
This is a repository copy of On-Demand Service Deployment Strategies for Fog-as-a-
Service Scenarios.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/201530/

Version: Accepted Version

Article:

Bozorgchenani, A. orcid.org/0000-0003-1360-6952, Tarchi, D. orcid.org/0000-0001-7338-
1957 and Cerroni, W. orcid.org/0000-0002-4629-031X (2021) On-Demand Service
Deployment Strategies for Fog-as-a-Service Scenarios. IEEE Communications Letters, 25
(5). pp. 1500-1504. ISSN 1089-7798

https://doi.org/10.1109/lcomm.2021.3055535

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

On-demand Service Deployment Strategies for

Fog-as-a-Service Scenarios
Arash Bozorgchenani, Member, IEEE, Daniele Tarchi, Senior Member, IEEE,

and Walter Cerroni, Senior Member, IEEE

Abstract—Service deployment at the network edge is a promis-
ing area that has been studied recently in the literature. In this
work we have investigated a Fog-as-a-Service scenario, where
multiple Server Fog Nodes (SFNs) can serve multiple Client Fog
Nodes (CFNs) by exploiting different service deployment models,
i.e., SaaS, PaaS, and IaaS, in a flexible way. The system has
been modeled as a Size-Constrained Weighted Set Cover Problem
aiming at maximizing the amount of satisfied CFNs exploiting a
heterogeneous service deployment architecture, while minimizing
the service completion time in a computation offloading scenario.
In the simulation results section, we analyze the performance of
different methods in terms of percentage of CFNs’ offloading
requests satisfaction and offloading delay.

Index Terms—Fog Computing, Service Deployment, Compu-
tation Offloading, Optimization, Weighted Set Cover Problem

I. INTRODUCTION

FOG Computing can be seen as an extension of the Cloud

Computing paradigm toward the network edge consid-

ering an intermediate layer between the users and the cloud

aiming at reducing the latency while keeping the advantages of

the latter [1]. Cloud-based services are historically organized

in three main models, named Software-as-a-Service (SaaS),

Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service

(IaaS), each one involving different approaches, technologies

and levels of flexibility. When moving from a centralized

cloud architecture to a distributed edge architecture, a proper

service model deployment policy becomes of paramount im-

portance for coping with users requests while respecting their

requirements [2], [3]. Some works have considered SaaS,

PaaS or IaaS model deployment in edge networks [4]–[6].

Game-theoretic approaches have also been considered for

resource allocation in cloud and fog environments [7], [8].

However, all the previous studies focused on a specific service

model or application scenario, not taking advantage of the full

flexibility offered by a joint adoption of the different service

models. To this aim, we propose a Fog-as-a-Service (FogaaS)

approach where the Fog Computing layer is able to select

the proper models to be deployed in order to meet the user

D. Tarchi and W. Cerroni are with the Department of Electrical, Elec-
tronic and Information Engineering, University of Bologna, Italy (e-mail:
daniele.tarchi@unibo.it; walter.cerroni@unibo.it).

A. Bozorgchenani was with the Department of Electrical, Electronic and
Information Engineering, University of Bologna, Italy. He is now with the
Department of Computing and Communications, Lancaster University, the
UK (e-mail: a.bozorgchenani@Lancaster.ac.uk).

This work has been partially supported by the project “GAUChO - A Green
Adaptive Fog Computing and Networking Architecture” funded by the MIUR
Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2015 -
grant 2015YPXH4W.

requests, while keeping the overall delay low. Such a user-

centric approach is relevant with respect to the vision of future

B5G/6G systems [9].

We consider a fog environment, where some nodes can

work as Server Fog Nodes (SFNs), running applications and

services based on requests from Client Fog Nodes (CFNs). In

particular, in this letter we focus on computation offloading

applications, one of the main classes of services enabled by

fog computing [10]; the approach can be easily extended to

other kinds of applications. We advocate the possibility of

deploying the requested applications flexibly by leveraging

on the presence of multi-purpose SFNs, which are able to

implement any of the SaaS, PaaS and IaaS models. The prob-

lem is formulated as a Weighted Set Cover Problem (WSCP),

where each CFN can be served by one SFN implementing one

of the aforementioned models, whose selection depends on

the overall CFNs requests. We intend to design a mechanism

that aims to respond to all CFNs requests at the edge, and

jointly minimize the offloading delay through a proper service

model deployment. To this aim, our main contribution in this

work is introducing both an optimal and a heuristic model

deployment solution with different solution spaces. In the

simulation results, we have proved that the proposed heuristic

solution guarantees a complete CFNs coverage at the edge

while minimizing the offloading delay.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We focus on a scenario composed by two types of nodes,

