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Abstract
By adopting a global search method for all shear tractions in the contacting area and using an alternative convergence crite-
rion regarding load balance in the lateral direction, the newly developed algorithm provides stable solutions to partial-slip 
problems of elastically dissimilar materials. The model is validated via the comparison between the simulation and literature 
results for a sphere-on-flat problem under fully coupled conditions. It is then employed to investigate the influence of sur-
face roughness parameters including the root mean square (RMS) roughness and RMS slope on partial-slip solutions under 
coupled conditions. Since the gross sliding condition is modified under coupling effects, the relationship between the ratio 
of the stick area to the contacting area (stick ratio) and tangential load in the coupled case, unlike that in the uncoupled one, 
becomes non-linear for all tested rough surfaces. Under low or medium tangential loads, the surface with a higher RMS 
gradient or a lower RMS roughness experiences more stick regions within the contacting area. This trend then becomes 
irregular at higher tangential loads.

Keywords Contact mechanics · Coupled partial-slip contact · Surface roughness · Friction

1 Introduction

Frictional contact has always been an area of concern within 
the framework of contact mechanics since the phenomenon 
of the relative motion being impeded by friction is com-
monly encountered in practice when two contacting surfaces 
are subjected to tangential loads. Common examples of such 
a scenario are the rubber friction in automotive vehicles [1] 
and fretting wear in orthopaedic implants [2]. When the tan-
gential load is not high enough to induce gross sliding, the 
interaction zone between surfaces is separated into localised 
stick and slip regions. The solution to this so-called ‘partial-
slip’ problem depends on the properties of both materials 
in contact. When they are identical as assumed in the well-
known Cattaneo–Mindlin solution [3 4] or where the two 

materials are incompressible, the normal and tangential 
contact problems are decoupled. In this case, the normal 
pressure causes no relative tangential displacement and cor-
respondingly the shear traction does not impose any normal 
displacement. However, when it comes to the contact of two 
dissimilar and compressible materials, there exists mutual 
interaction between the normal pressures and shear tractions. 
As the corresponding parts of the two surfaces experience 
different tangential displacements arising from the mismatch 
of their elastic responses, a normal load could solely cause a 
certain tangential displacement, which is resisted by friction 
and consequently results in shear tractions and micro-slip 
within the contacting areas.

The development of a closed-form analytical solution to 
such a problem can be troublesome because of the inter-
relation of the normal and tangential contact problems. A 
method known as the Goodman approximation [5] was fre-
quently applied in early stick–slip analysis, which neglects 
the effect of shear tractions on normal pressure but takes that 
of pressure on tangential tractions into account. The normal 
contact problem is uncoupled from the tangential one in this 
way. Due to this limitation, the solution based on such an 
approximation is only valid for plane (cylindrical) contact 
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problems in which the material Poisson’s ratios are large, 
according to Hills’ later analysis [6]. Spence [7] adopted an 
iterative scheme to analyse the normal indentation contact of 
dissimilar materials in detail, where the indenter was limited 
to be a rigid and flat-ended punch. The solution to a spheri-
cal indentation problem was later developed by Spence [8] 
through a transformation technique. Hills [9] derived a simi-
lar coupled solution to elastic cylindrical contact problems 
and analysed the relevant fretting contact problem under 
oscillating tangential loading conditions.

Considering the simplified contact geometries in ana-
lytical solutions along with their mathematical complexity 
during applications, recently great efforts have been made 
to solve the coupled partial-slip problem numerically, for 
which the boundary element method (BEM) has been widely 
applied. Based on the Gauss–Seidel method, Willner [10] 
developed a fully coupled model for the point contact of dis-
similar elastic materials. A similar coupled model was devel-
oped by Chen and Wang [11] using the conjugate gradient 
method (CGM). Their model was later extended to analyse 
multi-layered fretting contact problems with the addition of 
twisting moments by Wang et al. [12–14]. They also inves-
tigated the effects of inhomogeneous materials [15] and 
elastoplasticity [16] on the stick–slip behaviour. Different 
CGM-based algorithms were proposed by Gallego [17] and 
Spinu [18, 19] to investigate the fretting contact of distinct 
elastic materials. The former was then further developed by 
Leroux and Nelias [20] to analyse the stick–slip between a 
rigid sphere and an inhomogeneous cylinder.

The studies described above each investigated the partial 
slip of the corresponding smooth elastic surfaces only. Nev-
ertheless, it has long been recognised that surface roughness 
plays an essential role in contact problems of real engineer-
ing surfaces. In terms of uncoupled rough surface contact, 
fretting wear analysis of sinusoidal rough surfaces was ini-
tiated by Ciavarella [21], in which a closed-form analyti-
cal solution to the shear traction distribution was proposed. 
Kasarekar et al. [22] investigated how fretting wear evolves 
in a rough circular stick–slip contact, where the effect of 
surface roughness was highlighted in their wear calcula-
tion. A similar uncoupled stick–slip contact analysis was 
conducted by Dini and Hills [23], who focused on the rela-
tionship between the roughness and frictional energy dis-
sipation in a rough Hertzian-type contact problem. The tan-
gential stiffness and energy loss in a rough fretting contact 
were investigated by Eriten et al. [24] using a physics-based 
frictional contact model, for which the effectiveness of pro-
vided solutions is limited to small loads. A study concern-
ing the fretting wear of rough point contacts was conducted 
by Lehtovaara and Lonnqvist [25], who reported that the 
ratio of the tangential force to the static friction controls the 
separation of stick and slip regions under uncoupled partial-
slip conditions. A similar finding of the linear relationship 

between the ratio of the stick area to the contacting area and 
the ratio of the applied tangential load to the static frictional 
load was reported in the studies of Paggi et al. [26] and 
Wang et al. [27]. Based on their respective BEM models, 
the effect of the Hurst exponent of rough surfaces on the 
transition of the contact state (from full stick to full slip) 
was analysed by Paggi et al. [26], whilst Wang et al. [27] 
conducted similar research focusing on the role of the root 
mean square (RMS) roughness, RMS slope, skewness and 
kurtosis. Effects of the RMS roughness on the preliminary 
displacement (the displacement at which full slip starts) in 
the frictional contact of self-affine fractal surfaces have also 
been analysed by Grzemba et al. [28], where the preliminary 
slip of surfaces with a longer cut-off wavelength was found 
to have an order of magnitude of the RMS roughness multi-
plied with the coefficient of friction.

