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A B S T R A C T   

Children's differences in early life cognitive development are driven by the interplay of genetic and environ-
mental factors, but identifying replicable gene-environment interactions (GxE) has proven difficult. We sys-
tematically tested GxE effects in the prediction of cognitive development from 2 to 4 years, using polygenic 
scores (PGS) for years spent in education and 39 measures of the home and neighborhood environment. Data 
came from up to 6973 unrelated individuals from the Twins Early Development Study (TEDS), a UK population- 
representative cohort. The environmental measures accounted together for 20.6% of the variance in cognitive 
development, while the PGS accounted for 0.5% (p < .001). We observed substantial gene-environment corre-
lations but found no conclusive evidence for GxE effects. While associations between PGS and cognitive devel-
opment were weak, genetic and environmental factors had direct and additive (i.e., main effects) rather than 
interactive influences on early life cognitive development.   

1. Introduction 

Children's differences in cognitive development are evident early on 
in life (Deary, 2012; Tucker-Drob & Briley, 2014; von Stumm & Plomin, 
2015). By the time they start formal education, children's differences in 
cognitive ability are powerful predictors of their contemporaneous and 
future academic achievement (Honzik, Macfarlane, & Allen, 1948; von 
Stumm, 2017). Identifying the causes of children's differences in early 
life cognitive development is therefore key to designing and imple-
menting effective interventions that improve children's life chances. 

Differences in early life cognitive development stem from the com-
plex interplay between genetic factors and the rearing environment. 
This interplay includes gene-environment correlations (rGE) and gene- 
environment interactions (GxE). rGE refer to the covariance between 
genes and environments that occurs when genotypes are assorted to the 
environments that they are found in (e.g., Abdellaoui, Hugh-Jones, 
Yengo, et al., 2019; Avinun, 2020). GxE imply moderation effects, 
with the genetic predispositions for phenotypic traits developing 
differently in different environments (i.e., being moderated by the 
environment; Plomin, DeFries and Loehlin, 1977). While rGE effects 
have often been observed (Abdellaoui et al., 2019; Avinun, 2020; Kra-
pohl et al., 2017), finding replicable GxE in the prediction of early life 
cognitive development has proven difficult. Even the popular Scarr- 
Rowe hypothesis (Scarr-Salapatek, 1971), which suggests that family 

socioeconomic status (SES) moderates the influence of genetics on 
cognitive development, has not be conclusively demonstrated (Figlio, 
Freese, Karbownik, & Roth, 2017; Hanscombe et al., 2012; Tucker-Drob 
& Bates, 2016; von Stumm et al., 2020). 

GxE effects are typically interpreted according to one of three con-
ceptual frameworks. First, children with the genetic risk for poor 
cognitive outcomes may be disproportionately negatively affected by 
early life adversity, such as chaotic family homes or malnutrition (cf. 
diathesis-stress model; Sigelman & Rider, 2009). Alternatively, enriched 
environments may maximise the expression of genetic differences, while 
environmental stress masks them (cf. bioecological model; Bronfen-
brenner & Morris, 2006; Ronda et al., 2022); for example, children with 
or without a genetic propensity for intelligence may show reduced 
cognitive growth in unsupportive learning environments. The third 
concept is a cross-over interaction, where susceptible children are 
disproportionately affected by both negative and positive experiences 
(cf. differential susceptibility model; Greven et al., 2019). 

Several reasons account for the persistent struggle to empirically 
substantiate GxE effects in the prediction of cognitive development. A 
key one is statistical power: Modelling GxE effects requires very large 
sample sizes (Dick et al., 2015; Duncan & Keller, 2011; Keers & Pluess, 
2017). For example, 2500 pairs of monozygotic and dizygotic twins are 
needed to detect GxE of medium effect size with 80% power in a twin 
model (Hanscombe et al., 2012). Yet few studies that tested GxE in the 
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prediction of cognitive development even approximated such sample 
sizes (Figlio et al., 2017; Tucker-Drob & Bates, 2016). The most seminal 
study in this area, cited >1800 times at the time of writing, analyzed 
data from only 114 monozygotic and 205 dizygotic twin pairs (Tur-
kheimer, Haley, Waldron, d'Onofrio, & Gottesman, 2003), yielding 
<30% power to detect a sizeable GxE effect. 

