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1. Introduction

In recent years, soft robots have been thriving and introduced in
wearable and implantable medical devices, rehabilitation
robots,[1–3] minimally invasive surgery,[4–6] and multifunctional

graspers to operate complex and fragile
objects,[7–10] due to the merits of excellent
compliance, flexibility, and environmental
adaptability.[2,11] However, these merits
also bring considerable challenges to the
precise control of soft robots.[12] To achieve
accurate closed-loop motion control and
safe interaction with the environment, it
is essential to implement real-time shape
estimation.[13] However, the shape of soft
robots is heavily influenced by both inter-
nal drives and external loadings. Coupled
with their complicated intrinsic deforma-
tion, nonlinear behaviors of the fabrication
materials and apparent motion hysteresis
result in significant complexity in accuracy
shape estimation.[12,14,15] Meanwhile, the
direct attachment of traditional commercial
sensors will affect the motion of the soft
robots due to either high stiffness or large
volume, or poor stretchability, making it
difficult for them to be integrated into soft
robots.[12] Several approaches have been
implemented to estimate the shape of soft

robots to address these challenges. They can be primarily classi-
fied into the direct measurement method and indirect measure-
ment method.

The direct measurement methods typically collect the curva-
ture data of soft robots in the configuration space through cus-
tomized sensors and then directly obtain the shape information
in the task space. These methods usually involve applying a series
of flexible sensors along the body of a soft robot to provide
discrete shape information.[16] According to the sensing mecha-
nism, the common flexible and stretchable sensors mainly
consist of capacitive sensors,[17–19] resistive sensors,[10,20–23] opti-
cal sensors,[24–28] magnetic sensors,[29–31] and so on. However,
the stretchable sensors typically suffer from nonlinearity, hyster-
esis, and nonuniform fabrication quality, resulting in limited
accuracy and measurement frequency, a tedious calibration pro-
cess, and a lack of transferability.[20,32–35] When measuring the
large bending deformation, these sensors are prone to be highly
nonlinear due to the significant and coupling stress distribution
characteristics, resulting in inaccurate and even failed measure-
ment results. The inextensible sheets of rigid and discretized
elements (such as printed circuit boards, IMU) joined by known
axes of rotation have been also applied to realize shape
sensing.[36,37] However, they are typically utilized for large
deformable objects (such as basketballs, large-sized robotic arms)
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A shape estimation method that utilizes two sensing modalities of a customized
fiber Bragg grating (FBG) sensor and a commercial air pressure sensor for a
pneumatically driven soft finger with an extensive bending angle range based on
an artificial neural network model is proposed. The proposed FBG sensor utilizes
two tiny nitinol rods as a backbone to attach the long-grating FBG element fiber,
enabling high strain transfer, shape sensing for large bending deformation, and
preventing chirping failure and fiber sliding when bending. Its distal end is set
free to slide and synchronizes with the extended length and reflects shapes for
large bending deformation (up to 320° with a linearity of 99.96%), while its
proximal end is fixed. The small packaged sensor unit enables modular design,
easy assembly, and high repeatability with negligible effects on the soft finger’s
bending performances. The artificial neural network model is utilized to process the
input of two sensing modalities, reducing errors from material nonlinearity, fab-
rication, and assembly of soft fingers while improving shape estimation’s accuracy
and transferability with average errors of 0.90mm (0.69%) and 1.55mm (1.19%)
for whole shape and distal end position, respectively. Preliminary experiments also
verify the potential for pressing force prediction and hardness recognition.
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due to the rigid and large sensing elements. These disadvantages
make it difficult for this method to be applied to small-sized soft
manipulators. The multicore optical fibers have been arranged
along the neutral axis of the flexible endoscopes to realize 3D
shape sensing.[38,39] Such a sensor arrangement can avoid the
position and length change issue of the neutral axis for contin-
uum manipulators. However, it is difficult to obtain the exact
neutral axis/plane position of the pneu-net soft finger because
of its asymmetric and complex design and the unavoidable errors
in the process of manual fabrication and assembly. Moreover, the
neutral axis/plane can be changed during the large nonlinear
deformation. Therefore, this method that places the fiber along
the neutral axis for the continuum robot[38,39] involves more com-
plex problems in estimating the change in length and cannot be
directly for soft fingers. It is notable that the direct application of
fiber Bragg grating (FBG)-based optical shape sensing in
pneumatic-driven soft robots remains challenging due to the
large fiber slippage after assembly and the limited stretchable
property of the optical fiber.[40] The large bending angles and sig-
nificant deformation of the pneumatic-driven soft actuators are
typically much larger than that of other types of soft robots and
continuum robots.[12,41] These drawbacks make shape estimation
challenging, especially for soft robots with large deformation.

