In such an approximation, one can derive an effective

Friedmann equation

�

V 0ðχÞ
VðχÞ

�

2

¼ −
2M2

JV
2
J

g2VðχÞ2
�

1þ 4g

�

E

jMJj
−
VðχÞ
VJ

���

1 − 4g
VðχÞ
VJ

−

�

1 − 2g
VðχÞ
VJ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4g

�

E

jMJj
−
VðχÞ
VJ

�

s

þ 2g

�

−
3

4
gþ E

jMJj

��

; ð30Þ

where VðχÞ and E are now effectively classical quantities,

derived from the respective combinations of the funda-

mental variables. While this approximation differs from a

simpler mean-field approximation, both can be seen as

neglecting quantum corrections beyond a certain order.

We can substitute the classical minimum values (28) and

(29) into Eq. (30) resulting in ðV 0=VÞ2 ¼ 48g2M2
J, with the

only contribution coming from the last term, which arises

from a nonvanishing Casimir in the suð1; 1Þ algebra

spanned by the basic operators [13], and may be seen as

a quantum correction to the stationary classical dynamics.

In simpler truncations where the right-hand side of Eq. (30)

is only linear in all interaction couplings, as in Ref. [14],

this higher-order term would not be visible and a classical

minimum would automatically be interpreted as a sta-

tionary cosmology. In either case, the effective Friedmann

equation contains terms of both signs, so that cancellations

can lead to a stationary solution. This can be compared to a

classical cosmology for which, in the Friedmann equation

_a2

a2
¼ 8πG

3
ρþ Λ

3
; ð31Þ

one chooses the energy density ρ at a given time to exactly

balance the contribution of a negative Λ; such a cosmology

would however be unstable under perturbations. In GFT, it

seems we can obtain a stationary cosmology by balancing

the usual matter energy density with new contributions that

appear to have effectively negative energy density, similar

to a negative Λ.

A. Full quantum analysis

Turning to the full quantum theory, we return to the

Schrödinger picture and aim to find stationary (or almost

stationary) solutions to the Schrödinger equation for the

model. The most obvious candidates for such states are

eigenstates of the Hamiltonian (23), but we will also follow

the more traditional approach in GFT cosmology to

identify coherent states with suitable initial conditions that

can have a good semiclassical interpretation.

Since this Hamiltonian is quartic in the basic ladder

operators, there are no good methods for analytically

deriving its spectrum and eigenstates. However, one can

work numerically by representing the ladder operators as

infinite matrices written in the basis of eigenstates of the

number operator [18],

âJ ¼

0

B

B

B

B

B

B

B

B

@

0 1 0 0 0 …

0 0
ffiffiffi

2
p

0 0 …

0 0 0
ffiffiffi

3
p

0 …

0 0 0 0 2 …

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.

.

1

C

C

C

C

C

C

C

C

A

; ð32Þ

â†J ¼

0

B

B

B

B

B

B

B

B

@

0 0 0 0 0 …

1 0 0 0 0 …

0
ffiffiffi

2
p

0 0 0 …

0 0
ffiffiffi

3
p

0 0 …

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.

.

1

C

C

C

C

C

C

C

C

A

: ð33Þ

We may represent the basis states as

j0i¼

0

B

B

B

B

B

@

1

0

0

.

.

.

1

C

C

C

C

C

A

; j1i¼

0

B

B

B

B

B

@

0

1

0

.

.

.

1

C

C

C

C

C

A

; j2i¼

0

B

B

B

B

B

@

0

0

1

.

.

.

1

C

C

C

C

C

A

;…: ð34Þ

One can express an operator as a matrix by writing it in

terms of the ladder ones, âJ and â†J, provided that a

truncation is used. This truncation sets a finite dimension
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for matrices, determines the accuracy of the calculations

and can be extended for a higher accuracy of numerics. By

representing the Hamiltonian as a truncated matrix, we can

find its eigenvalues and eigenstates and determine the

dynamics by expressing the Schrödinger equation as a

matrix differential equation.

For small coupling constant g, there are a large number of

bound states, with the ground state (lowest energy) close to

the classical minimum, hHi ∼ Emin ¼ −
jMJ j
16g

. Nonetheless,

the expectation value of the field φ̂J ¼ ðâJ þ â†JÞ=
ffiffiffiffiffiffiffiffi

2ωJ

p
is

not near either of classical minima (at the bottom of the

double well) but instead it is close to zero, with large

fluctuations.