Second, prior studies of GxE in the prediction of cognitive develop-
ment typically modelled only one or two environmental factors, an 
approach that (a) ignores the breadth and diversity of environments, (b) 
precludes the possibility of multiple GxE being simultaneously at play, 
and (c) leads to residual confounding (Keller, 2014; von Stumm & 
d'Apice, 2022). Few environments are truly exogenous to the individual, 
which is known as the endogeneity problem (Dick, 2011; Duncan, 
Magnuson, & Ludwig, 2004; Schmitz & Conley, 2017; von Stumm & 
d'Apice, 2022) and complicates disentangling truly environmental from 
truly genetic effects. Because many environmental measures show sub-
stantial genetic influences, it is plausible that environments and a target 
phenotype (i.e., cognitive development) have shared genetic etiology. 

A third challenge lies in operationalizing genetic influence. The 
classical twin model infers heritability by comparing the phenotypic 
resemblance of monozygotic twins to that of dizygotic twins (Plomin, 
2019). In this model, GxE are evident when the heritability estimates of 
a trait (e.g., cognitive development) vary as a function of a putatively 
environmental measure (e.g., family SES; Tucker-Drob & Bates, 2016). 
An alternative approach is to use person-specific estimates of genetic 
propensities and to directly test their interplay with environments. For 
example, the candidate-gene approach to GxE analyzed if a pre-specified 
genetic variant manifested differently depending on the environmental 
context (Duncan & Keller, 2011; Saltz et al., 2018). Yet most psycho-
logical traits are polygenic – that is, their expression is influenced by 
many thousands of DNA variants rather than by a few candidate genes. 
These DNA variants can be aggregated as polygenic scores (PGS) that are 
person-specific estimates of genetic propensity for a target phenotype 
(Plomin & von Stumm, 2018). PGS allow for directly testing gene- 
environment interplay, although they do not solve all problems per-
taining to GxE analyses (Schmitz & Conley, 2017; Ronda et al., 2022). 

In this preregistered study, we analyzed data from a large, well- 
powered sample of children from the Twins Early Development Study 
(TEDS). We tested a broad range of early life experiences or environ-
mental measures as moderators of the relation between PGS and 
cognitive development from age 2 to 4 years. Our environmental mea-
sures ranged widely from parent-reports of twins' sleeping patterns and 
chaos in the family home to postcode-based indicators of neighborhood 
quality, such as local employment rates and air pollution levels. We did 
not make predictions about specific interactions between environmental 
measures and PGS, adopting an a-hypothetical approach that mirrors 
that of genome-wide association (GWA) studies, which test DNA- 
phenotype associations across the genome, independent of the DNA 
variants' location or function (Plomin & von Stumm, 2018; von Stumm 
& d'Apice, 2022). We used a PGS based on the summary statistics from a 
large GWA study for years spent in education with 1.1 million partici-
pants (Lee et al., 2018). In previous analyses, polygenic scores based on 
this GWA study predicted 7% and 10% of the variance in cognitive 
ability at age 12 and 16 years, as well as 7% and 15% of the variance in 
school performance at age 12 and 16 years (Allegrini et al., 2019). 
Although we made no predictions about specific GxE effects, we did 
hypothesize that the PGS based on Lee et al.'s (2018) GWA study for 
years spent in education is significantly associated with early life 
cognitive development. 