Without utilizing customized sensors, the indirect measure-
ment methods typically collect the driving data from the actuator
space, such as air pressure values through commercial sensors,
and then generate the shape information indirectly based on the
mapping relationship between the actuator and task space. This
mapping relationship can be obtained by the model-based
method or learning-based method. For the model-based method,
the kinetostatic model[42–45] (e.g., based on Cosserat rod theory
or Euler–Bernoulli principle) and finite-element analysis (FEA)
method[46] are popularly performed. However, these model
parameters are typically time varying and difficult to identify
accurately due to the inherent nonlinearity of material constitu-
tive relation and the geometric deformation nonlinearity influ-
enced by the complicated and unpredictable internal drives
and external loadings. These drawbacks typically result in inac-
curate and time-consuming solutions or unstable controllers,
making it difficult to be utilized for the shape estimation of soft
robots. In comparison, the learning-based algorithms are
independent of the physical model and the configuration of soft
robots[47,48] and have become an emerging and potential
approach for shape estimation. However, the current implemen-
tations mainly utilize the existing commercial sensors (e.g., ten-
sion/force sensors) that are difficult to be integrated with soft
robots or the limited sensory sources for data collection.[12]

Multiple sensing modalities are demanding for these learning-
based methods to obtain sufficient input data to further improve
the shape estimation accuracy and enhance the robustness in the
presence of errors caused by manufacturing, movements of the
soft robots, and robot integration.[49] The optical fiber-based sens-
ing modalities have been increasingly introduced and combined
with the learning-based methods to derive a continuous shape
estimation.[50,51] However, the embedded optical fiber-based
shape sensing in soft robots remains challenging due to the con-
siderable fiber slippage after assembly and the limited stretchable
property of the optical fiber and suffers from a limited bending/
motion range and low transferability.

To address these difficulties, this work proposes a shape
estimation method that utilizes two sensing modalities for a
pneumatically driven soft finger with a large bending angle range
based on an artificial neural network (ANN) model. These two
kinds of sensor units include a customized FBG sensor from
the configuration space and a commercial air pressure sensor
input from the actuator space. The proposed FBG sensor unit
design empowers large bending curvature information detection
with high repeatability of the sensory data and avoids the typical
FBG chirping failure and fiber sliding when bending. It supports
easy assembly on soft manipulators with negligible effects on
their bending performances. The distal end is freely set to slide
inside the channel and synchronize with the extended length to
depress the coupling of bending and elongation and reflect the
actual shape. The ANN model has been utilized to process the
input data from two types of sensors to improve the accuracy
and robustness of the proposed approach. Experiments have been
performed to investigate the shape estimation capacity and pre-
liminary force perception on the designed soft manipulator. The
transferability of the proposed method has also been investigated
without requiring a model training process using either a newly
built soft manipulator or a newly assembled FBG unit.

2. Experimental Section

2.1. Hardware Configuration of the Proposed System

The experimental framework was designed to achieve accurate
control and real-time feedback of the soft finger based on learn-
ing from multi-input sensing modalities, as illustrated in
Figure 1. The hardware configuration consisted of a microcon-
troller, a stepping motor, an air cylinder driven by a linear stage, a
customized soft finger, and two sensors for shape estimation.
The microcontroller (Arduino Mega 2560, Arduino LLC,
Brescia, Italy) read control signals from the host PC and
controlled the stepping motor. The stepper motor ran at
20 Hz to actuate the air cylinder (inner diameter= 25mm,
length= 150mm) via the linear stage to drive the soft finger
to bend. An air pressure sensor (PCM380, Suzhou Xuansheng
Instrument Technology Ltd., Suzhou, CN) with a sensing accu-
racy of 10 Pa was applied to provide the pressure data with an
update rate of 20 Hz. A customized FBG sensing unit was pro-
posed and integrated along the sidewall of the soft finger to
reflect the deformation strain. An FBG interrogator (MOI-SI155,
Micron Optics Inc., Georgia, USA) operated at 1000Hz with a
wavelength resolution of 1 pm to collect the corresponding reflec-
tive FBG central wavelength shift values. These two kinds of
sensing sources for both internal and external sensing in the
actuator and configuration spaces were applied for shape recon-
struction and preliminary contact prediction. A camera (resolu-
tion= 1920� 1080) was employed for ground truth collection
with the red marker line attached along with the soft finger.

