
This is a repository copy of HighRPM: Combining Integrated Measurement and Sofware
Power Modeling for High-Resolution Power Monitoring.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/201596/

Version: Accepted Version

Proceedings Paper:
Qi, X., Chen, J., Dong, Y. et al. (6 more authors) (2023) HighRPM: Combining Integrated
Measurement and Sofware Power Modeling for High-Resolution Power Monitoring. In:
ICPP '23: Proceedings of the 52nd International Conference on Parallel Processing. 52nd
International Conference on Parallel Processing (ICPP), 07-10 Aug 2023, Salt Lake City,
UT, USA. ACM , New York, NY, United States , pp. 369-379. ISBN 9798400708435

https://doi.org/10.1145/3605573

© Owner/Authors | ACM 2023. This is the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive Version of Record was published in
ICPP '23: Proceedings of the 52nd International Conference on Parallel Processing,
https://doi.org/10.1145/3605573.3605649.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

HighRPM: Combining Integrated Measurement and Sofware
Power Modeling for High-Resolution Power Monitoring

Xinxin Qi1, Juan Chen1*, Yong Dong1*, Yuan Yuan1, Tao Xu1, Rongyu Deng1, Zekai Li1, Kexing Zhou1, Zheng Wang2

1 NUDT, China 2 University of Leeds, United Kingdom

{qixinxin19,juanchen,yongdong,yuanyuan,xt.0320,dengrongyu21,zekaili,zhoukexing}@nudt.edu.cn,z.wang5@leeds.ac.uk

ABSTRACT

In an era where power and energy are the first-class constraints

of computing systems, accurate power information is crucial for

energy efficiency optimization in high-performance computing

(HPC) systems. Existing power monitoring techniques rely on ei-

ther software-centric power models that suffer from poor accuracy

or integrated hardware measurement schemes that have a low read-

ing update frequency and coarse granularity. These result in a low

spatiotemporal resolution for power monitoring. This paper intro-

duces HighRPM, a new method for accurately measuring power

consumption on HPC systems. HighRPM combines coarse-grained

power sensor readings and software power modeling techniques to

improve temporal and spatial resolutions. To provide high-frequent

power readings in the temporal domain, HighRPM employs sta-

tistical modeling and machine learning techniques to predict the

long-term power trend and the short-term fluctuations in power

consumption. To improve spatial coverage, HighRPM takes low-

time resolution node-level power consumption and uses a neural

network to distribute the power readings to lower-level comput-

ing components like CPUs and memory components. We evaluate

HighRPM by applying it to both ARM-based and X86-based plat-

forms. Experimental results show that HighRPM improves time

resolution by 10 times, provides accurate readings for CPUs and

memory, and reduces error by 7-24% compared to other power

modeling methods.

CCS CONCEPTS

· General and reference→ Power modeling.

KEYWORDS

spatiotemporal resolution, power monitoring, power model, inte-

grated measurement

1 INTRODUCTION

Accurate and timely power monitoring is essential for effective

energy management and optimization in high-performance com-

puting (HPC) systems [28]. Power readings help the system quickly

respond to changes in workload demand and behavior, which is

important for efficient workload scheduling, reducing energy con-

sumption, preventing overheating, and maintaining system stabil-

ity [16, 18].

Existing power monitoring solutions generally fall into three

categories: (i) direct measurement using external power instru-

ments [19], (ii) integrated measurement through power sensors,

baseboard management controller (BMC), or FPGA components,

and (iii) software-centric power modeling techniques like Intel’s

∗Corresponding Author

running average power limit (RAPL) interface [30]. However, none

of these approaches adequately balance accuracy, spatiotemporal

resolution, scalability, and deployment costs, which are critical for

the broad adoption of power monitoring [20, 21].

High-frequency power meters can provide accurate and high-

resolution power readings through direct measurement but are

impractical for large-scale deployment due to high cost and scal-

ability issues. Integrated measurements are accurate but struggle

to provide timely power readings due to the long read-out delay.

Additionally, power sensors may not always be available in HPC

systems or computing components. On the other hand, software-

based power modeling techniques are cost-effective and can provide

high-resolution readings, but their accuracy is limited due to their

volatile nature [32, 34].

In this paper, we ask the question łcan we bring the best of inte-

grated measurement (IM) and power modeling techniques to build

a better power monitoring solution?ž. To answer this question, we

develop new techniques to enhance the temporal and spatial reso-

lution of IM. We achieve higher temporal resolution by estimating

power readings between two IM readings. At the same time, we en-

hance spatial resolution by distributing the node-level IM readings

to lower-level individual components like CPU and memory. Our

approach utilizes IM to improve the accuracy of software-based

power modeling, while leveraging statistical modeling andmachine-

learning techniques to improve the spatiotemporal resolutions of

IM-based power monitoring. By integrating hardware IM and soft-

ware modeling techniques, we create a bi-directional interaction

that combines the strengths of individual solutions to overcome

the limitations of individual technology components.

While promising, translating our high-level idea into a practical

system is non-trivial. Power consumption often follows trends

over a long-term sampling window [20], but detecting outliers

caused by workload behavior and phase changes is challenging

as these patterns are difficult to predict in advance. Additionally,

software-based power modeling techniques often rely on hardware

performance monitoring counters (PMC) to monitor the system

and workload behavior, but PMC readings can be noisy and have

complex, non-linear relationships with component-level power

readings. Thus, distributing the node-level power measurement to

individual hardware components requires robust power modeling

techniques to account for the complex relationship between PMC

and power consumption.

We present HighRPM1, a power monitoring framework that

combines node-level IM and power modeling while overcoming

the aforementioned challenges. HighRPM has two components:

Temporal Resolution Restoration (TRR) models to improve the

temporal resolution of power reading and a Spatial Resolution

1
HighRPM = High-Resolution Power Measurement

X. Qi et al.

Restoration (SRR)model to distribute the node-level power readings

to CPU and memory components.

Specifically, we enhance the temporal resolution of node-level

IM by creating two models using statistical modeling and machine

learning. Our first model, StaticTRR, interpolates power readings

offline using readings collected during program execution to pro-

vide a more detailed analysis of a program’s energy and power

characteristics. The StaticTRR model first employs spline interpola-

tion to determine the node-level power trend by fitting a curve to

IM readings taken during program execution. It then uses a residual

model based on PMC readings to estimate fluctuations and power

readings beyond the estimated power trend. With StaticTRR in

place, we then develop DynamicTRR to estimate dynamic power

readings using IM readings. Our DynamicTRR uses a long short-

term memory (LSTM) network to model the power data time series

and is trained offline using power readings from training programs.

The trained model can then be fine-tuned online and applied to any

unseen programs on the target hardware system.

To improve the spatial resolution of node-level IM, we develop

models that distribute node-level power information to individ-

ual hardware components, such as CPUs and memory subsystems.

Previous power modeling techniques are primarily designed for

systems lacking node-level power consumption information. They

typically estimate node power consumption first and then obtain

the power breakdown of computing components with the assis-

tance of a power model. However, we observed that node power

consumption information could significantly improve the accu-

racy of component power consumption estimation. As a result,

we employ node-level IM, which is widely available and easily

deployed on HPC systems, to establish a bi-directional power mod-

eling workflow. We utilize a lightweight multi-layer perceptron

model to accurately distribute node-level power readings to com-

ponents to describe the nonlinear relationship between node-level

and component-level power consumption.

We implement and evaluate HighRPM on an ARM-based multi-

core platform that integrates hardware BMC with software inter-

faces to provide node-level IM power readings with a sampling

rate of less than 0.1 sample per second (i.e., 0.1𝑆𝑎/𝑠). We test High-

RPM on 96 benchmarks and compare it with 12 prior methods (See

Table 4). Extensive evaluation results show that HighRPM can ef-

fectively improve resolution by a factor of 10× and reduce the mean

absolute percentage error (MAPE) by 7%-24% compared to prior

component power modeling methods.

This paper presents the first work to address the low-resolution

problem of general-purpose IM in HPC systems. It makes the fol-

lowing contributions:

• It is the first to combine IM readings and software-based

power modeling techniques to improve the spatiotemporal

resolution of IM power readings;

• It presents two TRR modeling methods for historical power

consumption analysis and runtime power monitoring.

2 RELATED WORK

2.1 Power Monitoring Schemes

Power monitoring schemes should balance between accuracy, spa-

tiotemporal resolution, scalability, and deployment cost [19]. High

temporal resolution detects rapid power changes and improves

optimization algorithms. High spatial resolution monitors systems,

components like CPUs and memory to enhance component-level

optimizations. High accuracy ensures effective operation and man-

agement; scalability is vital for larger systems. It is crucial to meet

these constraints while minimizing the hardware costs.

Existing power monitoring solutions fall into three categories:

direct measurement, integrated measurement, and software-centric

power modeling techniques. Unfortunately, none of these tech-

niques achieve a satisfactory balance between accuracy, spatiotem-

poral resolution, scalability, and deployment cost. Specifically, direct

measurements such as OMEGAWATT [7], WATTSUP [8], or ZES

LMG450 [9], are precise methods of connecting each host to a digi-

tal power meter. However, as the system scales, it is impractical to

attach a power meter to each host, which is inconvenient and causes

high-deployment costs. Since direct measurement does not apply

to large-scale system monitoring, this section details the other two

schemes (see also Table 1).

