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ABSTRACT

A huge literature on modeling cross-sectional dependence in panels has been developed using interactive
effects (IE). One area of contention is the hypothesis concerned with whether the regressors and factor
loadings are correlated or not. Under the null hypothesis that they are conditionally independent, we can
still apply the consistent and robust two-way fixed effects estimator. As an important specification test we
develop an LM test for both static and dynamic panels with IE. Simulation results confirm the satisfactory
performance of the LM test in small samples. We demonstrate its usefulness with an application to a total
of 22 datasets, including static panels with a small T and dynamic panels with serially correlated factors,
providing convincing evidence that the null hypothesis is not rejected in many datasets.
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1. Introduction

The pervasive evidence in favor of the presence of strong

cross-sectional dependence (CSD) in panels (e.g., Pesaran

2015) has prompted the development of rigorous econometric

methodology for explicitly modeling CSD,mainly throughmul-

tiplicative interactive effects (IE). Two leading approaches have

received considerable attention. The first approach proposed

by Bai (2009), on the basis of the principal component (PC)

estimation, estimates the factors and the main parameters in an

iterative manner. This has been extended byMoon andWeidner

(2015), Fernandez-Val and Weidner (2016), and Charbonneau

(2017). The second approach, referred to as the common

correlated effects (CCE) estimator advanced by Pesaran (2006),

treats factors as nuisance terms by removing their effects

through proxying them by the cross-section averages of the

dependent and independent variables. A few extensions have

been developed by Kapetanios, Pesaran, and Yamagata (2011),

Chudik and Pesaran (2015),Westerlund and Urbain (2015), and

Juodis (2022). See Chudik and Pesaran (2015) for an extended

survey.
The conventional wisdom is that the two-way fixed effects

(FE) estimator would be inconsistent in the presence of IE,
due to ignoring the correlation between the regressors and
factors/loadings (e.g., Bai 2009). However, if the regressors are
uncorrelated with the factor loadings (even if still correlated
with factors), then the two-way FE estimator is still unbiased.
This has been noted earlier by Coakley, Fuertes, and Smith
(2006), Sarafidis andWansbeek (2012), andWesterlund (2019a).
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Kapetanios, Serlenga, and Shin (2023) formally establish that
the FE estimator is consistent and asymptotically normally
distributed under this situation while proposing a robust het-
eroscedasticity and autocorrelation consistent (HAC) variance
estimator to deal with the presence of IE in error components.
In what follows, we refer to this estimator as the “robust FE
estimator”.

A number of specification tests have been proposed for test-
ing the presence of CSD or IE in panels, see Pesaran (2015),
Sarafidis, Yamagata, and Robertson (2009), Bai (2009), Castag-
netti, Rossi, and Trapani (2015), and Westerlund (2019b). As
discussed above, however, the rejection of the null hypothesis by
these tests does not always imply that the FE estimator is incon-
sistent. Surprisingly, the literature has been, in general, silent
on investigating whether regressors are uncorrelated with factor
loadings. This is the crucial hypothesis to be tested because if it
is not rejected, then we can still apply the robust FE estimator
as well as the PC estimator, though the consistency of the latter
requires that the estimated number of factors is equal to or
larger than the true one. Furthermore, under this situation,
the FE estimator can be easily applied to static panels with a
small number of time periods or dynamic panels with serially
correlated factors.

In order to fill this gap, Kapetanios, Serlenga, and Shin (2023)
developed a Hausman test that determines whether the regres-
sors and factor loadings are correlated or not. It focuses on test-
ing the null hypothesis that the difference between the FE and
PC estimators is zero in population. This procedure is intuitive
since we care about the cost of using the potentially inaccurate

© 2023 The Authors. Published with license by Taylor & Francis Group, LLC.
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FE estimator. Within the context of the factor augmented panel
data model, where both the dependent variable and regressors
share overlapping sets of factors, this is equivalent to testing that
regressors and loadings are conditionally independent. How-
ever, such a Hausman test requires the use of a well-specified
PC estimator for its implementation (e.g., the Stata commands
by Kripfganz and Sarafidis 2021), suggesting that it may still be
cumbersome from a practical perspective.

As a main contribution in this article we propose an LM
test that does not require the use of the PC estimator at all.
After applying the two-way within transformation to the panel
data model with IE, we only use the FE estimator to obtain
the residuals and construct an LM test statistic for determin-
ing the validity of the orthogonal moment conditions between
transformed regressors and residuals under the null hypothesis.
Further, by a portmanteau characterization of the LM test, we
propose the use of the first principal component of the regres-
sors, in constructing the LM test statistic. We show that this
approach can provide a valid test that is well behaved under
the null and the alternative hypotheses (see Theorem 1 and the
supporting simulation evidence in Section S4.4 in the online
supplement). Importantly, we also establish that the validity of
the LM test does not require consistent estimation of individual
slope parameters even for small T.

Further, Kapetanios, Serlenga, and Shin (2023) consider only
the static panel data model with large T, while the current paper
extends the LM test to the dynamic panel data model as well
as the static panel data model with small T. In addition, we
note that the performance of the Hausman test proposed by
Kapetanios, Serlenga, and Shin (2023) is very sensitive to model
misspecification.

Next, for a dynamic panel data model with IE and serially
correlated factors, we suggest the use of an autoregressive dis-
tributed lag (ARDL) approximation in constructing the LM test
statistic.We establish that the corresponding LM test follows the
χ2 distribution under the null hypothesis whereas it diverges
under the alternative hypothesis.

It is important to emphasize that our approach is designed to
develop a crucial specification test that ismissing in the literature
rather than provide a model building strategy, analogous to
conducting a serial correlation test. The proposed LM test then
complements the popular CD test by Pesaran (2015) and the
refined CD∗ test recently advanced by Pesaran and Xie (2022).
Given the pervasive evidence in favor of strong CSD, we suggest
applying the LM test to determine whether the form of IE inval-
idates the consistency of the FE estimator or not. However, it is
worth emphasizing that both CD and CD∗ tests are not always
satisfactory. The CD test fails to reject the null hypothesis of
weak error CSD when loadings have zero means, implying that
it displays very poor power when applied to cross-sectionally
demeaned data. Furthermore, Juodis andReese (2021) show that
the application of the CD test to regression residuals obtained
from models with IE, involves a bias, resulting in erroneous
rejections under the null hypothesis (e.g., Mastromarco, Ser-
lenga, and Shin 2016). Thus, the CD∗ test is developed to correct
the asymptotic bias of the CD test using the estimates of factor
loadings and error variances, though its performance crucially
relies upon a tuning parameter (the optimal number of factors).
On the contrary, we can establish the validity of the LM test

under weaker conditions, irrespective of the presence of CSD or
selecting the correct number of factors, as a tool for testing the
consistency of the FE estimator for the panel data models with
IE.

Via Monte Carlo experiments, we find that the finite
sample performance of the LM test is satisfactory even under
pronounced parameter heterogeneity, serial and weak cross-
sectional error correlation. Furthermore, its performance
remains satisfactory for static panels with a small number of
time periods and for dynamic panels with serially correlated
factors. The LM test is also robust to model misspecification,
unlike the Hausman test proposed by Kapetanios, Serlenga, and
Shin (2023) that tends to display severe size distortions in the
presence of neglected regressors.

Wedemonstrate the usefulness of the LM testwith an applica-
tion to a total of 22 datasets employed in the literature. At the 5%
(10%) significance the LM test does not reject the null hypothesis
in 12 (10) out of 14 datasets under the static panels whilst
the null is marginally rejected only once out of five datasets
under the dynamic framework. Furthermore, the LM test does
not reject the null hypothesis for all three static panels with a
small T. These results provide convincing evidence that the null
hypothesis of conditional independence between factor loadings
and the regressors is not rejected for many datasets.

The article proceeds as follows. Section 2 develops the LM test
for the null hypothesis of the conditional independence between
the regressors and factor loadings for static and dynamic panel
data models with IE and presents the asymptotic theory. Sec-
tion 3 investigates the finite sample performance of the LM
test. Section 4 presents empirical evidence. Section 5 offers
concluding remarks. Mathematical proofs and additional ana-
lytic/simulation results are relegated in the online supplement.

2. The LM Test

Consider a heterogeneous panel data model with interactive
effects:

yit = β ′
ixit + γ ′

if t + εit (1)

where yit is the dependent variable of the ith cross-sectional unit
in period t, xit = (xi,it , . . ., xk,it)

′ is the k× 1 vector of covariates
with β i the k×1 vector of parameters, and εit is an idiosyncratic
error. f t is an r×1 vector of unobserved factors and γ i is an r×1
vector of heterogeneous loadings.

For consistent estimation of β , two main approaches have
been proposed to account for unobserved factors. The CCE
estimator advanced by Pesaran (2006), imposes that xit share the
same factors, f t :

xit = �′
if t + vit (2)

where �i an r × k matrix of heterogeneous loadings and vit =
(v1it , . . ., vkit)

′ are idiosyncratic errors. CCE approximates f t by
the cross-section averages of the dependent and independent
variables. The DGP condition in (2) simplifies the analysis con-
siderably, but can be viewed as restrictive (see Remark 4). Next,
Bai (2009) allows xit to be arbitrarily correlated with both γ i

and f t , and proposes an iterative PC approach that estimates the
factors/loadings together with β .
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A number of specification tests have been proposed to test
the presence of CSD or IE in panels. The most popular test is the
cross-section dependence (CD) test proposed by Pesaran (2015,
2021) that is increasingly used as an ex-post diagnostic tool. The
CD test may be used as a model-selection tool, with a reduction
in the absolute value of the CD statistic typically being inter-
preted as an indication of an improved model specification. Bai
(2009) advances a Hausman test for testing the null hypothesis
of (two-way) additive fixed effects (i.e., γ ′

if t = αi + θt) against
the alternative of the multiplicative IE as

HB =
(
β̂FE − β̂PC

)′
V−1
B

(
β̂FE − β̂PC

)
. (3)

Under the null hypothesis, Bai (2009) derives that VB =
var

(
β̂PC

)
− var

(
β̂FE

)
and HB →d χ2

k where var
(
β̂FE

)
is

the variance estimator provided by the two-way FE estimation

and var
(
β̂PC

)
is the variance estimator that accommodates

unknown forms of heteroscedasticity and autocorrelation in
errors. Westerlund (2019b) proposes an alternative Hausman
test, denoted HW , by replacing the PC estimator with the CCE
estimator, see Section S2 in the Online Supplement for details.

The conventional wisdom is that if the CD test rejects
the null hypothesis of weak error CSD, then the FE esti-
mator is biased/inconsistent due to the endogeneity arising
from the correlation between the regressors and unobserved
factors/loadings. Notice, however, that if the regressors are
conditionally independent from loadings, the two-way FE
estimator is still consistent for the panel data model with IE.
This has been noted earlier by Coakley, Fuertes, and Smith
(2006), Sarafidis andWansbeek (2012), andWesterlund (2019a).
Under this situation, Kapetanios, Serlenga, and Shin (2023)
formally establish that the FE estimator is consistent and follows
an asymptotic normal distribution and propose the robust
FE estimator using the HAC variance estimator to deal with
the presence of IE in error components, that is shown to be
robust to the presence of heteroscedastic and serially-correlated
disturbances as well as parameter heterogeneity.

In empirical applications below we apply both CD test and
Bai’s Hausman test to several datasets employed in the literature.
Surprisingly, we find the conflicting result that the CD test
strongly rejects the null hypothesis of weak error CSD while the
HB test rarely rejects the null of (FE) additive-effects in most
datasets. A careful inspection reveals that if factor loadings and
the regressors are conditionally independent, then the HB test
becomes inconsistent. To investigate this issue, we examine the
powers of bothCDandHB tests for the heterogeneous panel data
with IE in Section S2 in the Online Supplement.We consider the
two experiments. Under Experiment 1 we generate the loadings
to be independent from the regressors while they are correlated
under Experiment 2. In both Experiments we maintain that the
regressors are correlated with factors. As expected, the CD test
results display that the null of weak residual CSD is strongly
rejected for all the data generating process (DGP) under both
Experiments. Under Experiment 1, however, the HB test does
not display any power and its rejection probability is close to
and sometimes lower than the nominal size, especially in the
presence of serially correlated errors. This is because the FE
estimator is still consistent under Experiment 1. The HB test is

consistent only under Experiment 2. This confirms the limita-
tion of applying the HB test in practice.

This suggests that the null hypothesis of the conditional
independence between the regressors and factor loadings
emerges as an influential but underappreciated feature of the
panel data model with IE. Surprisingly, the literature has been
silent on investigating this important issue. Pesaran (2006)
implicitly assumes that the factor loadings γ i in (1) and �i

in (2), are uncorrelated, see also Sarafidis, Yamagata, and
Robertson (2009). Westerlund and Urbain (2013) questions the
assumption of uncorrelated factor loadings while Bai (2009)
shows via simulations that the CCE estimator is biased when xit
is correlated with both γ i and f t . In this regard, we consider the
null and alternative hypotheses as follows:

H0 : E
(
γ i − E(γ i)

∣∣ xit , f t
)

= 0 ∀i (4)

H1 : E
(
γ i − E(γ i)

∣∣ xit , f t
)

�= 0 ∀i. (5)

This can be regarded as the important misspecification test
because if the null hypothesis (4) is not rejected, then the
(robust) two-way FE estimator is still valid to employ in the
panel data with IE.

