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A B S T R A C T

Computer vision and deep learning have made substantial progress in the areas of agriculture and smart
farming, particularly for enhancing crop production using image segmentation techniques for crop yield
prediction. Further improvements to crop yield prediction results can be achieved by developing accurate
and efficient methods. In response to such demands, this paper proposes a novel convolutional neural
network architecture, called densely connected SegNet (D-SegNet) and demonstrates its advantages on plant
segmentation using a new morning glory plant dataset, and also on a complimentary publicly available dataset
to promote research in this direction. The D-SegNet is evaluated using 10-fold cross validation. It achieves
performance better than the state-of-the-art SegNet algorithm. The evaluated precision, recall and F1-score
values are 98.20%, 90.64% and 94.26%, respectively, for the morning glory plant dataset. The intersection
over union (IoU) value in the image segmentation tasks is 90.56%. A series of experiments on the morning
glory plant dataset as well as on the publicly available dataset were conducted. The results show that the
proposed method achieves accurate segmentation results and can be useful for assessing the plant weight during
harvesting. In summary, this new plant segmentation network, D-SegNet, could form an important component
of future cloud-based machine learning systems to predict crop yield from noisy smartphone images taken in
the field.

1. Introduction

As the global population increases it is vital to tackle the chal-
lenges of agricultural production to improve food security and make
production efficient [1]. Smart farming [2] is one promising area that
supports the growth of agriculture production and its efficiency by
leveraging technological advances in sensing, monitoring, and artifi-
cial intelligence [3,4]. Within the broad area of smart farming, crop
planning, monitoring, and yield prediction [5] have been considered
some of the dominant challenges in promoting coordinated efficiency
and maximizing the economic potential of modernizing agriculture.

Yield prediction is one particularly important aspect of an agricul-
tural business for the following reasons. The buyers of fresh products
often plan the procurement based on the sale estimates or customers’
orders. Suppose the buyers are aware that there will be a shortage
or excess of production from the farmers. In that case, they can plan
ahead of time by seeking additional products from retailers and buying
or selling the excess to other buyers. By gaining more accurate yield
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information, the buyers can manage their incoming stock effectively.
This can result in keeping the price for the farmers high and at the
same time the management cost for the buyers low. With an accurate
yield prediction, the buyer of the product can save costs through better
planning their sourcing strategy and simultaneously better serve the
needs of the customers. This further promotes the buyer’s business,
leading to close collaboration between farmers and buyers.

This paper presents a solution for crop yield prediction using com-
puter vision and image processing methods. Image processing methods
can assist precision agriculture, for example in plant phonology [6],
automatic segmentation of leaf images [7,8] and yield prediction [4].
However, current methods for segmentation are not sufficiently ac-
curate to be reliable and useful in yield prediction [9], especially
using simple methods such as k-means clustering [10]. There is a
wealth of machine learning methods for image analysis [11,12] —
from support vector machines (SVM) [13] and artificial neural net-
works (ANN) [14] to deep learning (DL) [15]. The conventional neural
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learning methods [16] mentioned above aim at solving different tasks,
including object detection and segmentation. Due to the accuracy
demands of yield prediction, image-based, semantic segmentation at a
pixel level is an appealing approach and is becoming popular in this
application domain [17,18]. However, standard convolutional neural
networks [19] face often problems such as slow convergence, and loss
of vital feature information when using several convolutional layers,
leading to inaccurate segmentation results. Thus, an optimized network
architecture needs to be proposed. At present, most semantic segmen-
tation methods conduct research on expanding the depth [20,21] or
width [22,23] of network architectures. Deep learning methods [24,
25], as data-driven methods, provide efficient solutions for big data and
automated feature extraction, with high performance and accuracy [12,
26].

In this paper, we propose a new type of semantic segmentation ar-
chitecture for yield prediction, which comprises encoder–decoder [27]
and dense block [28] structures. The encoder is comprised of thir-
teen convolutional layers of a VGG-16 network [20]. Each encoder
is linked to a decoder and hence there are thirteen corresponding
decoders. Typically, the convolutional layers of the encoder comprise
batch normalization and rectified linear unit (ReLU) non-linear op-
erations, followed by non-overlapping max pooling and sub-sampling
layers. The sparse encoding due to the pooling process is up-sampling
in the decoder using the max pooling indices in the encoding sequence.
This has the important advantage of retaining class boundary details
in the segmented images and also reducing the total number of model
parameters. The model is trained end to end using the stochastic
gradient descent method [29].