2.2 Integrated Measurement

The integrated measurement uses energy sensors to provide power

readings like voltage and currents [11, 17, 19]. According to the dif-

ferent interfaces adopted, integrated measurement can be achieved

using customized integrated measurement (CIM) or general in-

tegrated measurement (GIM). For example, PowerMon [11] and

PowerMon2 are typical CIM devices built into commodity servers.

Both approaches rely on dedicated power measurement devices,

increasing hardware expenditures and measurement equipment

complexity. HAEC is another CIM approach [21], with a sampling

rate of up to 500𝑘𝑆𝑎/𝑠 . But it is only suitable for a single node

rather than a cluster of multiple nodes. Other works [24] utilize

a dedicated embedded computer to collect power measurements,

incurring additional hardware overhead. Overall, CIM offers several

advantages, such as high accuracy, good spatiotemporal resolution

and scalability. However, the major drawback is its high hardware

costs that increase as the system scales up.

In contrast to CIM, GIM is a widely available solution for HPC

systems. For instance, the intelligent platform management inter-

face (IPMI) is a popular integrated measurement solution used in

most servers and computing systems worldwide. However, despite

its widespread use, IPMI-based solutions suffer from long readout

delays. Typically, they provide power consumption readings at in-

tervals of 10 seconds or more, which equates to a sampling rate

of less than 0.1Sa/s. This negatively impacts real-time energy effi-

ciency optimization strategies. Additionally, IPMI-based solutions

are limited by the hardware-exposed sensor interfaces and can-

not provide detailed information on computing components like

CPUs and memory. This limitation particularly affects servers that

lack sensors, as they cannot even provide fine-grained component

power consumption data.

2.3 Software-centric Power Modeling

Sofware-based power models often utilize hardware performance

counters (PMC) to estimate the power consumption of systems. This

approach offers several advantages over hardware-based schemes,

HighRPM: Combining Integrated Measurement and Sofware Power Modeling for High-Resolution Power Monitoring

Table 1: Comparisons of power monitoring solutions. [+] indicates a high indicator and [-] indicates a low indicator.

Example Temporal Resolution Spatial Resolution Accuracy Scalability Cost

Integrated Measurement
Customized (CIM) PowerMon2 [11] ++ + ++ + ++
General (GIM) HDEEM [19] - - ++ - +

Power Model
Vendor-Specific (VPM) RAPL [30] ++ ++ ++ ++ -
General (GPM) Linear/Non-Linear (Table 4) ++ ++ + ++ -

Combination General HighRPM ++ ++ ++ ++ -

including high spatiotemporal resolution, low cost, and scalabil-

ity. Power models can be classified into two categories based on

their generality: vendor-specific power models (VPMs) and general-

purpose power models (GPMs).

Vendor-specific power models (VPMs) obtain power consump-

tion data by directly readingmodel-specific registers (MSRs) through

the operating system. VPMs are commonly used in mainstream

commercial servers with comprehensive software stacks. For ex-

ample, RAPL [30] is a VPM designed for Intel® Sandy Bridge and

later processors, while APM [10] is used for AMD processors. De-

spite their higher spatiotemporal resolution, VPMs are limited to

products from the same manufacturer and cannot be applied to

machines from other manufacturers.

To address this limitation and enhance applicability, power mod-

els known as CPMs (constructed with PMCs) have been proposed.

Singh et al.[35], for instance, developed a power model based on

multiple linear regression using PMCs. Powell et al.[29] utilized

a linear regression model based on PMCs to estimate the activity

factor and subsequently predict power consumption. Apart from

linear methods, machine learning (ML)-based techniques are em-

ployed to explore non-linear relationships between variables. For

instance, Song et al.[36] proposed a power and energy model that

utilized a configurable back-propagation artificial neural network

(BP-ANN) for modeling. Sagi et al.[33] used negative feedback neu-

ral networks to model power consumption in multi-core processors.

ML-based approaches generally offer improved accuracy compared

to linear methods. However, they also introduce challenges such

as increased complexity in model implementation, repeated experi-

mental testing, the need for substantial training data, and careful

selection of kernel programs [27]. These considerations require

significant attention when employing ML-based power modeling

methods.

Our work combines GIM and GPM to leverage their strengths.

Relying solely on VPM or combining GIM and VPM has limitations

for two reasons. Firstly, VPM’s customization, like RAPL, may lack

generality, limiting its compatibility with different CPU models.

Secondly, VPM-only approaches, such as RAPL, cannot monitor

multiple processors simultaneously. In contrast, our proposedHigh-

RPM achieves a balance between resolution, accuracy, scalability,

and cost-effectiveness while providing comprehensive system-wide

coverage. Additionally, HighRPM offers greater generalizability

compared to other techniques, overcoming the limitations of VPM

and accommodating diverse systems.

3 MOTIVATION

Our work aims to improve the spatial and temporal resolution of

power monitoring. Increasing the spatial resolution allows us to

provide power readings for individual components like the CPU

and the memory subsystems. Increasing the temporal resolution

0 10 20 30 40 50 250 260 270 280

0

40

80

120

160

P
o
w

e
r

(W
)

Time (s)

 PCPU

 PMEM

(a) PI = 1𝑠

0 10 20 30 40 50 250 260 270 280

0

40

80

120

160

P
o
w

e
r

(W
)

Time (s)

 PCPU

 PMEM

(b) PI = 10𝑠

0 20 40 60 240 260 280

0

40

80

120

160

200

P
o
w

e
r

(W
)

Time (s)

 PMEM

 PCPU

(c) AI = 1𝑠

0 20 40 60 240 260 280

0

40

80

120

160

200

P
o
w

e
r

(W
)

Time (s)

 PMEM

 PCPU

(d) AI = 10𝑠

0 20 40 60 240 260 280

0

40

80

120

160

200

P
o
w

e
r

(W
)

Time (s)

 PMEM

 PCPU

(e) AI = 30𝑠

Figure 1: Power changes of CPU and DRAMwhen optimizing

the Graph500 [3] benchmark with different power capping

frequency (AI) under different power reading frequencies

(PI).

provides higher frequent power readings to support power opti-

mization techniques like power capping.

As an example, Fig. 1 describes the power changes when running

the Graph500 (BFS) benchmark [3] under different power reading

intervals (PI) and power capping frequencies (AI). The hardware

platform is a multi-core development board with a 16-core ARMv8

CPU. A coarser-grained power reading, e.g., when PI increases

from one reading every 1𝑠 to one reading every 10𝑠 , as (a)→(b)

shows, can prevent the power monitoring system from capturing

the sudden changes (e.g., the spiking points in Fig. 1(a)) of the power

consumptions. Failing to react quickly to power changes can lead

to overheating or increased energy consumption by not enforcing

power capping. For example, when the time between two power

capping actions increases 1𝑠 to 30s (as (c)→(d)→(e) shows), the peak

power of the application would increase to 50𝑊 , which also pro-

longs the peak power consumption. In such a scenario, the energy

consumption of the program increased by 1.1𝐾𝐽 (37.3𝐾𝐽→38.4𝐾𝐽).

In another example, Fig. 2 shows power readings while executing

FFT and Stream [25] without power capping. While the node-level

average power consumption of the benchmarks is around the 90𝑊

line (the power consumption of other peripherals is observed to

be a constant 25𝑊), their CPU and memory consumption exhibit

noticeable divergences. Specifically, the CPU power consumption

dominates the power consumption of the computing node when

running the computation-intensive FFT benchmark. In contrast,

the RAM power consumption dominates the node-level power con-

sumption when running the memory-intensive Stream benchmark.

As can be seen from the example, the power distribution of individ-

ual components can vary depending on the running applications.

Since knowing the power distribution of individual components

is useful for determining the power optimization direction [37],

X. Qi et al.

0 10 20 30 40 50

60

80

100

120

P
o
w

e
r

(W
)

Time (s)

 PMEM

 PCPU

(a) Graph500

0 10 20 30 40 50

60

80

100

120

P
o
w

e
r

(W
)

Time (s)

 PMEM

 PCPU

(b) Stream
Figure 2: The power changes of FFT and Stream when run-

ning on a node of the ARM-based platform.

there is a need to break down the coarse-grained node-level power

reading to individual components.

4 OUR APPROACH

4.1 Overview

HighRPM enhances the temporal and spatial resolutions of power

monitoring by leveraging node-level IPMI-based integrated mea-

surement and software powermodeling techniques. The framework,

as depicted in Fig. 3, consists of two stages: the initial learning stage

and the active learning stage.

During the initial learning stage, HighRPM employs avail-

able initial samples to train models for both temporal resolution

restoration (TRR) and spatial resolution restoration (SRR) tasks.

The objective is to generate high-quality restored samples. Sub-

sequently, in the active learning stage, the initial and restored

samples are combined to create a new sample set. A sampler ran-

domly selects reinforcement samples from this set, which are then

used to fine-tune HighRPM.

When deployed, HighRPM can be installed as a service on the

control node of the target HPC system and shared with other com-

puting nodes. The framework operates on each node, capturing

power variations and hardware characteristics through reinforce-

ment samples. This design accounts for power variations between

nodes, making HighRPM highly effective for both single-node and

multi-node scenarios.