2.2. Structural Design and Optimization of the Soft Finger

The pneu-net configuration with a series of chambers connected
by channels was adopted to design the soft finger[52] (Figure 2a).
The pneu-net allowed the soft finger to deform into an
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approximate circle with uniform inflation of nearly all chambers,
thus benefiting uniform pressure distribution and a closely con-
stant curvature deformation. However, due to the super-elastic
property of the silicone material, the internal pressure of the soft
finger had a nonmonotonic relationship with deformation,[53]

and an excessive radial deformation was also generate under
high internal pressure. These disadvantages obviously affect
the constant curvature performance of soft fingers and reduce
the modelling accuracy based on the constant curvature assump-
tion, which is widely used in different shape estimationmethods,
and increase the complexity of bending deformation control.
Thus, the design parameters of the pneu-net configuration
had to be further optimized to form a monotonic pressure–
deformation relationship and limit the radial deformation.

This measure aimed to achieve better constant curvature
performance with lower pressure and less material deformation
for shape estimation. Two important parameters which are the
chamber width and top thickness heavily affect the bending
performance and radial deformation, so they were selected for
optimization.[46,54] The FEA method was utilized to determine
the optimal solutions for design optimization (Figure 2b,c),
and the result and the detailed parameters are illustrated in
Figure 2a. (The process of soft finger parameter optimization
is detailed in Section S1, Supporting Information).

2.3. Design and Assembly of the Proposed FBG Sensor Unit

The proposed FBG sensor unit consisted of two nitinol rods
(Jiangyin Haolu Ni–Ti New Materials Ltd., Wuxi, CN) with the
same diameter of 0.5 mm and a length of 140mm, and one opti-
cal fiber inscribed with a 15mm long-grating FBG element
(Beijing Tongwei Technology Ltd., Beijing, CN) (Figure 3a).
The two nitinol rods served as the backbone to carry the FBG
fiber with a diameter of around 0.2mm, and they were bonded
together by 401 quick-drying glue (Shenzhen Tegu New
Materials Ltd., Shenzhen, CN) to form a sensor unit. The utilized
long-grating FBG fabrication method involved exposing a photo-
sensitive fiber to an interference fringe pattern in UV light
through a phase mask.[55,56] The grating spacing of this FBG ele-
ment was about 1 μm. A flexible tube with a diameter of 1.4 mm
was employed as a sensor channel to carry the FBG sensor unit
for easy assembly with the soft finger. The proximal end of this
FBG sensor unit was fixed onto the sensor channel, and the distal
end was set free and could slide inside the channel. Thus, when
the soft finger experienced a relatively large deformation, this
design supported the FBG sensor unit to slip and synchronize
with the extended length and reflected its elongated shape.

Figure 2. a) The construction and parameters of the pneu-net soft finger. b) The influence of top thickness and chamber width on bending performance.
c) The influence of top thickness and chamber width on radial deformation.

Figure 1. The hardware configuration of the proposed platform.
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The proposed configuration with two nitinol rods supported
improved strain transfer efficiency from the soft finger to the
embedded FBG element and enhanced fiber antitwisting capacity
and further addressed the following common difficulties associated
with FBG casting inside the soft robots. First, when the soft finger
experienced a relatively large bending angle or deformation, the
direct casting fiber inside the soft finger could be slippery and tor-
sional, due to the limited adhesive force. Second, the large bending
deformation commonly induced the FBG sensor to cross the soft
finger’s neutral surface. This resulted in the stress change from the
stretching state to the compression state and introduced an unpre-
dictable wavelength shift, which cannot reflect the actual shape.

Meanwhile, to realize the large bending deformation estima-
tion and avoid the FBG chirping failure,[57] a long-grating FBG
element with a length of 15mm was adopted for strain collection
instead of the commonly utilized short FBG element. The same
soft finger was integrated with these two sensor units to validate
their performances (Figure 3). Compared with the short-grating
FBG element (Figure 3b), the bending angle for the long-grating
FBG was obviously larger (Figure 3c) when the chirping
occurred. This usage was of great help for effective data collec-
tion, especially for the soft robots that required a large curvature
deformation and induced the slippery and chirping failure for the
short-grating FBG element.