Notice that γ ′
if t in (1) can be expressed equally as

γ ′
if t = μ + αi + θt + γ̊ ′

i ḟ t (6)

whereμ = γ̄ ′ f̄ ,αi = γ ′
i f̄ , θt = γ̄ ′f t , γ̊ i = γ i−γ̄ and ḟ t = f t− f̄

with γ̄ = N−1
∑N

i=1 γ i and f̄ = T−1
∑T

t=1 f t . Using (6), we
rewrite (1) as

yit = β ′
ixit + μ + αi + θt + γ̊ ′

i ḟ t + εit (7)

Applying the two-way within transformation to (7), we obtain:

ÿit = β ′
iẍit + üit , üit = γ̊ ′

i ḟ t + ε̈it (8)

where ÿit = yit − ȳi. − ȳ.t + ȳ..,yi. = T−1
∑T

t=1 yit ,y.t =
N−1

∑N
i=1 yit and ȳ.. = (NT)−1 ∑N

i=1

∑T
t=1 yit . Similarly for

ẍit and ε̈it . Under the null hypothesis, (4), it is easily seen by
E

(
γ̊ i

)
= E

(
γ i − γ̄

)
= 0 and assuming independence of

γ i from all other random quantities in the model that ẍit is

uncorrelatedwith the transformed composite error, üit = γ̊ ′
i ḟ t+

ε̈it , provided that xit are strictly exogenous with respect to εit

because E
(
ẍitγ̊

′
i ḟ t

)
= E

{
ẍit ḟ

′
tE

(
γ̊ i|ẍit , ḟ t

)}
= 0 (see also

Section 5 in Hsiao 2018). Therefore, under the null hypothesis
(4), we obtain the following k× 1 vector of moment conditions:

E
(
üit|ẍit

)
= 0. (9)

The conventional panel data without IE satisfies this condi-
tion under the maintained assumption that the regressors are
exogenous. Now, our main contribution lies in showing that this
moment condition can also be satisfied for the panel data model
with IE under our null hypothesis.

We obtain an individual two-way FE estimator of β i and the
mean group (MG) estimator by

β̂FE,i =
(
Ẍ

′
iẌi

)−1
Ẍ

′
iÿi and β̂FE,MG = 1

N

N∑

i=1

β̂FE,i (10)



4 G. KAPETANIOS, L. SERLENGA, AND Y. SHIN

Notice that β̂FE,i is unbiased but inconsistent for β i whereas

β̂FE,MG is
√
N-consistent for β = E(β i). We have: β̂FE,i − β i =(

Ẍ
′
iẌi

T

)−1 (
Ẍ

′
iḞ
T

)
γ̊ i +

(
Ẍ

′
iẌi

T

)−1 (
Ẍ

′
iεi
T

)
. Clearly,

(
Ẍ

′
iẌi

T

)−1

=

Op(1),

(
Ẍ

′
iḞ
T

)
= Op(1) and

Ẍ
′
iεi
T = Op(T

−1/2). Although

E

(
Ẍ

′
iḞ
T

)
γ̊ i = 0, we still have

(
Ẍ

′
iḞ
T

)
γ̊ i = Op(1). Hence, β̂FE,i

is unbiased but inconsistent. Next, we have: β̂FE,MG − β =
Op(N

−1/2) such that the MG estimator is
√
N consistent (see

Kapetanios, Serlenga, and Shin 2023). We conducted (unre-
ported) simulation exercises, finding that the biases of the indi-
vidual and MG estimators are mostly negligible. The variance
of the MG estimator declines with N, but that of the individual
estimator does not decline with T. Conversely, if xit and γ i are
correlated, both estimators are biased and inconsistent due to
E

(
ẍitüit

)
�= 0.

Stacking (8) over t, we have:

ÿi = Ẍiβ i + üi, üi = Ḟγ̊ i + ε̈i (11)

where ÿi =
(
ÿi1, . . ., ÿiT

)′
, üi = (üi1, . . ., üiT)′, Ẍi =

(
ẍi1, . . ., ẍiT

)′
, Ḟ =

(
ḟ 1, . . ., ḟ T

)′
and ε̈i = (ε̈i1, . . ., ε̈iT)′. Under

the moment conditions in (9), it is easily seen that

1√
N

N∑

i=1

Ẍ
′
iüi

T
→d N (0,V) under H0 (12)

where V = limN,T→∞ 1
N

∑N
i=1

Ẍ
′
iüiü

′
iẌi

T2 . Under H1 we have

E
(
ẍitüit

)
�= 0, from which we have:

1√
N

N∑

i=1

Ẍ
′
iüi

T
= Op

(√
N

)
(13)

Using the difference between (12) and (13), we can construct the
LM test statistic as follows:

LM =
(

1√
N

N∑

i=1

Ẍ
′
iüi

T

)′

V−1

(
1√
N

N∑

i=1

Ẍ
′
iüi

T

)

→d χ2
k under H0 (14)

whereas the test diverges under H1.
To develop an operational version of the LM test, we replace

üi by the FE residuals given by

̂̈ui = ÿi − Ẍiβ̂FE,i (15)

The corresponding statistic is identical to zero since Ẍi are

orthogonal to ̂̈ui, that is,
∑N

i=1 Ẍ
′
îüi = 0. We propose replacing

Ẍi by a fitted value, denoted
̂̈
Xi, and obtaining

̂̈
Xi in a simple

manner. We first estimate factors, denoted
̂̇
FX , obtained by

√
T

times theT×r eigenvectors corresponding to the r largest eigen-

values of the covariancematrix of the regressors, 1
NT

∑N
i=1 ẌiẌ

′
i.

Next, by a portmanteau characterization of the LM test, we
propose to employ only the first estimated factor corresponding
to the largest eigenvalue, though the true number of factors, r is
larger than one (see the proof of Theorem 1 and the supporting

simulation evidence in Section S4.4 in the Online supplement.)
Then, the final version of the LM test is constructed as follows:

LMX =

⎛
⎝ 1√

N

N∑

i=1

̂̈
X

′
îüi

T

⎞
⎠

′

V̂
−1

⎛
⎝ 1√

N

N∑

i=1

̂̈
X

′
îüi

T

⎞
⎠ (16)

where
̂̈
Xi = ̂̇

F
(1)

X

(
̂̇
F

(1)′
X

̂̇
F

(1)

X

)−1 ̂̇
F

(1)′
X Ẍi with

̂̇
FX =

(
̂̇
F

(1)

X , . . . ,
̂̇
F

(r)

X

)
, and V̂ = 1

N

∑N
i=1

̂̈
X

′
îüîü

′
i
̂̈
Xi

T2 .

We present Assumption A containing the regularity condi-
tions.

Assumption A. (i) E(εit) = 0, E
(
ε2it

)
= σ 2

εi
and E

(
ε2+δ
it

)
< ∞

for i = 1, . . . ,N; t = 1, . . . ,T and for some δ > 0. Let F−εit

be the σ -field of all stochastic elements in the panel data model,
apart from εit . Then, E

(
εit|F−εit

)
= 0.

(ii) f t has finite 2 + δ moments for some δ > 0.
(iii) γ i has finite mean, γ̄ and positive definite variance, �γ .

Let F−γ i
be the σ -field of all stochastic elements apart from γ i.

Then, under the null hypothesis (4), we have:

E
(
γ i − γ̄

∣∣F−γ i

)
= 0. (17)

Under the alternative hypothesis (5),
∑N

i=1 E

(
Ẍ

′
iḞγ̊ i
T

)
= O(N),

and
Ẍ

′
iḞγ̊ i
T −E

(
Ẍ

′
iḞγ̊ i
T

)
is a spatial martingale difference process

(see Definition 1 in the online supplement).

(iv) xit have finite 2+δmoments.

(
Ẍ

′
iẌi

T

)−1

and

(̂̇
F

(1)′
X

̂̇
F

(1)

X
T

)−1

exist for all T ≥ T0. Furthermore, the elements of

(
Ẍ

′
iẌi

T

)−1

,

(̂̇
F

(1)′
X

̂̇
F

(1)

X
T

)−1

,
̂̇
F

(1)′
X Ẍi

T ,
Ẍ

′
iḞ
T and

̂̇
F

(1)′
X Ḟ
T have finite 2 + δ moments

for all T ≥ T0 and for some δ > 0 uniformly over i. Finally,
supℓ,i,j,t,i �=j corr(xℓ,it , xℓ,jt) < 1.

Assumption A is much weaker than what is usually found
in the factor literature (e.g., Bai 2009; Karabiyik, Reese, and
Westerlund 2017; Cui et al. 2023; Cui, Sarafidis, and Yamagata
2022), mainly because the LM test requires the PC extraction
from regressors xit only, not the residuals from the main regres-
sion, (1). Further, we do not require that the unobserved factors
are consistently estimated by PC, thus, reducing the need for
restrictive assumptions. This is a substantial relaxation since we
only require existence of 2 + δ moments of εit instead of eighth
moments, usually imposed in this literature. In Section S.4.3 in
the Online Supplement, we show via further simulations that if
the higher moments (greater than 3) do not exist, then the FE
estimator outperforms the PC estimator in all sample sizes. For
simplicity we make a zero conditional expectation assumption
for the idiosyncratic errors εit , though it can be easily extended
to the case with a serial and (weak) cross-sectional correlation
at the expense of slightly more convoluted proofs (see Assump-
tion A’ used for the dynamic panel data model in the Online
Appendix and the simulation evidence in Section 3).We impose
a zero conditional expectation condition in (17) under the null
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hypothesis, that is weaker than independence of γ i across i. It is
slightly stronger than (4) but makes the theoretical derivations
much simpler. The first three parts of Assumption A(iv) are
standard identification conditions on the existence of moments
and their relevant inverses, and needed to derive the asymptotic
distribution of the LM test for fixed T, though it also holds
as T → ∞. The final part of A(iv) is a regularity condition
ensuring no pathological cases of perfect multicollinearity of
the regressors. This condition is simply satisfied for the case
where (2) holds, if E(vitv

′
it) is positive definite uniformly over

i and t, though we do not need to impose this condition for the
staticmodel. Finally, we slightly restrict our definition of the null
hypothesis in line with the technical proofs. Under the alterna-
tive hypothesis, we require that the sum of the expectations of
the product of the regressors and the factor components, over
panel units, explodes.

We have the main theoretical result in Theorem 1.

Theorem 1. Consider the static heterogeneous panel data model
with IE given by (1). Under Assumption A and under the null
hypothesis, (4), asN → ∞, the LMX test statistic in (16) asymp-
totically follows the χ2

k distribution, where k is the number of
regressors. Under the alternative hypothesis, (5), the LMX test is
consistent.

Remark 1. Theorem 1 holds for finite T as well as for T → ∞.
Initially, we place our work within a macroeconometric litera-
ture that views an effective estimation of β as a main aim. For
large T, it is natural to maintain an assumption that the regres-
sors are correlated with factors, f t (representing the common
policy or globalization trend) to avoid any omitted variables bias
while it remains an important issue to test whether the regressors
are correlated with the heterogeneous loadings. Moreover, there
is a growing literature inmicroeconometrics that focuses on esti-
mating causal effects by expanding models using factor compo-
nents. Examples include estimating causal/counterfactual effects
using synthetic controls (e.g., Arkhangelsky et al. 2021) or cau-
tioning about the causal interpretation of the two-way FE esti-
mator in difference-in-difference setups (e.g., Athey and Imbens
2022). In this regard our specification test can be regarded as a
significant contribution in this literature with large N and small
T, as it can provide support for the use of consistent and robust
FE estimator under the null hypothesis.

Remark 2. Notice that the LMX test remains valid in the absence
of a factor structure in yit . In this case the null hypothesis, (4),
makes no sense since there are no loadings. But, we can still
entertain the moment condition in (9) under which it is easily
seen that the LM test, based on extracting a principal component
that is well defined in the absence of a factor structure, follows
a χ2 distribution (see the simulation evidence in Section 3).
Hence, we can establish the validity of the LM test under weak
conditions, as a tool for testing the consistency of the two-way
FE estimation, irrespective of the presence of IE in the model.

Remark 3. We may construct the FE residuals using the MG

estimator such as ̂̈ui = ÿi − Ẍiβ̂FE,MG. We can still show that
the corresponding LM statistic follows a limitingχ2 distribution
under the null hypothesis (4), though there are complex techni-

cal issues related to establishing consistency of theHACvariance
estimator used in constructing the LM statistic. Thus, we focus
on the LMX test based on the individual FE estimator given by
̂̈ui = ÿi − Ẍiβ̂FE,i. The main advantage of this approach lies
in that the validity of the LM test does not require consistent
estimation of β i for small T. Furthermore, as we employ the
individual FE estimator from the transformed regression (8),
not the MG estimator, our approach does not need to make a
random coefficient assumption about β i (say, the k× 1 vector of
β i generated as β i = β + ηi, where ηi is independent across
i with E

(
ηi

)
= 0 and E

(
ηiη

′
i

)
= 
ηη,i), implying that our

main results hold irrespective of whether slope parameters are
homogeneous or heterogeneous (see the proof of Theorem 1 in
the Online Supplement).