The structure of a dense block includes a concatenation between
layers. The concatenation enhances feature reuse, which directly con-
nects every layer. This connection pattern not only propagates features
to the next layer but to every layer in a dense block. We propose a novel
deep learning architecture here for dense semantic segmentation, which
extends the standard SegNet architecture with dense blocks, hence we
call this architecture D-SegNet. We demonstrate in this paper that this
new type of architecture outperforms the state-of-the-art algorithms
and achieves high accuracy on crop yield prediction.

The main contributions of this paper are the following:

1. A new deep learning architecture, called D-SegNet is proposed,
where the new feature is the use of dense blocks to augment
the standard SegNet architecture. A concatenation between the
layers in the dense block is introduced. The main advantage of
D-SegNet consists of the improved feature maps extracted from
the images.

2. A new and comprehensive dataset for the morning glory plant
is collected by us and made public, which is beneficial for
reproducible research. The data [30,31], available on GitHub,
contains original and mask images, which are ready for training
and testing of algorithms for semantic image segmentation.

3. Experimental analysis on the morning glory plant dataset and
ImageCLEF (Pl@ntleaves) dataset [32] using the proposed ap-
proach and other semantic segmentation techniques.

4. The performance of D-SegNet algorithm is evaluated and thor-
oughly validated over several metrics such as precision, recall,
F1-score and Intersection over Union (IoU). Comparative results
with the standard SegNet architecture are presented.

The rest of this paper is organized as follows. The D-SegNet is
described in detail with the network architecture graph, parameters
and layer connections in Section 2. The morning glory plant dataset
and semi-automatic labelling method are described in Section 3. Sec-
tion 4 presents the experimental analysis with different metrics. Finally,
Section 5 summarizes the results and assessment.

2. The D-SegNet architecture

This section presents a new architecture called D-SegNet for seman-
tic segmentation, which augments the encoder–decoder architecture
of SegNet [27] with dense blocks [28]. The D-SegNet architecture
combines the improved capability of feature extraction from the dense
block with the computational efficiency of the SegNet encoder–decoder
architecture, including efficient memory use and fast computation.

2.1. Encoder–decoder architecture

The encoder–decoder architecture of D-SegNet is illustrated in
Fig. 1. The encoder consists of five blocks which include ‘Convolution
(Conv)+Batch Normalisation (BN)+ Rectified Linear (ReLU)’ operations
and they form the Downsample Blocks. In each Downsample Block, a
convolutional layer uses a 3 × 3 kernel and a stride equal to 1. Batch
normalization is then applied to the output of the convolutional layer.
Meanwhile, the max pooling with 2 × 2 window and stride 2 achieve
translation invariance. Therefore, the size of feature maps is changed
regularly from 224 × 224 to 7 × 7 after the image is passed through five
Downsample Blocks. The role of the encoder is to generate feature maps
with semantic information.

The decoder which contains five Upsample Blocks upsamples the
feature maps from the encoder output by using the memorized max-
pooling indices to produce sparse feature maps. The size of these sparse
feature maps is rescaled to the size of the original image. The purpose of
the rescale operation in the decoder is to map the sparse feature maps
to the input image to implement pixel-by-pixel classification.

2.2. Dense block

Recent CNNs benefit from very deep convolution layers to capture
rich feature representations, due to the fact that ‘the deeper the net-
work, the better [33]. However, training deep neural networks may
need a huge amount of time and computational resources, due to
redundant feature maps. The dense block proposed in [28] is con-
sidered an effective method to address this challenge. It encourages
feature reuse and makes it efficient to train a very deep network. The
dense block improves the flow of features throughout the network by
connecting all layers with each other. In addition, it also enhances
feature propagation. The dense connectivity in a dense block can be
formulated as follows:

𝑥𝑑 = 𝐻𝑑

([

𝑥0, 𝑥1,… , 𝑥𝑑−1
])

, (1)

where 𝑥0 to 𝑥𝑑 are feature maps from layer 0 to layer d in a dense
block, respectively. Here

[

𝑥0, 𝑥1,… , 𝑥𝑑−1
]

refers to the concatenation of
feature maps from 𝑥0 to 𝑥𝑑−1, 𝐻𝑑 denotes a non-linear transformation,
including BN [34], ReLU, and Conv operations. The BN size is set up to
4 to keep a lightweight network. In this way, each layer within a dense
block has direct connections with all subsequent layers, as shown in
Fig. 2. According to (1), the channel number of feature maps in the
𝑑th layer of each dense block is 𝑘0 +𝑘×(𝑑 −1), where 𝑘0 is the number
of input channels. The growth rate is termed 𝑘, following the same
notation as in [28]. In [28], due to the feature map size, 𝑘 is set up
equal to 32. Each dense block has 4 layers with a growth rate of 𝑘 = 32.
Table 1 gives all parameters of the D-SegNet algorithm.