The reported research on the coupled partial-slip con-
tact of rough surfaces is relatively limited compared to the 
uncoupled approaches as discussed. Chen and Wang [29] 
simulated the partial slip of a rough sphere against a flat 
half-space, where the rough surfaces were generated using 
a digital filtration algorithm. The relationship between the 
surface roughness and the static friction coefficient was ana-
lysed using their coupled stick–slip algorithm. Similar to 
Chen and Wang [29], Bazrafshan et al. [30] included surface 
adhesion in the partial-slip contact problem and reported 
the effects of adhesion and surface roughness on the contact 
solution. It was reported in their study that the surface adhe-
sion increases the pre-sliding distance and the static friction, 
whilst the surface roughness only affects the former factor. 
To date, the contact of two dissimilar elastic rough surfaces 
remains an under-exploited field of study. Few studies shed 
light on the role of surface roughness in the separation of 
stick and slip regions under coupling circumstances. This 
is the problem we intend to address in more detail in the 
current paper.

Inspired by the coupled partial-slip algorithm of Chen 
and Wang [11], a three-level iteration model is developed 
to solve non-conformal contact problems of two dissimilar 
elastic bodies with arbitrary geometries and surface rough-
ness. Within our framework, the shear traction in the stick 
region must be less than the local Coulomb friction. CGM 
is used as the relaxation method in the model considering 
its guaranteed convergence for quadratic optimization prob-
lems. A global adjustment method for all shear tractions 
within the contacting area is adopted during the design of 
the CGM-based algorithm. This novel approach to updat-
ing contact tractions helps to avoid oscillating results at the 
interface between stick and slip regions. The Discretised 
Convolution Fast Fourier Transform (DC-FFT) is used in 
the algorithm to accelerate the relevant convolution opera-
tion. The combination of these two computational tech-
niques (DC-FFT and CGM) has been widely applied in 
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many numerical modelling of contact problems in the past 
few decades [31]. To avoid convergence issues arising from 
the lack of enforcement of load balance in the tangential 
direction, which could be encountered in traditional models 
[11, 12, 17, 32], a new alternative criterion was proposed 
here to improve the stability of the algorithm. The model is 
well validated by simulating a sphere-on-flat problem under 
coupled partial-slip conditions, to which the relevant solu-
tions have been reported previously by Chen and Wang [11]. 
It is then extended to simulate the coupled partial slip of 
rough surfaces. By comparing the modelling results with our 
former uncoupled study [27], the influence of surface rough-
ness on the contact solutions is investigated when coupling 
effects are included.

2  Methods

On the basis of the coupled relationship between surface 
displacements and contact tractions, the following fully 
deterministic partial-slip contact model has been developed, 
which refers to Chen and Wang’s [11] CGM algorithm for 
the point contact of dissimilar materials.

2.1  Problem Formulation

A typical partial-slip contact problem of a smooth sphere 
(Body 1) against a flat elastic half-space (Body 2) is illus-
trated in Fig. 1a, in which the material properties of the two 
bodies ( E1,E2, �1, �2 ) are dissimilar. The x- and y-axes are 
positioned laterally on the surface, whilst the z-axis is per-
pendicular to those and normal to the surfaces. The sphere 
behaves as an indenter to compress the half-space under a 

normal force (W). Meanwhile, the tangential loads ( Fx,Fy ), 
which are parallel to the x- and y-axes, respectively, are 
applied in the plane of contact aiming to generate a relative 
movement between the two bodies. The surface interaction 
resulting from the input load brings about contact tractions 
(qx, qy, p) and surface displacements ( ux, uy, uz ). The relations 
between these tractions and displacements at any point of the 
surface are summarised by Wang and Zhu [31] as follows:

in which the operation ‘*’ denotes the continuous convolu-
tion and Gij(i, j = x, y, z) denotes the Green function. Physi-
cally, the Green function Gij characterises the displacement 
on the i-axis caused by the unit traction on the j-axis and 
mathematically, it is affected by the material properties of 
the two contacting bodies and the position of the surface 
point being considered. The continuous formulas to deter-
mine all the relevant Green functions are given by Wang and 
Zhu [31] and shown in Appendix 1.

For the sake of simplicity, contact is assumed to be purely 
elastic. Besides, Coulomb’s friction law is applied and the 
coefficient of friction �f is assumed to be constant in the 
following formulation and modelling work. According to 
this friction law, every point within the contacting area is 
either in a stick state, in which no relative motion occurs for 
the corresponding parts of the surface and the shear traction 
is of magnitude less than ‘ �fp ’ or in a slip state, in which 
there exists relative tangential motion and the shear trac-
tion opposes the instantaneous direction of such slip motion 

(1)

ux(x, y) = Gxx∗qx + Gxy∗qy + Gxz∗qz,
uy(x, y) = Gyx∗qx + Gyy∗qy + Gyz∗qz,
uz(x, y) = Gzx∗qx + Gzy∗qy + Gzz∗qz,