2. Method 

2.1. Sample 

Participants came from the Twins Early Development Study (TEDS), 
for which over 10,000 twin pairs were recruited from England and 

Wales between 1994 and 1996. At the twins' age of 18 months, 13,759 
families participated; this first assessment wave included data about 
demographics, pregnancy, childbirth, and zygosity. Zygosity was 
assigned using a parent-reported questionnaire of physical similarity, 
which is over 95% accurate when compared to DNA testing (Price et al., 
2000). For cases where zygosity was unclear, DNA testing was con-
ducted. At the twins' ages 2, 3, and 4 years, data were collected on 
cognitive and socio-emotional development as well as environmental 
factors, including parenting, family homes, and early life experiences. Of 
the families who participated during the first assessment wave, 83.5% (i. 
e., 10,336 families) also provided data at the ages 2, 3, and 4 years. In 
addition to phenotypic data, a subsample of 10,346 TEDS twins (i.e., one 
twin per 3706 pairs and 3320 DZ co-twins) were genotyped using two 
different genotyping platforms (AffymetrixGeneChip 6.0 and Illumina 
HumanOmniExpressExome-8v1.2) in two waves, 5 years apart. The 
present analyses included a subsample of one randomly selected twin 
per pair with genotype data (N = 6973 unrelated individuals), for 6084 
of whom cognitive test scores at age 2 to 4 years were available. 

TEDS families were representative of other UK families in 1990s 
(Rimfeld et al., 2019). For example, 93% of the TEDS families identified 
as white versus 93% UK families, and 44% of TEDS mothers being 
employed at twins' ages 2–4 years versus 50% of UK mothers (Rimfeld 
et al., 2019). In our analysis sample, 94% of the TEDS families identified 
as white, and 47% of mothers reported being employed (Table S1). The 
analysis sample's SES, a composite of mothers' and fathers' education 
and occupation, as well as mothers' age at first birth (not necessarily the 
twins'), assessed when the families were first contacted, was at mean =
0.09 (SD = 1; Table S1) marginally higher than that of the full sample 
(mean = 0, SD = 1). Parents provided written informed consent prior to 
data collection. TEDS project approval (05.Q0706/228) was granted by 
the ethics committee for the Institute of Psychiatry, Psychology and 
Neuroscience at King's College London. 

2.2. Power 

Sample size recommendations for achieving sufficient statistical 
power in GxE studies are scarce (e.g., Hanscombe et al., 2012; Manuck & 
McCaffery, 2014), but some suggested that reliably detecting in-
teractions requires at least 16 times the sample size needed for testing 
direct effects (Gelman, 2018). Using G*Power (Faul, Erdfelder, Buchner, 
& Lang, 2009), detecting direct effects of f = 0.15 by 40 predictors (i.e., 
39 environments and PGS) with 80% power requires N = 214, which 
comes to N = 3424 after multiplying by 16 to include the 40 interaction 
terms. If we include the covariates in our power calculation (i.e., gender, 
10 PCs, genotype array, and batch), the 53 predictors require N = 244 to 
for detecting direct effects and N = 3904 for their interactions at 80% 
power. These sample requirements are lower than those available for the 
current analyses (i.e., maximum N = 6084). 

2.3. Measures 

2.3.1. Cognitive development 
Parent-administered tests and parent-reported observations were 

used to assess twins' cognitive ability at the ages 2, 3, and 4 years. These 
measures have been validated against standard tests administered by 
trained testers (Oliver et al., 2002; Saudino et al., 1998). Nonverbal 
cognitive performance was assessed using age-appropriate versions of 
the Parent Report of Children's Abilities (PARCA; Oliver et al., 2002, 
Saudino et al., 1998), an hour-long test that includes three parent- 
administered tasks: a “find the pair” task, a drawing task, and a 
matching task. Tasks' items assessed number, shape, size, conceptual 
grouping, and orientation skills. Some items were newly created for 
administration in TEDS; others were adapted from previously well- 
validated measures, such as the McCarthy Scales of Children's Abilities 
(McCarthy, 1972) or the Bayley Scales of Infant Development (Bayley, 
1993). The parent-administered PARCA component was supplemented 
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by eight parent-report items anchored on concrete behaviors and 
requiring simple yes or no answers. Some of these items were newly 
created; others were adapted from the Minnesota Child Development 
Inventory (MCDI; Ireton & Thwing, 1974) and the Ages and Stages 
Questionnaires (Bricker, Squires, & Mounts, 1995). Verbal ability, spe-
cifically vocabulary and grammar, was assessed by parent reports on the 
CDI–III, an extension of the short form of the MacArthur Communicative 
Development Inventories: Words and Sentences, which has been shown 
to have excellent internal consistency and test–retest reliability, as well 
as concurrent validity with tester-administered measures (Fenson et al., 
2007). Overall, the PARCA has been well established as a valid and 
reliable measure of children's cognitive abilities (Bayley, 1993; Blaggan 
et al., 2014; d'Apice, Latham, & von Stumm, 2019; Martin et al., 2013; 
McCarthy, 1972; Oliver et al., 2002; Saudino et al., 1998); also, the 
United Kingdom's National Institute for Clinical Excellence (NICE, 2017) 