As an illustrative example, we fix the parameters to

K
ð0Þ
J ¼ 1, K

ð2Þ
J ¼ −1, g ¼ 10−3; a matrix size of 500 gives

good numerical accuracy. We then find a twofold degen-

erate ground state jG�i with

hG�jĤJjG�i ≈ −61.79; ð35Þ

hG�jφ̂JjG�i ≈ 0; ð36Þ

hG�jðφ̂JÞ2jG�i ≈ 249; ð37Þ

hG�jN̂JjG�i ≈ 124.5; ð38Þ

hG�jðN̂JÞ2jG�i ≈ ð124.85Þ2; ð39Þ

matching well with the classical Emin ¼ −62.5 but not with

ϕ
ð0Þ
J ≈ 15.81. We can see that, while such a state is not

semiclassical in the group field φJ, the state is sharply

peaked around its expectation value of the volume

hV̂i ¼ VJhN̂Ji. Somewhat surprisingly, such a bound state

then already represents a semiclassical, stationary cosmol-

ogy. In Fig. 2 we show the expectation value hG�jN̂JjG�i
in the ground state(s) as a function of the coupling g; it

follows closely the classical result given in Eq. (29),

NJ ¼ 1=8g. Figure 3 shows that the relative variance
ðΔNJ

Þ2
hN̂Ji2

monotonically increases with g so that the semi-

classical interpretation of the ground states breaks down at

larger values of the coupling constant. For small g, this
relative variance grows linearly in g and hence scales as the
inverse particle number; the relation becomes nonlinear at

larger g. Moreover, the first higher energy states above the

ground state show similar expectation values for the volume

but with rapidly growing fluctuations, making those states

less suitable for a semiclassical interpretation than the

ground state.

Going beyond this simplest proposal, one can try to

define some kind of coherent states from the eigenstates of

this bounded Hamiltonian. These are called Gazeau-

Klauder coherent states and have been studied for the

double well potential in Ref. [19]. Note then that, for an

expectation value of the energy Ĥ close to the minimum of

the classical potential, this coherent state can be approxi-

mated by the two first eigenstates, and produces essentially

the same expectation values as Eqs. (35)–(39).

Focusing on bound states is quite different from the

traditional approach in GFT cosmology, in which semi-

classical cosmology is represented via coherent Fock states

[7]. In our setting, we could define a (normalized) approxi-

mate coherent state at some initial time by

jαi ¼ e−jαj
2=2

X

M

i¼0

αi
ffiffiffiffi

i!
p jii; ð40Þ

whereM is the cutoff on the truncation that one has applied

to make the matrix representations (32) and (33) finite. M
must be chosen large enough so that hαjαi ¼ 1 up a small

error below the accuracy one wants to work at.

If we are interested in a state that represents the

classically stationary configuration at the minimum of

0.000 0.002 0.004 0.006 0.008
0

50

100

150

FIG. 2. Expectation value of the number of particles in the

ground state as a function of the coupling constant g, compared

with the classical result 1=8g.

0.002 0.004 0.006 0.008 0.010

0.01

0.02

0.03

0.04

0.05

0.06

FIG. 3. Relative variance of the particle number NJ for ground

states jG�i. At low values of g, quantum fluctuations are still

small. The relation is almost linear at small g but becomes

nonlinear as g is increased further.
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the potential, we can choose α such that the field is set at

one of the classical minima, α ¼ �
ffiffiffiffiffiffiffiffiffiffi

1=8g
p

. The value ofM

then depends on g; for g ∼ 10−3 a value between 600 and

1000 is sufficient for very small errors (depending on the

time of evolution).

The mean-field approximation, which assumes that such

a state remains coherent at all times, would imply that it is

also stationary. This approximation is not exact, and since

this is not an energy eigenstate we expect nontrivial time

evolution. Nevertheless, for small g the evolution of

these states is almost stationary (see Figs. 4 and 5). In

particular, relative fluctuations stay very close to the

initially small value so that these states remain semi-

classical under time evolution. In this sense, these quantum

states behave classically enough to use them in the

mean-field approximation. In terms of the physically

relevant evolution of the volume, their properties are very

similar to those of the exact ground state.

It is important to stress that this semiclassical behavior

of initially coherent states will not hold for arbitrary

initial conditions. If we start with a coherent state with

an expectation value of ϕ̂J far from the minimum of the

potential, it evolves in a nontrivial way; the relative

variance N̂J (as well as of the fields φ̂J and π̂J) increases,

deviating from the classical behavior. The mean-field

approximation is then not applicable. We give an example

of this in the Appendix. This is then the generic case in

which the mean-field approximation breaks down in an

interacting GFT, as previously discussed in Refs. [9,13].

V. CONCLUSIONS

We have discussed several approaches for finding sta-

tionary cosmologies that could tentatively be associated

with a Minkowski spacetime in the cosmological inter-

pretation of GFT. First, we looked at a model in which the

effective Newton’s constant, related to the “mass” param-

eterK
ð0Þ
J in GFT, is taken to zero. This theory could be seen

as a potential starting point for a standard model limit of

GFT, in which matter propagates on an emergent spacetime

but does not affect its structure, akin to setting G ¼ 0 in the

classical Einstein equations Gab ¼ 8πGTab. We saw that

this model suffers from fine-tuning in the parameters, such

that any small deviation turning the GFT dynamics into

those of an inverted oscillator will develop instabilities

generating an expanding Universe. We also found that the

effective Friedmann equation does not imply an exactly

stationary cosmology but includes high-energy corrections

similar to those responsible for a bounce in standard GFT

cosmology.