Fig. 1  a Geometry of the contacting bodies: W,Fx,Fy are the input 
normal load and tangential loads in x- and y-directions, respectively, 
and E and ν are the elastic modulus and Poisson’s ratio of the mate-
rial, respectively, with subscripts denoting the independent bodies, 
and b displacement condition on the x–z plane: hi, h denote the gaps 

between the unloaded surfaces and deformed surfaces, respectively, sx 
is the slip distance in the x-direction, δ is the rigid body displacement, 
and u is the surface deformation with subscripts denoting the direc-
tion of relevant vectors
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with magnitude ‘ �fp ’. It should be noted that partial slip 
is intrinsically an incremental process, to which the solu-
tion depends on the loading history. The separation of the 
stick and slip regions is expected to be identified based on 
the change in magnitude and direction of tangential loads. 
In this way, the state determined for any point within the 
contacting area on a loading curve relies on the previous 
solution despite a purely elastic analysis being conducted. 
In such context, one of the prerequisites for the effectiveness 
of the partial-slip solution provided in the manuscript is that 
the load (normal or tangential) is applied at a sufficiently 
slow speed such that the stick–slip contact problem can be 
treated as a quasi-static process in which inertial effects are 
negligible. Hence, the system experiences a series of equi-
librium states and the contact problem can be reduced to 
an equivalent static problem. In this case, the linear theory 
of elasticity can be applied and the final state of the sur-
face points being assessed can be determined by applying 
the load in one step. Such an assumption is valid when the 
loading is monotonic and proportional. As the conducted 
stick–slip analysis is not load path dependent, the problem of 
the dissipative friction and its irreversibility, which require 
an incremental application of the oscillating tangential load 
that occurs in fretting contacts, is not addressed in the paper. 
It is noted that although the assumptions including a purely 
elastic contact and a constant coefficient of friction are com-
monly implemented in numerical studies [10–12, 17–19, 
33], they may not be suitable when addressing more realistic 
contact problems such as the junction growth derived from 
the elastic–plastic contact of surfaces [34, 35].

To solve the contact problem based on those assump-
tions described above using BEM, the potential contact area 
between the two bodies is meshed into equally spaced rec-
tangular elements with the size of 2a × 2b and number of 
N1 and N2 in x- and y-directions, respectively. The control 
points for the established grid are the centroids of the ele-
ments. To assume the element size is small enough that the 
contact traction and surface deformation are constant inside 
any element, the fully coupled relation between the tractions 
and displacements can now be expressed in the following 
matrix form:

where Cij ( i, j = x, y, z ) is an influence matrix and has a 
similar physical meaning as that of the Green function but 
in a discretised form. Via the full solution of the Bouss-
inesq–Cerruti integral equations [36, 37], the closed-form 
solutions of these influence coefficient matrices are provided 
by Ghanbarzadeh et al. [38] and given in Appendix 2.

(2)
⎡⎢⎢⎣

ux
uy
uz

⎤⎥⎥⎦
=

⎡⎢⎢⎣

Cxx Cxy Cxz

Cyx Cyy Cyz

Czx Czy Czz

⎤⎥⎥⎦

⎡⎢⎢⎣

qx
qy
p

⎤⎥⎥⎦
,

For the discretised partial-slip contact problems under 
coupled conditions, a sequence of equations and inequal-
ities summarised by Johnson [39] must be satisfied to 
obtain valid contact solutions:

1. Static force equilibrium:
  Sum of contact tractions must be equal to the specified 

force in the corresponding direction:

where Δ(Δ = 4ab) is the area of each mesh element, Ic 
is the domain of contacting area and i and j here are the 
indices of the element (i,j) ( 1 ≤ i ≤ N1 and 1 ≤ j ≤ N2).

2. Geometrical condition of surface displacement:
  In the normal direction, the following equation should 

be satisfied:

where Ip is the whole computational domain and hi , h 
and �z are the initial surface gap before loading, the gap 
between contacting surfaces under loading and the rigid 
body indentation, respectively, as illustrated in Fig. 1b.

  In lateral directions, the following equation should be 
satisfied:

where sx and sy denote the slip distances in x- and 
y-directions, respectively, whilst �x and �y denote the 
tangential displacements in x- and y-directions, respec-
tively, as shown in Fig. 1b.

3. The following contact conditions must be met for the 
two surfaces:

  In the normal direction, the Kuhn–Tucker comple-
mentary conditions should be satisfied:

where Ip − Ic is the non-contacting region.
  The boundary conditions (Eq. 6) indicate that prob-

lems of surface adhesion (p < 0) and penetrable surfaces 
(h < 0) are not accounted for in the current study.

  In tangential directions, the norm of shear tractions 
in the stick zone is limited to always be less than the 
local friction (product of the coefficient of friction 
�f and nodal pressure) and there should exist no slip 
distance as specified by Coulomb’s friction law. As to 

(3)

W = Δ
∑

(i,j)∈Ic
p(i, j),Fx

= Δ
∑

(i,j)∈Ic
qx(i, j),Fy

= Δ
∑

(i,j)∈Ic
qy(i, j),

(4)h(i, j) = hi(i, j) + uz(i, j) − �z, (i, j) ∈ Ip,

(5)
sx(i, j) = ux(i, j) − �x, (i, j) ∈ Ic;

sy(i, j) = uy(i, j) − �y, (i, j) ∈ Ic

(6)
p(i, j) > 0, h(i, j) = 0, (i, j) ∈ Ic;

p(i, j) = 0, h(i, j) > 0, (i, j) ∈ Ip − Ic,
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shear tractions in the slip zone, the norm should be equal 
to the local friction. In addition, the directions of the 
shear stress and slip distance should be opposite. Any 
point within the contacting domain Ic must be in one 
of the two states (stick or slip) and such a condition is 
expressed by the following equation:

where Is is the stick domain and Ic − Is is the slip domain.
  It is noted that although Coulomb’s friction law is 

applied in our model as well as Chen and Wang’s model, 
the actual formulas of the complementary conditions 
used in the two algorithms are different. The norm of 
shear tractions in the stick zone is allowed to be equal to 
the local friction as long as the nodal slip distance van-
ishes in Chen and Wang’s model [11]. A discussion on 
the different complementary conditions and the potential 
conflicts caused by the equal sign was given in our for-
mer uncoupled partial-slip study [27]. To facilitate the 
design of the later algorithm, we have maintained the 
same complementary condition applied in our former 
research.