2.3. Optimal semantic segmentation model (D-SegNet)

The D-SegNet as a novel architecture has an outstanding frame-
work and computational capability. This powerful segmentation engine
consists of a deep convolutional encoder–decoder architecture, dense
blocks, and a pixel-level classification layer. Table 1 lists the details of
D-SegNet architecture. From Table 1, Dense Block is directly connected
to Downsample/Upsample Blocks. Specifically, 1× 1 𝑐𝑜𝑛𝑣 layers are set
before the 3 × 3 𝑐𝑜𝑛𝑣 layers to avoid increasing the model parameters.



Neurocomputing 555 (2023) 126609

3

J. Su et al.

Fig. 1. A schematic of the D-SegNet architecture. The encoders are based on the 13 convolutional layers of the VGG-16 network [20]. The decoder places corresponding layers
in reverse. The key novel feature compared to SegNet are the Dense blocks, which are added after each encoder or decoder section.

Fig. 2. The general dense block model proposed in this paper. Feature map sizes match within each block.

Table 1
D-SegNet architecture for plant segmentation. The growth rate of 𝑘 for the whole
network is 32. Note that each Up/Down sampling block shown in the table corresponds
to the sequence Conv+BN+ReLU+Pooling/Upsampling.

Layers Output size D-SegNet (𝑘 = 32)

Input layer 224 × 224

Downsample Block (1) 112 × 112 3 × 3 𝑐𝑜𝑛𝑣, stride 1, 2 × 2 max pool, stride 2

Downsample Block (2) 56 × 56 3 × 3 𝑐𝑜𝑛𝑣, stride 1, 2 × 2 max pool, stride 2

Dense Block (1) 56 × 56

[

1 × 1 𝑐𝑜𝑛𝑣

3 × 3 𝑐𝑜𝑛𝑣

]

× 12

Downsample Block (3) 28 × 28 3 × 3 𝑐𝑜𝑛𝑣, stride 1, 2 × 2 max pool, stride 2

Dense Block (2) 28 × 28

[

1 × 1 𝑐𝑜𝑛𝑣

3 × 3 𝑐𝑜𝑛𝑣

]

× 24

Downsample Block (4) 14 × 14 3 × 3 𝑐𝑜𝑛𝑣, stride 1, 2 × 2 max pool, stride 2

Dense Block (3) 14 × 14

[

1 × 1 𝑐𝑜𝑛𝑣

3 × 3 𝑐𝑜𝑛𝑣

]

× 16

Downsample Block (5) 7 × 7 3 × 3 𝑐𝑜𝑛𝑣, stride 1, 2 × 2 max pool, stride 2

Upsample Block (1) 14 × 14 3 × 3 𝑐𝑜𝑛𝑣, stride 1, 2 × 2 max pool, stride 2

Dense Block (4) 14 × 14

[

1 × 1 𝑐𝑜𝑛𝑣

3 × 3 𝑐𝑜𝑛𝑣

]

× 16

Upsample Block (2) 28 × 28 3 × 3 𝑐𝑜𝑛𝑣, stride 1, 2 × 2 max pool, stride 2

Dense Block (5) 28 × 28

[

1 × 1 𝑐𝑜𝑛𝑣

3 × 3 𝑐𝑜𝑛𝑣

]

× 8

Upsample Block (3) 56 × 56 3 × 3 𝑐𝑜𝑛𝑣, stride 1, 2 × 2 max pool, stride 2

Dense Block (6) 56 × 56

[

1 × 1 𝑐𝑜𝑛𝑣

3 × 3 𝑐𝑜𝑛𝑣

]

× 4

Upsample Block (4) 112 × 112 3 × 3 𝑐𝑜𝑛𝑣, stride 1, 2 × 2 max pool, stride 2

Upsample Block (5) 224 × 224 3 × 3 𝑐𝑜𝑛𝑣, stride 1, 2 × 2 max pool, stride 2

Output layer 224 × 224

Therefore, the D-SegNet is a lightweight network architecture (see

Table 1). The number of feature maps of an output remains 4 ⋅𝑘, which

is the same as in [28]. Note that the feature map size only changes in
the Downsample/Upsample Blocks. Thus, the feature map size remains
the same in all dense blocks, which contains large spatial information
in small feature maps.