2.4. Preliminary Performance Tests of the Soft Finger
Integrated with the FBG Sensor Unit

In order to verify the linearity of the proposed FBG sensor unit, a
preliminary calibration experiment was carried out based on

a multichannel calibration board (Figure 4a). The wavelength
of the FBG sensor unit under bending with a curvature radius
of 40–200mm (interval= 20mm) was collected. As shown in
Figure 4b, the linearity error was 0.69%, indicating an excellent
linearity of the proposed FBG sensor unit (Figure 4b). The the-
oretical calculation was performed to show that the bending
stiffness of the proposed sensor unit was much smaller than
that of the pneu-net soft finger. The bending stiffness of the
proposed FBG sensor unit can be calculated as 5.09N cm2

based on the theory of mechanics of materials. The bending
stiffness of the pneu-net soft fingers typically ranged within
79.42–96.5 N cm2.[44] (The detailed derivation process is added
in Section S2, Supporting Information). The large difference
between them indicated that the FBG sensor unit can generate
a neglectable effect on the bending deformation of the soft finger.
The bending performances for the soft finger with and without
the proposed FBG unit were experimentally compared for vali-
dation (Figure 4c). These results showed a small relative error
of 1.69% on the tip position for these two cases, validating the
minimum effects induced by the assembly of the FBG sensor
unit on the soft finger. The results showed that the proposed
assembly method with a flexible tube can make the FBG sensor
unit fit the shape of the soft finger without affecting its bending
deformation. Meanwhile, the employed nitinol rod was thin and
possessed hyperelastic properties, and the FBG fiber was small
and flexible. They generated relatively small rebound forces com-
pared with the large internal driving forces inside the soft finger.
Furthermore, the repeatability of the soft finger assembled with
the integrated FBG sensor was conducted. The bending experi-
ments were repeated for five cycles, and the FBG wavelength and

Figure 3. a) Detailed structure of the designed soft finger and FBG sensor unit. b) The chirping experiment of a 3mm-long FBG element. c) The chirping
experiment of a long-grating FBG element with a length of 15mm.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2200324 2200324 (4 of 12) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202200324 by T

est, W
iley O

nline L
ibrary on [25/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


the air pressure were recorded (Figure 4d). The measured
pressure–wavelength curves demonstrated a repeatable precision
error of less than 80 pm on FBG wavelength (0.6% of the total
workspace) in the same air pressure and a small hysteresis for
the integrated FBG sensor unit. These curves demonstrated a
strictly monotonic mapping relationship, making it an excellent
candidate for the following shape estimation.

2.5. Multi-Input ANN Model for Shape Estimation

The air pressure parameter in the actuator space and the FBG
wavelength parameter in the configuration space were utilized
to provide dual-modality inputs for a multilayer perceptron-based
(MLP) model ANN1, aiming at comprehensively approaching the
complex nonlinear mapping relationship with the whole shape of
the soft finger in the task space, as illustrated in Figure 5 and 6.
The ANN1 model was established with TensorFlow 2.0 (Google
LLC, California, USA), and the details of the ANN1 model are
shown in Table 1. The air pressure and FBG data can be directly
obtained from the corresponding sensor units during the train-
ing data collection. The ground truth data of the finger shape can
be collected by imaging processing on the attached red maker
line and then sampling the feature points. Bezier curve was uti-
lized to acquire the actual bending shape of the soft finger from a
large number of discrete feature points obtained from images.
Meanwhile, the two arcs of constant curvature curves can sim-
plify the curve parameters into four feature point coordinates
along the Bezier curve, balancing the accuracy and calculation

complexity. Five points (one fixed point and four feature points)
were collected and then further fit by two-segment circular arcs to
form the whole shape of the soft finger (Figure 6). (The workflow
of feature point extraction and curve reconstruction is presented
in Section S3, Supporting Information).

The curvature data measured by the FBG sensor unit in con-
figuration space can directly deduce the shape of the task space
through geometric relations and will not be affected by the mate-
rial nonlinearity, manufacturing, and assembly errors. The air
pressure data obtained by the commercial air pressure of the
actuator space was stable and not easily disturbed by the external

Figure 4. a) The multichannel calibration board. b) Calibration results for the FBG sensor unit. c) The influence of nitinol rods of the soft finger’s
deformation. d) The cyclic loading experiments of the soft finger.