HighRPM consists of two core models: temporal resolution

restoration (TRR) and spatial resolution restoration (SRR). In the

TRRmodel, spline interpolation is used to estimate themissing node

power consumption, resulting in 𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 . The difference between

the actual node power consumption 𝑃𝑁𝑜𝑑𝑒 and 𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 is used to

build a PMC-based residual model called ResModel. PMCs serve as

features in the dataset 𝐷𝑆𝑡𝑎𝑡𝑖𝑐𝑇𝑅𝑅 , enabling the estimation of node

power consumption. For the SRR model, the predicted node power

consumption 𝑃 ′𝑁𝑜𝑑𝑒 from the TRR model, along with PMCs, is

input into a multi-layer perceptron (MLP) model. The MLP model

consists of an input layer, hidden layer, and output layer, and is used

to predict CPU power consumption (𝑃 ′𝐶𝑃𝑈) and memory power

consumption (𝑃 ′
𝑀𝐸𝑀

).

4.2 Temporal Resolution Restoration Model

Node power consumption data is characterized by long-term trends

determined by program loops and unforeseen short-term fluctua-

tions. Recovering temporal resolution requires distinguishing be-

tween components of power consumption attributed to long-term

trends and those due to short-term fluctuations when the node

power consumption is unknown. To address this challenge, we in-

troduce two TRR models: StaticTRR and DynamicTRR. StaticTRR is

ideal for historical power log analysis and exploratory tasks, while

DynamicTRR is more suitable for real-time power monitoring of

servers or computing clusters. By combining these two approaches,

our framework effectively tackles the challenges of recovering tem-

poral resolution and predicting power consumption in a robust and

versatile manner.

4.2.1 StaticTRR. Spline interpolation is a popular method for data

completion, using variable splines to create a smooth curve through

known points. However, interpolation techniques like splines and

ARIMA can only estimate missing data points based on long-term

trends and may not capture short-term fluctuations accurately [31].

To address this limitation, StaticTRR combines spline interpola-

tion with a ResModel, which is a PMC-based residual model. The

residual error represents the difference between observed and inter-

polated values. StaticTRR assumes that these residuals arise from

short-term power variability rather than interpolation errors. This

assumption is supported by the high accuracy achieved by High-

RPM (discussed in Section 6). By using PMCs as features, which

track hardware events during program execution, the ResModel

effectively identifies abnormal variability locations and estimates

mutation amplitude.

To train and build StaticTRR start with the PMCs obtained at spe-

cific time intervals and the node power consumption measurements

recorded in chronological order. Then, we divide our data samples

into two initial sets: set𝐴, which consists of all labeled samples (i.e.,

those with known power consumption values for compute nodes),

and set 𝐵, which contains all unlabeled samples (i.e., those where

node power consumption is unknown). The complete data set 𝐷 is

formed by combining these two sets. We then follow a number of

steps to train the StaticTRR model, described as follows.

Building spine model We utilize the initial data set 𝐴 to es-

tablish the spline model by selecting 50% of it as the training set.

Subsequently, we input 𝐴 and 𝐵 into the built spline model to ob-

tain an estimate of power consumption (𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑). Then, we replace

the power consumption in the initial dataset to obtain the datasets

𝐴𝑠𝑝𝑙𝑖𝑛𝑒𝑑 and 𝐵𝑠𝑝𝑙𝑖𝑛𝑒𝑑 .

Building Resmodel For datasets 𝐴 and 𝐴𝑠𝑝𝑙𝑖𝑛𝑒𝑑 , we select 50%

of them as the training set, use𝐴𝐵𝑆 (𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 −𝑃𝑁𝑜𝑑𝑒) as the predic-

tion target, and PMCs as the features to build a ResModel using the

decision tree (DT) algorithm. We tested all the linear and nonlinear

methods listed in Table 4 but found that DT worked best, hence it

was used to train the ResModel. Afterward, the ResModel is applied

to the initial datasets 𝐴 and 𝐵 to obtain the power consumption

estimates 𝑃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 . Finally, we replace the power consumption in

the initial datasets to obtain datasets 𝐴𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 and 𝐵𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 .

HighRPM: Combining Integrated Measurement and Sofware Power Modeling for High-Resolution Power Monitoring

Stage 1

Initial Learning

Stage 2

Active Learning

Spline

LSTM

StaticTRR

𝐷𝐷 𝐷𝐷Dynamic𝑇𝑇𝑇𝑇𝑇𝑇
𝐷𝐷StaticTRR

HighRPM

𝑷𝑷𝑪𝑪𝑷𝑷𝑪𝑪′𝑷𝑷𝑴𝑴𝑴𝑴𝑴𝑴′
SRR

𝑷𝑷𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵’

DynamicTRR

ResModel
𝐷𝐷𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝑁𝑁𝑠𝑠𝑁𝑁𝑁𝑁

Sampler𝐷𝐷𝑠𝑠𝑁𝑁𝑖𝑖𝑛𝑛𝑟𝑟𝑁𝑁𝑠𝑠𝑟𝑟𝑁𝑁𝑚𝑚𝑁𝑁𝑛𝑛𝑟𝑟IPMI-based IM

Figure 3: Overview of HighRPM.

Post-processing. We further apply operations on the power

consumption estimates obtained from the spline model and the

ResModel to improve the model accuracy of StaticTRR as Algo. 1

shows. Then, we replace the power consumption in the initial

dataset as 𝑃𝑆𝑡𝑎𝑡𝑖𝑐𝑇𝑅𝑅 to obtain the restored dataset 𝐷𝑆𝑡𝑎𝑡𝑖𝑐𝑇𝑅𝑅 . Op-

erations 1 and 2 post-process the outputs of the spline and ResModel,

respectively, reducing the model error to a certain extent. Com-

pared with the spline model, the ResModel is slightly inferior in

accuracy and robustness, especially the accuracy is very doubtful

when the estimated value 𝑃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 is greater than the bottom limit

of power consumption 𝑃𝑏𝑜𝑡𝑡𝑜𝑚 or less than the upper limit of power

consumption (𝑃𝑢𝑝𝑝𝑒𝑟). Operation 3 is established to consider the

two models synergistically to maximize model accuracy.

4.2.2 DynamicTRR. In many power monitoring scenarios, there

can be a significant time lag between consecutive readings. For ex-

ample, after obtaining an IM reading at time 𝑡0, the next reading can

only be obtained at time 𝑡10. This introduces a prediction problem

rather than a fitting problem for obtaining 𝑃𝑁𝑜𝑑𝑒 in the interval

[𝑡0, 𝑡10]. As shown in Fig. 4, spline interpolation cannot be used for

the samples at the (𝑛 − 1)-th and 𝑛-th moments. While StaticTRR is

a fitting method that captures trends and sudden changes in power

consumption using known points, it is not suitable for predicting

future points beyond the last known sampling point.

To address this, we propose DynamicTRR, a dynamic method

designed for real-time power monitoring. It leverages clever dataset

construction and a lightweight LSTMmodel.We build DynamicTRR

in two steps, described as follows.

Training data collection The DynamicTRR training data, as

shown in Fig. 4, can be represented as a matrix with 𝑛 rows and

𝑚 + 2 columns. Each row corresponds to a sample 𝑠 (𝑖) , where

𝐶
(𝑖)
1 ...𝐶

(𝑚)
2 are𝑚 PMCs at moment 𝑖 and 𝑃

(𝑖)

𝑁𝑜𝑑𝑒
is the node power

consumption at that moment. The label for each sample is the

real node power consumption at moment 𝑖 , denoted as 𝑃
(𝑖)

𝑁𝑜𝑑𝑒
. To

capture trend characteristics, we create a new sample 𝑠′(𝑖) with

consecutive𝑚𝑖𝑠𝑠_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 samples.

The shape of 𝑠′(𝑖) is (𝑚𝑖𝑠𝑠_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ,𝑚+1) instead of (1,𝑚+1). For

each 𝑠′(𝑖) , the label becomes < 𝑃
(𝑖)

𝑁𝑜𝑑𝑒
, 𝑃

(𝑖+1)
𝑁𝑜𝑑𝑒

, ..., 𝑃
(𝑖𝑚𝑖𝑠𝑠−1)
𝑁𝑜𝑑𝑒

>. We

construct multiple 𝑠′(𝑖) to form the training dataset 𝐷𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑇𝑅𝑅 ,

which contains (𝑛 −𝑚𝑖𝑠𝑠_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 + 1) samples.

Algorithm 1: Post-Processing Algorithm of StaticTRR

Input: 𝑃 , 𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 , 𝑃𝑢𝑝𝑝𝑒𝑟 , 𝑃𝑏𝑜𝑡𝑡𝑜𝑚 .

Output: 𝑃𝑡𝑟𝑟 .

1 for i = 1 to n do

2 // Operation 1 if 𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 [𝑖] ≥ 30% * (𝑃𝑢𝑝𝑝𝑒𝑟 - 𝑃𝑏𝑜𝑡𝑡𝑜𝑚)

then

3 𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 [𝑖 −𝑚𝑖𝑠𝑠_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙/2 : 𝑖 +𝑚𝑖𝑠𝑠_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙/2]=

𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 [𝑖].

4 end

5 // Operation 2 if 𝑃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 [𝑖] ≥ 𝑃𝑢𝑝𝑝𝑒𝑟 then

6 𝑃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 [𝑖] = 𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 [𝑖].

7 end

8 // Operation 3 if 𝑃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 [𝑖] ≤ 𝑃𝑏𝑜𝑡𝑡𝑜𝑚 then

9 𝑃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 [𝑖] = 𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 [𝑖].

10 end

11 if 𝑎𝑏𝑠 (𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 [𝑖] − 𝑃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 [𝑖]) ≤ 𝛼 *

𝑚𝑖𝑛(𝑃𝑠𝑝𝑙𝑖𝑛𝑒 [𝑖], 𝑃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 [𝑖]) then

12 𝑃𝑡𝑟𝑟 [𝑖] = 𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 [𝑖].