Different from other semantic segmentation architectures, the D-
SegNet encourages feature reuse and prevents gradient vanishing prob-
lems. The main reason is that the D-SegNet is a lightweight network,
which benefits from dense blocks. Its network structure is narrow, and
only needs a few parameters. The number of feature maps of each
convolutional layer output in the dense block is very small, instead
of hundreds of thousands of outputs like in other networks. Within
the dense block, each layer has direct access to the gradients from the
loss function and the original input signal. On the other hand, a dense
connection is equivalent to directly connecting an input and loss at each
layer. Thus, it can mitigate the phenomenon of gradient vanishing when
the depth of the network is deep.

2.4. Loss functions used for D-SegNet training

This section discusses the loss functions used to train the D-SegNet
architectures. The output from the proposed architecture is a four-
dimensional (4D) tensor 𝑍 ∈ R

𝑁,𝐶,𝐻,𝑊 , where 𝑁 denotes the batch
size of the output tensor, 𝐶 represents the number of channels (or
depth), 𝐻 is the height and 𝑊 the tensor width. Colour images have
three channels (i.e. 𝐶 = 3) for each channel red, green, and blue,
also known as the red, green, blue (RGB) representation. For brevity,
𝑍 is considered to be a two-dimensional (2D) matrix of size 𝑁 , 𝐶,
containing elements 𝑧𝑛,𝑐 , which is a 2D matrix of size 𝐻,𝑊 . Prior to
computing the cross-entropy loss, the segmented label map output 𝑍
needs to be converted to probabilities through the softmax function
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Fig. 3. Environment and construction of image acquisition. (a) Plant culture environment; (b) and (c) Mature plant; (d) Side view of image acquisition construction.

𝜙𝑠𝑜𝑓𝑡(𝑧𝑛,𝑐 ) in the compression layer as follows

𝜙𝑠𝑜𝑓𝑡(𝑧𝑛,𝑐 ) =
exp (𝑧𝑛,𝑐 )

∑𝐶

𝑖=1
exp (𝑧𝑛,𝑖)

. (2)

The threshold value of the softmax function is set up to 0.6. The output
of the softmax layer is then used to compute the cross-entropy loss
𝑐𝑟𝑜𝑠𝑠 which can be calculated from

𝑐𝑟𝑜𝑠𝑠(𝑧𝑛,𝑐 , �̂�𝑛,𝑐 ) = −

𝐶
∑

𝑐=1

�̂�𝑛,𝑐 log(𝜙𝑠𝑜𝑓𝑡(𝑧𝑛,𝑐 )). (3)

The softmax output is computed by considering the exponent of
the output 𝑧𝑛,𝑐 from the final layer. This is divided by the sum of the
exponential outputs across the channel dimension 𝐶. Then, considering
the outputs from the softmax layer 𝜙𝑠𝑜𝑓𝑡(𝑧𝑛,𝑐 ), the respective target label
for that output �̂�𝑛,𝑐 is used to compute the cross-entropy loss. Here, the
term 𝑙𝑜𝑔 refers to the natural logarithm of the softmax layer element.

The cross-entropy loss is averaged across all 𝑁 mini-batches of seg-
mented label outputs and target labels, e.g.

∑𝑁

𝑛=1
𝑐𝑟𝑜𝑠𝑠. The averaged

loss is then backpropagated for updating the layers of the D-SegNet
end-to-end using the chain rule and the update rule. The update rule
sums the old weights and biases of a specific layer with the differential
of the cross-entropy error with respect to the weights and biases of all
the convolutional layers multiplied by the learning rate. The learning
rate set during training of the D-SegNet is 0.1.