Figure 5. The presented multi-input ANN1 model for shape
reconstruction.
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environment. Thus, the usage of the multi-input model can
improve the accuracy and robustness of shape estimation.
Meanwhile, it can also compensate for model uncertainties
caused by sensing noises, manufacturing and assembly errors,
and further effectively improve the model’s transferability.

3. Results

3.1. Data Collection and Offline Training for the Multi-Input
ANN Model

The soft finger was driven by the stepping motor to deform and
bend from 0° to a maximum angle of 320°, due to its mechanical
design limitation. The corresponding air pressure data, the cen-
tral wavelength shift values from the FBG sensor, and the shape
of the red mark line were recorded for data training. The training
data set of 500 groups has been collected from an inflation and
deflation cycle and grouped into a training set (80%) and a test set
(20%) for training and testing the proposed ANN1 model. The
loss function is defined as the sum of distances between the four
predicted feature points and the actual values.

Loss1 ¼
X4

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xiÞ2 þ ðyi � yiÞ2

q
(1)

where xi and yi denote the predicted coordinate of the feature
point; xi and yi imply the actual coordinate of the feature point.
The average error values for the whole shape and the distal tip
position of offline training are 0.86 and 1.51mm, respectively.
They account for 0.66% and 1.16% of the total length of the soft
finger, validating the effectiveness of the proposed ANN1 model.

3.2. Real-Time Shape Estimation of the Soft Finger
in Free Space

The air pressure and the wavelength shift value from the FBG
sensor were recorded in real time with a frame rate of 20 Hz.
The trained ANN1 model was applied online with the same
frame rate to reconstruct the whole shape and estimate the distal
tip position when the soft finger was controlled to bend from 0° to
320° in the free space with a constant inflation speed (Figure 7).
The shape estimation of six typical bending cases is illustrated in
Figure 7. The average error values for the distal tip position and
the whole shape estimation during the whole process are 1.55
and 0.90mm (Figure 7). They account for 1.19% and 0.69%
of the total length of the soft finger, demonstrating the high accu-
racy and effectiveness of the proposed shape estimation method.

3.3. Transferability of the Proposed Shape Estimation Method

To verify the transferability of the proposed shape estimation
method, two experiments were carried out with a newly fabri-
cated soft finger and a newly assembled FBG sensor unit respec-
tively. The previously obtained ANN1 model was directly utilized
to predict the tip position and whole shape of the soft finger with-
out data training, and the error results are quantified, as shown
in Figure 8a,b. The average error values for the distal tip position
and the whole shape estimation of the newly fabricated soft fin-
ger embedded with the previously FBG sensor unit are 2.35mm
(1.81% of its length) and 1.46mm (1.12% of its length) respec-
tively (Figure 8a). Meanwhile, the corresponding average error
values for the soft finger embedded with the newly made FBG
sensor unit are 1.78mm (1.27% of its length) and 1.09mm
(0.78% of its length) respectively (Figure 8b). The estimation
error values for the new soft finger and FBG sensor unit are
slightly higher than the previous configuration results of
1.55mm and 0.90mm in Figure 7, but still with high accuracy
and stability. Therefore, the proposed method with multiple
inputs can significantly reduce manual fabrication and assembly
errors, and model uncertainties, demonstrating excellent trans-
ferability for shape estimation.

Figure 6. The presented shape reconstruction method based on the ANN1 model.

Table 1. Detailed parameters of the ANN1 model.

Neural
network
model

Hidden
layer

number

Input
nodes

Layer1
nodes

Layer2
nodes

Output
nodes

Activation
function

Learning
rate

Training
epochs

ANN1 2 2 64 64 8 Relu 0.2 4352
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The shape estimation performance comparisons between the
proposed ANN model (ANN1) with dual-sensing modalities
inputs and the models with only single-sensing modality input
(air pressure or FBG wavelength) were quantified by experiments
(Figure 8c,d). The experimental results show that the average
error values for the whole shape estimation on two soft fingers
of the ANNp (6.87 and 9.99mm respectively) and ANNw
(3.03 and 4.58mm respectively) are much lower than that of
the ANN1 model (0.90 and 1.46mm, respectively). Meanwhile,
the average error values for the whole shape estimation of the
ANNp and ANNw are increased by 3.12 and 1.55mm, respec-
tively, when they are applied to the newly fabricated soft finger.
These values are much larger than the error increase of the ANN1
model (0.56mm). Therefore, the ANN model (ANN1) with dual-
sensing modalities inputs can effectively produce higher shape
estimation accuracy and robustness and stronger transferability
than the method with single-sensing modality input.