13 end

14 if 𝑎𝑏𝑠 (𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 [𝑖] − 𝑃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 [𝑖]) ≥ 𝛼 *

𝑚𝑖𝑛(𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 [𝑖], 𝑃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 [𝑖]) &

𝑎𝑏𝑠 (𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 [𝑖] − 𝑃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 [𝑖]) ≤ 𝛽 *

𝑚𝑖𝑛(𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 [𝑖], 𝑃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 [𝑖]) then

15 𝑃𝑡𝑟𝑟 [𝑖]=0.5*(𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 [𝑖]+𝑃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 [𝑖]).

16 end

17 if 𝑎𝑏𝑠 (𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 [𝑖] − 𝑃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 [𝑖]) ≥ 𝛽 *

𝑚𝑖𝑛(𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 [𝑖], 𝑃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 [𝑖]) then

18 𝑃_𝑡𝑟𝑟 [𝑖]=𝑃𝑠𝑝𝑙𝑖𝑛𝑒𝑑 [𝑖].

19 end

20 end

This method is based on the interpolated values obtained by

StaticTRR. We observed that spline interpolation had better fitness

than other power modeling methods, especially those relying solely

on PMCs. This indicates the importance of power consumption in-

formation in ensuring model accuracy, as spline relies on accurately

predicting the trend of 𝑃𝑁𝑜𝑑𝑒 . To utilize this valuable information,

X. Qi et al.

Known Unknown, Filled by Spline / StaticTRRUnused

(a) 𝐷𝐷𝑆𝑆𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇 (b) 𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛𝑠𝑠𝑚𝑚𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇

𝑃𝑃1(1) 𝑃𝑃2(1) … 𝑃𝑃𝑚𝑚(1)𝑃𝑃1(2) 𝑃𝑃2(2) … 𝑃𝑃𝑚𝑚(2)𝑃𝑃1(3) 𝑃𝑃2(3) … 𝑃𝑃𝑚𝑚(3)𝑃𝑃1(4) 𝑃𝑃2(4) … 𝑃𝑃𝑚𝑚(4)
𝑃𝑃1(𝑛𝑛−2) 𝑃𝑃2(𝑛𝑛−2) … 𝑃𝑃𝑚𝑚(𝑛𝑛−2)𝑃𝑃1(𝑛𝑛−1) 𝑃𝑃2(𝑛𝑛−1) … 𝑃𝑃𝑚𝑚(𝑛𝑛−1)𝑃𝑃1𝑛𝑛 𝑃𝑃2𝑛𝑛 … 𝑃𝑃𝑚𝑚𝑛𝑛

𝒇𝒇𝑵𝑵𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝑵𝑵𝒇𝒇

……… … ……

𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(1) 𝑃𝑃𝑆𝑆𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇(2)𝑃𝑃𝑆𝑆𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇(3)𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑁𝑁𝑁𝑁(2)𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑁𝑁𝑁𝑁(3)𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(4) 𝑃𝑃𝑆𝑆𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇(4)
𝑃𝑃𝑆𝑆𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇(𝑛𝑛−2)𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑛𝑛−2)

𝒇𝒇𝑵𝑵𝒇𝒇𝒇𝒇𝒓𝒓𝒇𝒇𝑃𝑃𝑆𝑆𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇(1)𝒇𝒇𝒇𝒇𝒇𝒇𝒕𝒕𝑵𝑵𝒇𝒇 𝒇𝒇𝑵𝑵𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝑵𝑵𝒇𝒇 𝒇𝒇𝒇𝒇𝒇𝒇𝒕𝒕𝑵𝑵𝒇𝒇
𝑃𝑃1(3) 𝑃𝑃2(3) … 𝑃𝑃𝑚𝑚(3)𝑃𝑃1(4) 𝑃𝑃2(4) … 𝑃𝑃𝑚𝑚(4)
𝑃𝑃1(𝑛𝑛−2) 𝑃𝑃2(𝑛𝑛−2) … 𝑃𝑃𝑚𝑚(𝑛𝑛−2)

… … ……

𝑃𝑃1(𝑛𝑛−1) 𝑃𝑃2(𝑛𝑛−1) … 𝑃𝑃𝑚𝑚(𝑛𝑛−1)𝑃𝑃1𝑛𝑛 𝑃𝑃2𝑛𝑛 … 𝑃𝑃𝑚𝑚𝑛𝑛

𝑃𝑃1(1) 𝑃𝑃2(1) … 𝑃𝑃𝑚𝑚(1)𝑃𝑃1(2) 𝑃𝑃2(2) … 𝑃𝑃𝑚𝑚(2) 𝑃𝑃𝑆𝑆𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇(1) 𝑃𝑃𝑆𝑆𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇(3)𝑃𝑃𝑆𝑆𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇(2) 𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(4)
𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑛𝑛−2)𝑃𝑃𝑆𝑆𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇(𝑛𝑛−4)

……

𝑃𝑃𝑆𝑆𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇(𝑛𝑛−3) 𝑃𝑃𝑆𝑆𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇(𝑛𝑛−1)𝑃𝑃𝑆𝑆𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇(𝑛𝑛−2) 𝑃𝑃𝑆𝑆𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛

𝑃𝑃𝑆𝑆𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇(2)𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(1)

𝑃𝑃𝐷𝐷𝐷𝐷𝑛𝑛𝑠𝑠𝑚𝑚𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇(4)
𝑃𝑃𝐷𝐷𝐷𝐷𝑛𝑛𝑠𝑠𝑚𝑚𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇(𝑛𝑛−2)𝑃𝑃𝐷𝐷𝐷𝐷𝑛𝑛𝑠𝑠𝑚𝑚𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇(𝑛𝑛−1)

r𝑵𝑵𝒇𝒇𝒇𝒇𝒓𝒓𝒇𝒇
𝑃𝑃Dynamic𝑇𝑇𝑇𝑇𝑇𝑇(3)

𝑃𝑃𝐷𝐷𝐷𝐷𝑛𝑛𝑠𝑠𝑚𝑚𝑖𝑖𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛

…

Unknown, Restored by StaticTRR / DynamicTRR

Figure 4: Dataset as input for TRR. 𝐶∗
∗ denotes 𝑃𝑀𝐶

∗
∗ . In the example depicted in this figure, the𝑚𝑖𝑠𝑠_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 is 2.

Bottom-up Top-down

(a) (b) (c)

PCPU PMEM

PNode

POther

Power model

PNode PMEM

PNode

POther

Power model

PCPU PMEM

PNode

POther

PNode Power model

Figure 5: Comparisons of unidirectional and bi-directional

power modeling approaches.

we include 𝑃 ′
𝑁𝑜𝑑𝑒

at the (𝑖 − 1)-th moment as a feature when con-

structing the sample. Notably, 𝑃 ′
𝑁𝑜𝑑𝑒

at the (𝑖 − 1)-th moment is

always available and can be determined from either the observed

value or the spline model.

Model training and fine-tuning After creating the training

dataset 𝐷𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑇𝑅𝑅 , we utilize a compact LSTM model with an

input layer, two hidden layers, and a fully connected layer to con-

struct a power model. To ensure that each sample 𝑠′ includes a

measured 𝑃𝑁𝑜𝑑𝑒 , we set the sliding window size as𝑚𝑖𝑠𝑠_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 .

At each moment 𝑖 , DynamicTRR handles the samples and models

differently depending on whether the IM readings can be obtained

at the previous moment (𝑖 − 1) (measured or predicted). If 𝑃
(𝑖−1)
𝑁𝑜𝑑𝑒

is the predicted value, we use it directly to create the sample 𝑠 (𝑖) ,

while the previous𝑚𝑖𝑠𝑠_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 − 1 samples form 𝑠′(𝑖) . This 𝑠′(𝑖)

is input into the trained model to predict the value 𝑃𝑖
𝑁𝑜𝑑𝑒

.

If 𝑃
(𝑖−1)
𝑁𝑜𝑑𝑒

is the measured value, we also use it to create 𝑠 (𝑖) ,

along with the previous𝑚𝑖𝑠𝑠_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 − 1 samples forming 𝑠′(𝑖) .

Importantly, we fine-tune the existing model using 𝑠′(𝑖) and input

it into the refined model to obtain the predicted values.

4.3 Spatial Resolution Restoration Model

Two workflows for power modeling to calculate compute nodes and

components’ power usage are bottom-up and top-down. Bottom-

up power modeling [12] (Fig. 5(a)) focuses on the target system’s

micro-architecture, using micro-benchmarks for system status col-

lection, component-level power modeling, and summing up each

component’s power consumption for node power consumption.

This method, however, demands specific domain knowledge and

can be complex. Top-down power modeling [35] (Fig. 5 (b)) views

the system as a "black box" and doesn’t necessitate domain knowl-

edge. It includes feature selection, modeling, and power break-

down for each component’s power consumption. It’s simple, quick,

deployable, and hardware-independent. Both methods are unidi-

rectional, but the order in which power consumption is obtained

distinguishes them. This step-by-step one-way modeling approach

greatly simplified the problem of deriving the component power

consumption to some extent.

However, we observed that the correlation between 𝑃𝑁𝑜𝑑𝑒 and

𝑃𝑀𝐸𝑀 is strong enough to improve the accuracy of our model sig-

nificantly, which has been verified in Sec. 6. Therefore, to take ad-

vantage of this new information and correlation, this paper extends

the unidirectional model by incorporating node-level IM readings,

creating a directed graph with a cycle as shown in Fig. 5 (c). This

distinguishes our model from other unidirectional models.