3. Experimental data and data pre-processing

This section describes the data used to evaluate the D-SegNet archi-
tecture and the data pre-processing steps. In order to evaluate the per-
formance of D-SegNet, the image data needs to be annotated, which is a
complex and time-consuming process, involving the training–validation
data. To annotate the data, a semi-automatic labelling method was
used consisting of Faster Region-based Convolutional Neural Network
(Faster R-CNN) [35] and K-Means clustering [10], which are described
specifically in the following Section 3.1.2. This approach improves the

Table 2
The specification of the data collection devices and their distances from the target.

Device Height Illuminance Rear camera Aperture

Samsung Galaxy J4 65 cm 620-680 LUX 13 MP 𝑓∕1.9

iPhone 7 plus 75 cm 620-680 LUX 12 MP 𝑓∕1.8

efficiency and accuracy of annotation. The original and labelled dataset
are available on GitHub [30,31] .

3.1. Morning glory plant images

A total of 2018 images of the morning glory plant were collected
during different phases of the plant growth. These images and the
developed deep learning approaches are aimed at helping farmers to
decide when to harvest the plant, at the period when the plant is
with the desired size and weight. In each of the images, there are
4 or 5 morning glory plants. The plants were laid on white space
with tick marks on three edges to indicate the size of the plants. Each
side tick mark is 50 centimetres long. The plants in each image were
weighed and the total weight was recorded (in grams). The hardware
specifications used for data collection and their relevant distances from
the target (height) are summarized in Table 2.

Each image was taken by two smartphones, a Samsung Galaxy J4
and an iPhone 7 plus. The Samsung Galaxy J4 was installed at 65
centimetres above the plants, while the iPhone 7 Plus was installed at
75 centimetres above the plants. The images are of size 4032 × 3024 or
4128 × 3096. The Samsung Galaxy J4 mobile phone has a 13 MP rear
camera with 𝑓∕1.9 aperture, and the iPhone 7 Plus has a 12 MP rear
camera with 𝑓∕1.8 aperture. Fig. 3 shows the plant environment and
image acquisition device. All images were taken in a laboratory with an
illuminance of approximately 620–680 LUX. The light was mainly from
the fluorescent lightbulbs installed in the laboratory with some effect
from natural light through the windows. There were only a few images
in that the illuminance that fell below or above the range mentioned.
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Fig. 4. Morning glory plant images: (a) original image, (b) image with added noise and (c) image with a different illumination background. Images (b) and (c) are obtained as a
result of the data augmentation.

Fig. 5. Image data annotation steps.

This could perhaps be due to the sensitivity of the device or the shadow
from the experimenters.

The experiments of automatic plant segmentation are conducted on
this dataset. The dataset was collected by the team from King Mongkut’s
University of Technology Thonburi, at the geographical location with
latitude and longitude (13.39 ◦N, 100.29 ◦E) in Thailand.

3.1.1. Image pre-processing
Data augmentation has an important role in deep learning [36]

effectively improves the model robustness and generalization capacity.
Generally, data augmentation includes the generation of additional

images based on random flips, flexible rotation and different illumi-
nation. Fig. 4 shows the augmented data. Figs. 4(a) and 4(b) have
different noise and illumination backgrounds, respectively. Fig. 4(c) is
obtained after a rotation of the original image at 180◦. These operations
expand the original data set from 2018 to 6054 images, which will help
to train and evaluate the segmentation networks.

3.1.2. Image data annotation
The overlap and thickness of leaves make the manual annotation

difficult and create challenges to the training of convolutional neural
networks. Thus, a semi-automatic annotation method is applied, whose
main steps are summarized in Fig. 5.

The Faster R-CNN algorithm [35] is applied to detect the plant.
Faster R-CNN is a state-of-the-art object detection network, which
consists of region-based proposal algorithms able to find the object
location [37]. R-CNN is composed of a feature extraction network fol-
lowed by two networks. The feature extraction network is a pre-trained
CNN that forms the feature map. The first network ResNet-50 [33] is
the feature extraction network of the detector. The second network is
a region proposal network (RPN), which generates object proposals.
The RPN decides the positive or negative of anchors by the softmax
function. The bounding box regression is used to fix anchors and get
precise accuracy.

The region of interesting (ROI) pooling layer processes features
maps and proposals for further prediction. The area outside of the

region box is set up as a black background. Next, the k-means clustering
algorithm [10,38] is applied to annotate the leaves within the bounding
box area. The k-means algorithm clusters similar data points into k
groups. The target number k refers to the number of centres in the
cluster. Every data point is allocated to the nearest cluster while
keeping the centroids as small as possible. In this paper, a fixed number
𝑘 is set equal to 2.