3.4. Preliminary Detection of Interferences Caused by the
Contact Forces

The proposed shape estimation method with dual-sensing
modalities can also be extended to achieve preliminary contact
force perception with the MLP-based model ANN2 (Figure 9a).
The loss function of the ANN2 is defined as the squared error
between the predicted FBG wavelength and the actual values

Loss2 ¼ jðw � wÞj (2)

where w and w denote the predicted and actual FBG wavelength
respectively, and the details of the ANN2 model are shown in
Table 2. The current algorithm utilizes the difference between
the predicted FBG wavelength λp and the actual FBG
wavelength λa to preliminary detect the contact forces, as shown
in Equation (3).

Figure 7. Shape estimation results and errors at different bending angles.
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Δλ ¼ λp � λa (3)

where λp is predicted by the ANN2 model using the air pressure
data in a free state and λa is obtained by the customized FBG
sensor unit, and the corresponding working principle is
explained as follows. 1) In the free state, λp and λa are closely
equal and their difference Δλ is �0. 2) When the pressing force
is applied to the distal tip as the soft fingers actively grasp an
object, λp varies because of the increase of the air pressure. In
this case, λa is approximately invariable and limited by obstacles.
In conclusion, Δλ can be utilized to reflect the change of the con-
tact force. Two groups of experiments were conducted to verify
its feasibility as follows.

3.4.1. Prediction of the Pressing Force at the Distal Fingertip

A force sensor was placed at a distance of 0, 15, and 30mm from
the distal tip of the soft finger as the obstacle to investigating the
fingertip pressing force prediction respectively (Figure 9b).
During the bending and deformation process of the soft finger,
the pressing forces, λp and λa, were recorded at the same time
(Figure 9c). The dotted and solid lines of the same color repre-
sented the predicted wavelength λp and the actual wavelength λa
and the intersection point of them indicated the first contact

between the soft finger and the force sensor. The experimental
results show that the difference between λp and λa increased as
the pressing force raised. This experiment demonstrated the
potential of the soft finger to predict the pressing force at the
distal tip.

3.4.2. Hardness Recognition and Grasping Process Perception

The soft gripper was utilized in three grasping experiments in
free space, with a sponge cylinder, and a light-cured resin cylin-
der respectively (Figure 10a). The values of p and λa were
obtained through the sensors and λp was calculated by the
ANN2 model at the same time and the results are shown in
Figure 10b. The λp of the single-deformed soft finger in free
space is illustrated in the green line in Case-p. For the experi-
ment in free space, the purple line represents the change of
FBG wavelength, and there is a turning point (P2) on the purple
line, indicating the time when the soft fingers contact each other
without loading. Before contacting, Case-f1 of the purple line
coincides with the predicted FBG wavelength (green line,
Case-p). When these two soft fingers came into contact, their dis-
tal tip movement was limited, so the slope of the line decreased
significantly (Case-f2). For the grasping experiment with a
sponge, the blue line represents the change of FBG wavelength

Figure 8. a) Real-time error values of the shape estimation for the newly fabricated soft finger at different bending angles. b) Real-time error values of the
shape estimation for the newly assembled FBG sensor unit at different bending angles. c) Shape estimation errors of three different ANN models on the
original soft finger. d) Shape estimation errors of three different ANN models on the newly fabricated soft finger.
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and consists of two stages of Case-s1 and Case-s2. In Case-s1, the
contact force on the soft gripper was caused by the overall shape
deformation of the hollow sponge cylinder. P1 was an inflection
point, indicating the time when the central hole of the sponge is
compacted by the soft gripper. After that, the contact force was
mainly generated by the elastic deformation of sponge material,
which was larger than Case-s1, so the slope of the blue line in
Case-s2 decreased significantly. For the grasping experiment
with a resin cylinder, the orange line represented the change
of FBG wavelength, as shown in Case-h. Due to the increase
in hardness, its slope was obviously smaller than the purple
and blue lines. Thus, the slope values of purple, blue, and orange
lines can qualitatively reflect the hardness of the gripped objects
to some extent. For instance, the orange line has the smallest
slope value and reflects the hard resin cylinder, while the purple
line has the largest slope value and reflects the movements in

free space. These results reflect the ability of this method in pre-
liminary hardness recognition and grasping process perception.