Remark 4. It is important to emphasize that we do not have to
impose the DGP condition for xit in (2) in Theorem 1. xit may
have no factor or can contain different factors from those in yit .
For example, we can consider the general case where yit and xit
share a subset of common factors gt while they are subject to
further specific factors, f 1t and f 2t such that f yt = (g ′

t , f
′
1t)

′ and
f xt = (g ′

t , f
′
2t)

′ (see Monte Carlo evidence in Section 3). The
only condition required is A(iii). However, if we consider the
dynamic panel data, we need to impose amore specific structure
such as (2) (see Assumption A’ in the Online Appendix).

Remark 5. We can generalize our testing approach through
providing links with the monograph of Godfrey (1989) on the
LM testing approach. Consider the model,

yit = β ′
ixit + γ ′

izit + εit (18)

where zit can be any set of regressors that satisfy the usual regu-
larity conditions. Suppose that the estimated model is given by

yit = β ′
ixit + uit (19)

which is misspecified by missing zit such that uit = γ ′
izit +

εit = qit + εit with qit = γ ′
izit . By applying a two-way within

transformation, we obtain the estimated model by ÿit = β ′
iẍit +

üit and üit = q̈it + ε̈it where q̈it = γ̊ ′
iz̈it . Let sit be a set

of variables, designed to capture some model misspecification.
sit can overlap partly or wholly with zit , or be a proxy for

zit . For example, we have: sit = f̂ t and zit = f t . Define

φ = plimN,T→∞ (NT)−1 ∑N
i=1

∑T
t=1 sit q̈it that is a composite

parameter depending on a number of model parameters such as
regression coefficients and correlations between sit , xit and zit .

Notice that
∑N

i=1

∑T
t=1 sit q̈it is part of the score function of the

regression model,

yit = β ′
ixit + δ′

isit + εit (20)

evaluated at (β ′
i, δ

′
i)

′ = (β ′
i, 0

′)′. If φ = 0, we can use (19)
to carry out a consistent estimation of β , rather than using the
more complex model, (20) that requires the construction of sit ,
as a means of approximating (18). It would be cumbersome to

construct sit in some instances, as is the case for sit = f̂ t and
zit = f t . So we formally test the null hypothesis, φ = 0, using
the test statistic given by

(
1√
N

N∑

i=1

S̈
′
îüi

T

)′

V−1

(
1√
N

N∑

i=1

S̈
′
îüi

T

)
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where S̈i =
(
s̈i1, . . ., s̈iT

)′
and ̂̈ui = ÿi − Ẍiβ̂FE. This is not a

test of whether adding sit to (19) improves the model fit. Such a
test would be based on a panel version of the F-test, and would
reject the null, φ = 0, as long as γ i �= 0. What we test here is
whether we can consistently estimateβ by (19), coupledwith the

FE estimation. Notice that the two null hypotheses (H
(1)
0 : φ = 0

and H
(2)
0 : γ i = 0, ∀i) overlap under many circumstances. For

example, φ = 0 requires γ i = 0 under (1) and (2), if N = 1.
The fact that they do not overlap in our setting is closely linked
to our null hypothesis that xit is conditionally independent from
γ i, ∀i.

Remark 6. Another useful property of the LM test is its relative
robustness to model misspecification under the null hypothesis.
To formalize this we augment the model (18) to yit = β ′

ixit +
γ ′
if t+δ′

izit+εit and complete this specification by assuming that
xit follows (2) and setting zit = 
′

if t + ξ itwhere
i is iid across i

with finite mean, 
̄ and variance, ��. 
i are independent of
εjt and f t for all i, j and t. Suppose that we retain (19) as the
estimated model. Then, we examine if

plimN,T→∞

̂̈
X

′
îüi

T
= 0, (21)

which determineswhether the LM test retains its validity as a test
of the null hypothesis, (4) under the model misspecification. If
zit and xit are uncorrelated (i.e., vit and ξ it are uncorrelated),

it is straightforward to show that ̂̈uit =
(
β̂

′
FE − β ′

)
ẍit +

γ̊ ′
i ḟ t + δ̊

′
iz̈it + ε̈it such that (21) holds since p limN,T→∞ β̂FE −

β = 0. On the other hand, if zit and xit are correlated, then

p limN,T→∞ β̂FE − β = βb �= 0. Hence,

β ′
bẍit + γ̊ ′

i ḟ t + q̈it + ε̈it =
(
β ′
b�̊

′
i + γ̊ ′

i + δ̊
′
i
̊

′
i

)
ḟ t

+ β ′
bv̈it + δ̊

′
iξ̈ it + ε̈it .

As
̂̈
X

′
îüi contains the term �̊

′
iḞ

′
Ḟ�̊iβb, (21) does not hold. Then,

the LM test diverges with probability approaching one even
under the null hypothesis.

Remark 7. An extension of themodel (1) to cover nonstationary
factor models is feasible. For the case of I(1) factors (with I(0)
errors, εit and vit), it is easily seen that Theorem 1 holds under
Assumption A and the null hypothesis, (4). We explored this
issue in a limited Monte Carlo study. The results, not reported
for brevity, are available upon request.

Remark 8. Consider another modification, arising from weak
loading correlations. Define two sets of units. The first is the
set of unit indices, denoted I , for which (17) holds while the
complement is the set of unit indices, denoted Ic, for which (17)
does not hold. Denote the cardinality of Ic by N1 = O (N̟ ).
We refer to this setting as a weak factor case with exponent ̟ .
We then have:

1√
N

N∑

i=1

Ẍ
′
iḞγ̊ i

T
= 1√

N

∑

i∈I

Ẍ
′
iḞγ̊ i

T
+ 1√

N

∑

i∈IC

Ẍ
′
iḞγ̊ i

T

As long as ̟ < 1/2, it follows that

1√
N

∑

i∈I

Ẍ
′
iḞγ̊ i

T
=

√
N − N1√

N

1√
N − N1

∑

i∈I

Ẍ
′
iḞγ̊ i

T

→d N (0,R) ,

where

R = lim
N,T→∞

1

N

N∑

i=1

E

(
Ẍ

′
iḞ

T
γ̊ iγ̊

′
i

Ḟ
′
Ẍi

T

)
,

1√
N

∑

i∈IC

Ẍ
′
iḞγ̊ i

T
= op(1).

This implies that the presence of weak loading correlation (̟ <

1/2) does not affect the LM test inference. On the other hand, if
̟ ≥ 1/2,

1√
N

∑

i∈IC

Ẍ
′
iḞγ̊ i

T
= 1√

N

∑

i∈IC

[
Ẍ

′
iḞγ̊ i

T
− E

(
Ẍ

′
iḞγ̊ i

T

)]

+ 1√
N

∑

i∈IC

E

(
Ẍ

′
iḞγ̊ i

T

)
.

But,

1√
N

∑

i∈IC

[
Ẍ

′
iḞγ̊ i

T
− E

(
Ẍ

′
iḞγ̊ i

T

)]

= Op(1),
1√
N

∑

i∈IC

E

(
Ẍ

′
iḞγ̊ i

T

)
= Op

(
N̟−1/2

)
,

implying 1√
N

∑
i∈IC

Ẍ
′
iḞγ̊ i
T = Op

(
N̟−1/2

)
. Corollary 1 sum-

marizes the above discussions.

Corollary 1. Consider the panel data model with IE given by (1)
under a weak factor setting with exponent ̟ . Under Assump-
tion A, if ̟ < 1/2, then the LMX test statistic in (16) follows
the χ2

k distribution where k is the number of the regressors. If
̟ > 1/2, the LMX test is consistent.

2.1. Extension to Dynamic Panels with Large T

The homogeneous panel data model with lagged dependent
variables and IE has been analyzed byMoon andWeidner (2015,
2017), whopropose a quasimaximum likelihood (QML) estima-
tor. Song (2013) extends the iterative PC analysis of Bai (2009)
for dynamic panels under parameter heterogeneity, but provides
an asymptotic theory for the individual estimator only. Chudik
and Pesaran (2015) extend the CCE approach to heterogeneous
dynamic panels with IE, and propose a CCEMG estimator by
augmenting the model with a sufficient number of lagged cross-
sectional averages. Via Monte Carlo simulations, they demon-
strate that the CCEMG estimator and the MG estimator based
on Song’s (2013) individual PC estimator perform better than
Bai’s IPC estimator and the QML estimator by Moon and Wei-
dner (2015). The (bias-corrected) CCEMG estimator of the
autoregressive parameters on the lagged dependent variable still
exhibits significant bias, mainly due to the Nickel bias of order
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O(T−1). Recently, Norkute et al. (2021) develop two instrumen-
tal variable (IV) estimators for dynamic panel data models with
exogenous covariates and a multifactor error structure, when
both N and T are large, by projecting out the common factors
from the exogenous covariates and constructing instruments
based on defactored covariates. For a homogeneous model they
propose a two-step IV estimator, which is not subject to either
the small T Nickel bias or asymptotic biases, unlike the QML
estimator by Moon and Weidner (2015). For a heterogeneous
model they propose a mean group IV estimator, which is shown
to outperform the CCEMG estimator by Chudik and Pesaran
(2015).

Consider the heterogeneous dynamic panel data model
with IE:

ρi(L)yit = β ′
ixit + uit , uit = γ ′

if t + εit (22)

where ρi(L) = 1 −
∑p

j=1 ρijL
j. If the null hypothesis, (4) is not

rejected, then the (modified) two-way FE estimator will still be
valid to apply to the dynamic panel data with IE. Notice that
only the MG estimator is consistent for dynamic panels if the
parameters are heterogeneous (Pesaran and Smith 1995).

We first consider the case with serially uncorrelated factors,
f t . To show that the dynamic two-way FE estimator of ρij and
β i from (22) is unbiased under the null, we should ensure that
limT→∞ E(ÿi,t−jüit) = 0 for j = 1, . . ., p and E(ẍitüit) = 0.

It is clear by (9) that E(ẍitüit) = E(ẍitγ̊
′
i ḟ t) + E(ẍit ε̈it) =

0. Consider E(ÿi,t−1üit) = E(ÿi,t−1γ̊
′
i ḟ t) + E(ÿi,t−1ε̈it). Under

Assumption A, limT→∞ E(ÿi,t−1ε̈it) = 0. Further, it is easily

seen that limT→∞ E(ÿi,t−1γ̊
′
i ḟ t) = 0 if factors, f t are serially

uncorrelated. Hence, under the null, it is valid to apply the FE
estimator to the dynamic panel data model with IE. We then
construct the LMX test using the dynamic FE residuals given by

̂̈ui = ÿi −
p∑

j=1

ρ̂ijÿi,−j − Ẍiβ̂ i (23)

where ρ̂ij and β̂ i are the two-way dynamic FE estimator obtained
from (22). By Theorem 1, it is easily seen that LMX →d χ2

k
under the null hypothesis, (4).

Next, to deal with the challenging case where f t are serially
correlated, we suppose that f t follow an infinite order vector
autoregressive (VAR) process: �(L)f t = εft where �(L) =∑∞

j=1 �jL
j and εft is an r × 1 vector of iid errors. Now, the

dynamic FE estimator of ρij and β i from (22) is biased even
under the null, (4) because limT→∞ E(ÿi,t−jüit) �= 0 for j ≥ 1

due to E(ḟ t ḟ
′
t−j) �= 0. This suggests that the LMX test con-

structed using the FE residuals in (23), suffer from size distor-
tions.

In this regard, for a valid inference, we propose the use of the
following autoregressive distributed lag (ARDL) approximation
of (22):

yit =
∞∑

j=1

δijyit−j +
∞∑

j=0

ψ ′
ijxit−j + uit , uit = γ ′

iεft + εit (24)

This representation follows since yit and xit are generated
by a state space model where f t is the unobserved state. By

Theorem 1.2.1 of Hannan and Deistler (1989), the ARDL
representation formalizes the usual projection argument: yit −
E(yit|yit−1, . . ., xit , xit−1, . . .) = γ ′

iεft + εit . Then, it is easily

seen that E(ẍi,t−juit) = E(ẍi,t−j

(
γ̊ ′
iε̇ft + ε̈it

)
) = 0 for j ≥ 0 and

limT→∞ E(ÿi,t−jüit) = limT→∞ E(ÿi,t−j

(
γ̊ ′
iε̇ft + ε̈it

)
) = 0 for

j ≥ 1. Next, we propose the finite order ARDL approximation
of (24):

yit =
pT∑

j=1

δijyit−j +
pT∑

j=0

ψ ′
ijxit−j + uit + op(1) (25)

where we suggest using pT = O(lnT) or pT = O(T1/3) (e.g.,
Lewis and Reinsel 1988; Hannan and Deistler 1989; Chudik
and Pesaran 2015). Under the null hypothesis, (4), the two-way

dynamic ARDL estimator of δij and ψ ij from (25), denoted δ̂ij

and ψ̂ ij, will be unbiased. Hence, when constructing the proper
LMX test, we propose the use of the following ARDL residuals:

̂̈ui = ÿi −
pT∑

j=1

δ̂ijÿi,−j −
pT∑

j=0

Ẍi,−jψ̂ ij (26)

Assumption B. The lag polynomial, ρi(L) = 1 −
∑pi

j=1 ρijL
j in

(22) has the roots outside the unit circle such that
∣∣ρij

∣∣ ≤ cj for

some 0 < c < 1. The VAR lag polynomial, �(L) =
∑∞

j=1 �jL
j

satisfy
∥∥�j

∥∥
s

≤ cj where ||.||s denotes spectral norm, and
0 < c < 1. The idiosyncratic errors, εit and εft are serially
uncorrelated and mutually independent.