(7)

√

qx(i, j)2 + qy(i, j)2 < �fp(i, j),
|

|

|

sx(i, j)2) + sy(i, j)2
|

|

|

= 0, (i, j) ∈ Is;qx(i, j) ⋅ sx(i, j) + qy(i, j) ⋅ sy(i, j)

< 0, (i, j) ∈ Ic − Is;
√

qx(i, j)2 + qy(i, j)2

= �p(i, j), ||
|

sx(i, j)2) + sy(i, j)2
|

|

|

≠ 0, (i, j) ∈ Ic − Is,

2.2  Algorithm Description

To determine the contact traction distribution and surface 
deflection in the contacting area, of which the location 
is not known a priori, iterative methods are frequently 
applied during the development of contact models. Con-
sidering that the mathematical form of the established 
linear system deriving from Eqs. 4 and 5 tends to be a 
numerical optimization problem, where the surface gap h 
and slip distance s are the system residual to be minimised, 
the linear search method CGM is adopted to develop the 
partial-slip contact model. An overview of the developed 
3-level iteration algorithm based on the mutual adjustment 
between normal pressure and shear traction is shown in 
Fig. 2. The normal pressures and shear tractions are deter-
mined in two separate algorithms (normal contact solver 
and tangential contact solver).

As illustrated in Fig. 2, the search for contact solutions 
starts with the determination of the normal pressure, where 
the shear traction vanishes during the normal contact 
analysis in the first iteration of the outmost loop. Hence, 
the contact problem being addressed here becomes decou-
pled temporarily. The CGM-based algorithm employed to 
search for the pressure solution is that given by the classic 
model of Polonsky and Keer [40]. Similar to the Goodman 
approximation [5], the obtained normal pressure is then 
used as the input to determine the local friction ‘ �fp ’ at 
each node and to distinguish the existence of slip from that 
of stick following Coulomb’s friction law. The search of 
shear tractions within the stick and slip regions is executed 
by the two-level iteration tangential contact algorithm, and 
it is detailed as follows:

Fig. 2  Overview of the algorithm for the coupled partial-slip solver
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1. Determine the components of surface displacements in 
the x- and y-directions arising from the normal pressure:

  Estimate the rigid body displacement in the x- and 
y-directions based on Johnson’s analytical solution [39]:

where �0 is the tangential rigid body translation when 
the uncoupled contact is under gross sliding conditions 
( Fx = �fW).

2. Initialise the shear traction q , the search direction d and 
the square Euclidean norm of the system residual R:

  It is noted that the initialisation for nodal shear trac-
tion is necessary for each iteration of the outmost loop 
to obtain pressure convergence. The coupling effect 
changes the contact area and the range of the shear trac-
tions covered must correspond to this change.

3. Determine the complete surface displacements in the 
x- and y-directions, the slip distance for each node and 
the square Euclidean norm:

where the slip distance in the stick region is the system 
residual and its square Euclidean norm is to be mini-
mised (approximated to zero) by the CGM algorithm. 
This is expressed as follows:

  If R < 𝜀1 is the inner loop of the tangential algorithm 
stops and then proceeds to step 7.

4. Determine the search directions ( dx and dy ) as well as 
search step (�) for the shear tractions and modify the 
shear traction using these two variables.

  Two different methods are commonly used to search 
for valid shear tractions. The first approach is to only 
adjust shear tractions in the stick region and maintain 
those in the slip region (search direction for the nodes 

(8)uxz = ICxz∗p, uyz = ICyz ∗ p,

(9)�i = �0

[
1 −

(
1 −

Fi

�fW

)2∕3
]
, i = x, y;�0 = 3�fW

[
(2−v1)(1+v1)

E1

+
(2−v2)(1+v2)

E2

]

8a0
,

(10)qk(i, j) = 0, dk(i, j) = 0,R = 1, k = x, y, (i, j) ∈ Ip.

ux = uxz + ICxx∗qx + ICxy∗qy,

(11)uy = uyz + ICyx∗qx + ICyy∗qy,

(12)
sx = ux − �x,

sy = uy − �y,

(13)R =

N1∑
i=1

N2∑
j=1

|||sx(i, j)
2 + sy(i, j)

2|||, (i, j) ∈ Is.

in slip region is 0), such as the algorithms of Spinu [18] 
and Chen and Wang [11]. The second one is to con-
duct a global adjustment for all the shear tractions in 
the contacting region, for example, see the algorithms of 
Gallego et al. [17] and Wang et al.  [12]. It was reported 
by Wang et al. [12] and verified by the authors of this 

manuscript that the latter method provides a more stable 
solution. A smoother transition from the stick to slip 
regions was achieved in this way.

  Inspired by the method used in Wang’s layered con-
tact model [12], the global search direction and step for 
the shear tractions are calculated as follows:

  Shear tractions within the contacting area are adjusted 
in the following way:

5. Check the complementary conditions:
  If 

√
qx(i, j)

2 + qy(i, j)
2 > 𝜇fp(i, j) , the node (i, j) is 

moved from the stick domain to the slip domain. The 
nodal shear traction is updated to enforce the norm of 
the shear traction to be equal to the local friction:

6. Check the convergence criterion for the shear traction:
  If Δ∑N1

i=1

∑N
2

j=1

����qx(i, j) − qx
old
(i, j)

��� +
���qy(i, j) − qy

old
(i, j)

���
�
< 𝜀

1
 , 

go to step 7.
  Or else, move back to step 3.
7. Determine the sum of the shear tractions and check the 

convergence criterion for the loads in the tangential 
direction:

(14)dk = sk + dk ⋅
R

Rold

, k = x, y,

(15)
� =

[
sxsy

]
⋅

[
dxdy

]T
[
dxdy

][Cxx Cyx

Cxy Cyy

][
dxdy

]T .

(16)qi = qi − � ⋅ di, i = x, y.

(17)qk(i, j) =
�fp(i, j)√

qx(i, j)
2 + qy(i, j)

2

qk(i, j), k = x, y.