uses a revised version (PARCA-R) in their developmental assessment 
guidelines. At each age, scores were standardized and summed to form 
z-scores of cognitive ability. 

2.3.2. Environmental measures 
A total of 39 environmental measures were included in our analyses 

that were recorded in TEDS for twins aged 2 to 4 years, which broadly 
assessed the family home, early life adversity, neighborhood environ-
ment, and local pollution (Fig. 1). The grouping of the environmental 
measures is preliminary to organize the measures, rather than to infer an 
empirical or theoretical taxonomy. Details on each of the environmental 
measures can be found in the Supplementary Methods. 

2.3.3. Polygenic scores (PGS) 
Saliva and buccal cheek swab samples were collected, and DNA was 

Fig. 1. Overview of the 39 environment measures used in the current analyses of Twins Early Development Study data.  
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extracted and genotyped to compute genome-wide polygenic scores 
(PGS) based on the latest genome-wide association (GWA) study for 
years of education (Lee et al., 2018). PGS were constructed using the 
Bayesian LDpred approach, which estimates causal effect sizes from 
GWA summary statistics by assuming a prior for the genetic architecture 
and LD information from a reference panel (Vilhjálmsson et al., 2015; 
(see Supplementary Methods for details). 

2.4. Statistical analyses 

All analyses were conducted using R statistical software (R Core 
Team, 2020). The analyses were preregistered at https://osf.io/sg4rf/. 
All variables were standardized (i.e., z-scores) prior to analysis. The 
cognitive ability scores at ages 2, 3, and 4 years were respectively cor-
rected for within-assessment age differences, and the residuals were 
summed to a cognitive development score. We fitted our model using 
lavaan (Rosseel, 2012), which applies full-information maximum 

likelihood (FIML) estimation to missing data. 
We sought to answer three primary research questions: (1) Do GxE 

effects exist in the prediction of cognitive development in early life? (2) 
If they exist, to what extent do GxE effects account for children's dif-
ferences in cognitive development, independent of the main effects of 
PGS and environmental variables? (3) What environmental variables, if 
any, are particularly relevant to the observation of GxE effects? To 
answer these questions, we applied a stepwise analysis approach. First, 
Pearson correlations tested associations between the PGS and environ-
mental variables. Second, individual linear regression models were 
fitted to test independently the predictive validity of the PGS for years in 
education and our 39 environmental measures for phenotypic early life 
cognitive development (i.e., the composite that combined cognitive 
ability scores from 2, 3, and 4 years of age). We adjusted our models for 
gender, as well as the PGS model for the first 10 principal components 
(PCs), genotyping array, and batch. We Bonferroni-corrected the p- 
values associated with the regression coefficients (pconventional = 0.05 / 
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Fig. 2. Correlations of PGS for years spent in education and of cognitive development at age 2, 3, and 4 years with 39 environmental measures. 
The lines indicate 95% Confidence Intervals (CI). 
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40 (i.e., 39 environments plus PGS); pcorrected = 0.001) to reduce the risk 
of Type I errors. Third, we fitted a linear regression model with all 39 
environmental variables to predict early life cognitive development, 
after adjusting for gender. Fourth, we modelled all environmental 
measures and the PGS, with its covariates gender, 10 PCs, genotyping 
array, and batch, as predictors of cognitive development. Fifth, we built 
interaction terms between PGS and the 39 environmental measures and 
added them to our individual linear regression models in addition to the 
respective direct effects of PGS and environmental measures and the 
covariates gender, 10 PCs, genotyping array, and batch. If one of the 
interaction terms was significant, we would fit a model that also 
controlled for the interactions between the direct predictors and the 
covariates (cf. Barr et al., 2019). Our final, sixth model included all 
direct effects and interaction terms for 39 environmental variables and 
the PGS to test their combined predictive power for early life cognitive 
development. Again, we controlled for gender, 10 PCs, genotyping 
array, and batch. For the models from step three, four and six, we 
applied the conventional p-value of 0.05 to infer significance for the beta 
coefficients of main and interaction effects. Across all models, standard 

errors were corrected for multiple hypotheses testing. We interpreted 
our model results using adjusted R2 values. 