To show that the LMX test constructed, using the ARDL
residuals in (26), follows the χ2 distribution asymptotically
under the null hypothesis, (4), we need to strengthen Assump-
tion A, replaced by Assumption A’ in the Online Supplement.
We also consider a setting with T → ∞ and impose the DGP
condition in (2). These refinements are needed to accommodate
the case with serially correlated factors.

Theorem 2. Consider the dynamic heterogeneous panel data
model with IE given by (22) and (2), the ARDL representa-
tion, (24) and the ARDL approximation, (25). Then, under
Assumption A’ and B and under the null hypothesis, (4), as
N,T → ∞, the LMX test statistic in (16), constructed using the
ARDL residuals in (26), follows a χ2

k distribution where k is the
dimension of Xi. Under the alternative hypothesis, (5), the LMX

test is consistent.

Remark 9. Theorems 1 and 2 do not require any particular
relative rates forN and T for the validity of the LM test. For large
N andT, we only need to show that the dominant termof the LM
test statistic tends to a normal variate while the remaining terms
tend to zero. This is shown to be theoretically less demanding
than deriving convergence rates for the pooled orMGestimators
that would involve handling asymptotic biases.

Remark 10. In practice we suggest to apply the LMX test with the
ARDL residuals to the dynamic panel data with IE, irrespective
of whether factors are serially correlated or not. See Section
S4.5 in theOnline Supplement for the comprehensive simulation
results. In the presence of serially correlated factors, the dynam-
ics given by ρi(L) in (22), do not capture the full dynamics of
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the panel data model due to neglecting the dynamics embedded
in f t . In this regard, if the LMX test does not reject the null
hypothesis, then we suggest the ARDL model, (25) as a proper
dynamic specification.

Remark 11. It is not straightforward to find the one-to-one
relationship between the parameters in (22) and (25). If we are
still interested in consistently estimating the parameters of the
model, (22) under the null hypothesis, then we may consider
applying the IV estimation, similarly to Norkute et al. (2021).
For convenience we focus on the simple dynamic panel model
with IE:

yit = ρiyi,t−1 + β ′
ixit + uit , uit = γ ′

if t + εit

or in the matrix notation,

yi = φiyi,−1 + Xiβ i + Fλi + ei = W iθ i + ui

where W i = (yi,−1,Xi, ) and θ i = (φi,β
′
i)

′. We consider the
(internal) IV matrix given by Zi = (Xi,−1,Xi), which satisfies

the orthogonality condition, E[Z̈′
iüi] = 0 under the null. Given

E[Z̈′
iẄ i] �= 0, θi can be consistently estimated by θ̂ IV,i =[(
Ẅ

′
iZ̈i

) (
Z̈

′
iZ̈i

)−1 (
Z̈

′
iẄ i

)]−1 [(
Ẅ

′
iZ̈i

) (
Z̈

′
iZ̈i

)−1 (
Z̈

′
iÿi

)]
,

which is referred to as the IVFE estimator. We find via
simulations that ρ̂IV,i and β̂IV,i and their MG counterparts show
negligible biases though the bias of ρi is higher than that of βi

in small samples. But, the LMX test constructed using the IVFE
residuals given by (S.50), tends to over-reject the null for largeN,
especially if the serial correlation of the factors is pronounced.
See Section S4.6 in the Online Supplement.

3. Monte Carlo Simulations

Wexamine the size and power performance of the LMX statistic
in (16) under both static and dynamic panel data frameworks.

3.1. Monte Carlo Design

As a benchmark, we generate the data with two regressors (k =
2) and two factors (r = 2):

yit = βi1xit1 + βi2xit2 + γi1ft1 + γi2ft2 + εit , (27)

xit1 = �i11ft1 +�i12ft2 +vit1 and xit2 = �i21ft1 +�i22ft2 +vit2.
(28)

We allow serial correlation and weak cross-sectional correlation
in εit by generating εit = ρεεi,t−1 + υit + θ

∑
|h|≤8

υi−h,t with

υit ∼ iidN(0, 1), ρε = 0.5 and θ = 0.2. We generate
(vit1, vit2)

′ ∼ iidN(0, I2) and (ft1, ft2)
′ ∼ iidN(0.5, I2) (the

simulation results for serially correlated factors are qualitatively
similar and available upon request). To test the validity of the
LM test, we generate the factor loadings, (γi1, γi2), (�i11,�i12)

and (�i21,�i22) under the following two experiments:

• Experiment 1 (independent factor loadings): γi1 ∼ iidU(0, 1),
γi2 ∼ iidU(0, 1), �i11 ∼ iidU(0, 1), �i12 ∼ iidU(0, 1),
�i21 ∼ iidU(0, 1), and �i22 ∼ iidU(0, 2) such that

E

⎛
⎝

γi1 γi2
�i11 �i12

�i21 �i22

⎞
⎠ =

⎛
⎝

0.5 0.5
0.5 0.5
0.5 1

⎞
⎠

• Experiment 2 (correlated factor loadings): γi1 ∼ iidU(0, 1),
γi2 ∼ iidU(0, 2), �i11 = γi1, �i12 ∼ iidU(0, 1), �i21 ∼
iidU(0, 1), and �i22 = γi2.

We explore the performance of the LMX test under the
parameter heterogeneity by generating βik = 1 + ηik
for k = {1, 2}. We have also constructed DGPs with the
different number of regressors and factors; namely for k =
{1, 2, 3} and r = {0, 1, 2, 3, 4}. See Section S3 in the Online
Supplement for a full description. We examine the following
three cases for r = {0, 1, 2, 3, 4}: Case 1: Weak heterogeneity
with ηik ∼ iidN(0, 0.04); Case 2: Medium heterogeneity
with ηik ∼ iidN(0, 0.25); Case 3: Strong heterogeneity with
ηik ∼ iidN(0, 1). We consider the following combinations of
(N,T) = {30, 50, 100, 200}. We set the number of replications
at R = 1000.

3.2. The Performance of the LMX Statistic

We evaluate the size of the LMX test under Experiment 1 and the
power under Experiment 2. If r = 0, we only report the size of
the test. Table 1 reports the size performance under Experiment
1 with k = {1, 2, 3}, respectively. The size of the LMX test is
close to the nominal level (5%) for all sample sizes and its per-
formance is shown to be invariant to the number of regressors,
the number of factors and the different strengths of parameter
heterogeneity.

In Table 2 we present the power performance. Overall, the
LMX test is reasonably powerful even forT = 30, but it becomes
consistent as the sample size increases. Even as the parameter
heterogeneity gets stronger and/or the number of regressors and
factors increases, the power of the LMX test remains satisfactory
in most cases.

We find that the finite sample performance of the LMX

test is satisfactory in all cases considered, even under strong
heterogeneity. Overall simulation results demonstrate that
the LMX test is robust to serial correlation and weak cross-
sectional correlation in errors as well as the slope hetero-
geneity.

Section S.4.1 in the Online Supplement explores the per-
formance of the LM test when both factors and loadings are
generated by a zero mean process. The performances of the LM
test reported in Tables S.5 and S.6 are qualitatively similar to
those in Tables 1 and 2. Furthermore, in Section S4.2, we report
additional simulation results for the following cases: CaseAwith
homogeneous parameters, β = 1 for all i and iid errors; Case
B with homogeneous parameters and serially and weakly cross-
sectionally correlated errors; Case Cwith heterogeneous param-
eters, βik = 1 + ηik and iid errors; Case D with heterogeneous
parameters, and serially and weakly cross-sectionally correlated
errors. The simulation results for Cases A–C are qualitatively
similar to those reported here for Case D.

Further, we evaluate the size and power performance the
LMX test in panels with small T (T = 3, 5) in conjunction
with (N = 30, 50, 100, 200), using DGPs with one regressor and
two factors (see Section S.3.1.2 for details) and set β1 = 1. We
consider two cases:

• Case A with iid error, εit ∼ iidN(0, 1).
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Table 1. The size of the LMX test under Experiment 1.

Experiment 1

Case 1 Case 2 Case 3

T/N 30 50 100 200 30 50 100 200 30 50 100 200

k = 1
r = 0

30 0.034 0.048 0.047 0.049 0.050 0.053 0.054 0.061 0.036 0.039 0.048 0.040
50 0.033 0.039 0.053 0.053 0.038 0.036 0.045 0.064 0.039 0.050 0.035 0.054
100 0.047 0.050 0.051 0.048 0.052 0.044 0.052 0.045 0.028 0.037 0.051 0.051
200 0.038 0.042 0.048 0.039 0.043 0.034 0.051 0.043 0.046 0.027 0.049 0.040

r = 1
30 0.037 0.050 0.057 0.048 0.045 0.047 0.075 0.044 0.044 0.044 0.053 0.044
50 0.059 0.045 0.054 0.046 0.056 0.048 0.042 0.044 0.061 0.046 0.046 0.040
100 0.043 0.059 0.038 0.049 0.043 0.047 0.055 0.059 0.053 0.050 0.043 0.058
200 0.059 0.054 0.041 0.048 0.049 0.040 0.054 0.053 0.045 0.053 0.054 0.050

r = 2
30 0.046 0.054 0.047 0.063 0.053 0.049 0.053 0.042 0.057 0.034 0.061 0.035
50 0.052 0.050 0.047 0.043 0.051 0.046 0.066 0.054 0.040 0.054 0.045 0.062
100 0.050 0.037 0.059 0.049 0.047 0.060 0.054 0.050 0.045 0.041 0.048 0.045
200 0.052 0.055 0.045 0.051 0.047 0.063 0.057 0.052 0.051 0.045 0.053 0.044

r = 3
30 0.050 0.040 0.046 0.055 0.049 0.051 0.046 0.036 0.044 0.055 0.049 0.051
50 0.041 0.045 0.047 0.036 0.044 0.041 0.059 0.048 0.048 0.038 0.042 0.048
100 0.052 0.049 0.056 0.048 0.043 0.041 0.054 0.053 0.054 0.044 0.043 0.049
200 0.042 0.044 0.060 0.051 0.045 0.057 0.051 0.052 0.040 0.051 0.042 0.046

r = 4
30 0.053 0.055 0.040 0.064 0.053 0.045 0.041 0.058 0.056 0.053 0.056 0.056
50 0.050 0.046 0.066 0.041 0.045 0.039 0.047 0.052 0.056 0.046 0.043 0.053
100 0.044 0.061 0.043 0.042 0.058 0.050 0.050 0.055 0.052 0.051 0.050 0.045
200 0.046 0.048 0.047 0.043 0.044 0.041 0.058 0.053 0.043 0.051 0.036 0.048

k = 2
r = 0

30 0.035 0.052 0.050 0.045 0.039 0.053 0.037 0.046 0.041 0.045 0.046 0.049
50 0.044 0.053 0.040 0.058 0.029 0.042 0.056 0.052 0.052 0.033 0.050 0.061
100 0.038 0.046 0.050 0.048 0.043 0.048 0.040 0.054 0.029 0.048 0.050 0.045
200 0.041 0.044 0.051 0.031 0.031 0.040 0.054 0.041 0.042 0.036 0.044 0.045

r = 1
30 0.035 0.051 0.053 0.057 0.040 0.051 0.042 0.046 0.053 0.044 0.048 0.044
50 0.040 0.039 0.053 0.046 0.028 0.045 0.032 0.045 0.044 0.039 0.052 0.058
100 0.045 0.045 0.040 0.048 0.041 0.047 0.052 0.048 0.045 0.039 0.050 0.047
200 0.041 0.054 0.050 0.051 0.049 0.043 0.046 0.055 0.037 0.037 0.041 0.055

r = 2
30 0.046 0.037 0.049 0.047 0.039 0.044 0.043 0.049 0.048 0.059 0.057 0.045
50 0.042 0.041 0.045 0.044 0.049 0.042 0.048 0.055 0.045 0.046 0.059 0.033
100 0.032 0.048 0.048 0.058 0.043 0.044 0.045 0.050 0.039 0.045 0.045 0.051
200 0.038 0.058 0.046 0.055 0.035 0.039 0.049 0.044 0.035 0.041 0.045 0.056