(18)

F�
x
= Δ

N1∑
i=1

N2∑
j=1

qx(i, j),F
�
y
= Δ

N1∑
i=1

N2∑
j=1

qx(i, j), (i, j) ∈ Ip.
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  If ||Fx − F�
x
|| + |||Fy − F�

y

||| < 𝜀3 , the iteration stops, or 
else, move to the following step.

8. Update the rigid body displacements in the x- and 
y-direction as follows and move back to step 2:

  It is noted that in some contact problems the con-
vergence for the outer loop regarding the load may be 
difficult to achieve as the load balance is not enforced 
in this tangential contact algorithm. The unguaranteed 
convergence speed of this loop relies heavily on how 
the updated shear tractions and rigid body displace-
ments affect each other. An alternative to the conver-
gence criterion for the load balance is to compare the 
shear tractions after the updated rigid body displacement 
( q1

x
, q1

y
 ) and those before the relevant adjustment ( q2

x
, q2

y
 ), 

expressed as follows:

  By employing Eq. 20 as the substitute convergence 
criterion, the convergence speed for the outer loop of 
the tangential contact solver is improved and the load 
balance is satisfied.

As indicated in Fig. 2, pressure convergence is checked 
as follows after the determination of the shear tractions:

In the first iteration of the outmost loop, the old pres-
sure pold is the pressure initialised during the normal con-
tact analysis, in which the whole simulation domain is 
assumed to be in contact with a uniform pressure of 

W

N1∗N2∗Δ
. And the updated pressure pnew is the output of the 

normal contact analysis. Hence, the pressure convergence 
can hardly be satisfied. When it comes to the second iter-
ation of the loop, the variable pold becomes the pnew in the 
last iteration. Shear tractions obtained from the tangential 
contact analysis in the last iteration are then used to deter-
mine the resulting component of the normal displace-
ment, a new contact pressure profile pnew is subsequently 
determined in the normal contact analysis with the 
updated surface displacement. Afterwards, a new tangen-
tial contact analysis is conducted with the updated pres-
surepnew . This whole process keeps running until the con-
vergence criterion of the outmost loop (Eq.  21) is 
satisfied.

(19)�x = �x
Fx

Fx
�
, �y = �y

Fy

Fy
�
.

(20)

Δ

N1∑
i=1

N2∑
j=1

(|||q
1
x
(i, j) − q2

x
(i, j)

||| +
|||q

1
y
(i, j) − q2

y
(i, j)

|||
)
< 𝜀4.

(21)
N1∑
i=1

N2∑
j=1

|pnew(i, j) − pold(i, j)| < 𝜀5.

3  Results and Discussion

The non-conformal contact model based on the algo-
rithm described above was validated by comparing the 
output solutions with the available literature in the case 
of a smooth contact problem (a sphere against a flat half-
surface) under coupled partial-slip conditions. It was then 
extended to multi-asperity contact problems (a nominally 
flat surface against a flat half-space) to analyse the effects 
of surface roughness on the separation of stick and slip 
regions.

3.1  Model Validation

To validate the developed model, the partial-slip contact 
between a rigid smooth sphere and a flat elastic half-space 
(carbon steel) was simulated here, to which the solution is 
compared to that derived from Chen and Wang’s model [11] 
using the identical material parameters as shown in Table 1. 
The whole computational domain ( 3a0 × 3a0 ) is discretised 
by a mesh system with 256 × 256 uniformly distributed ele-
ments. The coefficient of friction �f is set to be the value of 
the Dundurs constant � , which is a parameter characteris-
ing the level of dissimilarity of two contacting materials as 
given by [11]:

It is of note that the ratio of the frictional coefficient to the 
Dundurs constant (�f∕�) plays an essential role in partial-slip 
analysis. However, in the following contact simulation, this 
parameter is maintained to be unity as the study of its effects 
is beyond the scope of the current paper.

To simply the contact problem, only a tangential load in 
the x-direction was applied to the two contacting bodies. 
The simulation results presented are non-dimensionalised 
by the Hertzian solutions to the sphere indentation prob-
lem, where the contact tractions and nodal coordinates are 

(22)� =

(1+�1)(1−2�1)
2E1

−
(1+�2)(1−2�2)

2E2

1−�2
1

E1

+
1−�2

2

E2

.

Table 1  Parameters used in the partial-slip simulation of smooth 
sphere contact

Parameter Value Description (unit)

R 18 Radius of sphere (mm)
E
1
∕E

2
210∕∞ Elastic modulus of half-space/sphere (GPa)

�
1
∕v

2
0.3 Poisson’s ratio of materials

�
f

0.2857 Coefficient of friction
W 20 Input normal load (N)
a0 105.373 Hertzian contacting radius (μm)
p0 860 Hertzian peak normal pressure (MPa)
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normalised by the peak pressure (p0) and contacting radius 
(a0) , respectively.

The evolution of stick and slip regions with increasing 
tangential load is visualised in Fig. 3. The distribution of the 
stick region and slip region under no tangential load is simi-
lar to that of an uncoupled case, on which occasion the cen-
tral stick region is surrounded by a slip annulus. Neverthe-
less, the stick region starts to recede and it tends to shift to 
the rear part of the contacting area with increasing tangential 
load. This transition is peculiar, in that the decreasing stick 
region keeps moving in the direction opposite to the input 

load when the load is relatively low and up until it reaches 
the edge of the contacting area when the load is approxi-
mately 0.6�fW  . Once the input tangential load exceeds this 
value ( 0.6�fW  ), the stick region shrinks dramatically in the 
opposing direction until gross sliding is reached.