3. Results 

The correlations between the PGS for years spent in education and 
the environmental variables are displayed in Fig. 2a, while correlations 
between cognitive development and the environmental variables are 
shown in Fig. 2b (see also Table S1 for descriptives and Fig. S1 for the 
study measures' inter-correlations). The correlations between the envi-
ronmental measures and PGS ranged from −0.23 to 0.37 (i.e., rGE), 
while correlations between environmental measures and cognitive 
development ranged from −0.25 to 0.39. The PGS correlated r = 0.07 (p 
< .001) with cognitive development. For cognitive development, the 
strongest correlations were observed with home environment measures 
(e.g., positive correlations with talking to and playing with twin, 
negative correlations with CHAOS and parental discipline). For the PGS, 
the strongest correlations emerged for family SES and neighborhood 
variables (e.g., population proportion of postcode classified as high 
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Fig. 2. (continued). 
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professional status, low qualification, and lone parent). Overall, sub-
stantial gene-environment and phenotype-environment correlations 
were evident. 

The PGS significantly predicted cognitive development (i.e., com-
posite score of cognitive ability assessments at age 2, 3, and 4 years), β =

0.064, CI 95% from 0.041 to 0.087, p < .001), accounting for 0.5% of the 
variance, independent of the covariates. Of the 39 environmental mea-
sures, n = 21 significantly predicted cognitive development (p < .001) in 
their independent models, accounting for 0.2% up to 11.2% of the 
variance (Table S2). Mirroring the correlational findings, cognitive 
development was most strongly predicted by talking to (11.2%) and 
playing with the child (7% and 8.1%), as well as chaos in the family 
home (5.4%) and parental discipline (2.8%). None of the interaction 
terms between PGS and the environmental measures in the individual 
regression models was associated with the Bonferroni-corrected p-value 
of <0.001 for the prediction of cognitive development (Table S3). Only 
two interaction terms were associated with p-values < .05, including the 
annual mean of nitrogen oxide (p = .032) and nitrogen dioxide (p =
.027). 

Together, the environmental variables accounted for 20.6% of the 
variance in cognitive development, after adjusting for gender (Fig. 3; 

Table S4). When PGS was added to the model (i.e., in addition to all 
environmental predictors and covariates, all effects estimated simulta-
neously), it no longer emerged as a significant predictor of cognitive 
development (β = 0.009, p = .428, Table S5), probably due to con-
founding from rGE. The final sixth model, which included all interaction 
terms between the environmental variables and the PGS as well as their 
main effects, accounted for 21.2% of the variance in cognitive devel-
opment (Table S6), with the interaction terms accounting for 0.6% of the 
variance after controlling for main effects and covariates (Fig. 3). This 
increment in R2 was not significant. Two of the interaction terms were 
associated with p-values lower than 0.05: Correcting the child's pro-
nunciation of sentences and words (p = .019) and the proportion of 
males in the top NS-SEC group (i.e., higher managerial, administrative, 
and professional occupations; p = .042), a marker of occupational status, 
significantly moderated the association between PGS and cognitive 
development. Both these interactions term accounted for 0.1% or less of 
the variance. 