3.5. Discussion

The comparison among the existing shape estimation method
implemented in the pneu-net soft actuators[10,31–35,58–64] has
been summarized in Table 3. The proposed method based on
the ANN model from two sensing modalities supports accurate
and robust shape estimation of the pneumatically driven soft fin-
ger with an extensive bending angle range and excellent transfer-
ability. Compared with these methods, the proposed method
achieves an extensive bending angle range of up to 320° (much
larger than the previous achievements), achieves an excellent lin-
earity of 99.96%, and realizes a higher accuracy with a relatively
low error of 0.69% for the whole shape estimation within this
large bending range. The resistance-based stretchable sensors
and deformable capacitive sensors are widely utilized, and most
of them experience apparent hysteresis and nonlinearity, result-
ing in low working frequency and limited accuracy. Some imple-
mentations can only measure the curvature data but cannot
reflect the exact shape.[20,32–34] The liquid metal was introduced
to make the stretchable resistive sensor based on the high-
precision micro electromechanical system (MEMS) techniques

Figure 9. a) Preliminary contact force perception based on the ANN2 model. b) Experiments on distal pressing force prediction. c) Experimental data of
distal pressing force prediction. (Note: B1, B2, and B3 represent the actual FBG wavelength data when the soft finger contacts the force sensor at the
initial moment. E1a, E2a, and E3a represent the actual FBG wavelength data when the air pressure of the soft finger reaches the maximum (the driving
cylinder of the soft finger moves to the limit position). E1p, E2p, and E3p represent the predicted FBG wavelength data by the ANN2 model when the air
pressure of the soft finger reaches the maximum.) Please note the labels in b) correspond to the same labels in c) for easy understanding.

Table 2. Detailed parameters of the ANN2 model.

Neural
network
model

Hidden
layer

number

Input
nodes

Layer1
nodes

Layer2
nodes

Output
nodes

Activation
function

Learning
rate

Training
epochs

ANN2 2 1 64 64 1 Relu 0.2 2200
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and achieve a high linearity.[10] However, this design still suffers
from the limited working frequency of 4 Hz and achieves the
bending angle sensing up to 220°. The FBG optical fibers have
been increasing applied to achieve shape reconstruction of soft
manipulators with higher accuracy due to their tiny sizes,

excellent flexibility, and multiple-point strain measurement
capacity.[40] However, the embedded optical fiber-based shape
sensing in soft robots typically is from fiber slippage, the tiny
stretchable characteristic, and chirping failure. Therefore, this
type of method suffers from a limited bending/motion range

Figure 10. a) Experiments on hardness recognition and grasping process perception. b) Experimental data of hardness recognition and grasping process
perception. (Note: P1 represents the initial state when the soft finger is not inflated. P2 represents the time when the two soft fingers contact each other
without load. P3 represents the moment when the central hole of the sponge is compacted by the soft gripper.) Please note the labels in a) correspond to
the same labels in b) for easy understanding.

Table 3. The comparison among the existing shape estimation methods implemented in the soft actuators.

Method Sensing
functionality

Relative shape
reconstruction

error

Bending angle
measurement

range [°]

Linearity Frequency
response

[Hz]

Transferability
experiment

Refs.

Sensing
transducers

Materials

Resistive Conductive inks Curvature Qualitative 0–135 64% 2.8 – [32]

Saltwater Curvature Qualitative 0–140 Nonlinearity 3.665 – [33]

Conductive nylon sewing
threads

Curvature Qualitative 0–60 – – – [34]

Multiwalled carbon nanotube Curvature Qualitative 0–200 96.53% 1-3 – [20]

Conductive textile Shape Mean 1.91%
Max 4.34%

– Nonlinearity – – [35]

Liquid metal Shape Max 5% 0–220 99.92% 4 – [10]

Multiwalled carbon nanotube Shape Max 4.5% – Nonlinearity 10 – [58]

Capacitive CB–PDMS Curvature Qualitative 0–70 Nonlinearity 1.6 – [59]