, r = 3
30 0.050 0.051 0.043 0.050 0.033 0.051 0.059 0.045 0.030 0.037 0.044 0.050
50 0.038 0.055 0.058 0.040 0.045 0.041 0.049 0.059 0.035 0.041 0.050 0.056
100 0.042 0.034 0.045 0.044 0.035 0.037 0.037 0.050 0.028 0.040 0.047 0.047
200 0.041 0.048 0.047 0.053 0.039 0.040 0.054 0.051 0.039 0.040 0.050 0.043

r = 4
30 0.052 0.028 0.079 0.051 0.046 0.039 0.046 0.062 0.049 0.048 0.041 0.042
50 0.039 0.058 0.049 0.043 0.033 0.050 0.045 0.046 0.036 0.038 0.038 0.049
100 0.038 0.043 0.050 0.053 0.043 0.042 0.038 0.036 0.034 0.036 0.042 0.054
200 0.046 0.040 0.046 0.052 0.036 0.053 0.052 0.052 0.040 0.043 0.052 0.049

k = 3
r = 0

30 0.036 0.043 0.037 0.043 0.034 0.042 0.046 0.056 0.038 0.047 0.027 0.044
50 0.042 0.047 0.052 0.047 0.036 0.044 0.050 0.043 0.032 0.034 0.048 0.034
100 0.030 0.042 0.049 0.058 0.032 0.036 0.041 0.045 0.032 0.044 0.043 0.048
200 0.030 0.044 0.060 0.044 0.030 0.049 0.038 0.037 0.032 0.047 0.059 0.057

r = 1
30 0.032 0.048 0.045 0.035 0.033 0.038 0.035 0.043 0.031 0.038 0.046 0.047
50 0.029 0.038 0.043 0.047 0.035 0.051 0.046 0.046 0.024 0.034 0.041 0.051
100 0.032 0.040 0.050 0.049 0.032 0.047 0.051 0.048 0.026 0.033 0.035 0.037
200 0.050 0.052 0.057 0.048 0.032 0.044 0.047 0.055 0.033 0.042 0.048 0.054

(Continued)
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Table 1. (Continued)

Experiment 1

Case 1 Case 2 Case 3

T/N 30 50 100 200 30 50 100 200 30 50 100 200

r = 2
30 0.041 0.039 0.054 0.047 0.026 0.051 0.037 0.049 0.030 0.036 0.045 0.044
50 0.034 0.034 0.043 0.047 0.034 0.034 0.047 0.034 0.039 0.044 0.027 0.043
100 0.033 0.047 0.041 0.052 0.027 0.044 0.045 0.054 0.028 0.038 0.035 0.054
200 0.039 0.047 0.047 0.043 0.035 0.047 0.046 0.046 0.028 0.045 0.045 0.048

r = 3
30 0.036 0.050 0.046 0.041 0.033 0.039 0.044 0.058 0.033 0.032 0.039 0.045
50 0.037 0.036 0.044 0.041 0.026 0.046 0.049 0.031 0.030 0.040 0.045 0.043
100 0.034 0.048 0.057 0.045 0.047 0.041 0.036 0.051 0.039 0.030 0.039 0.037
200 0.035 0.032 0.060 0.047 0.030 0.044 0.050 0.053 0.035 0.037 0.040 0.046

r = 4
30 0.023 0.056 0.045 0.053 0.036 0.037 0.041 0.047 0.019 0.044 0.040 0.036
50 0.036 0.046 0.036 0.052 0.029 0.040 0.037 0.044 0.029 0.041 0.041 0.051
100 0.028 0.033 0.056 0.047 0.035 0.039 0.045 0.063 0.019 0.046 0.035 0.038
200 0.039 0.035 0.040 0.046 0.026 0.041 0.054 0.055 0.039 0.035 0.045 0.044

NOTE: LMX denotes the LM test in (16),wherewe construct the residuals üit in (15) using the individual FE estimator, β̂FE,i .Weassumeparameter heterogeneity,βik = 1+ηik
and examine three cases: Case 1 (weak heterogeneity) with ηik ∼ iidN(0, 0.04); Case 2 (medium heterogeneity) with ηik ∼ iidN(0, 0.25); Case 3 (strong heterogeneity)
with ηik ∼ iidN(0, 1). k is the number of regressors and r the number of factors.

Table 2. The power of the LMX test under Experiment 2.

Experiment 2

Case 1 Case 2 Case 3

T/N 30 50 100 200 30 50 100 200 30 50 100 200

k = 1
r = 1

30 0.998 1 1 1 0.973 0.998 1 1 0.699 0.894 0.999 1
50 1 1 1 1 0.993 1 1 1 0.730 0.916 0.999 1
100 1 1 1 1 0.998 1 1 1 0.774 0.941 1 1
200 1 1 1 1 1 1 1 1 1 0.956 1 1

r = 2
30 0.996 1 1 1 0.940 0.996 1 1 0.638 0.863 0.990 1
50 1 1 1 1 0.977 0.998 1 1 0.686 0.882 0.991 1
100 1 1 1 1 0.986 1 1 1 0.701 0.886 0.999 1
200 1 1 1 1 0.995 1 1 1 0.709 0.922 0.999 1

r = 3
30 0.992 0.999 1 1 0.929 0.991 1 1 0.588 0.807 0.968 0.998
50 1 1 1 1 0.970 0.997 1 1 0.616 0.843 0.983 1
100 1 1 1 0.977 1 1 1 0.664 0.856 0.993 1
200 1 1 1 1 0.991 1 1 1 0.660 0.899 0.993 1

r = 4
30 0.992 1 1 1 0.880 0.984 1 1 0.539 0.746 0.948 0.997
50 0.999 1 1 1 0.935 0.997 1 1 0.608 0.786 0.967 1
100 1 1 1 1 0.962 0.998 1 1 0.622 0.828 0.982 1
200 1 1 1 1 0.969 1 1 1 0.610 0.842 0.988 1

k = 2
r = 1

30 0.993 1 1 1 0.802 0.969 1 1 0.308 0.569 0.873 0.996
50 0.998 1 1 1 0.831 0.978 0.999 1 0.349 0.588 0.911 0.998
100 1 1 1 1 0.885 0.991 1 1 0.364 0.620 0.926 0.998
200 1 1 1 1 0.880 0.992 1 1 0.382 0.609 0.916 1

r = 2
30 0.973 0.998 1 1 0.711 0.956 0.998 0.999 0.307 0.539 0.861 0.992
50 0.995 0.999 1 1 0.810 0.965 1 1 0.327 0.570 0.898 0.999
100 1 1 1 1 0.860 0.988 1 1 0.357 0.599 0.917 0.997
200 1 1 1 1 0.882 0.988 1 1 0.336 0.592 0.923 0.998

r = 3
30 0.956 0.993 1 0.999 0.695 0.927 0.996 0.999 0.306 0.511 0.833 0.978
50 0.995 1 1 1 0.804 0.975 1 1 0.330 0.593 0.887 0.992
100 0.999 1 1 1 0.854 0.981 1 1 0.341 0.600 0.899 0.997
200 1 1 1 1 0.896 0.995 1 1 0.352 0.609 0.927 0.999

(Continued)
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Table 2. (Continued)

Experiment 2

Case 1 Case 2 Case 3

T/N 30 50 100 200 30 50 100 200 30 50 100 200

r = 4
30 0.935 0.991 0.999 1 0.665 0.901 0.988 0.999 0.278 0.474 0.786 0.962
50 0.991 0.999 1 1 0.744 0.954 0.999 1 0.289 0.523 0.839 0.982
100 0.996 1 1 1 0.810 0.970 1 1 0.293 0.537 0.853 0.988
200 0.999 1 1 1 0.822 0.979 1 1 0.320 0.564 0.871 0.997

k = 3
r = 1

30 0.946 0.999 1 1 0.518 0.831 0.993 1 0.167 0.314 0.646 0.935
50 0.987 1 1 1 0.561 0.853 0.997 1 0.194 0.334 0.686 0.945
100 0.993 1 1 1 0.621 0.897 0.997 1 0.177 0.356 0.691 0.954
200 1 1 1 1 0.642 0.899 0.999 1 0.179 0.347 0.693 0.956

r = 2
30 0.900 0.988 1 1 0.459 0.779 0.988 1 0.144 0.280 0.601 0.918
50 0.967 1 1 1 0.528 0.876 0.997 1 0.182 0.320 0.652 0.946
100 0.995 1 1 1 0.588 0.900 0.996 1 0.159 0.347 0.699 0.958
200 0.992 1 1 1 0.590 0.911 0.999 1 0.159 0.331 0.700 0.967

r = 3
30 0.863 0.992 0.999 1 0.460 0.754 0.977 0.999 0.143 0.318 0.620 0.918
50 0.942 1 1 1 0.497 0.847 0.988 1 0.157 0.331 0.658 0.930
100 0.989 1 1 1 0.588 0.886 0.998 1 0.180 0.349 0.717 0.955
200 0.997 1 1 1 0.596 0.901 1 1 0.167 0.359 0.712 0.967

r = 4
30 0.828 0.978 1 1 0.404 0.713 0.963 0.998 0.138 0.287 0.586 0.865
50 0.940 0.996 1 1 0.465 0.805 0.987 0.999 0.147 0.298 0.612 0.897
100 0.975 1 1 1 0.502 0.809 0.992 1 0.155 0.314 0.630 0.927
200 0.995 1 1 1 0.553 0.855 0.998 1 0.151 0.306 0.665 0.945

NOTE: see notes to Table 1.

• Case B with serially and weakly cross-sectionally correlated
error generated by εit = ρεεi,t−1 + υit + θ

∑
1≤h≤8

υi−h,t with

υit ∼ iidN(0, 1), ρε = 0.5 and θ = 0.2.

Table 3 reports the size and power performance of the LMX

test for T = 3, 5. The size of the LMX test is close to the
nominal level (5%) for all cases consideredwhile its performance
is shown to be invariant to the number of factors. The size
performance of the LMX test is also robust to serial and weak
cross-sectional error correlation. Given the fixed T (as small as
T = 3), the power of the LMX test rises monotonically with N.
Overall, the power of the LMX test remains satisfactory.

3.3. Robustness toMisspecification

To investigate the size performance of the LMX test in the
presence of model misspecification, we generate the DGP using
three regressors (k = 3) and two factors (r = 2), but apply the
LMX test as if k = 1:

yit = βi1xit1 + βi2xit2 + βi3xit3 + γi1ft1 + γi2ft2 + εit , (29)

xit1 = �i11ft1 + �i12ft2 + vit1, xit2 = �i21ft1 + �i22ft2 + vit2,

xit3 = �i31ft1 + �i32ft2 + vit3.

We allow serial correlation and weak cross-sectional correlation
in εit by generating εit = ρεεi,t−1+υit+θ

∑
1≤h≤8

υi−h,t with υit ∼

iidN(0, 1), ρε = 0.5 and θ = 0.2. We generate (vit1, vit2, vit3)
′ ∼

iidN(0, I3) and (ft1, ft2)
′ ∼ iidN(0.5, I2). We generate the factor

loadings only under Experiment 1 (independent factor loadings)

as follows: γi1 ∼ iidU(0, 1), γi2 ∼ iidU(0, 1); �i11 ∼ iidU(0, 1),
�i12 ∼ iidU(0, 1); �i21 ∼ iidU(0, 1), �i22 ∼ iidU(0, 1); �i31 ∼
iidU(0, 1), �i32 ∼ iidU(0, 2) such that

E

⎛
⎜⎜⎝

γi1 γi2
�i11 �i12

�i21 �i22

�i31 �i32

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.5 0.5
0.5 0.5
0.5 0.5
0.5 1

⎞
⎟⎟⎠ .

We explore the size performance of the LMX test by gener-
ating βik = 1 + ηik for k = 1, 2, 3, and examine the following
three cases for r = 0, 1, 2, 3, 4: Case 1: weak heterogeneity with
ηik ∼ iidN(0, 0.04); Case 2: medium heterogeneity with ηik ∼
iidN(0, 0.25); Case 3: strong heterogeneitywith ηik ∼ iidN(0, 1).
We consider the combinations of (N,T) = {30, 50, 100, 200},
and set the number of replications at R = 1000.

The results in Table 4 display that the size of the LMX test
is mostly close to the nominal level (5%) in all cases consid-
ered, confirming that it is robust to model misspecication. For
comparison, we report the size performance of the Hausman
test proposed by Kapetanios, Serlenga, and Shin (2023), which is
severely oversized in the presence of neglected regressors, lead-
ing to an incorrect rejection of the null hypothesis in all cases.

3.4. Extension to Heterogeneous Dynamic Panel Data

Models with Large T

We generate the heterogeneous dynamic panel data with a single
regressor (k = 1) and two factors (r = 2):

yit = ρiyi,t−1 + βixit + γi1f1t + γi2f2t + εit , xit

= �i11f1t + �i12f2t + vit (30)
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Table 3. The size and power of the LMX test with small T and k = 1.