The main part of SRR is a shallow MLP model using node power

information. It consists of an input layer, a hidden layer, and an

output layer. The units that make up the input layer are 𝑃𝑁𝑜𝑑𝑒

output by the TRR model and multiple PMCs, the hidden layer

contains multiple neural units, and the output layer consists of two

units, representing 𝑃𝐶𝑃𝑈 and 𝑃𝑀𝐸𝑀 , respectively. SRR has a very

simple model structure, but its predictive effect is excellent (See

Sec. 6.2 for details.).

5 EXPERIMENTAL SETUP

5.1 Evaluation Platforms

We evaluate and implement HighRPM on an ARM-based system

that utilizes a BMC on a plug-in containing multiple nodes. Each

compute node is equipped with 64-core ARMv8 processors and

128GB DDR4. Although this system provides only node power

consumption with a low temporal resolution of 0.1 𝑆𝑎/𝑠 , we are able

to capture CPU andmemory power consumption at a desired higher

temporal resolution (>1 𝑆𝑎/𝑠) using a special direct measurement

method, as shown in Fig. 6. It is important to note that this direct

measurement method is unsuitable for large-scale deployments

due to the increasing hardware cost as the system size grows. To

evaluate its generalization ability, we also applied HighRPM to an

x86 platform, as detailed in Sec. 6.3.

5.2 Measurement

We collect the real power consumption as the ground truth in

two ways, as shown in Fig. 6. For one, the BMC is used to read

the power consumption from the power chip using an integrated

HighRPM: Combining Integrated Measurement and Sofware Power Modeling for High-Resolution Power Monitoring

Table 2: Hardware performance counters used by HighRPM.

Unit PMC Events Description

Core
CPU_CYCLES Cycles
INST_RETIRED Instructions
BR_PRED Branch instructions
UOP_RETIRED Micro-operations

Lx Cache /(L1, L2 or L3)

L1I_Cache_LD Load instructions
L1I_Cache_ST Store instructions
LxD_Cache_LD Load instructions
LxD_CACHE_ST Store instructions

Main Memory
BUS_ACCESS Bus access
MEM_ACCESS Memory access

Table 3: Combination of seen (unseen) sets used for evalua-

tion. The number of programs included in the benchmark

suite is denoted in parentheses.

Training set Test set

SPEC(43), PARSEC(36), HPCC(12), Graph500(2), HPL-AI(1), SMG2000(1) HPCG(1)
SPEC(43), PARSEC(36), HPCC(12), Graph500(2), HPL-AI(1), HPCG(1) SMG2000(1)
SPEC(43), PARSEC(36), HPCC(12), Graph500(2), SMG2000(1), HPCG(1) HPL-AI(1)
SPEC(43), PARSEC(36), HPCC(12), SMG2000(1), HPL-AI(1), HPCG(1) Graph500(2)
SPEC(43), PARSEC(36), SMG2000, HPL-AI(1), HPCG(1), Graph500 HPCC(12)
SPEC(43), SMG2000(1), HPL-AI(1), HPCG(1), Graph500(2), HPCC(12) PARSEC(36)
SMG2000(1), HPL-AI(1), HPCG(1), Graph500(2), HPCC(12), PARSEC(36) SPEC(43)

Power Chip

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM
CPU

I2C

I2C

BMC

1

2

Power Chip

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM
CPU

I2C

I2C

BMC

1

2

Figure 6: Power measurement mechanism used in our valua-

tion.
measurement method based on IPMI. For another, on our ARM

development board, we cascaded the CPU and power supply using

a jumperwire, allowing the CPU to read the current flowing through

different voltage domains by directly accessing the registers 0x8b

and 0x8c, thus being able to obtain the real-time processor power

consumption 𝑃𝐶𝑃𝑈 and memory power consumption 𝑃𝑀𝐸𝑀 at a

sampling rate of 1 𝑆𝑎/𝑠 . It has a power reading error of 0.1𝑊 , which

is more accurate than the vendor-provided power tools that have an

error range of 1𝑊 . Besides 𝑃𝐶𝑃𝑈 and 𝑃𝑀𝐸𝑀 , we also consider the

peripherals power consumption 𝑃𝑂𝑡ℎ𝑒𝑟 . When performing power

modeling, 𝑃𝑂𝑡ℎ𝑒𝑟 is set as constant at 25𝑊 , which is measured by

running no workload on the compute node. All experiments have

shown that 𝑃𝑂𝑡ℎ𝑒𝑟 varies very little, within just under 1𝑊 . We set it

to a constant to avoid the need for more sophisticated measurement

techniques and to provide sufficient model accuracy.

Aside from collecting power consumption data, performance

data is also required for modeling purposes. We collect PMC events

listed in Table 2 utilizing a Linux loadable kernel module at a sam-

pling rate of 1 𝑆𝑎/𝑠 . The readings from various per-core counters

are aggregated to achieve the desired performance data. All mea-

surements are obtained by running experiments in standalonemode

to minimize disturbances from fluctuations in system performance.

5.3 Benchmarking Workloads

To train our power model, we utilize empirical data from 96 bench-

marks, including 43 from SPEC CPU 2017 [4], 36 from PARSEC [6],

12 from HPCC [25], 2 from Graph500 [3], as well as HPL-AI [23],

Table 4: Baseline model settings.

Type Model Abbreviation Hyperparameters

Linear

Linear Regression [29] LR automatic options
Lasso Regression [26] LaR automatic options
Ridge Regression [38] RR solver=auto
SGD Regression [38] SGD squared_error, max_iter=10000

Nonlinear

Decision Tree [13] DT squared_error
Random Forest [38] RF #trees=10
Gradient Boosting Tree [38] GB #trees=10
K Nearest Neighbor KNN #neighbors=3, algo.=auto
Support Vector Machine [26] SVM automatic options
Neural Network [33, 36] NN #hidden_size=30, max_iter=10000

RNN
Gated Recurrent Unit GRU #units=2
Long Short-Term Memory [31] LSTM #units=2

SMG2000 [14], and HPCG [5]. These benchmarks span from scientific

to consumer applications and stress CPU and memory through

their compute or memory intensiveness. We validate data through

five separate runs for each parameter set, reporting average values.

Every benchmark operates for 60 seconds to an hour, with a relative

error in elapsed time under 5%, confirming stable performance.

We employ 5-fold cross-validation and two training set construc-

tion methods. The first assesses seen programs with samples related

to the target program, and the second evaluates unseen programs,

excluding such samples. We have grouped different programs from

the same benchmark suite into seven sets. One set is randomly

chosen as the target program(s) and the rest serve as the training

set. We compile 1000 samples from each set in order, resulting in

a 6000-sample training set (unseen) and a 6300-sample one (seen),

plus a 1000-sample (unseen) and 700-sample (seen) test set. The

combinations are detailed in Table 3. Average results for seen and

unseen sets are given in Sec. 6 due to page constraints.

5.4 Baselines

We compare HighRPM against 12 baseline models, including four

linear methods, six nonlinear methods, and two recurrent neural

network (RNN) models. It should be noted that we adopted the

same setups for all baseline models that undergo fine-tuning. The

linear and nonlinear models are constructed using algorithms from

the scikit-learn package, while the two RNN models are built based

on the structure of HighRPM, with GridSearch used to tune the

hyperparameters in each cross-validation. The hyperparameters of

each model are provided in Table 4.

5.5 Metric

We use the Mean Absolute Percentage Error (MAPE), Root Mean

Square Error (RMSE), Mean Absolute Error (MAE), and coefficient

of determination (𝑅2) between the observed power consumption

and the predicted power consumption to evaluate the accuracy of

TRR and SRR models. MAPE and RME are metrics used to measure

the relative error of models, while MAE displays the absolute error.

𝑅2 is used to measure the robustness of the models.

6 EVALUATION

This section first presents the evaluation results of TRR and SRR, fol-

lowed by a comprehensive evaluation of HighRPM on an X86-based

system. Additionally, we investigate its sensitivity to𝑚𝑖𝑠𝑠_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

(the sampling rate), its supportability for different frequencies, and

hyperparameters, as well as its potential for extension to other

peripherals. Finally, we point out the limitation of HighRPM.

X. Qi et al.

Table 5: Comparisons between TRR and alternative models.

Type Model
Seen application Unseen application

MAPE (%) RMSE MAE MAPE (%) RMSE MAE

Linear

LR 22.50 7.26 6.86 21.74 9.85 8.42
LaR 22.50 7.26 6.86 21.74 9.85 8.42
RR 22.49 7.25 6.86 21.72 9.84 8.40
SGD 22.51 7.25 6.87 21.71 9.83 8.38

Nonlinear

DT 18.61 8.03 5.34 22.32 12.76 10.55
RF 20.21 6.64 6.02 22.32 12.76 10.55
GB 20.45 7.62 7.12 19.48 10.02 8.91
KNN 28.22 10.58 9.62 21.59 10.32 8.75
SVM 17.40 4.71 4.35 22.35 10.39 8.69
NN 20.39 6.00 5.64 21.96 9.99 8.47

RNN
GRU 11.59 5.62 5.55 15.94 10.79 9.33
LSTM 9.63 4.71 4.66 11.85 7.50 5.87

TRR DynamicTRR 4.46 3.19 2.78 4.38 3.18 2.05

Table 6: Comparisons among TRR models.