namely CFNs and SFNs. While the CFNs are the nodes

performing an offloading request for a given application type,

the SFNs work as computing nodes, where the requested

application can be deployed through one of the SaaS, PaaS or

IaaS models; SaaS is able to only serve the CFNs requesting

a given application, PaaS is able to serve all the CFNs whose

requested application can be deployed on a specific platform,

and IaaS is able to change at run-time both platform and

application, hence being capable of responding to any request.

We define # as the number of CFNs and 8 as the index for

a specific CFN, while we consider to have (multi-purpose

SFNs, shown with index B, aiming at remotely processing

the requests received from the CFNs. Let us consider to

have " applications, where < identifies a specific application.

Moreover, let us assume there are at most % possible platforms,

where ? identifies a specific platform, i.e., a specific Operating

System or set of libraries able to execute a code specifically

written for that platform.

2

Fig. 1. FogaaS Network Architecture.

The architecture of the considered scenario is depicted in

Fig. 1, where it is possible to notice that the CFNs can

be served by different SFNs. Applications and platforms

provided by the FogaaS network are supposed to be stored

in a repository. A deployment policy is considered, aiming

at selecting the proper service models to be deployed, with

the goal of a complete CFNs request coverage. For a better

clarity, some of the symbols used throughout the paper have

been added in the figure.

Let us define Q<
? as an indicator function that takes the

value of 1 if the <-th application can be executed on the ?-th

platform. We now define the set of platforms on which the <-

th application can be executed as P< =
{
? = 1, . . . , % |Q<

? = 1
}

and the set of applications that can be executed on ?-th plat-

form as M? =
{
< = 1, . . . , " |Q<

? = 1
}

which are non-empty

sets, since, otherwise, the application to platform association

would be meaningless.

We suppose that every CFN can set-up one and only one

computation offloading request for a given application, hence

we can identify with #< the number of CFNs requesting

the <-th application, where # =
∑"

<=1
#<. If we define

with ��#<
8

the generic 8-th CFN when requesting the <-th

application, it is possible to define the set of CFNs requesting

the same application as
{
��#<

8

}
8=1,...,#<

.

By considering that in SaaS one SFN can only serve CFNs

having the same application request, it is possible to define the

collection of sets whose CFNs can be served with the SaaS

model as:

S(00(=
⋃

<=1,...,"

({
��#<

8

}
8=1,...,#<

)
(1)

Similarly, the CFNs can be grouped depending on the

platform that can serve them. It is worth to be noticed that

there exists certain number of CFNs requesting applications

that can be executed on the ?-th platform. Hence, it is possible

to define S%00(as the collection of all the possible sets

grouping the CFNs whose application requests can be served

by a specific platform through the PaaS model:

S%00(=
⋃

?=1,...,%

(
℘

(⋃
<∈M?

{
��#<

8

}
8=1,...,#<

))
, (2)

representing the union of all the platforms’ powersets1 cal-

culated over all the sets of CFNs whose application can be

supported by the ?-th platform. This corresponds to have

1The powerset ℘(·) of a set S refers to the set of all the possible
combinations of subsets composing S.

the set of all the possible groups in which the CFNs can

be organized depending on the requested application and the

platform supporting it.

Finally, the collection of the sets that can be served with

the IaaS model includes the powerset of all the possible

combinations of sets composed by the CFNs requesting a given

application and the supporting platform, hence:

S� 00(= ℘

(⋃
<∈M? , ?=1,...,%

{
��#<

8

}
8=1,...,#<

)
(3)

IaaS allows the highest flexibility in composing the set of

CFNs, by mixing CFNs with different platforms and appli-

cation requests. However, the higher flexibility is obtained at

the cost of a higher deployment time. The collection of the

sets defining all the possible grouping that can be used for

serving all the CFNs can be defined as the union of the three

previously defined sets, i.e., S = S(00(∪ S%00(∪ S� 00(.

Let us focus for simplicity on the CFN requesting the <-th

application and its associated SFN.