Experiment 1

Case A Case B

T/N 30 50 100 200 30 50 100 200

r = 1
3 0.047 0.041 0.071 0.046 0.049 0.042 0.047 0.050
5 0.045 0.043 0.048 0.058 0.048 0.050 0.054 0.045

r = 2
3 0.054 0.055 0.054 0.066 0.049 0.042 0.047 0.050
5 0.042 0.045 0.044 0.051 0.048 0.050 0.054 0.045

r = 3
3 0.044 0.052 0.056 0.044 0.042 0.039 0.046 0.047
5 0.039 0.056 0.054 0.045 0.042 0.038 0.046 0.055

r = 4
3 0.033 0.047 0.048 0.061 0.048 0.057 0.041 0.057
5 0.053 0.046 0.053 0.051 0.044 0.064 0.050 0.041

Experiment 2
r = 1

3 0.141 0.262 0.413 0.564 0.153 0.248 0.381 0.540
5 0.456 0.640 0.829 0.912 0.408 0.576 0.776 0.876

r = 2
3 0.138 0.261 0.378 0.567 0.138 0.247 0.358 0.545
5 0.404 0.615 0.809 0.920 0.372 0.526 0.743 0.887

r = 3
3 0.146 0.242 0.394 0.530 0.140 0.213 0.358 0.546
5 0.376 0.601 0.781 0.919 0.358 0.544 0.754 0.896

r = 4
3 0.148 0.210 0.384 0.552 0.140 0.202 0.322 0.541
5 0.329 0.549 0.775 0.912 0.304 0.463 0.724 0.881

NOTE: LMX denotes the LM test defined in (16), where we construct the residuals üit in (15) using the individual FE estimator, β̂FE,i . The performance of the LMX test is
explored under parameter homogeneity, β = 1 and k = 1. We examine two cases. Case A with iid error, εit ∼ iidN(0, 1) and Case B with serially and weakly cross-
sectionally correlated error generated by εit = ρεεi,t−1 + υit + θ

∑
1≤h≤8

υi−h,t with υit ∼ iidN(0, 1), ρε = 0.5 and θ = 0.2.

Table 4. The size of the LMX and HKSS tests in the presence of the model misspecification.

Case 1 Case 2 Case 3

T/N 30 50 100 200 30 50 100 200 30 50 100 200

r = 0
LMX

30 0.044 0.041 0.050 0.047 0.046 0.053 0.059 0.059 0.042 0.036 0.048 0.046
50 0.046 0.044 0.067 0.048 0.046 0.048 0.056 0.055 0.045 0.046 0.057 0.047
100 0.041 0.039 0.054 0.052 0.050 0.045 0.040 0.040 0.035 0.037 0.041 0.048
200 0.044 0.041 0.053 0.037 0.036 0.048 0.052 0.053 0.035 0.046 0.038 0.038

HKSS
30 0.911 0.917 0.945 0.946 0.944 0.948 0.964 0.978 0.953 0.970 0.977 0.987
50 0.934 0.939 0.963 0.975 0.971 0.975 0.989 0.995 0.967 0.980 0.984 0.996
100 0.967 0.968 0.974 0.991 0.980 0.983 0.992 0.995 0.965 0.975 0.997 0.996
200 0.984 0.986 0.992 0.995 0.995 0.993 0.996 0.999 0.972 0.979 0.993 0.998

r = 1
LMX

30 0.046 0.042 0.048 0.047 0.055 0.048 0.046 0.048 0.048 0.047 0.053 0.049
50 0.061 0.047 0.047 0.040 0.037 0.052 0.043 0.046 0.051 0.042 0.056 0.046
100 0.045 0.048 0.051 0.055 0.050 0.042 0.046 0.042 0.048 0.061 0.037 0.044
200 0.065 0.054 0.060 0.052 0.055 0.054 0.048 0.055 0.040 0.044 0.061 0.058

HKSS
30 0.841 0.814 0.809 0.820 0.886 0.872 0.898 0.870 0.909 0.911 0.906 0.910
50 0.846 0.839 0.810 0.823 0.908 0.919 0.897 0.875 0.925 0.933 0.913 0.912
100 0.864 0.861 0.830 0.814 0.935 0.918 0.897 0.906 0.934 0.936 0.941 0.932
200 0.893 0.850 0.824 0.791 0.942 0.945 0.916 0.913 0.948 0.943 0.936 0.940

r = 2
LMX

30 0.046 0.047 0.050 0.041 0.050 0.038 0.046 0.061 0.050 0.054 0.055 0.045
50 0.054 0.053 0.047 0.054 0.056 0.057 0.059 0.061 0.039 0.043 0.058 0.052
100 0.050 0.048 0.046 0.055 0.044 0.038 0.040 0.054 0.044 0.035 0.048 0.047
200 0.063 0.052 0.033 0.039 0.053 0.045 0.044 0.042 0.035 0.043 0.046 0.054

(Continued)
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Table 4. (Continued)

Case 1 Case 2 Case 3

T/N 30 50 100 200 30 50 100 200 30 50 100 200

HKSS
30 0.823 0.824 0.794 0.781 0.839 0.838 0.820 0.817 0.833 0.862 0.818 0.844
50 0.867 0.835 0.778 0.767 0.854 0.860 0.830 0.824 0.871 0.858 0.846 0.876
100 0.890 0.857 0.775 0.713 0.894 0.871 0.867 0.828 0.868 0.868 0.885 0.860
200 0.890 0.849 0.769 0.690 0.891 0.877 0.867 0.844 0.884 0.886 0.875 0.884

r = 3
LMX

30 0.033 0.036 0.051 0.056 0.053 0.066 0.060 0.051 0.036 0.051 0.051 0.051
50 0.048 0.049 0.054 0.058 0.049 0.041 0.048 0.051 0.047 0.042 0.047 0.057
100 0.050 0.052 0.035 0.043 0.052 0.045 0.041 0.042 0.040 0.044 0.049 0.050
200 0.044 0.041 0.046 0.048 0.052 0.054 0.054 0.060 0.053 0.050 0.038 0.041

HKSS
30 0.866 0.863 0.835 0.798 0.864 0.828 0.794 0.818 0.799 0.815 0.801 0.798
50 0.898 0.899 0.858 0.756 0.866 0.868 0.813 0.788 0.810 0.837 0.826 0.828
100 0.914 0.902 0.826 0.728 0.873 0.864 0.849 0.805 0.851 0.849 0.849 0.842
200 0.953 0.924 0.824 0.762 0.912 0.878 0.832 0.804 0.866 0.852 0.844 0.852

r = 4
LMX

30 0.039 0.045 0.050 0.044 0.050 0.051 0.050 0.050 0.045 0.054 0.040 0.064
50 0.041 0.058 0.063 0.053 0.049 0.050 0.051 0.041 0.034 0.041 0.053 0.053
100 0.058 0.050 0.049 0.060 0.046 0.053 0.056 0.048 0.047 0.054 0.052 0.056
200 0.059 0.044 0.047 0.058 0.056 0.044 0.054 0.053 0.041 0.050 0.046 0.042

HKSS
30 0.915 0.887 0.839 0.800 0.796 0.795 0.764 0.677 0.716 0.714 0.705 0.637
50 0.951 0.926 0.866 0.787 0.846 0.821 0.777 0.710 0.728 0.730 0.726 0.713
100 0.970 0.944 0.877 0.777 0.862 0.815 0.774 0.747 0.749 0.723 0.734 0.709
200 0.979 0.956 0.909 0.800 0.863 0.846 0.777 0.725 0.776 0.736 0.723 0.704

NOTE: HKSS is the Hausman test statistic proposed by Kapetanios, Serlenga, and Shin (2023), see Section S6 in the Online Supplement. See also notes to Table 1.

We allow weak error cross-sectional correlation by generating

εit = υit + θ
∑

1≤h≤8

υi−h,t with υit ∼ iidN(0, 1) and θ = 0.2.

We generate vit ∼ iidN(0, 1), and serially correlated factors as

f1t = ρf 1f1,t−1 + ν1t and f2t = ρf 2f2,t−1 + ν2t where (ν1t , ν2t)
′ ∼

iidN(0, I2) and ρf 1 = ρf 2 = 0.8.We generate the factor loadings

under the following two settings:

• Experiment 1 (independent factor loadings): γi1 ∼ iidU(0, 1),

γi2 ∼ iidU(0, 1), �i11 ∼ iidU(0, 1), �i12 ∼ iidU(0, 2) such

that E

(
γi1 γi2
�i11 �i12

)
=

(
0.5 0.5
0.5 1

)
.

• Experiment 2 (correlated factor loadings): γi1 = �i11 ∼
iidU(0, 1) and γi2 = �i12 ∼ iidU(0, 1).

We explore the performance of the LMX test under parameter

heterogeneity by generating ρi ∼ U(ρL, ρU) and βi = 1 + ηi.

We examine the following three cases for r = 0, 1, 2, 3, 4: Case 1:

weak heterogeneity with ρi ∼ U(0.4, 0.6) and ηi ∼ N(0, 0.04);

Case 2: medium heterogeneity with ρi ∼ U(0.25, 0.75) and ηi ∼
N(0, 0.25); Case 3: strong heterogeneity with ρi ∼ U(0.1, 0.9)

and ηi ∼ N(0, 1). To explicitly take into account the presence

of serially correlated factors, we use the ARDL approxima-

tion, (25) and construct the LMX test using the ARDL residu-

als given by (26). We consider the combinations of (N,T) =
{30, 50, 100, 200}, and set the number of replications at R =
1, 000.

Table 5 reports the size and power performance under Exper-
iments 1 and 2, respectively. The size of the LMX test is close to
the nominal level (5%) for all sample sizes and its performance

is invariant to the number of factors and the different strengths
of parameter heterogeneity. Under Experiment 2 the LMX test is
reasonably powerful in small samples, but it becomes consistent
as the sample size increases. Even if the parameter heterogeneity
gets stronger and/or the number of factors increases, the power
of the LMX test remains satisfactory in most cases. This suggests
that the size and power performance of the LMX tests, using the
ARDL residuals, is satisfactory for the heterogeneous dynamic
panel data with IE, irrespective of whether the factors are serially
correlated or not.

In Section S4.5 in the Online Supplement we have conducted
comprehensive simulation exercises, covering the following 4
cases: Case A with serially uncorrelated factors and the dynamic
FE residuals given by (23); Case B with serially uncorrelated
factors and the ARDL residuals given by (26); Case C with
serially correlated factors with ρf 1 = ρf 2 = 0.8 and the
dynamic FE residuals; CaseDwith serially correlated factors and
the ARDL residuals. The performance of the LMX test under
Case 1 is satisfactory while the simulation results for Case 2 are
qualitatively similar to those for Case 1. This suggests that the
performance of the LMX test using either dynamic FE residuals
or ARDL residuals is satisfactory, only if the factors are serially
uncorrelated. Under Case 3, however, the LMX test suffers from
severe size distortions that worsen as the number of factors rises.
This clearly suggests that we need to deal with serially correlated
factors through the use of the ARDL approximation for correct
inference. The simulation results under Case 4 are qualitatively
similar to those for Case 2. Based on this evidence we propose
the use of the ARDL residuals when constructing the LMX test
in practice.
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Table 5. The size and power of the LMX test for the heterogeneous dynamic panel data.