Model
Seen application Unseen application

MAPE (%) RMSE MAE MAPE (%) RMSE MAE

Spline 2.21 1.85 0.93 2.45 2.43 1.25
StaticTRR 4.02 2.70 1.99 3.87 2.66 1.64
DynamicTRR 4.46 3.19 2.78 4.38 3.18 2.05

6.1 TRR Performance

Table 5 reports the TRR performance when the temporal resolution

is recovered by 10× (from 0.1Sa/s to 1Sa/s) compared to IPMI-based

integrated measurement. As evident from the table, TRR delivered

a notable enhancement, with staticTRR metrics of 4.02% (MAPE),

2.70 (RMSE), and 1.99 (MAE), and DynamicTRR metrics of 4.46%

(MAPE), 3.19 (RMSE), and 2.78 (MAE).

6.1.1 For unseen applications. When performing power predic-

tion for previously unseen applications, conventional PMC-based

models tend to exhibit a decrease in performance, indicating weak

robustness. However, Table 5 demonstrates that TRR is significantly

less affected by previously unseen applications, indicating strong

robustness. This is due to incorporating a spline model in High-

RPM, which accurately models power consumption trends even for

unseen applications. Conversely, in PMC-based models, the learned

PMC variation patterns may not be directly transferable to unseen

applications. Thus, based on our evaluation of unseen applications,

resetting HighRPM via re-execution of the initialization step is

unnecessary if the workload is non-repeated and possesses power

characteristics that undergo temporary fluctuations.

6.1.2 Comparisons with common power models. Compared to al-

ternative approaches, TRR displays a reduction in MAPE of 6%-18%,

a decrease in RMSE of 1.5-7.5, a decrease in MAE of 2-7, and a 𝑅2

that remains above 0.9. There are two reasons for TRR’s superiority

over other power models. Both spline and TRR incorporate node

power consumption data into their models. Although the informa-

tion regarding node power consumption is sparse, it effectively

characterizes the long-term trend of power consumption behavior.

Secondly, the precision of PMC-based power models relies heav-

ily on ingeniously designed feature engineering. However, in this

paper, we utilize the same PMCs for all fine-tuned models without

further exploring feature engineering.

6.1.3 Comparisons with spline model. While the spline offers a

good fit, it fails to track short-term power consumption variations

and predict future usage. Our proposed TRR model effectively over-

comes these issues. Fig.7 shows that the splinemodel is more precise

at a𝑚𝑖𝑠𝑠_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 of 10s, but its ability to capture short-term power

consumption changes diminishes as the𝑚𝑖𝑠𝑠𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 increases, fail-

ing in extreme cases. Despite Table6 showing TRR slightly underper-

forming spline in terms of MAPE, RMSE, and MAE, the difference

is not statistically significant, likely due to power consumption

fluctuations in the PMC-based TRR model. This minor discrepancy

is acceptable as it strengthens the model’s capability to capture

abrupt and unpredictable power changes accurately.

6.2 SRR Performance

The evaluation results suggest that SRR achieves a high degree of

accuracy. Specifically, as shown in Table 7, when predicting 𝑃𝐶𝑃𝑈
for known applications, the metrics are impressive, with values

of 7.65% (MAPE), 3.06 (RMSE), and 2.43 (MAE). When predicting

𝑃𝑀𝐸𝑀 , the metrics are even more impressive, with values of 5.31%

(MAPE), 0.77 (RMSE), and 0.50 (MAE).

6.2.1 Comparisons with baseline models. Similar to the evaluation

experiments for TRR, we conducted a comparative analysis of SRR

against 12 baseline models. Our results reveal that, compared to

other methods, SRR achieves a reduction in MAPE of 7%-24%, a

reduction in RMSE of 3-10, and a reduction in MAE of 2-8𝑊 . The

superior predictive capabilities of SRR can be attributed to the in-

clusion of 𝑃𝑁𝑜𝑑𝑒 , which is a variable that aggregates the power

consumption of all components within the computing node. There

exists a strong correlation between the power consumption of these

components. To further analyze the effect of 𝑃𝑁𝑜𝑑𝑒 on SRR’s per-

formance, we conducted a comparison of SRR with and without

the inclusion of 𝑃𝑁𝑜𝑑𝑒 . Our analysis, as presented in Table 8 signif-

icantly enhances the accuracy of the SRR model.

6.2.2 Evaluation on unseen applications. From Table 7, it is evident

that most other PMC-based models experience a decrease in ac-

curacy when applied to different target applications. In contrast,

SRR consistently maintains its predictive accuracy for 𝑃𝐶𝑃𝑈 , even

in the case of unknown applications. However, when dealing with

unfamiliar applications, there is a slight decrease in model accuracy

for predicting 𝑃𝑀𝐸𝑀 . This can be attributed to the limited range

of variation in 𝑃𝑀𝐸𝑀 , where even minor changes can have a sig-

nificant impact on the MAPE values. Nevertheless, it is important

to note that the MAEs demonstrate that the error rate in power

prediction using SRR remains within a margin of 2W.

6.3 Exvaluation on x86 System

So far, our evaluation was conducted on ARM systems. In this

experiment, we apply HighRPM to an x86 system designed to re-

semble the hardware configuration of Tianhe-1A [39]. The cluster

comprises 64 compute nodes, each equipped with Intel® Xeon®

E5-2660 v2 processors [2]. Intel processors offer robust support for

RAPL, which exhibits high accuracy in power measurement. Hence,

we employ the perf tool [1] to capture performance monitoring

events, specifically the /power/energy-pkg/ and /power/energy-ram/

metrics, at intervals of 1 second. Previous studies have verified that

the use of PMC sampling does not introduce unacceptable inaccu-

racies [22]. Given RAPL’s capability to provide power consumption

data with high resolution in both time and space, we intentionally

introduce data sparsity by configuring a miss_interval of 10 seconds

HighRPM: Combining Integrated Measurement and Sofware Power Modeling for High-Resolution Power Monitoring

Table 7: Comparisons between SRR with alternative models.

Type Model
Seen application Unseen application

𝑃𝐶𝑃𝑈 𝑃𝑀𝐸𝑀 𝑃𝐶𝑃𝑈 𝑃𝑀𝐸𝑀

MAPE(%) RMSE MAE MAPE(%) RMSE MAE MAPE(%) RMSE MAE MAPE(%) RMSE MAE

Linear

LR 20.97 8.28 6.79 9.97 1.42 1.04 34.99 14.80 12.42 23.45 3.47 2.91
LaR 20.54 8.28 6.70 9.84 1.51 1.04 31.94 13.77 11.43 20.85 3.13 2.59
RR 20.96 8.28 6.79 9.97 1.43 1.04 34.72 14.69 12.32 23.42 3.46 2.91
SGD 21.02 8.29 6.80 10.17 1.46 1.07 34.91 14.69 12.34 23.95 3.51 2.96

Nonlinear

DT 20.68 9.54 6.68 12.46 1.77 1.27 24.43 10.21 8.24 23.23 3.26 2.80
RF 18.14 7.42 5.70 9.57 1.46 1.00 20.75 9.31 7.30 21.75 3.28 2.72
GB 18.37 8.20 6.12 9.16 1.41 0.97 21.62 9.31 7.32 20.83 3.16 2.60
KNN 16.66 7.74 5.48 9.60 1.44 1.00 24.29 11.02 8.41 22.12 3.30 2.73
SVM 15.57 7.46 5.42 9.23 1.38 0.98 22.16 10.32 8.11 21.07 3.23 2.64
NN 15.03 6.26 4.83 8.78 1.22 0.90 19.16 8.57 6.42 20.75 3.17 2.60

RNN
GRU 31.44 13.98 10.20 8.88 1.25 0.91 20.83 9.63 7.35 21.49 3.32 2.71
LSTM 28.45 13.02 9.47 8.39 1.27 0.88 22.38 10.75 8.18 24.82 3.80 3.13

SRR 7.65 3.06 2.43 5.31 0.77 0.50 7.00 2.93 2.13 16.49 2.48 2.04

0 50 100
Time (s)

40

50

60

70

P N
od
e

(W
)

Splined
Real

(a) miss_interval=5s

0 50 100
Time (s)

40

50

60

70

P N
od
e

(W
)

Splined
Real

(b) miss_interval=10s

0 50 100
Time (s)

40

50

60

70

P N
od
e

(W
)

Splined
Real

(c) miss_interval=5s

0 50 100
Time (s)

40

50

60

70

P N
od
e

(W
)

Splined
Real

(d) miss_interval=10s

Figure 7: The impact of different𝑚𝑖𝑠𝑠_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 on the spline model (sub-figures a and b) and StaticTRR (sub-figures c and d).

Table 8: Comparisons of with/without 𝑃𝑁𝑜𝑑𝑒 as a feature.

With 𝑃𝑁𝑜𝑑𝑒 Without 𝑃𝑁𝑜𝑑𝑒

MAPE(%) RMSE MAE MAPE(%) RMSE MAE

Seen app.
𝑃𝐶𝑃𝑈 7.65 3.06 2.43 30.46 11.08 9.95
𝑃𝑀𝐸𝑀 5.31 0.77 0.50 21.56 2.37 2.10

Unseen app.
𝑃𝐶𝑃𝑈 7.00 2.93 2.13 29.00 12.47 10.26
𝑃𝑀𝐸𝑀 16.49 2.48 2.04 34.00 4.88 4.20

(equivalent to a sampling rate of 0.1 Sa/s). This deliberate sparsity

allows us to evaluate the effectiveness of HighRPM by comparing

the power consumption readings obtained from RAPL with the

corresponding predicted values.