In case of SaaS, the <-th application is considered to

be already deployed on the SFN. Hence, the CFN has to

send only the input data \<, depending on the requested

offloading application, and after the execution, the results, o<,

will be eventually sent back. This means that the offloading

completion time for any CFN requesting the application <

using the SaaS model is:

)<
(00(=)

\<
C G +) \<

?A>2 +) o<
A G (4)

where)
\<
C G = !(\<)/'B and)

\<
?A>2 = $(\<)/[B are the

input data transmission and processing times for the <-th

application, respectively, while)
o<
A G = !(o<)/'B is the time

required to have the result back. Let us denote by !(·) the task

size to be offloaded/received to/from the Bth SFN, 'B the data

rate between the 8th CFN2 and the Bth SFN, $(·) the number

of operations to process a task, and [< the computational

capability of the Bth SFN.

In case the application is not deployed directly through

SaaS, a PaaS model can be used. In this case the platforms

are supposed to be already deployed on the SFNs, while

the application code k<
? for executing a specific application

< over the platform ?, i.e., < ∈ M? , can be downloaded

at request from the repository. In this case, the offloading

completion time becomes:

)<
%00(=)

k<
?

C G +)
k<
?

8=8C
+)<

(00(+)'4
?A>? (5)

where)
k<
?

C G = !(k<
?)/''4,)

k<
?

8=8C
and)'4

?A>? are the <-th

application code transmission time, the related initialization

time for a given ?-th platform, and the propagation delay from

SFN to repository, respectively, and ''4 represents the data

rate for accessing the repository.

Finally, in case of IaaS, the system should be able to

deploy at run-time the requested platform and application for

any CFN, if not already deployed. In the worst case when

2More specifically, the requested application is generated by the 8th CFN,
however, for the sake of simplicity of notation we omit the CFN index.

3

both platform and application requested by a CFN must be

deployed, the offloading completion time becomes:

)<
�00(=)

j?

C G +)
j?

8=8C
+)<

%00(+)'4
?A>? (6)

where)
j?

C G = !(j?)/''4 and)
j?

8=8C
are the times needed

to download the image and initialize a virtual machine or

container, j? , that provides the ?-th platform. In addition,

the time needed to transmit and initialize the platform-specific

application code and the parameter transmission and execution

time are considered.

The optimal service deployment can be modeled as an

optimization problem with the goal to guarantee full CFN

request coverage while minimizing the overall offloading time.

Among all possible combinations for covering all CFNs, we

define Cc = {�1, ..., �(} as a feasible grouping solution

considering policy c. Cc is composed of maximum (sets

of CFNs connected to the (SFNs, on each of which which

one of the service models is implemented.

Definition 1: A solution Cc is considered feasible if it meets

the following conditions:

C1 : 8 ∈ C+
c =⇒ 8 /∈ C−c (7a)

C2 :
(∑
B=1

|�B |= #, (7b)

where C+
c is one subset from the solution set Cc , and C−c is

the complement of C+
c w.r.t. Cc , i.e. C−c = Cc \ C

+
c . The first

condition assures that a CFN does not belong to two groups,

and the second condition guarantees that all CFNs are covered

through the selected policy.

The goal of the problem is finding a policy c for grouping

the CFNs and deploying proper service models in the network

to jointly minimize the offloading delay and cover all the

CFNs. We define Φ(c) as an [# × (] allocation matrix where

each element represents the allocation of each 8-th CFN to B-th

SFN, when the policy c is selected. Moreover, we define)(c)

as a [# × (] delay matrix for policy c where each element

represents the delay for completing the offloading request of

the 8-th CFN to the allocated SFN, having implemented one of

the service models exploiting (4), (5) or (6). The considered

problem can be formulated as an Integer Linear Program as:

P1 : argmin
c

{tr [()(c) ⊙ Φ(c)) · �(×#]} , (8)

w.r.t., C1 − C2, where ⊙ refers to the Hadamard product of

the matrices, �(×# is the all-one matrix with size [(× #],

and tr(·) stands for the trace. Eq. (8) allows to find the policy

c for deploying the proper models on the SFNs, where the

offloading delay, corresponding to the sum of the delay of

all the allocated models meeting the feasibility conditions (7)

(i.e., full CFN coverage), is minimized3.

III. PROBLEM TRANSFORMATION AND SOLUTIONS

The problem can be modeled as a size-constrained WSCP,

where the goal is optimizing the set selection for covering all

the elements, while considering a predefined number of SFNs

3Note that tr(�"×# · �#×") corresponds to sum all the elements of �.