4. Discussion 

Our study systematically tested gene-environment interplay in early 

Fig. 3. Adjusted R2 values across models with direct and interaction effects of PGS and 39 environmental measures. 
Error bars are 95% Confidence Intervals based on bootstrapping from 100 samples. The first bar from the left (green) shows the R2 for PGS, the second (red) for all 39 
environmental measures, the third (blue) for PGS and environmental measures, and the last one (purple) combines all direct and interaction effects from PGS and 
environmental measures. 
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life cognitive development using PGS to capture children's genetic pro-
pensities and 39 home and neighborhood measures that broadly mapped 
children's environments. The PGS based on the GWAS for years in ed-
ucation (Lee et al., 2018) significantly predicted early life cognitive 
development, accounting for 0.5% of the variance. This effect size is 
smaller than those reported for the prediction of ability scores at later 
ages, for example at age 12 and 16 years when PGS based on the GWAS 
for years in education (Lee et al., 2018) account for 7% and 10% of the 
variance in intelligence, respectively (Allegrini et al., 2019). The 
discrepancy in effect sizes is likely in part due to the age-related increase 
of genetic influences on cognitive ability (Haworth et al., 2010; Plomin 
& Deary, 2015). Accordingly, the predictive validity of PGS is low when 
children are young but magnifies as they become older. Another reason 
for the discrepancy in prediction effect sizes from PGS is that cognitive 
ability differences in early life are less stable and more difficult to assess 
reliably than at later ages (Bayley, 1955; Bartels, Rietveld, Van Baal, & 
Boomsma, 2002; Feinstein, 2003). Thus, cognitive ability differences in 
early life are generally less predictable than at later ages. 

The 39 environmental measures accounted together for a fifth of the 
variance in cognitive development, with the strongest predictions 
coming from talking to (11.2%) and playing with the child (7% and 
8.1%), as well as chaos in the family home (5.4%) and parental disci-
pline (2.8%). Although we treated these and our other measures as 
‘environmental’, they are not truly exogenous to the individual (Dick, 
2011, Schmitz & Conley, 2017). Indeed, we found evidence for wide-
spread rGE, akin to previous studies (Abdellaoui et al., 2019; Krapohl 
et al., 2017), because the PGS correlated significantly with 29 of our 39 
environmental measures. Several of these rGE were greater than the 
prediction from PGS to cognitive development, reflecting that genetics 
exert much of their influences through the environment (cf. genetic 
confounding; Wertz et al., 2020). For example, our putatively environ-
mental measures of cognitive stimulation from the parents, including 
playing games, jointly reading books, and talking rhymes, correlated 
between 0.26 and 0.37 with PGS, suggesting that children's genetic 
propensities for cognitive development are drivers of the cognitive 
stimulation that they receive. In other words, children actively construct 
their environmental experiences for genetic reasons, rather than being 
passive recipients of environmental inputs. In general, rGE are referred 
to as passive, when they result from parents providing environments 
that correspond to their genetic propensities that they passed on to their 
children, as active, when children actively select themselves into envi-
ronments that match their genetics, and as evocative, when children 
shape their environment according to their genetic propensities (Avi-
nun, 2020; Plomin et al., 1977). rGE are the likely cause of the perva-
siveness of genetic influences for lifespan development, as children 
increasingly construct, select, and shape their environments as they 
grow up. 

We did not find conclusive evidence for significant GxE effects in our 
analyses, even though this was our primary research aim. In our 
environment-specific interaction models, no PGS x environment inter-
action term was associated with a p-value below the Bonferroni- 
corrected threshold of p < .001, with the only two interaction terms 
that were associated with p-values below 0.05, the conventional stan-
dard in significance testing, pertaining to air pollution. In our models 
that included direct (i.e., main) effects of all environmental measures 
and PGS, as well as their interactions, two interaction terms were 
associated with p-values of below 0.05 but these were not related to air 
pollution. In fact, one referred to correcting children's pronunciation of 
sentences and the other to the proportion males in top occupations in the 
post-code area. Both interaction terms accounted for marginal amounts 
of variance. We have no theoretical rationale to explain why these two 
variables would emerge as significant moderators of the association 
between PGS and cognitive development, rather than any of our other 
environmental measures, including the proportion of women in top 
occupations in the post-code area. Although our study was sufficiently 
powered to simultaneously model large number of environments and 

their interactions with PGS, we are cautious to interpret the significance 
of these two interaction terms as true finding, rather than one by chance. 
The two measures' moderating effects must be replicated in other sam-
ples before any conclusions about their roles are warranted. 