To avoid complex data processing [39], the annotated data consider
leaf pixels as white and the other as black, as shown in Fig. 6. It is
saved in a PNG format with high resolution 4128 × 3096. The high-
resolution image is stored but it is not processed by the convolutional
neural network since such an image would require a large amount
of memory space. This would require significant computational power
from the GPU. Therefore, the size of original and annotated images is
processed as 224 × 224 × 3 and 224 × 224.

3.2. Benchmark dataset

A popular public dataset from ImageCLEF 2021 (Pl@ntLeaves), [32]
is used to evaluate our proposed segmentation method. This dataset
consists of leaf herbarium and comprises 1956 images, from which
1190 images are used for training, and 256 for testing. Sample leaf
images are shown in Fig. 7.

3.3. K-fold cross validation

Cross-validation is a resampling method that is used to evaluate
models on a limited data sample [40]. In K-fold cross-validation, the
entire dataset is split into K groups randomly. For every fold, one
out of K subsets is chosen as the validation set and K-1 subsets are
used for training. It helps to avoid the overfitting problem and to
improve model performance with the small dataset. The diagram of
K-fold cross-validation is shown in Fig. 8.

Experiments are conducted for 10-fold cross-validation with the
morning glory plant dataset and ImageCLEF dataset. Each dataset is
divided into 10 subsets stochastically. For each cross-validation itera-
tion, the model is trained using 9 subsets and is tested to the other
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Fig. 6. Images of the morning glory plant. (a) Original image; (b) Annotated image.

Fig. 7. ImageCLEF dataset: a herbarium sheet.

subset as the validation set. The procedure is then repeated for 10-
folder cross-validation. Each subsample is used once as a validation
subset.

4. Results and discussion

4.1. Evaluation metrics

This section presents the evaluation metrics used for the perfor-
mance validation of the D-SegNet algorithm. These include precision,
recall, and the F1 score. The precision–recall metrics [41] allow further
evaluation for classification beyond simple accuracy measures that do
not take into account the problem of class imbalance.

First, the number of true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) samples are calculated. The
TP are predictions that are classified correctly for the inspected class.

The TN are other predictions that are correct but for negative samples

(i.e. not inspected). Then, false positives are miss-classified negative

samples and the true negatives are negatives samples that are correctly

classified. The precision and recall values are computed as shown in

Eqs. (4) and (6). In addition, the IoU is also an important metric and it

is used to evaluate the algorithms’ performance.

The precision metric [42] is used to compute the number of cor-

rectly predicted positive categories of a classification system

Precision =
TP

TP + FP
. (4)

Precision is defined as the ratio of the total number of TPs divided by

the sum of all TPs and FPs. The average of per-class precision [43] is

Precision𝑀 =
1

𝑙

𝑙
∑

𝑖=1

Precision, (5)
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Fig. 8. The process of K-fold cross-validation in training the deep learning model.

which is the arithmetic mean of all the summary precision values by
the number of classes 𝑙.

The recall metric

Recall =
TP

TP + FN
, (6)

is used to define the number of correct positive predictions that are
achievable from all of the positive predictions. The average per-class
recall is identified as

Recall𝑀 =
1

𝑙

𝑙
∑

𝑖=1

Recall. (7)

The Recall𝑀 [43] focuses on the per-class effectiveness of class
labels. A good model expects to get high values on both precision and
recall. However, it is difficult to decide the model performance when
the precision and recall are reaching different extremums. Thus, it is
necessary to use the F1-score in the evaluation. The F1-score𝑀 [43], on
the other hand, summarizes the Precision𝑀 and the recall of a classifier
system into a single metric

F1-score𝑀 = 2 ×
(Precision𝑀 × Recall𝑀 )

(Precision𝑀 + Recall𝑀 )
. (8)

The model evaluation should not only use the statistic metrics but
also need a qualitative evaluation from the actual segmentation view.
The intersection over union (IoU) [44] as an important evaluation index
in semantic segmentation measures the overlap of the ground truth and
prediction region. It is also calculated:

IoU =
Ground Truth

⋂

Prediction

Ground Truth
⋃

Prediction
, (9)

where
⋂

denotes the intersection operator and
⋃

represents the union
operator. The IoU is generally calculated based on categories, which
is to accumulate the IoU value of each category. The IoU value is
to average the sum IoU results of each category to obtain a global
evaluation. Therefore, the IoU is actually the mean value, that is, the
average crossover ratio (mean IoU).