(i.e., a constrained number of sets) whose offloading time acts

as a weight for the set selection. In this section we reformulate

P1 as a WSCP where this transformation enables to group the

CFNs constrained by the number of SFNs.

A. WSCP-based service model deployment

Let us define)̂ as a [#×("+%+Λ)] delay matrix related to

each possible combination in Φ̂, which is a [# × (" + % +Λ)]

binary allocation matrix, defined as below:

Φ̂ =
©­«

q̂1
1
· · · q̂"

1
q̂"+1

1
· · · q̂"+%

1
q̂"+%+1

1
· · · q̂"+%+Λ

1

...
...

...
...

...
...

...
...

...
q̂1
#
· · · q̂"

#
q̂"+1
#

· · · q̂"+%
#

q̂"+%+1
#

· · · q̂"+%+Λ
#

ª®¬
(9)

Each column in Φ̂ represents one of the possible SaaS, PaaS,

or IaaS models to be deployed. Since each CFN can request

one application at a time, in each row only one of the

elements between column 1 and " takes the value of 1, i.e.,∑"
:=1

q̂:
8

= 1,∀8. Moreover, in each row the number of 1s

between columns " + 1 to " + % depends on the number

of platforms supporting the application requested by the 8-th

CFN; hence, we have
∑%

?=1
q̂

("+?)

8
= |P< |,∀8. On the other

hand, Λ is the total number of possible IaaS deployments,

corresponding to the cardinality of the powerset S� 00(.

The optimal solution results in selecting (out of ("+%+Λ)

possible combinations. Since Λ corresponds to the number of

possible sets in (3), being composed by all the possible com-

binations of CFNs irrespective to their requested application

and platform, it is possible to derive the cardinality of the IaaS

sets as4
Λ =

∑"+%
;=2

("+%
;

)
. The solution space5 of the problem

reults to be equal to
(

("+%+Λ)!
("+%+Λ−()!·(!

)
where (deployments out

of (" + % + Λ) should be selected.

The WSCP is NP-complete, hence, it cannot be solved in a

polynomial time. Moreover, the solution space for the derived

problem grows exponentially w.r.t. the number of applications

and platforms leading to a non-tractable solution space. How-

ever, the NP problems, even though require exponential time,

still grow slowly enough allowing solutions for problems of a

useful size [11]. In order to solve the problem we propose two

possible solutions: an optimal solution applied to a reduced

solution space, and a heuristic solution applied to the full

solution space.

B. Solutions to the problem

1) Reduced Space Optimal Solution: In this case we con-

sider to restrict the solutions to SaaS and PaaS models.

The allocation matrix Φ̂ can be simplified considering the

deployment of SaaS and PaaS for the WSCP. Let us define

)̄ as a [# × (" + %)] delay matrix, and Φ̄ as a [# × (" + %)]

binary allocation matrix as below:

Φ̄ =
©­«

q̄1
1
· · · q̄"

1
q̄"+1

1
· · · q̄"+%

1

...
...

...
...

...
...

q̄1
#
· · · q̄"

#
q̄"+1
#

· · · q̄"+%
#

ª®¬
(10)

4The deployment of the IaaS is needed only if the CFNs request at least
two applications that are supported by two different platforms, otherwise SaaS
and PaaS is sufficient, hence going back to the solutions modeled in the first
" + % columns.

5It should be noted that not all the solutions in this space respect the
feasibility conditions defined in Def.1.

4

where q̄G
8

shows one element of the matrix. Hence, the number

of 1s in each row of Φ̄ is |P< |+1, representing all the platforms

that support the <-th requested service plus the requested <-

th service. Consequently, the total number of 1s in Φ̄ for all

CFNs equals (|P< |+1) · # .

Now we map the optimization problem to a WSCP, where

the goal is optimizing the set selection policy c for covering

all the CFNs. In other words, the set selection policy chooses

the models that should be deployed on the SFNs to cover all

the CFNs in (groups by transforming the allocation matrix Φ̄

to a matrix with (columns representing the selected models

for deployment on (SFNs. Let us define �- (c) as a linear

transformation matrix with policy c, mapping matrices Φ̄ and

)̄ to two matrices of size [# × (]. The optimization problem

can now be formulated in the following way:

P2 : argmin
c

{
tr

[(
�)̄ (c) ⊙ �

Φ̄
(c)

)
· �(×#

]}
, (11)

w.r.t., C1 − C2. We can define the set of CFNs in the group

�B ∈ Cc as �B =
{
8 |q̃B

8
= 1,∀8

}
, where q̃B

8
is an element of

transformed binary matrix �
Φ̄

(c). The goal is finding the opti-

mal policy c based on which the linear transformation function

selects the best CFNs grouping and model deployment on the

SFNs among the feasible solutions to minimize the offloading

delay. The solution space of the problem is
(

("+%)!