We then studied a second approach which uses a GFT

toy model including a quartic interaction term, equivalent

to the dynamics of a double-well potential in usual quantum

mechanics. By applying a numerical approximation tech-

nique in which the ladder operators and the Hamiltonian are

represented as matrices, we found bound states starting

from a ground state whose energy is very close to the

classical minimum of the potential. We saw that such bound

states are sharply peaked in the number of GFT quanta and

hence in the volume, making them suitable candidates for

semiclassical stationary cosmologies. In addition, the

numerics show an approximately exponential relation of

the relative variance of N̂ and the coupling constant g: for
theories with lower g the ground state is even more sharply

peaked around a given volume. Somewhat similar proper-

ties are found for the traditionally used Fock coherent

states, set up in such a way that the expectation value of the

group field sits in the classical minimum of the potential.

These states evolve in time but only show small oscillations

around the initial volume expectation value, with small

fluctuations. While this nontrivial time evolution deviates

FIG. 4. Oscillatory evolution in relational time χ of the particle

number expectation value in the coherent state representing the

classically stationary state, for the set of parameters K
ð0Þ
J ¼ −1,

K
ð2Þ
J ¼ 1, and g ¼ 10−3.

FIG. 5. Relative uncertainty of the number of particles in the

coherent state representing the classically stationary state, for

K
ð0Þ
J ¼ −1, K

ð2Þ
J ¼ 1 and g ¼ 10−3. As expected for a coherent

state, initially ðΔNJ
Þ2=hN̂Ji2 ¼ 1=hN̂Ji; this initial value is

actually an approximate upper bound for all times.
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from the mean-field approximation which would give

exactly stationary expectation values, this deviation is

small and the use of the mean-field approximation is

justified. However, this only works for such a “quantum

gravity condensate” in the minimum of the potential, and

more generic initial conditions would lead to very non-

semiclassical behavior even for an initially coherent state.

The conclusion that bound states represent good candi-

dates for a semiclassical cosmology in GFT is somewhat at

odds with the traditional idea of using Fock coherent states

for which uncertainties in the group field φ̂J and momen-

tum π̂J can be made small. Since φ̂J and π̂J do not

correspond to observables it seems more meaningful to

demand that cosmologically relevant quantities such as the

total volume or the energy (associated to a conjugate

momentum of the matter scalar field), or more generally

the suð1; 1Þ variables discussed in Ref. [13], remain

semiclassical. In this sense, our work suggests that more

general classes of states may be considered to be viable

candidates for GFT cosmology.

The numerical techniques applied here could be

extended to more general and physically more interesting

models for GFT cosmology, such as models with more

general interaction terms or models coupling different

Peter-Weyl modes. The only limitations come from com-

putational cost, but since the calculations presented here

were easy to implement there certainly seems to be scope

for studying more involved cases.
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APPENDIX: COHERENT STATES WITH

GENERIC INITIAL CONDITIONS

Here we consider the previous interacting case from

Eq. (23) and initial coherent state jαi associated with an

expectation value of the field hαjφ̂Jjαi located far from the

classical minimum of the potential (see Fig. 6). We choose

α ¼ 10=
ffiffiffi

2
p

∼ 7.07 as an example for an initial field value

away from the minimum of the potential, but the behavior

we observe here appears to be generic.

The evolution is given by the Schrödinger equation in the

truncation described around Eq. (34). With a dimension of

900 we can calculate a numerical solution for this initial

condition with sufficient speed and precision.

Classically, we would expect the field to oscillate

between ϕJ ¼ 10 and ϕJ ¼ 20, corresponding to particle

numbers of 50 to 200. In Fig. 7 we see that this is

FIG. 6. Classical potential and initial expectation value of the

field (red point). We set the parameters of the Hamiltonian to

K
ð0Þ
J ¼ −1, K

ð2Þ
J ¼ 1, and g ¼ 10−3.

20 40 60 80 100 120 140

50

100

150

200

FIG. 7. Evolution of the particle number in the unstable case.

Due to quantum effects of the quartic potential, the evolution

results in a damping of the initial oscillations.
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0.20

0.25

FIG. 8. The relative variance of the particle number increases in

time and seems to converge to a large value: the state is not close

to a coherent state and the semiclassical (or mean-field) inter-

pretation is lost.
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indeed what happens initially, but after a short time the

behavior of the particle number (and volume) differs

from this classical expectation: the oscillations become

damped leading to an asymptotic value around the

minimum of the potential. At the same time, the state

is no longer peaked in the volume, and acquires large

fluctuations (Fig. 8). These results demonstrate the

breakdown of the mean-field approximation for such

states, unlike what we saw for states peaked initially at

the minimum.
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