Table 9 quantifies the spatiotemporal resolution restoration ca-

pabilities of HighRPM for unseen applications on our x86 platform.

Results indicate that DynamicTRR, a component of TRR, outper-

forms other methods in terms of minimizing errors in temporal

resolution restoration, with a MAPE 4%-10% lower than alternative

approaches. This highlights the superior resolution restoration ca-

pabilities of DynamicTRR. For spatial resolution restoration, TRR

achieves a reduction in MAPEs of up to 5% for 𝑃𝐶𝑃𝑈 and over

25% for 𝑃𝑀𝐸𝑀 . The incorporation of node power information in

its models gives TRR a significant advantage over RF, KNN, GRU,

and LSTM when predicting 𝑃𝑀𝐸𝑀 , while its accuracy in predicting

𝑃𝐶𝑃𝑈 is comparable to these alternatives.

A comparison between Table 7 and Table 9 reveals a slight in-

crease in error metrics when operating on the X86-based platform.

This can be attributed to the platform’s higher CPU frequency

(2.6GHz on X86-based vs. 2.2GHz on ARM-based), which presents a

greater challenge in achieving high prediction accuracy. The results

also demonstrate that the SRR component consistently exhibits

higher prediction errors in 𝑃𝑀𝐸𝑀 for both ARM and x86 platforms,

likely because of a lack of adequate features for accurate prediction.

0 20 40 60 80 100

2

3

4

5

M
e
tr

ic
 v

a
lu

e

miss_interval (s)

 MAPE(%) RMSE MAE

Figure 8: Sensitivity of HighRPM to different miss_interval.

Although integrating node power consumption, which is directly

linked to 𝑃𝑀𝐸𝑀 , enhances the accuracy of 𝑃𝑀𝐸𝑀 prediction signif-

icantly, achieving a comparable MAPE as 𝑃𝐶𝑃𝑈 prediction remains

an arduous task. Apart from feature selection and the model itself,

the relatively narrow range of variation in 𝑃𝑀𝐸𝑀 may result in

significant fluctuations in MAPE values, even with minor changes.

6.4 Discussions

6.4.1 Sensitivity to miss_interval (the sampling rate). In the eval-

uation, we used a miss_interval of 10𝑠 to achieve a target sam-

pling rate of 1𝑆𝑎/𝑠 . However, HighRPM is flexible and can support

higher temporal resolutions. In this section, we conduct a sensitiv-

ity analysis on the same ARM-based platform by setting different

miss_intervals. We evaluate the MAPE (Mean Absolute Percentage

Error) of node power prediction. The sensitivity analysis results

are depicted in Fig. 8. Notably, the MAPE remains relatively consis-

tent within the range of 10𝑠 to 100𝑠 . This can be attributed to the

accurate representation of power consumption trends through the

use of splines, the incomplete nature of node power consumption

data in DynamicTRR, and the continuous calibration of HighRPM

during the active learning stage.

X. Qi et al.

Table 9: Evaluation results of HighRPM on unseen applications on x86 system.

Type Model
Temporal Resolution Spatial Resolution

𝑃𝑁𝑜𝑑𝑒 𝑃𝐶𝑃𝑈 𝑃𝑀𝐸𝑀

MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE

Linear

LR 11.48 33.79 18.57 15.31 22.56 14.75 35.77 20.59 18.35
LaR 11.48 33.79 18.57 15.95 23.23 14.71 36.53 23.28 19.88
RR 11.33 33.42 18.09 14.98 22.1 14.38 36.47 20.92 18.25
SGD 11.31 33.28 17.96 15.07 22.59 14.96 36.03 20.94 18.19

Nonlin.

DT 10.62 39.82 18.15 11.03 18.86 12.92 32.35 21.05 17.54
RF 10.10 37.56 16.33 9.77 16.43 11.56 31.49 20.51 17.33
GB 9.47 36.46 15.58 18.36 26.84 16.22 39.82 22.64 20.35
KNN 10.31 37.94 16.30 10.74 17.39 11.21 28.03 18.35 15.51
SVM 9.62 36.03 15.13 18.88 27.84 16.52 32.33 20.59 17.84
NN 11.16 35.80 20.69 14.30 21.31 13.16 28.64 19.01 16.17

RNN
GRU 7.24 29.15 12.65 10.10 28.70 11.10 19.44 8.34 6.47
LSTM 15.06 43.01 21.93 9.53 29.33 9.67 21.43 8.93 7.23

Spline 4.38 25.55 9.10 ś ś ś ś ś ś

TRR
StaticTRR 5.20 25.42 10.03 ś ś ś ś ś ś

DynamicTRR 3.48 8.59 4.77 ś ś ś ś ś ś

SRR SRR ś ś ś 9.94 25.02 12.40 10.64 5.54 3.44

MAPE (%) RMSE MAE

0

2

4

6

8

10

V
a
lu

e

Metric

 1.4 GHz 1.8 GHz 2.2 GHz

(a) 𝑃𝐶𝑃𝑈

MAPE (%) RMSE MAE

0

2

4

6

8

10

V
a
lu

e

Metric

 1.4 GHz 1.8 GHz 2.2 GHz

13.81

(b) 𝑃𝑀𝐸𝑀

Figure 9: The impact of different frequency levels.

6.4.2 Frequency. We set three CPU frequency levels,𝑚𝑖𝑛 (1.4GHz),

𝑚𝑖𝑑 (1.8GHz), and𝑚𝑎𝑥 (2.2GHz), to explore the sensitivity of High-

RPM to CPU frequency changes. Fig. 9 gives the MAPEs of 𝑃𝐶𝑃𝑈
and 𝑃𝑀𝐸𝑀 when the program Graph500 runs at different frequency

levels. As seen from Fig. 9, HighRPM can accurately predict instan-

taneous CPU and memory power consumption at all frequency

levels. And the higher the frequency, the lower accuracy of 𝑃𝐶𝑃𝑈
and 𝑃𝑀𝐸𝑀 . The higher the frequency, the CPU activity increased,

so the more difficult the modeling. But even the highest (10% for

𝑃𝐶𝑃𝑈 and 14% for 𝑃𝑀𝐸𝑀) is far lower than other modeling methods,

5%-21% for 𝑃𝐶𝑃𝑈 and 5%-15% for 𝑃𝑀𝐸𝑀 .

6.4.3 Hyperparametric analysis. We now analyze how sensitive

HighRPM is to the model hyperparameters. For TRR, particularly

DynamicTRR, we experiment with LSTM layers ranging from 1 to

100 to determine the ideal network structure for leveraging node

information. The results indicate that accuracy initially increases

and then decreases as the number of layers increases, with the best

performance observed at two layers. This suggests that a simpler

network structure with fewer layers effectively exploits node infor-

mation, leading us to adopt a simple MLP for SRR modeling. For

SRR, we vary the number of hidden layers and observe that the in-

fluence of node power consumption on model accuracy diminishes

with deeper hidden layers. These findings inform the establishment

of the optimal model structure described in Sec. 4.

6.4.4 Extension to peripheral devices. Although this paper focuses

on CPUs and memory components, we would like to explore the

potential extension of HighRPM to other peripherals. We believe

that the concepts can be applied to peripheral devices that have

PMCs, as power modeling for these peripherals also relies on PMCs,

albeit with different monitoring units. For instance, GPU power

modeling can benefit from HighRPM, as it shares similarities with

CPU power modeling. However, GPU power modeling often re-

quires additional considerations specific to the architecture [15].

Adapting HighRPM to GPU would involve adjusting the model to

utilize GPU performance counters and collecting training data on

the target platform. However, the methodology for training and us-

ing the models would remain largely unchanged. In future research,

we plan to explore resolution recovery for other peripheral devices.

6.4.5 Hardware cost and overhead. As a software-centric technique,

HighRPM does not incur additional hardware costs. Furthermore,

HighRPM can work in both single and multi-node setups. Addi-

tionally, it took less than 10 minutes to train our model offline and

less than 2 seconds to fine-tune the offline-trained model. Taking

an application with a runtime of 10 minutes as an example, ac-

tive learning led to a performance loss of approximately 3% after

10 adjustments, with a fine-tuning time of around 2 seconds. The

prediction latency is less than 1𝑚𝑠 at both node and component

levels.

6.4.6 Limitations. On rare occasions, the miss_interval of may

fluctuate due to issues such as network congestion, which in turn

can pose a challenge to the overall robustness of HighRPM. Specifi-

cally, for DynamicTRR, multiple samples (#samples=miss_interval)

are combined to generate a single sample that should contain one

measured 𝑃𝑁𝑜𝑑𝑒 . If some of the input samples do not contain the

actual 𝑃𝑁𝑜𝑑𝑒 value, it could negatively impact the accuracy of the

final prediction.

HighRPM: Combining Integrated Measurement and Sofware Power Modeling for High-Resolution Power Monitoring

7 CONCLUSIONS

We have presented HighRPM, a novel approach to improving the

resolution for power reading of CPU and memory components.

It combines coarse-grained power sensor readings and modeling

techniques to improve the temporal and spatial resolution of power

modeling. To provide high-frequent power reading in the temporal

domain, HighRPM develops TRR models to predict the long-term

power trend and the short-term fluctuations in power consump-

tion. To improve spatial coverage, HighRPM uses a bi-directional

method to distribute the node-level power readings to the comput-

ing components.