Experiment 1

Case 1 Case 2 Case 3

T/N 30 50 100 200 30 50 100 200 30 50 100 200

r = 0
30 0.051 0.055 0.051 0.051 0.055 0.049 0.043 0.055 0.050 0.048 0.042 0.049
50 0.057 0.047 0.050 0.054 0.053 0.038 0.040 0.056 0.047 0.053 0.041 0.045
100 0.028 0.045 0.050 0.055 0.046 0.051 0.050 0.045 0.036 0.039 0.065 0.046
200 0.044 0.040 0.056 0.053 0.032 0.054 0.051 0.056 0.036 0.045 0.051 0.058

r = 1
30 0.065 0.047 0.060 0.053 0.054 0.048 0.054 0.047 0.044 0.048 0.050 0.041
50 0.052 0.057 0.049 0.040 0.037 0.051 0.060 0.055 0.037 0.045 0.044 0.061
100 0.052 0.037 0.052 0.054 0.044 0.056 0.054 0.044 0.042 0.049 0.048 0.050
200 0.041 0.057 0.045 0.050 0.047 0.054 0.043 0.050 0.034 0.041 0.062 0.044

r = 2
30 0.058 0.051 0.045 0.052 0.044 0.059 0.048 0.059 0.032 0.053 0.047 0.053
50 0.045 0.042 0.046 0.047 0.045 0.047 0.045 0.048 0.047 0.042 0.054 0.053
100 0.058 0.055 0.044 0.048 0.060 0.041 0.039 0.048 0.044 0.045 0.043 0.048
200 0.037 0.057 0.048 0.055 0.046 0.055 0.048 0.056 0.038 0.039 0.056 0.043

r = 3
30 0.058 0.051 0.045 0.052 0.044 0.059 0.048 0.059 0.032 0.053 0.047 0.053
50 0.045 0.042 0.046 0.047 0.045 0.047 0.045 0.048 0.047 0.042 0.054 0.053
100 0.058 0.055 0.044 0.048 0.060 0.041 0.039 0.048 0.044 0.045 0.043 0.048
200 0.037 0.057 0.048 0.055 0.046 0.055 0.048 0.058 0.038 0.039 0.056 0.043

r = 4
30 0.050 0.054 0.047 0.058 0.039 0.064 0.054 0.048 0.050 0.048 0.041 0.056
50 0.046 0.056 0.062 0.046 0.040 0.057 0.060 0.045 0.050 0.056 0.045 0.047
100 0.052 0.053 0.043 0.065 0.052 0.058 0.055 0.043 0.047 0.051 0.049 0.041
200 0.059 0.046 0.051 0.056 0.049 0.056 0.048 0.047 0.041 0.045 0.055 0.055

Experiment 2
Case 1 Case 2 Case 3

T/N 30 50 100 200 30 50 100 200 30 50 100 200

r = 1
30 0.999 1 1 1 0.962 1 1 1 0.698 0.901 0.999 1
50 1 1 1 1 0.989 1 1 1 0.730 0.919 0.999 1
100 1 1 1 1 0.995 1 1 1 0.748 0.947 0.998 1
200 1 1 1 1 0.994 1 1 1 0.738 0.919 1 1

r = 2
30 0.99 1 1 1 0.921 0.984 1 1 0.595 0.841 0.975 1
50 1 1 1 1 0.952 0.997 1 1 0.648 0.866 0.989 1
100 1 1 1 1 0.969 0.999 1 1 0.645 0.872 0.990 1
200 1 1 1 1 0.970 1 1 1 0.661 0.871 0.995 1

r = 3
30 0.946 0.997 1 1 0.777 0.922 0.996 1 0.491 0.698 0.909 0.986
50 0.990 1 1 1 0.845 0.955 0.997 1 0.541 0.719 0.938 0.996
100 0.997 1 1 1 0.885 0.976 1 1 0.595 0.781 0.948 0.998
200 0.999 1 1 1 0.923 0.989 1 1 0.609 0.794 0.960 0.999

r = 4
30 0.855 0.982 0.999 1 0.650 0.836 0.988 0.999 0.410 0.624 0.836 0.967
50 0.948 0.997 1 1 0.761 0.911 0.989 0.999 0.491 0.705 0.879 0.968
100 0.989 1 1 1 0.844 0.946 0.990 0.999 0.579 0.751 0.888 0.982
200 0.994 1 1 1 0.876 0.949 0.995 1 0.585 0.786 0.916 0.978

NOTE: LMX denotes the LM test defined in (16), wherewe construct üit by the individual ARDL residuals in (26). The performance of the LMX test is explored under parameter
heterogeneities—ρi ∼ U(ρL , ρU) and βik = 1 + ηik—and serially correlated factors. We examine three cases of heterogeneities. Case 1 (weak heterogeneity) with
ρi ∼ U(0.4, 0.6) and ηi ∼ N(0, 0.04); Case 2 (medium heterogeneity) with ρi ∼ U(0.25, 0.75) and ηi ∼ N(0, 0.25); Case 3 (strong heterogeneity) with ρi ∼ U(0.1, 0.9)
and ηi ∼ N(0, 1). Factors are generated as f1t = ρf1f1,t−1 + ν1t and f2t = ρf2f2,t−1 + ν2t where (ν1t , ν2t)

′ ∼ iidN(0, I2) and ρf1 = ρf2 = 0.8. r is the number of
factors.

4. Empirical Applications

To investigate the empirical relevance of the null hypothesis
of (conditional) independence between regressors and factor
loadings in the heterogeneous panel data model with IE, we
apply the LMX test to a total of 22 datasets (17 under a static
panel data framework including 3 panels with small T and 5
under a dynamic panel data framework). In what follows we

briefly describe the datasets used in the applications (see Section
S5 in the Online Supplement for a full description).

4.1. Static Panel Data Framework

4.1.1. Cobb-Douglas Production Function

We estimate the production function in five different cases: the
OECD members (N = 26 and T = 41, Mastromarco, Serlenga,
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and Shin 2016), the Italian regions (N = 20 and T = 21),
the 48 U.S. States (N = 48 and T = 17, Munnell 1990), the
aggregate sectoral data for manufacturing from developed and
developing countries (N = 25 and T = 25, Eberhardt and
Teal 2020), and the manufacturing industries across the OECD
countries (N = 82 andT = 26, Eberhardt, Helmers, and Strauss
2013).

4.1.2. GravityModel of Bilateral Trade Flows

We estimate a gravity model of the bilateral trade flows, where
bilateral trade flow is a function of GDP, countries’ similarity,
relative factor endowment, the real exchange rate as well as the
trade union and common currency dummies. We estimate a
model for the 91 pairs of EU14 countries from 1960 to 2008
(N = 91 and T = 49, Serlenga and Shin 2007).

4.1.3. Gasoline Demand Function

To evaluate the price and income elasticities of gasoline demand,
we estimate the gasoline demand function using the quarterly
data for the 50 U.S. States over the period 1994–2008 (N = 50
and T = 60, Liu 2014).

4.1.4. Housing Prices

We estimate the income elasticity of real housing prices from
1975 to 2010 using two datasets for the 49 U.S. States (N = 49
and T = 36, Holly, Pesaran, and Yamagata 2010) and the 384
Metropolitan Statistical Areas (N = 384 and T = 36, Baltagi
and Li 2014).

4.1.5. Technological Spillovers on Productivity

We consider two applications. First, we estimate the effects of
domestic and foreign R&D on total factor productivity (TFP)
controlling for the human capital. We use a balanced panel
of 24 OECD countries over the period 1971–2004 (N = 24
and T = 34), see Coe, Helpman, and Hoffmaister (2009)
and Ertur and Musolesi (2017). Next, we explore the channels
through which technological investments affect the productivity
performance of industrialized economies by estimating the pro-
ductivity effects of R&D and Information and Communication
Technologies (ICT), controlling for the inputs accumulation as
labor and (non-ICT) capital.We use a balanced panel of 49 high-
tech OECD industries over the period 1977–2006 (N = 53 and
T = 30, Pieri, Vecchi, and Venturini 2018).

4.1.6. Health Care

We estimate the relationship between healthcare expenditure
and income after controlling for public expenditure over total
health expenditure. We consider a panel of 167 countries cover-
ing the period 1995–2012 (N = 167 and T = 18, Baltagi et al.
2017).

4.1.7. Demographic and Business Cycle Volatility

We estimate the impact of the age composition of the labor force
on business cycle volatility. We employ a balanced panel dataset
for 51 countries over the period 1957–2000 (N = 51 and T =
44, Everaert and Vierke 2016).

4.1.8. Carbon Emissions and Trade

We explore the nexus between carbon emissions and trade using
a balanced panel of 32 OECD countries over the period 1990–
2013 (N = 32 and T = 24, Liddle 2018).

4.1.9. Health Care with Small T

We use a balanced panel data for 140 countries from 1993 to
1997 (N = 140, T = 5, Greene 2004) and regress a composite
measure of health care delivery on per capita public and private
health care expenditure. Further, we consider a balanced panel
data for 2084 individuals from 1995 to 1999 (N = 2084, T = 5,
Winkelmann 2004). We aim to evaluate the impact of the 1997
health care reform in Germany by estimating the regression of
the number of doctor visits on the logged gross income.

4.1.10. Wage Equation with Small T

We estimate a reduced form of the wage equation by employing
the balanced panel data (N = 595 and T = 7, Cornwell and
Rupert 1988).

4.2. Dynamic Panel Data Framework

4.2.1. Economic Growth

We explore dynamic economic growth. First, we estimate the
growth equation proposed by Islam (1995). We employ a bal-
anced dataset of 87 countries from 1960 to 2007 (N = 87 and
T = 48, Ditzen 2018). Next, we use a balanced panel of 47
countries over 1961–2003 (N = 47 and T = 43) and estimate
the dynamic effects of temperature shocks on aggregate output
growth, see Dell, Jones, and Olken (2012) and Vos and Everaert
(2021). Lastly, we estimate a dynamic growth model to identify
the effects of public debt on economic growth.Weuse a balanced
panel data of 33 countries from 1972 to 2010 (N = 33 and
T = 42, Chudik et al. 2017).

4.2.2. Energy Intensities and Urbanization

We estimate the dynamic impact of urbanisation on total energy
usage by using a balanced panel of 24 Chinese provinces from
1987 to 2011 (N = 24 and T = 25, Ma 2015).

4.2.3. Income Inequality and Natural Resources

We analyse the dynamic relationship between natural resource
endowments and income inequality using a balanced panel data
of 17 OECD countries from 1981 to 2014 (N = 17 and T = 33,
Kim, Chen, and Lin 2020).

Table 6 presents the main estimation and test results for the
heterogeneous static panel datasets. The LMX test can reject the
null hypothesis (4) at the 5% significance only two times for the
gravitymodel of bilateral trade flows and the income elasticity of
real housing prices for MSA, while rejecting the null at the 10%
significance two more times for the U.S. production function
and the income elasticity of real housing prices for U.S. States,
out of 14 datasets. These results provide convincing evidence
that the null hypothesis of conditional independence between
factor loadings and the regressors is not rejected in the majority
of cases, suggesting that it is still valid to apply the consistent and
robust FE estimator to the panel data with IE.
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Table 6. Empirical applications for the static heterogeneous panel data.

βMG βP βPC LMX HB HW CD CD∗

Production function
OECD β k

l
0.534 ∗∗∗ 0.589 ∗∗∗ 0.633 ∗∗∗ 0.81 0.003 0.71 –2.743 –3.725

( 0.015 ) ( 0.015 ) ( 0.012 ) ( 0.368 ) ( 0.954 ) ( 0.399 ) ( 0.006 ) ( 0.000 )
ITA β k

l
0.312 ∗∗∗ 0.537 ∗∗∗ 0.343 ∗∗∗ 2.134 0.004 0.707 –2.930 –2.928

( 0.042 ) ( 0.035 ) ( 0.016 ) ( 0.144 ) ( 0.946 ) ( 0.401 ) ( 0.003 ) ( 0.003 )
US β k

l
0.134 ∗∗∗ 0.165 ∗∗∗ 0.106 ∗∗∗ 3.607 0.001 0.039 –1.111 –2.316

( 0.011 ) ( 0.011 ) ( 0.004 ) ( 0.057 ) ( 0.978 ) ( 0.841 ) ( 0.266 ) ( 0.021 )
UNIDO β k

l
0.441 ∗∗∗ 0.637 ∗∗∗ 0.563 ∗∗∗ 0.095 0.008 4.091 –2.139 –1.976

( 0.028 ) ( 0.022 ) ( 0.036 ) ( 0.757 ) ( 0.929 ) ( 0.043 ) ( 0.032 ) ( 0.048 )
Production and R D βl 0.418 ∗∗∗ 0.603 ∗∗∗ 0.487 ∗∗∗
k = 3 ( 0.018 ) ( 0.013 ) ( 0.010 )

βk 0.068 ∗∗∗ 0.490 ∗∗∗ 0.462 ∗∗∗
( 0.024 ) ( 0.020 ) ( 0.012 )

βrd 0.074 ∗∗∗ 0.068 ∗∗∗ 0.097 ∗∗∗ 1.257 2.175 2.476 –2.053 –3.071
( 0.008 ) ( 0.006 ) ( 0.007 ) ( 0.739 ) ( 0.536 ) ( 0.479 ) ( 0.040 ) ( 0.002 )

Gravity model βgdp 2.643 ∗∗∗ 3.299 ∗∗∗ 1.808 ∗∗∗
k = 6 ( 0.050 ) ( 0.039 ) ( 0.010 )

βrer –0.094 ∗∗∗ 0.037 ∗∗∗ –0.041 ∗∗∗
( 0.006 ) ( 0.004 ) ( 0.006 )

βsim 1.350 ∗∗∗ 1.362 ∗∗∗ 1.231 ∗∗∗
( 0.036 ) ( 0.022 ) ( 0.057 )

βrlf –0.195 ∗∗∗ 0.033 ∗∗∗ 0.014 ∗∗∗
( 0.006 ) ( 0.002 ) ( 0.005 )

βcee 0.088 ∗∗∗ 0.291 ∗∗∗ 0.369 ∗∗∗
( 0.006 ) ( 0.004 ) ( 0.006 )

βemu 0.074 ∗∗∗ 0.254 ∗∗∗ 0.179 ∗∗∗ 15.12 11.41 24.48 –2.386 –2.193
( 0.008 ) ( 0.006 ) ( 0.006 ) ( 0.019 ) ( 0.076 ) ( 0.001 ) ( 0.017 ) ( 0.028 )

Gasoline demand βp –0.138 ∗∗∗ –0.161 ∗∗∗ –0.101 ∗∗∗
k = 2 ( 0.007 ) ( 0.007 ) ( 0.002 )

βinc 0.536 ∗∗∗ 0.436 ∗∗∗ 0.392 ∗∗∗ 0.838 0.001 0.296 –2.051 –1.066
( 0.022 ) ( 0.020 ) ( 0.012 ) ( 0.657 ) ( 0.999 ) ( 0.862 ) ( 0.040 ) ( 0.286 )