("+%−()!·(!

)
,

which is smaller w.r.t. the original Φ̂.

2) Full Space Heuristic Solution: In this section we pro-

pose a heuristic for full coverage of CFNs’ requests at the edge

while minimizing the delay. Our proposed XaaS-based model

Deployment Policy (XaDeP) exploits all the three service

models, where X stands for any of the three models. To

this aim, enlightened by the Concise Weighted Set Cover

(CWSC) algorithm [12], our heuristic leverages the number

of covered CFNs, i.e., |�] |, and the coverage latency for the

model selection to be deployed on the (SFNs. We denote

the latency of the |�] | covered CFNs by model] with)], as

defined in (4) or (5). Let us define the input Θ = {��#}#
8=1

, as

the set of all uncovered CFNs, and in the output the indexes of

the selected models, S̄, and the group of covered CFNs with

the policy c (i.e., selected by the XaDeP algorithm), �c . We

also define V = " + %, as the set of all the SaaS and PaaS

models. The algorithm iteratively calculates)] and |�] | for all

SaaS and PaaS models and selects those maximizing |�] |/)].

The selected models are removed from V and added to S̄,

and similarly, the set of covered CFNs are removed from Θ

and added to �c . This rule allows to select at each iteration

the model that covers the maximum number of uncovered

CFNs while minimizing the cost in terms of offloading time.

In case the CFNs are not fully covered at the end of the

previous procedure, the algorithm deploys IaaS model to cover

the remaining CFNs. This is made possible thanks to the

flexibility introduced by the IaaS model, at the cost of a higher

deployment time. The pseudo-code of the algorithm has been

provided in Alg. 1.

When deploying the model for the last SFN, if C2, (7b),

is respected the algorithm stops and returns S̄ and �c (lines

13-14), otherwise, the XaDeP algorithm includes also the Λ

IaaS models in (3) and, among them, selects the one that

Algorithm 1 XaDeP Algorithm

1: Input: " , %, (, Λ, Θ

2: Output: S̄, �c

3: for B=1 to (− 1 do

4: for]=1 to V do

5: Calculate |�] |; Calculate)] using Eq. (4) or (5), ∀ |�] |
6: end for

7: S̄ ←− argmax]
|�] |
)]

; �c ←− �] ; V −]; Θ −�]

8: end for

9: for]=1 to V do

10: Calculate |�] |; Calculate)] using Eq. (4) or (5), ∀ |�] |
11: end for

12: Select the last model using argmax]
|�] |
)]

13: if C2 holds with the last model then

14: V −]; Θ −�] ; S̄ ←−]; �c ←− �] ; return S̄ and �c

15: else

16: for each] in Λ do

17: if C2 holds with] then

18: Calculate)] using Eq. (6)

19: end if

20: end for

21: V −]; Θ −�] ; S̄ ←− argmin])] ; �c ←− �] ; return S̄ and �c

22: end if

respects C2 and minimizes the delay (lines 16-21). Thanks

to this approach, XaDeP first tries to cover all the CFNs using

SaaS and PaaS models, hence minimizing the latency, and if

(7b) is not respected, exploits the IaaS model for covering the

remaining CFNs.

IV. NUMERICAL RESULTS

For the simulation results, we have set the number of SFNs

to (=3, and the number of platforms to %=5. We have set

the task size \ (either \< or \2) uniformly distributed in the

range [1 5] MB, a small-sized task-result of \/10 MB, 10

GFLOPS per MB for $(\), 150 GFLOPS for the [B , while 'B

and ''4 are maximum 200 Mb/s and 150 Mb/s, with a log-

distance path loss model, as in [10]. Regarding the PaaS and

IaaS models, the size of k and j are uniformly distributed

in the range [1 5] MB and [5 10] MB, respectively, and

their initialization time uniformly distributed in [0 0.2] s and

[0.5 2] s, respectively. These values are based on internal

measurements performed on a Docker based virtualization

infrastructure, and are comparable with other in literature [10].