The modest predictive validity of PGS for children's differences in 
early life cognitive development in the current study is not necessarily 
the cause for failing to identify significant GxE effects. That is, the 
sensitivity of analyses to detect an interaction effect is relatively inde-
pendent of the main effect's effect size (Duncan & Keller, 2011; Keller, 
2014). For example, recent Monte Carlo Simulation studies, which 
estimated the power of GxE models with PGS for indexing genetic pro-
pensities, showed that the magnitude of the predictor's direct effects and 
their inter-correlation affected only negligibly the probability of 
detecting significant GxE (von Stumm, Lyon, & Nancarrow, 2022). 

Not finding significant GxE effects aligns with other studies that 
failed to detect meaningful moderations of genetic influences on 
phenotypic traits (e.g., Allegrini et al., 2020; Figlio et al., 2017; Kan-
daswamy et al., 2022; Plomin, Gidziela, Malanchini, & von Stumm, 
2022). This and other research suggest that identifying replicable GxE 
effects in the prediction of complex traits that are influenced by many 
genetic and environmental factors, like cognitive but also social- 
emotional development, may be impossible, at least with the methods 
that are currently available. Yet, some recent studies have reported 
significant GxE effects in samples of young adults from Scandinavia in 
the prediction of educational achievement (e.g., Cheesman et al., 2022; 
Ronda et al., 2022), a phenotype that correlates strongly with cognitive 
development (von Stumm, 2017). Future research will elucidate if the 
ability to detect significant GxE effects varies as a function of target 
phenotype (e.g., cognitive development versus educational achieve-
ment), assessment age (e.g., early life versus adulthood), and cultural 
context (e.g., national and geographical differences). 

4.1. Limitations 

Our study suffered three main limitations. The first concerns the 
assessment of children's early life environment. Although we included 
39 broad measures of the home and neighborhood environment, data on 
all environmental factors that affect children's cognitive development 
were not available, for example fathers' mental health or children's di-
etary habits. Also, our environmental variables differed in their scope 
and unit of measurement: Some were assessed by single items and some 
by established psychometric scales (e.g., chaos at home) or composite 
indices (e.g., SES). This problem affects all studies that seek to model 
environmental influences across levels and domains (von Stumm & 
d'Apice, 2022). Second, we operationalized genetic propensities as PGS 
but it is possible that GxE happen at a different level of measurement, 
perhaps at the level of a single gene or even single-nucleotide poly-
morphism (SNP). If that were the case, our environmental measures are 
also likely to be too high-level and coarse to detect interactions, but 
time-sensitive, momentary measures of environmental exposures would 
be needed. Furthermore, compared to heritability estimates from twin 
studies (e.g., Haworth et al., 2010), currently available PGS capture only 
a fraction of the genetic influences on cognitive development, a phe-
nomenon known as the ‘missing heritability gap’ (Maher, 2008; Manolio 
et al., 2009). It is therefore possible that current PGS are suboptimal 
measures of genetic influences on early life cognitive development. 
Third, the discovery GWA study (Lee et al., 2018) for creating the PGS 
and the target sample were both composed mainly of European ancestry 
making our findings less generalizable to other ancestry populations. 

5. Conclusion 

We used PGS to capture children's genetic propensities and 39 home 
and neighborhood measures to map their environments in a UK- 
representative population cohort to study the gene-environment inter-
play in cognitive development. We observed widespread rGE, suggesting 
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that children are assorted to environments in line with their genetic 
propensities, but found no evidence for significant GxE effects. The 
current results suggest that genetic influences, as indexed by PGS based 
on Lee et al.'s (2018) GWAS for years spent in education, on early life 
cognitive development are not conditioned by environments, and 
conversely that environmental effects on cognitive development do not 
vary as a function of genetics. Alas, it is premature to conclude that 
environmental interventions will benefit children's cognitive develop-
ment equally regardless of their genetic differences. The hypothesis that 
GxE effects exist in the prediction of cognitive development is too 
compelling to reject it, even in the face of the current null findings. 
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