Income elasticity
US States βinc 0.605 ∗∗∗ 0.832 ∗∗∗ 0.634 ∗∗∗ 3.122 0.361 0.738 –1.712 –1.847

( 0.033 ) ( 0.030 ) ( 0.011 ) ( 0.077 ) ( 0.547 ) ( 0.391 ) ( 0.087 ) ( 0.065 )
US MSAs βinc 0.610 ∗∗∗ 0.595 ∗∗∗ 0.558 ∗∗∗ 6.304 0.127 14.21 30.442 2.017

( 0.004 ) ( 0.004 ) ( 0.002 ) ( 0.012 ) ( 0.721 ) ( 0.001 ) ( 0.000 ) ( 0.044 )

Technological spillovers
OECD countries βsd 0.020 ∗∗ 0.057 ∗∗∗ 0.087 ∗∗∗
k = 3 ( 0.008 ) ( 0.006 ) ( 0.003 )

βsf 0.306 ∗∗∗ 0.139 ∗∗ 0.133 ∗∗∗
( 0.067 ) ( 0.061 ) ( 0.044 )

βhc 0.036 ∗ 0.112 ∗∗∗ 0.013 ∗∗∗ 0.974 0.002 1.657 –3.066 –3.731
( 0.021 ) ( 0.018 ) ( 0.002 ) ( 0.808 ) ( 0.999 ) ( 0.646 ) ( 0.002 ) ( 0.000 )

OECD industries βl 0.527 ∗∗∗ 0.154 ∗∗∗ 0.185 ∗∗∗
k = 4 ( 0.032 ) ( 0.019 ) ( 0.023 )

βnitc –0.148 ∗∗∗ 0.491 ∗∗∗ 0.512 ∗∗∗
( 0.041 ) ( 0.026 ) ( 0.040 )

βitc 0.027 ∗∗∗ 0.024 ∗∗∗ 0.084 ∗∗∗
( 0.008 ) ( 0.008 ) ( 0.006 )

βrd –0.010 ∗∗∗ 0.027 ∗∗∗ 0.031 ∗∗∗ 2.855 0.974 4.121 –1.029 –2.449
( 0.004 ) ( 0.003 ) ( 0.008 ) ( 0.582 ) ( 0.913 ) ( 0.389 ) ( 0.303 ) ( 0.014 )

Health βgdp 0.871 ∗∗∗ 0.721 ∗∗∗ 0.732 ∗∗∗
k = 2 ( 0.008 ) ( 0.006 ) ( 0.007 )

βpe 0.239 ∗∗∗ 0.019 ∗∗∗ 0.021 ∗∗ 2.610 0.003 3.676 –1.099 0.904
( 0.009 ) ( 0.002 ) ( 0.009 ) ( 0.271 ) ( 0.998 ) ( 0.159 ) ( 0.272 ) ( 0.366 )

Volatility βs –0.141 –0.617 ∗ –0.683 ∗ 0.192 0.003 0.161 –0.233 –2.644
( 0.374 ) ( 0.370 ) ( 0.391 ) ( 0.661 ) ( 0.955 ) ( 0.688 ) ( 0.816 ) ( 0.008 )

Carbon emission βgdp 0.393 ∗∗∗ 0.429 0.427 ∗∗∗
k = 4 ( 0.023 ) ( 0.023 ) ( 0.020 )

βtsh –0.169 ∗∗∗ –0.106 –0.096 ∗∗∗
( 0.016 ) ( 0.015 ) ( 0.013 )

βish 0.004 –0.123 –0.125 ∗
( 0.045 ) ( 0.040 ) ( 0.066 )

βfsh 0.880 ∗∗∗ 0.866 ∗∗∗ 0.987 ∗∗∗ 5.954 0.168 2.323 17.314 –2.482
( 0.038 ) ( 0.037 ) ( 0.053 ) ( 0.202 ) ( 0.996 ) ( 0.676 ) ( 0.000 ) ( 0.013 )

NOTE: βMG and βP denote the mean group and the pooled FE estimator; βPC is the (bias-corrected) iterative principal component estimator (see Cui et al. 2023) applying
the ICp1 criterion by Bai and Ng (2002), we extract 4 factors in the gravity dataset and 2 factors in the other datasets. The standard errors inside (.) are computed by the
nonparametric variance-covariance estimators. LMX denotes the LM test defined in (16) using the residuals in (15).HB is the Hausman test statistic proposed by Bai (2009);
HW the Hausman test statistic proposed byWesterlund (2019b); CD is the Pesaran (2015) test; CD∗ is the bias corrected CD tests proposed by Pesaran and Xie (2021) with
1 factor. The CD tests are applied to the two way FE residuals.
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Next, we turn to the results for the CD test proposed
by Pesaran (2015) and the bias-corrected CD∗ test recently
advanced by Pesaran and Xie (2021), both of which test the null
hypothesis of weak residual CSD against the alternative of strong
CSD. Both CD tests are applied to the two way FE residuals.
We report the CD∗ test results computed using one factor only
though the results are qualitatively similar when employing the
different number of factors. The CD (CD∗) test rejects the null
hypothesis 10 (12) times out of 14 datasets. We also consider
the Hausman tests proposed by Bai (2009) and Westerlund
(2019b), denoted HB and HW , which test the null hypothesis
of additive two-way effects against the alternative hypothesis
of the multiplicative IE. The HB test marginally rejects the null
hypothesis only once for the gravity model of bilateral trade
flows whilst the HW test rejects two more times for UNIDO
production function and the income elasticity of real housing
prices forMSA.Apparently, these results are in conflict, since the
CD test indicates the presence of CSD while the Hausman tests
reveal the absence of IE in most panels. We have already shown
that theHB andHW tests become inconsistent if factor loadings
and the regressors are conditionally independent (see Monte
Carlo simulations in Section S2 in the Online Supplement). In
this regard, these conflicting results indicate that non-rejection
of the null hypothesis by the Hausman tests is mainly due to the
(observed) conditional independence between the regressors
and loadings in the panel data with IE, rather than the absence
of IE, under which the FE estimator is consistent. Furthermore,
notice that for the three datasets where the HB and HW tests
can reject the null of additive effects, we can also reject our null
hypothesis. Combined together, this provides a strong support
for the utility and importance of applying our proposed LM
specification test in practice.

Next, Table 7 presents the test results for the dynamic hetero-
geneous panel data. Out of the five datasets, the LMX test can
reject the null hypothesis marginally only once for the effects
of public debt on economic growth. Moreover, the CD (CD∗)
test rejects the null hypothesis of weak residual CSD at the 1%
significance in 5 (4) cases. Notice, however, that the theoretical
properties of both CD tests have not been established yet for the
dynamic panel data model.

Table 8 reports the LM test results for static panel data with
small T. We also find that the LMX test does not reject the null
hypothesis for all three datasets we consider.

Table 7. Empirical applications for the dynamic heterogeneous panel data.

LMX CD CD∗

Growth 1.607 2.942 –0.22
( 0.447 ) ( 0.003 ) ( 0.826 )

Temperature 2.468 –3.564 –4.434
( 0.116 ) ( 0.000 ) ( 0.001 )

Debt 3.461 –1.965 –2.843
( 0.063 ) ( 0.049 ) ( 0.001 )

Energy intensity 3.839 –2.908 –3.217
( 0.279 ) ( 0.004 ) ( 0.001 )

Oil 1.552 –3.474 –3.831
( 0.671 ) ( 0.001 ) ( 0.001 )

NOTE: LMX denotes the LM test defined in (16), where we construct the ARDL
residuals from the ARDL(pT , pT ) approximation, (25) with pT = 3. See also notes
to Table 6.

Table 8. Empirical applications for heterogeneous panel data with small T .

LMX

Health expenditure 0.291
( 0.589 )

Health care 1.933
( 0.164 )

Wage 2.417
( 0.120 )

NOTE: See notes to Tables 6.

Finally, following the suggestion by an anonymous referee,
we examine whether the LMX test results are invariant to the
case where the correct model specification is dynamic, but the
practitioner applies a static model specification, even though
we have applied the same model specification as in the original
studies. We now consider the dynamic specifications for the
gravity model of the bilateral trade flows, the income elasticity
of real housing prices, the R&D production function, and the
demographic and business cycle volatility, where we add the
lagged dependent variable to the original static specifications.
We then apply the LM test statistic constructed using the ARDL
residuals from the ARDL(pT , pT) approximation, (25). We find
that the null hypothesis is rejected for the gravity and the hous-
ing income elasticity models whereas the null is not rejected for
R&D production function and volatility (these results are avail-
able upon request), confirming that the LM test results are the
same under both the static and dynamic panel data frameworks.

Combining all these results, we may conclude that our pro-
posed LM test will make an essential specification test, given
the pervasive evidence in favor of strong CSD. Therefore, we
suggest applying the LM test to determine the form of IE that
can validate the use of the FE estimator. Following the sugges-
tion by an anonymous referee, we add practical guidelines for
step-by-step model specifications in Section S7 in the Online
Appendix. In the case where the null hypothesis of conditional
independence is not rejected, the FE estimation can still produce
consistent estimation and robust inference in a variety of cross-
sectionally correlated panels, albeit less efficient than the PC esti-
mator, though we emphasize that the FE estimator is invariant
to any complex issues related to selecting the true number of
unobserved factors (Moon and Weidner 2015), and to employ-
ing inconsistent initial estimates which may not guarantee the
convergence of the iterative PC estimator (Hsiao 2018).

5. Conclusions

A large strand of the literature on panel data has focused on
analyzing CSD, based on the error components model with IE,
which is implicitly understood to bias the two-way FE estimator,
due to the potential endogeneity arising from the correlation
between regressors and factors/loadings (e.g., Bai 2009).

In this article we have built upon the notion that if the
regressors and factor loadings are conditionally independent,
then the panel data model with IE can still be consistently esti-
mated by the two-way FE estimator. This suggests that the null
hypothesis of conditional independence between the regressors
and loadings emerges as an influential feature of the panel data
modeling with IE. We have proposed an easy way of verifying
the validity of such an important misspecification hypothesis
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through the v test, that only requires the use of the FE estimator.
Crucially, our proposed test can be easily applicable to either
static panels with a small number of time periods or dynamic
panels with serially correlated factors. In this regard the LM test
canmake a valuable addition to the toolkit of applied researchers
as it provides a support for the use of the consistent and robust
FE estimator under the null hypothesis.

Finally, we apply the LM test to a number of existing panel
datasets, and find substantial evidence that the regressors and
factor loadings are likely to be conditionally independent in
practice. This suggests that the FE estimator can still provide
a simple but robust strategy in a variety of cross-sectionally
correlated panels including a growing literature in microecono-
metrics that focuses on estimating causal/counterfactual effects
or policy evaluations.

We note a couple avenues for further researches. First, given
the pervasive empirical evidence supporting the conditional
independence between the regressors and factor loadings, it
will be worthwhile to develop the simple consistent estimator
for heterogeneous dynamic panel data model with IE under
weaker conditions. Next, we can extend our testing approach to
high-dimensional and/or multi-dimensional panels, for exam-
ple, Cameron, Gelbach, and Miller (2011), Kapetanios, Ser-
lenga, and Shin (2023) and Choi, Lin, and Shin (2021). For
example, consider the three-dimensional heterogeneous panel
data model of Kapetanios, Serlenga, and Shin (2023), given
by yijt = β ′

ijxijt + uijt , i = 1, . . .,N, j = 1, . . .,N, t =
1, . . .,T, where yijt is the dependent variable observed across
three indices, i being the origin unit, j the destination unit at
period t and xijt is themx × 1 vector of covariates with β ij being
an mx × 1 vector of parameters. Further, uijt is given by uijt =
γ ′
ijf t + γ ′

◦jf i◦t + γ ′
i◦f ◦jt + εijt , where f t , f i◦t and f ◦jt are vectors

of unobserved global, origin-specific and destination-specific
factors with γ ij, γ ◦j and γ i◦ being the corresponding vectors
of heterogeneous loadings, and εijt are idiosyncratic errors. If
loadings and the regressors are conditionally independent, then
we conjecture that the appropriate within estimator retains con-
sistency. In this case an extended LM test can be obtained by

LM =
(

1√
TN

∑N
i,j=1

̂̈
X

′
iĵüij

)′
V̂

−1
(

1√
TN

∑N
i,j=1

̂̈
X

′
iĵüij

)
where

V̂ = 1
TN2

∑N
i,j=1

̂̈
X

′
iĵüiĵü

′
ij
̂̈
Xij, ̂̈uij is the corresponding residual

and
̂̈
Xij is the fitted value of the regressors when regressed on

the first principal components of {xijt}Ni=1, {xijt}Nj=1 and {xijt}Ni,j=1.

Clearly, a number of alternative extensions can be envisaged.
Notice, however, that there are both conceptually and technically
challenging issues to be addressed carefully.

Supplementary Materials

The online supplement contains all technical proofs, additional simulation
results the full description of the datasets and the empirical specifications,
and practical guidelines.
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