Voltage Hall effect sensing component Curvature Qualitative – – 7.83 – [31]

PVDF Shape Mean 3% 0–160 – – – [60]

Optical FBG Shape Mean 1.84% 0–50 – – – [61]

FBG Shape Min 0.94%
Max 15%

0–70 – – – [62]

FBG Shape Max 2.46% 0–180 – – – [63]

Learning Shape Mean 1.33% – – – – [64]

The proposed method Shape 0.69%(s)a)

1.19%(t)b)
0–320 99.96% 20 Supported –

a)The average relative error for the whole shape; b)The average relative error for the distal tip.
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(50°, 70°, and 180° in Table 3),[61–63] poor accuracy for large defor-
mation detection and low transferability due to the direct fiber
pasting along the soft manipulator. Some implementations
designed the shape-sensing units by attaching glass/silica FBG
fibers entirely into a flexible tube made of composite materials[65]

or other low-modulus materials[66,67] to realize the shape sensing
of the continuum robots, joint movement monitoring, and slip
surface monitoring of a landslide. The compliant/soft substrates
of these flexible tubes will lower the strain transfer coefficient
between the target object and the sensing fiber and improve
the sensing range but with the sacrifice of the bending sensing
accuracy. These sensing units can be applied for bending with
a small length change or fixed length (pure bending), making
it difficult to be utilized for the pneumatic-driven soft fingers,
where the stretching and bending deformation of typically occur
simultaneously. However, the proposed FBG sensor unit has
addressed such difficulties. The proximal end of the FBG sensor
unit is fixed, and the distal end is set free to slide and synchronize
with the extended length. This design can effectively avoid fiber
sliding and breakage when bending and well reflect the actual
shape with large deformation. The utilization of the long-grating
FBG element can further avoid chirping failure associated with the
typical FBG element when the soft manipulator experiences a
large deformation/bending angle. The designed soft finger in
the current work possesses a limited bending angle of 320°,
but the detection angle range of our proposed design can be more
extensive. The transferability experiments that utilized a newly
fabricated soft finger and a newly assembled FBG sensor unit have
been performed to maintain accuracy stability without a model
training process. Therefore, the proposed method with multiple
inputs demonstrates excellent transferability for shape estimation,
which can significantly reduce the influences associated with
manual fabrication and assembly errors and model uncertainties
and further avoid the complex sensor calibration process.
The proposed FBG sensor unit design supports convenient inte-
gration with various soft manipulators and generates high sensory
data repeatability. It produces negligible effects on the bending
performances of soft manipulators and thus can further serve
as a modular unit for 2D shape estimation. The FBG sensor unit
can support the working frequency of 1000Hz; however, the lim-
itation lies in the working frequency of the commercial air pres-
sure sensor (20Hz). Thus, the working frequency can be further
improved via the change of the air pressure sensor. The FBG opti-
cal fiber is a type of quasidistributed sensor that can support both
one-point and multiple-point strain measurements to achieve
both force and shape-sensing implementations. The FBG fiber
can be integrated with the force-sensitive flexure to design the
force sensor and achieve distal force sensing.[68,69] The configu-
ration of multiple FBG elements in one optical fiber enables dis-
tributed strain and curvature measurements with higher accuracy
and supports achieving shape sensing for soft manipulators and
continuum robots with more complex shapes.

4. Conclusion

A 2D shape estimation method for a pneumatically driven soft
finger that adopts two sensing modalities has been proposed
and implemented with the ANN model to achieve high-accuracy

prediction of the whole shape and distal end position with a large
bending motion range. The proposed customized FBG sensor
unit is effectively extended onto different soft manipulators, sup-
ports the convenient assembly, and generates negligible interfer-
ences with the bending performances, demonstrating a modular
sensory design for shape sensing. A series of experiments were
conducted, and the results demonstrated that the whole shape of
the soft finger could be accurately predicted in real time by the
proposed method. The transferability on a newly fabricated soft
finger has been validated with high accuracy to further improve
the robustness of the proposed shape estimation. Future work
will extend the current sensor design and develop FBG-based
force sensors to realize contact force detection of soft manipula-
tors. Meanwhile, more FBG elements, multicore optical fibers, or
other distributed fiber optic strain sensors based on the optical
frequency domain reflectometry (OFDR) technology will be
applied along the sliding nitinol rod to achieve both force and
shape sensing for soft manipulators.
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