In the next section, the performance of the segmented results is
discussed in detail while comparing different architectures.

4.2. Experimental results

In order to evaluate the performance of the D-SegNet algorithm,
we compare it with traditional edge-based segmentation and with the
standard SegNet algorithm.

From Fig. 9, we can see that D-SegNet provides quite clear con-
tours of the segmented plant, whereas the classical Sobel edge-based

Table 3
Performance of different segmentation methods in morning glory plant.

Metrics Based on edge detection SegNet-Basic SegNet D-SegNet

Precision𝑀 67.38% 96.57% 97.48% 98.31%
Recall𝑀 62.25% 88.74% 89.64% 90.92%
F1-score𝑀 64.71% 92.48% 93.39% 94.47%

Table 4
Performance of different segmentation methods in ImageCLEF (Pl@ntleaves) dataset.

Metrics Based on edge detection SegNet-Basic SegNet D-SegNet

Precision𝑀 46.35% 90.98% 93.79% 96.57%
Recall𝑀 41.68% 84.87% 87.03% 88.54%
F1-score𝑀 43.89% 87.81% 90.28% 92.38%

segmentation [45] visually gives less accurate results. Morphological
operations [46,47] are used to connect the edge pixels into meaningful
edges.

There are two steps in morphological operations: erosion and dila-
tion. Dilation expands the image boundaries to make sure the boundary
pixels are connected. Erosion shrinks the image pixels slightly, which
removes noise pixels from the object boundary. Finally, the object is
segmented from the image. However, it cannot provide a coherent and
precise leaf shape. Although this does not mean traditional methods
become obsolete, D-SegNet indeed solves complex segmentation prob-
lems with super-human accuracy. The big data training and plentiful
feature computation provide descriptive and salient features to predict
the underlying patterns. Thereby D-SegNet get a better performance
than the traditional computer vision method.

In this paper, the proposed approach, SegNet-Basic [48] and Seg-
Net [49] methods are trained. In order to provide a fair comparison
of the performance of the considered deep learning architectures, the
same GPU and environment system configurations are applied to all of
them. A 10-fold cross-validation strategy is applied to each data set.
Then 9 folds are used for training, and the other one fold is used for
testing. The procedure is repeated 10 times to make sure each fold has
been used for testing once.

Fig. 10 displays a group of segmented images. Based on subjective
observation, the two framed parts in each figure show different seg-
mentation results. SegNet-Basic and SegNet are hard to segment the
curve leaf, while D-SegNet gives a clear shape. It is expected that the
proposed approach can capture many features through the dense block.
Obviously, the D-SegNet achieves higher performance than the other
algorithms. The SegNet-Basic [48] is a more lightweight network than
SegNet, which comprises 4 pairs of encoder–decoders. As shown in
Fig. 10(b), SegNet-Basic can take the coarse contour. Several pixels
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Fig. 9. Segmentation results. (a) Original image; (b) Segmentation based on edge detection with Sobel operator; (c) D-SegNet.

Fig. 10. Results of transitional steps in proposed model for automating the segmentation process. (a) Original image; (b) SegNet-Basic; (c) SegNet; (d) D-SegNet.

of leaf edge have been lost. In addition, SegNet as the state-of-the-art
algorithm [49] is selected for comparison. It is a fully convolutional
network with a pixel-level classification network that has 5 pairs of
encoder–decoders. SegNet segments well the plant from the lab back-
ground compared with SegNet-Basic as seen in Fig. 10(c). However,
when SegNet compares with the D-SegNet segmentation method in
this paper, it can be found that the SegNet segmentation method loses
some details, as shown in Fig. 10(c). The SegNet method is sensitive
to the close areas between plants, leaves overlapping and interference
with light conditions. Thus, SegNet loses some features on leaves, and
it cannot segment the special position of the plant in the original
image. In this paper, the D-Segnet method solved these problems, which
can extract plant boundary contour from the complex background
accurately.