REFERENCES
[1] [n. d.]. Linux Perf. http://perf.wiki.kernel.org/.
[2] 2001. Intel® Xeon® Processor E5-2660 v2. https://ark.intel.com/content/www/

us/en/ark/products/75272/intel-xeon-processor-e52660-v2-25m-cache-2-20-
ghz.html.

[3] 2017. Graph500. https://graph500.org/.
[4] 2017. SPEC CPU 2017. http://www.spec.org/cpu2017/.
[5] 2020. High Performance Conjugate Gradients. https://www.hpcg-benchmark.

org/.
[6] 2020. The Princeton Application Repository for Shared-Memory Computers.

https://parsec.oden.utexas.edu/.
[7] 2023. OMEGAWATT. http://www.omegawatt.fr/.
[8] 2023. WATTSUP. http://www.wattsupmeters.com/.
[9] 2023. ZES LMG450. https://www.zes.com/en/Products/Precision-Power-

Analyzers/LMG450.
[10] AMP. 2012. łAMD Opteron 6200series processors Linux tuning guid.
[11] Daniel Bedard et al. 2010. PowerMon: Fine-grained and integrated power moni-

toring for commodity computer systems. In Proceedings of the IEEE SoutheastCon
2010 (SoutheastCon). 479ś484. https://doi.org/10.1109/SECON.2010.5453824

[12] Ramon Bertran et al. 2013. A Systematic Methodology to Generate Decomposable
and Responsive Power Models for CMPs. IEEE Trans. Comput. 62, 7 (2013), 1289ś
1302. https://doi.org/10.1109/TC.2012.97

[13] Andrea Borghesi and Andrea Bartolini et al. 2016. Predictive Modeling for Job
Power Consumption in HPC Systems. 181ś199. https://doi.org/10.1007/978-3-
319-41321-1_10

[14] Carnes Brian. 2001. The SMG2000 Benchmark Code.
[15] Robert A. Bridges, Neena Imam, and Tiffany M. Mintz. 2016. Understanding GPU

Power: A Survey of Profiling, Modeling, and Simulation Methods. ACM Comput.
Surv. 49, 3, Article 41 (sep 2016), 27 pages. https://doi.org/10.1145/2962131

[16] Juan Chen and Xinxin Qi et al. 2021. More bang for your buck: Boosting perfor-
mance with capped power consumption. Tsinghua Science and Technology 26, 3
(2021), 370ś383. https://doi.org/10.26599/TST.2020.9010012

[17] Rong Ge and Xizhou Feng et al. 2010. PowerPack: Energy Profiling and Analysis
of High-Performance Systems and Applications. IEEE Transactions on Parallel and
Distributed Systems 21, 5 (2010), 658ś671. https://doi.org/10.1109/TPDS.2009.76

[18] Neha Gholkar, Frank Mueller, and Barry Rountree. 2019. Uncore Power Scav-
enger: A Runtime for Uncore Power Conservation on HPC Systems. In Pro-
ceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis (Denver, Colorado) (SC ’19). Association for
Computing Machinery, New York, NY, USA, Article 27, 23 pages. https:
//doi.org/10.1145/3295500.3356150

[19] Daniel Hackenberg and Thomas Ilsche et al. 2014. HDEEM: High Definition
Energy Efficiency Monitoring. In 2014 Energy Efficient Supercomputing Workshop.
1ś10. https://doi.org/10.1109/E2SC.2014.13

[20] Thomas Ilsche et al. 2015. Power measurements for compute nodes: Improving
sampling rates, granularity and accuracy. In 2015 Sixth International Green and
Sustainable Computing Conference (IGSC). 1ś8. https://doi.org/10.1109/IGCC.
2015.7393710

[21] Thomas Ilsche et al. 2019. Power measurement techniques for energy-efficient
computing: reconciling scalability, resolution, and accuracy. Computer Science
- Research and Development 34 (03 2019). https://doi.org/10.1007/s00450-018-
0392-9

[22] C. Isci and M. Martonosi. 2003. Runtime power monitoring in high-end proces-
sors: methodology and empirical data. In Proceedings. 36th Annual IEEE/ACM
International Symposium on Microarchitecture, 2003. MICRO-36. 93ś104. https:
//doi.org/10.1109/MICRO.2003.1253186

[23] Dongarra Jack et al. 2019. HPL-AI Mixed-Precision Benchmark. https://icl.
bitbucket.io/hpl-ai/.

[24] A. Libri, A. Bartolini, and L. Benini. 2021. DiG: Enabling out-of-Band Scalable
High-Resolution Monitoring for Data-Center Analytics, Automation and Control

(Extended). Cluster Computing 24, 4 (dec 2021), 2723ś2734. https://doi.org/10.
1007/s10586-020-03219-7

[25] Piotr R Luszczek et al. 2006. S12-The HPC challenge (HPCC) benchmark suite. In
Proceedings of the ACM/IEEE SC2006 Conference on High Performance Networking
and Computing, November 11-17, 2006, Tampa, FL, USA.

[26] John C. McCullough et al. 2011. Evaluating the Effectiveness of Model-Based
Power Characterization. In Proceedings of the 2011 USENIX Conference on USENIX
Annual Technical Conference (Portland, OR) (USENIX ATC’11). USENIX Associa-
tion, USA, 12.

[27] Kenneth O’brien, Ilia Pietri, Ravi Reddy, Alexey Lastovetsky, and Rizos Sakel-
lariou. 2017. A Survey of Power and Energy Predictive Models in HPC Systems
and Applications. ACM Comput. Surv. 50, 3, Article 37 (jun 2017), 38 pages.
https://doi.org/10.1145/3078811

[28] Pavlos Petoumenos, Lev Mukhanov, ZhengWang, Hugh Leather, and Dimitrios S
Nikolopoulos. 2015. Power capping: What works, what does not. In 2015 IEEE
21st International Conference on Parallel and Distributed Systems (ICPADS). IEEE,
525ś534.

[29] Michael D. Powell, Arijit Biswas, Joel S. Emer, Shubhendu S. Mukherjee, Basit R.
Sheikh, and Shrirang Yardi. 2009. CAMP: A technique to estimate per-structure
power at run-time using a few simple parameters. In 2009 IEEE 15th International
Symposium on High Performance Computer Architecture. 289ś300. https://doi.
org/10.1109/HPCA.2009.4798264

[30] E. Rotem et al. 2012. Power-Management Architecture of the Intel Microarchi-
tecture Code-Named Sandy Bridge. IEEE Micro 32, 2 (2012), 20ś27.

[31] Mark Sagi, Martin Rapp, Heba Khdr, Yizhe Zhang, Nael Fasfous, Nguyen Anh
Vu Doan, Thomas Wild, Jörg Henkel, and Andreas Herkersdorf. 2021. Long
Short-Term Memory Neural Network-based Power Forecasting of Multi-Core
Processors. In 2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 1685ś1690. https://doi.org/10.23919/DATE51398.2021.9474028

[32] Mark Sagi and Nguyen Anh Vu Doan et al. 2022. Fine-Grained Power Modeling
of Multicore Processors Using FFNNs. Int. J. Parallel Program. 50, 2 (apr 2022),
243ś266. https://doi.org/10.1007/s10766-022-00730-9

[33] Mark Sagi et al. 2020. Fine-Grained Power Modeling of Multicore Processors
Using FFNNs. In Embedded Computer Systems: Architectures, Modeling, and Sim-
ulation, Alex Orailoglu, Matthias Jung, and Marc Reichenbach (Eds.). Springer
International Publishing, Cham, 186ś199.

[34] Mark Sagi et al. 2020. A Lightweight Nonlinear Methodology to Accurately
Model Multicore Processor Power. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 39, 11 (2020), 3152ś3164. https://doi.org/10.
1109/TCAD.2020.3013062

[35] Karan Singh et al. 2009. Real Time Power Estimation and Thread Scheduling via
Performance Counters. SIGARCH Comput. Archit. News 37, 2 (jul 2009), 46ś55.
https://doi.org/10.1145/1577129.1577137

[36] Shuaiwen Song, Chunyi Su, Barry Rountree, and Kirk W. Cameron. 2013. A
Simplified and Accurate Model of Power-Performance Efficiency on Emergent
GPU Architectures. In 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing. 673ś686. https://doi.org/10.1109/IPDPS.2013.73

[37] Feihao Wu and Juan Chen et al. 2019. A Holistic Energy-Efficient Approach for a
Processor-Memory System. Tsinghua Science and Technology 24, 4 (august 2019),
468ś483.

[38] Xingfu Wu et al. 2022. Performance and power modeling and prediction using
MuMMI and 10 machine learning methods. Concurrency and Computation:
Practice and Experience (08 2022). https://doi.org/10.1002/cpe.7254

[39] X. J. Yang and XK. Liao et al. 2011. The TianHe-1A Supercomputer: Its Hardware
and Software. Journal of Computer Science Technology (2011).

	Abstract
	1 Introduction
	2 Related Work
	2.1 Power Monitoring Schemes
	2.2 Integrated Measurement
	2.3 Software-centric Power Modeling

	3 Motivation
	4 Our Approach
	4.1 Overview
	4.2 Temporal Resolution Restoration Model
	4.3 Spatial Resolution Restoration Model

	5 Experimental Setup
	5.1 Evaluation Platforms
	5.2 Measurement
	5.3 Benchmarking Workloads
	5.4 Baselines
	5.5 Metric

	6 Evaluation
	6.1 TRR Performance
	6.2 SRR Performance
	6.3 Exvaluation on x86 System
	6.4 Discussions

	7 Conclusions
	References