We are analyzing the performance of the following solutions:

• Optimal Solution: The optimization problem P2 is solved

using standard solver CPLEX considering the reduced

space in Sec. III-B1, labeled Opt. in the figures.

• XaDeP: Our proposed heuristic is applied where IaaS is

also considered for full coverage of the CFNs’ requests,

labeled XaDeP in the figures.

• CWSC: The heuristic algorithm in [12] is applied consid-

ering to deploy only SaaS and PaaS resulting in partial

covering of the CFNs, labeled CWSC in the figures.

• SaaS: Only the SaaS model is considered for deployment

at the SFNs, labeled SaaS in the figures. This is a

benchmark for the proposed FogaaS model.

• PaaS: Only the PaaS model is considered for deployment

at the SFNs, labeled PaaS in the figures. This is a

benchmark for the proposed FogaaS model.

In order to have a fair comparison among all algorithms in

terms of service delay, we have considered that the uncovered

CFNs at the edge are able to access to a remote cloud. To this

aim, we include a CFN-Cloud offloading delay as)2;>D3 =

)
\2
C G +)

\2
?A>2 +)

o2
A G +)2

?A>? where \2 is the task size to be

5

0 50 100 150 200

CFNs

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
A

v
e
ra

g
e
 O

ff
lo

a
d
in

g
 D

e
la

y
 [
s
]

M=10

Delay Opt.

Delay A-CWSC

Delay CWSC

Delay SaaS

Delay PaaS

0 50 100 150 200

CFNs

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
v
e
ra

g
e
 O

ff
lo

a
d
in

g
 D

e
la

y
 [
s
]

M=40

Delay Opt.

Delay A-CWSC

Delay CWSC

Delay SaaS

Delay PaaS

Fig. 2. Average per-CFN offloading delay.

M=10

20 50 100 150 200

CFNs

0

20

40

60

80

U
n

c
o

v
e

re
d

 C
F

N
s
 [

%
]

Opt

XaDeP

CWSC

SaaS

PaaS

M=40

20 50 100 150 200

CFNs

0

20

40

60

80

100

U
n

c
o

v
e

re
d

 C
F

N
s
 [

%
]

Opt

XaDeP

CWSC

SaaS

PaaS

Fig. 3. Average Percentage of Uncovered CFNs at edge.

offloaded/processed to/in the cloud. The propagation time to

cloud and repository are set)2
?A>? = 0.2 s and)'4

?A>? = 0.1 s,

respectively, while the data rate to the cloud is supposed to be

100 Mb/s. Thus, the offloading delay is)(c)+)2;>D3 , whether

the task is offloaded to the cloud or edge. It is worth to be

mentioned that both optimal and XaDeP solutions are able to

cover all the CFNs at the edge, thus for these solutions)2;>D3

can be neglected. The results have been obtained by averaging

over 1000 rounds, each representing random CFN requests.

Figs. 2 and 3 depict the average per-CFN offloading com-

pletion time (labeled Delay), and the average percentage

of uncovered CFNs, respectively, for different numbers of

applications and CFNs. CFNs are supposed to be randomly

placed in an area covered by the three SFNs. Moreover,

Table I shows the Overall Delay (O.D.) of each algorithm,

corresponding to the sum of per CFN offloading delay (in

Fig. 2) and the execution Time Complexity (T.C.) for different

number of CFNs and applications, obtained with a dual core

Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz. For "=10,

the optimal solution has the best performance in terms of

offloading delay while ensuring a full CFN coverage. However,

the offloading delay minimization is overshadowed by T.C.

whose value depends on the considered hardware when solving

the problem for every run. This high O.D. in Tab. I, is due

to the T.C. required by the optimal solution which grows

exponentially as the number of CFNs rises. This makes our

XaDeP heuristic as the alternative approach in the long run

to guarantee a full coverage of the CFNs with an offloading

delay which is the closest to the optimal one. Observing Tab. I

we can see that, except for the case of 20 CFNs, our proposed

XaDeP outperforms the other algorithms. This is because, after

deploying the IaaS model at the edge, applications/platforms

are downloaded once from the repository, hence higher the

CFNs more the gain due to the reduced offloading delay at

the edge. Based on our observations, despite SaaS and PaaS

have the smallest T.C., SaaS leaves the largest percentage of

TABLE I
OVERALL DELAY FOR " = 10 AND " = 40 EXPRESSED IN SECONDS.