Tables 3 and 5 list average quantitative segmentation results calcu-
lated over 10-fold cross-validation on the morning glory plant dataset.
The numerical results denote precision, recall, F1-score and IoU in
the four segmentation methods. There is a significant difference be-
tween segmentation based on edge detection and other deep learning
algorithms. All mean metric values of deep learning algorithms are
higher than that of the traditional image processing algorithm. The
performance of D-SegNet outperforms that of SegNet-Basic and SegNet
with respect to both visual and numerical results. Both SegNet-Basic
and SegNet are encoder–decoder networks. The size of the feature map
is going small after each convolution. The common problem is the
convolution operation between layers may lose important features. The
D-SegNet is designed to break this bottleneck. This is thanks to the
concatenation between layers of the dense block in the D-SegNet. It
makes the feature extracted from the encoder–decoder, which directly
connects to each layer in the dense block. The D-Segnet will learn more
features than the SegNet-Basic and SegNet, which makes D-SegNet lead
the performance competition. The performance differences are obvious
from Table 4. It shows the mean values of precision, recall and F1-score
with four different algorithms on the ImageCLEF dataset. The D-SegNet
gives accurate segmentation results on both datasets.

Table 5
Comparison of different segmentation methods in
performance.

Network mean IoU

Based on edge detection 56.37%
SegNet-Basic 90.56%
SegNet 88.58%
D-SegNet 90.64%

4.3. Additional considerations

The phone images and the pixels of leaves might be not accurate
enough. For each group, we arrange the plants 4 times and take 4
images. However, the leaf of the plant grows discretely and is displayed
on the board randomly. Thus, the same group of plants could have
different labelling pixels. Moreover, the pixels from overlapping leaves
are counted only once. The relationship between plant pixels and
weight is an important point in automatic yield estimation. Therefore,
there are two methods to solve this problem. It is difficult to label the
overlapped leaves pixel by pixel. Secondly, the sample of each group
plant is increased. For the same group of plants, there are a lot of
images from different plant positions.

In addition, the proposed D-SegNet algorithm segments only the
plant in the mature stage and demonstrates a better performance than
the state-of-the-art algorithm [49]. However, it did not fully grasp
the plant in each growing node. The timing of harvesting still relies
on labour. With the growth of the morning glory plant, the physical
shape is changing dynamically. In the future, we would like to test the
different morphological shapes, as it is important to understand the
morphological and physiological characteristics of the morning glory
plant.

All images are taken by a smartphone. It demonstrates the potential
of using a smartphone which is becoming ubiquitous and affordable
to many farmers. For future applications, images taken by the farmers
may be sent to an automated system to predict the yield. The techniques
tested in this study show that noisy images could be processed and used
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to predict yield with reasonably good accuracy. This is the first step
toward developing an automated system for yield prediction for smart-
farm planning and monitoring. In addition, the D-SegNet algorithm is
not only applied to automatic yield prediction in morphology but also
contributes to weed detection, for disease detection and distinction,
as well as other related tasks. For robust comparison, the evaluation
metrics are averaged over 10-fold cross-validation. The results and
evaluation techniques suggest that the proposed approaches are not
only superior with regard to segmentation capabilities but also with
respect to reliability.

5. Conclusions

A highly accurate deep learning-based segmentation method called
D-SegNet, is proposed in this paper, which can be used in automated
yield prediction and precision agriculture. Compared to traditional non-
deep learning methods, D-SegNet achieves pixel-level segmentation.
The dense block structure in D-SegNet enhances the feature propaga-
tion to outperform state-of-the-art deep learning algorithms such as
SegNet. The concatenations between feature maps can better extract
object information and can be used to input sequential data. The
trained network can accurately detect segmentation details such as very
small overlapped leaves. Experiments were carried out and four metrics
were used to compare our method with other competing methods. The
results show that D-SegNet achieved 0.9820, 0.9064 and 0.9426 in
precision, recall and F1-score, respectively. The IoU calculated over
2421 untrained plant tasks was 0.9056. These results demonstrate that
D-SegNet can segment the plant accurately and improve the general
performance of the network compared to prior methods.

The morning glory plant is a popular crop in the agriculture business
and its yield prediction is subject to exciting research. This research
could help small or community-based farms better to estimate the
amount or yield of their produce. With an accurate yield estimation,
the buyer of the product can save costs through better planning its
sourcing strategy and simultaneously better serve the needs of the
customers. This further promotes the business of the buyer, leading to
closer collaboration between the farmers and the buyer.

In summary, this new plant segmentation network, D-SegNet, could
form an important component of future cloud-based machine learning
systems to predict crop yield from noisy smartphone images taken in
the field.
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