Such separation patterns of the stick and slip regions can 
be expected based on the corresponding distribution of nor-
mal pressure shown in Fig. 4a. The area in which compara-
tively low pressure exists tends to slip as it is easy for the 
shear traction to reach the limit of local friction following 
Coulomb’s law of friction. The distribution of stick and slip 

Fig. 3  Separations of the stick 
and slip zones with increas-
ing tangential load: the area 
between the grey line and the 
dark line is the slip region and 
the areas bounded by the dark 
lines are stick regions

Fig. 4  Comparison of the non-dimensional contact solutions from the present model (solid lines) with the results from Chen and Wang (scatters) 
[11]: a Pressure distribution p [Hertzian solution (dotted line) is also plotted for comparison] and b Shear traction distribution qx
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regions is still of the uncoupled type when only normal load 
is applied as the pressure distribution in this case is symmet-
ric about x- and y-axes). However, the increase of the speci-
fied tangential load breaks down this symmetry such that it 
reduces the pressure at the contact edge in the force-leading 
direction but enhances that in the opposite direction. Hence, 
shrinking stick regions tend to appear at the contacting edge 
in the friction trailing direction before vanishing.

Regarding the distribution of shear tractions in 
the x-direction shown in Fig. 4b, apart from the same 
loss of axial symmetry, there exist both positive and 
negative shear tractions under smaller tangential loads 
( Fx ≤ 0.6�fW  ) as shown in Fig.  4b. Globally positive 
shear tractions are obtained when the load is higher than 
0.6�fW .

The dynamic response of the stick ratio ( As

Ac

) to increas-
ing tangential load is shown in Fig. 5. The load required 
for a vanishing stick area is found to be lower ( 0.9463�fW  ) 
when compared with the uncoupled case. This mainly 
results from the addition of shear traction in the y-direc-
tion when identifying the stick and slip region. The gross 
slip obtained in advance (before �fW  ) and the existing 
micro-slip under normal load alone illustrated in Fig. 5 
are two essential contact phenomena arising from the cou-
pling between shear traction and normal pressure. It is 
noted that the difference between uncoupled and coupled 
solutions to smooth sphere problems depends on the level 
of the dissimilarity of the two contacting materials (Dun-
durs constant). As labelled in Fig.  5, the non-linear 

relationship between the stick ratio and ratio of the tan-
gential load to static friction is following an analytical 
solution under uncoupled circumstances. Assuming the 
same coefficient of friction, a material combination with 
a higher Dundurs constant will exhibit a more significant 
difference between uncoupled and coupled solutions. 
Good agreement can be found between the contact solu-
tions including the pressure, shear traction and stick ratio 
derived from the present model and those from Chen and 
Wang [11], as indicated in Figs.  4a and b and 5, 
respectively.

3.2  Rough Surface Study

The current study on the effects of surface roughness on 
the separation of stick and slip regions under coupled cir-
cumstances is an important extension work to our former 
study which concerned uncoupled situations [27]. Amongst 
the known roughness parameters, RMS roughness 

(
Rq

)
 is 

firstly investigated considering that it is one of the factors 
frequently employed to quantify the surface roughness and 
there exist several studies reporting the essential role of 
RMS roughness in determining the contact area [41, 42], 
surface adhesion [43, 44], contact friction [29, 30, 45] 
and material wear [46]. Besides, as reported in our former 
uncoupled partial-slip study [27], the RMS gradient (g) 
was found to influence the contact region and stick region, 
where explicit mathematical formulas were given. Analyti-
cal solutions linking the real area of contact to the RMS 

Fig. 5  Comparison of the stick ratio solutions from the present model (blue solid line) with the results from Chen and Wang (blue scatters) [11]: 
the uncoupled solution (red solid line) is also plotted for comparison (Color figure online)

Table 2  Roughness parameters 
of the twelve investigated rough 
surfaces

No 1 2 3 4 5 6 7 8 9 10 11 12

Rq (μm) 1.0 0.8 0.6 0.4 0.2 0.08 0.1 0.1 0.1 0.1 0.1 0.1

g 1.366 1.366 1.366 1.366 1.366 1.366 0.137 0.443 0.646 1.067 1.725 2.249
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gradient were also proposed by Pastewka and Robbins [47] 
and Muser [48], respectively. Thus, the effect of the RMS 
slope on the coupled partial-slip solutions is investigated 
here as well.

To facilitate the analysis of additional coupling effects in 
nominally flat–flat contact problems, the rough surfaces used 
in the following simulations are identical to those that were 
used previously. The roughness parameters of the twelve 
surfaces analysed in this study are given in Table 2. The rel-
evant surface profiles are shown in Appendix 3. The reader 
could refer to Ref. [27] to review the detail on the fractal 
method used to generate them.

Note that in our former uncoupled surface study [27] the 
nominally flat rough surfaces are assumed to be incompress-
ible to decouple the normal and tangential contact problems. 
The coefficient of friction used in the former uncoupled 
case is different from that used in the current study, as a 
coefficient of friction ( �f = 0.2857 ) related to the Dundurs 

constant is intended to be used here to facilitate the later 
comparison between smooth and rough contact problems. 
Therefore, instead of comparing the magnitudes of simula-
tion results, the trend difference of those contact responses 
with respect to surface roughness parameters is highlighted 
when comparing solutions to contact problems of rough sur-
faces under coupled and uncoupled conditions.

3.2.1  Contact of Rough Surfaces Under Constant Loads

To investigate the role played by RMS roughness, partial-
slip problems of rough surfaces with the same RMS slope 
but different values of RMS roughness (rough surfaces 1–6 
given in Table 2) were simulated. The material properties 
and load input are given in Table 3.

As shown in Fig. 6a, the contacting areas tend to remain 
almost unchanged with varying RMS roughness, whilst the 
relationships between the stick zone and RMS roughness are 
different in the coupled and uncoupled cases. Compared 
with the uncoupled solution, the stick region in the coupled 
case decreases with the increasing RMS roughness signifi-
cantly, which leads to the decline of the stick ratio ( As

Ac

) with 
the increasing RMS roughness as shown in Fig. 6b. It must 
be highlighted that those surface parameters including the 
RMS slope, RMS roughness and cut-off frequency ( q0 ) are 
symbiotic. When the RMS slopes of the rough surfaces 1–6 
were adjusted to be identical, the cut-off frequency q0 of 
each surface was changed simultaneously. Therefore, it is 
the synergy of the RMS roughness and the cut-off frequency 
that really determines the contact area. A similar conclusion 
was reached in the recent theoretical work regarding rough 
surface contact by Violano et al. [49] and Ciavarella [44]. 