20 CFN 50 CFN 100 CFN 150 CFN 200 CFN

Ben.

App.
10 40 10 40 10 40 10 40 10 40

Opt 1.38 6.3 1.68 18.2 2.77 45.1 4.61 63.5 9.1 107

XaDeP 0.65 0.8 0.57 0.72 0.54 0.66 0.54 0.63 0.53 0.61

CWSC 0.62 0.75 0.65 0.78 0.65 0.76 0.65 0.75 0.65 0.75

SaaS 0.69 0.79 0.69 0.79 0.68 0.79 0.68 0.79 0.69 0.79

PaaS 0.91 0.93 0.91 0.94 0.91 0.94 0.90 0.93 0.91 0.94

uncovered CFNs, and PaaS has the largest offloading delay;

hence, since the uncovered CFNs have to access the cloud, the

O.D increases. Similar performance can be observed for the

case of " = 40. In the end, the proposed Optimal approach has

the best performance in terms of offloading delay. However,

with higher number of CFNs or applications, its T.C. rises. The

XaDeP on the other hand, guarantees a full coverage with the

lowest O.D. thanks to the flexibility that it offers for offloading

to the network edge.

V. CONCLUSION

In this work, we have studied a FogaaS architecture able to

deploy flexibly different applications at the edge upon CFNs

requests. To the best of our knowledge this is the first study

formulating this problem for minimizing the offloading delay,

and guaranteeing a full coverage of the CFNs in the form

of WSCP. In numerical results we have analyzed the trade-

off between the CFNs’ requests coverage and service delay

arising by the different service model deployments.

REFERENCES

[1] T. Chiu, A. Pang, W. Chung, and J. Zhang, “Latency-driven fog
cooperation approach in fog radio access networks,” IEEE Trans. Serv.

Comput., vol. 12, no. 5, pp. 698–711, Sep./Oct. 2019.
[2] I. Lera, C. Guerrero, and C. Juiz, “Availability-aware service placement

policy in fog computing based on graph partitions,” IEEE Internet Things

J., vol. 6, no. 2, pp. 3641–3651, Apr. 2019.
[3] R. Moallemi, A. Bozorgchenani, and D. Tarchi, “An evolutionary-based

algorithm for smart-living applications placement in fog networks,” in
2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa Village, HI,
USA, Dec. 2019.

[4] A. Bonadio, F. Chiti, and R. Fantacci, “Performance analysis of an edge
computing SaaS system for mobile users,” IEEE Trans. Veh. Technol.,
vol. 69, no. 2, pp. 2049–2057, Feb. 2020.

[5] C. Mouradian, F. Ebrahimnezhad, Y. Jebbar, J. K. Ahluwalia, S. N.
Afrasiabi, R. H. Glitho, and A. Moghe, “An IoT platform-as-a-service
for NFV based-hybrid cloud/fog systems,” IEEE Internet Things J.,
2020, early access.

[6] S. Shaik and S. Baskiyar, “Resource and service management for fog
infrastructure as a service,” in 2018 IEEE International Conference on

Smart Cloud (SmartCloud), 2018, pp. 64–69.
[7] F. Zafari, K. K. Leung, D. Towsley, P. Basu, and A. Swami, “A game-

theoretic framework for resource sharing in clouds,” in 2019 12th IFIP

Wireless and Mobile Networking Conference (WMNC), 2019, pp. 8–15.
[8] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han, “Computing

resource allocation in three-tier iot fog networks: A joint optimization
approach combining stackelberg game and matching,” IEEE Internet of

Things Journal, vol. 4, no. 5, pp. 1204–1215, 2017.
[9] S.Dang, O.Amin, B. Shihada, and M. Alouini, “What should 6G be?”

Nature Electronics, vol. 3, no. 1, pp. 20–29, 2020.
[10] A. Bozorgchenani, F. Mashhadi, D. Tarchi, and S. S. Monroy, “Multi-

objective computation sharing in energy and delay constrained mobile
edge computing environments,” IEEE Trans. Mobile Comput., May
2020, early view.

[11] C. A. Shaffer, Data Structures and Algorithm Analysis in Java, 3rd ed.
Dover Publication, 2013.

[12] L. Golab, F. Korn, F. Li, B. Saha, and D. Srivastava, “Size-constrained
weighted set cover,” in 2015 IEEE 31st International Conference on

Data Engineering, Seoul, South Korea, Apr. 2015, pp. 879–890.