Table 3  Parameters used in the rough partial-slip simulation under 
constant tangential load

Parameter Value Description (unit)

E
1
∕E

2
18.75∕∞ Elastic modulus of rough surface/flat plane 

(MPa)
�
1
∕�

2
0.3 Poisson’s ratio of materials

μf 0.2857 Coefficient of friction
W 0.0003 Input normal load (N)
Fx 0.5μfW Input tangential load in x-direction (N)
L 100 Length of rough surfaces in x- and y-direction 

(μm)
N1 × N2 512 × 512 Number of nodes in x- and y-direction

Fig. 6  Contact solutions of rough surfaces with different Rq : a ratio of the contacting/stick area to the computational domain and b stick ratio ( As

A
c

)
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Although the interaction between shear traction and normal 
pressure is considered in the current coupled partial-slip 
simulation, the coupling effects on the contacting area tend 
to be trivial, which can also be observed in the former study 
on the smooth sphere contact (Figs. 3 and 4). This explains 
the insignificant variation of contacting area with the 
increasing RMS roughness under coupled conditions. On the 
occasion when the coupling effect is absent, the variation of 
the contacting region in stick is insensitive to the change of 
the surface roughness as shown in Fig. 6b, where the stick 
ratio fluctuates around 0.5. Different from the response of 
the contacting area, the separation of stick and stick regions 
is more vulnerable to the coupling effects since the contact 
condition of gross sliding and the distribution pattern as well 
as the magnitude of shear tractions are now altered 
significantly.

Regarding the study on the effect of RMS slope (g) on 
coupled partial-slip solutions, the contacts of these surfaces 
(rough surfaces 7–12 as given in Table 2) with the identi-
cal RMS roughness but different values of RMS slope are 
simulated under the inputs given in Table 3. The relation-
ship between the ratio of the contacting or stick area to the 
computational domain and the RMS slope is observed to 
be an exponential decay as indicated in Fig. 7a. The trend 
lines using exponential decay were found to perfectly fit the 
plotted data following the theory of least-squares regression, 
where r1 and r2 denote the ratio of the contacting nodes and 
stick nodes to the whole computational domain, respectively, 
and R2 is the coefficient of determination characterising how 
close the data are to the fitted regression line globally. It is of 
note that trend lines, which were generated using quadratic 
fit and perfectly fit the uncoupled data, were also reported 
in our former uncoupled rough surface study concerning the 

RMS slope. The reader could refer to Ref. [27] to review 
the relevant equations. As mentioned above, concerning the 
explicit mathematical relationship between the contacting 
area and RMS slope, a well-validated formula for uncoupled 
rough sphere indentation problems was proposed by Muser 
[48] based on the parameter-free equations developed by 
Pastewka and Robbins [47]. The increasing RMS slope of 
rough surfaces employed here is achieved by increasing the 
cut-off wavevector q0 , whilst keeping the RMS roughness 
constant, which again explains that the change of contact-
ing area results from the aforementioned synergy of the 
RMS roughness and cut-off frequency. As to the stick ratio, 
it increases significantly with the growing RMS slope in 
the coupled case compared with the relatively insensitive 
response in the uncoupled case as shown in Fig. 7b.

These results suggest that rough surfaces with different 
RMS roughness or RMS slopes can have different responses 
to the coupling condition, leading to different stick ratios 
under the same loading circumstances. To visualise such 
behaviours, partial-slip solutions of rough surfaces 1, 5, 7, 
and 10 are presented here to discuss in detail (note that sur-
faces 1 and 5 have the same RMS slope but different RMS 
roughness, whilst surfaces 7 and 10 have the same RMS 
roughness but different RMS slopes).

As shown in Fig. 8, lateral sizes of asperities of the sur-
faces 5 and 10 are significantly smaller compared with that 
of surfaces 1 and 7. As the highest asperities of rough sur-
faces always come into contact first when the normal load 
is imposed, relatively large contacting islands are observed 
for surfaces 1 and 7 (Fig. 9a and c, respectively). On the 
contrary, the height distributions of surfaces 5 and 10 lead 
to smaller and more uniformly distributed contacting spots 
as illustrated in Fig. 9b and d, respectively.

Fig. 7  Contact solutions of rough surfaces with different RMS slopes g : a ratio of the contacting/stick area to the computational domain and b 
stick ratio ( As

A
c

)
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Fig. 8  Profiles of analysed rough surfaces: a surface 1, b surface 5, c surface 7 and d surface 10

Under the same tangential load, the separations of stick 
and slip regions within the four different contacting areas 
are shown in Fig. 10. Although uneven pressure profiles 
are usually observed for rough contact problems, surfaces 1 
and 7 exhibit more pronounced non-uniform pressure dis-
tributions compared with those of surfaces 5 and 10. Two 
regions are selected on each surface to zoom in and to have 
a detailed analysis. For surface 1, the pressure in region 1 is 
significantly higher than that in region 2 shown in Fig. 11a 
and b, respectively. Since the slip tends to occur in the area 
where a lower local pressure profile is experienced, region 
1 is still in a partial-slip state (stick ratio is 0.1728 in region 
1), whilst region 2 tends to almost reach gross sliding (stick 
ratio is 0.0131 in region 2) as indicated in Fig. 11c and d, 
respectively. On the other hand, for surface 5 which exhib-
its the asperities that are comparatively smaller and distrib-
uted more intensively as shown in Fig. 8b, the discrepancy 

between the pressures of the two zoomed-in regions is less 
significant as shown in Fig. 12a and b. This results in simi-
lar partial-slip states experienced by the two regions in sur-
face 5, where stick ratios in regions 1 and 2 are 0.1784 and 
0.1868 as labelled in Fig. 12c and d, respectively. Regarding 
surfaces 7 and 10 that show the same RMS roughness but 
different RMS slopes, for similar reasons, the same contact 
phenomena are observed for the selected regions as demon-
strated in Figs. 13 and 14, respectively.

The root cause of these results is the introduction of 
the coupling between shear tractions and pressure, which 
changes the contact condition of gross sliding to make the 
surface easier to reach the sliding state with a lower tangen-
tial load. When comparing the contact solutions of two sur-
faces with the same RMS slope or RMS roughness under the 
current medium loading condition ( Fx = 0.5�fW  ), a more 
unevenly distributed pressure profile is often obtained for 
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the surface with the higher RMS roughness or lower RMS 
slope. This leads to early slip for the contacting island where 
lower pressure is experienced and consequently brings about 
a lower stick ratio. It is noted that gross sliding should be 
more difficult to achieve for such a surface, in that higher 
loads are required to be in the slip state for the areas exhibit-
ing higher pressure. Hence, a different response of the stick 
ratio to the surface roughness parameters shall be expected 
under a higher loading condition.

3.2.2  Contact of Rough Surfaces under Increasing Loads

A linear relationship between the stick ratio and ratio of 
input tangential load to static friction was reported in our 
former uncoupled rough surface study [27]. To verify if such 
a relation still holds under coupled conditions, the evolu-
tion of stick and slip regions in rough surface contact with 
increasing tangential load was simulated. The rough surface 
1 presented in Fig. 8a and a higher normal load of 0.0025N 
were used to facilitate the observation of the dynamic 

transition from partial slip to gross slip within the contact-
ing area. The separation of the stick (dark) and slip (grey) 
zones under no tangential load is given in Fig. 15a and an 
area was chosen and zoomed in to analyse. The stick zone 
within this area is found to keep decreasing and shifting to 
the rear part of the contacting region with increasing tangen-
tial load as shown in Fig. 15b–g, where such a change is rela-
tively slow and steady when the load is low ( Fx ≤ 0.7�fW  ) 
compared with the significant shrink of the stick zone at a 
higher load ( Fx > 0.7𝜇fW ). The evolution of stick ratio with 
the increasing tangential load is shown in Fig. 15h, where 
the approximated linear relationship reported in our former 
uncoupled study [27] is apparently lost due to the coupling 
effects. Compared with the solution to the coupled smooth 
sphere contact problem investigated in Sect. 3.1, the rough 
surface experiences a lower portion of contacting area in 
stick when the normal load is applied alone but it requires 
a higher tangential load to reach the gross sliding state as 
labelled in Fig. 15h.

Fig. 9  Pressure distributions for different rough surfaces: a surface 1, b surface 5, c surface 7 and d surface 10
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To analyse the dynamic transition further, the partial-
slip contacts of different rough surfaces (Rough surfaces 
1, 3, 5, 9, 10, 11 given in Table 2) were simulated under 
the same normal load of 0.0003 N but increasing tangential 
load. The relevant contact solutions are given in Fig. 16. 
The input normal load is found to affect the separation of 
the stick and slip regions since the contact of rough surface 
1 ( Rq = 1.0 μm) provides dissimilar solutions under nor-
mal loads of 0.0025 N (blue line in Fig. 15h) and 0.0003 N 
(orange line in Fig. 16). This is different from what was 
reported in our former uncoupled rough surface study [27]. 
Our interpretation of this is that a higher normal load brings 
about higher normal pressures due to the load balance, which 
in turn leads to more significant coupling effects on the shear 
traction (e.g. the magnitude of the surface displacement uxz 
increases). The tangential loads required to achieve gross 
sliding in all the simulated rough surface contact problems 
were found to always be higher than that in of an equivalent 
smooth sphere contact problem ( Fx = 0.9463�fW).

Regarding the trend difference for surfaces with different 
roughness parameters under the increasing tangential load, 
one with the higher RMS roughness tends to always have 

less proportion of contacting area in stick when the load is 
low or medium, as illustrated in Fig. 16. This is consistent 
with the results obtained from the previous rough surface 
study under constant loading conditions (Sect. 3.2.1).

However, when the input tangential load is high 
(approximately 0.76–0.9725 as shown in zoomed view 1 
in Fig. 16), the surface with the highest RMS roughness 
( Rq = 1.0 μm μm) exhibits an intermediate value of stick 
ratio. The trend then becomes similar to that under small 
and medium loading conditions once the load exceeds this 
range. The solutions presented regarding RMS slope are 
irregular as well when it comes to a high loading condi-
tion. As shown in Fig. 16, the surface with a higher RMS 
slope always experiences more stick ratio in the early period 
of the dynamic loading process. However, the surface with 
the lowest RMS slope ( g = 0.6455 ) turns out to require the 
highest tangential load to induce gross sliding. On the other 
hand, the surface with the highest RMS slope ( g = 1.7250 ) 
only requires an intermediate value of tangential load for 
global slip as labelled in the zoomed view 2 in Fig. 16. Such 
inconsistent trends can be related to the more non-uniformly 
distributed pressure experienced by some rough surfaces 

Fig. 10  Separations of stick (dark) and slip (grey) regions for different rough surfaces: a surface 1, b surface 5, c surface 7 and d surface 10



Tribology Letters (2022) 70:98 

1 3

Page 15 of 24 98

along with the coupling effects as mentioned in Sect. 3.2.1. 
On one hand, when the tangential load is low or medium, it 
is easier for the area where pressure is relatively low to be 
in the slip state and this leads to a smaller stick ratio. On the 
other hand, it is more difficult for the entire surface to reach 
gross sliding since the area exhibiting higher pressure now 
requires a higher load to slip.

Although the trend between the surface roughness param-
eters (RMS roughness and RMS slope) and the stick ratio 
turns out to depend on the loading condition, these results 
tend to prove that the effects of the coupling between normal 
pressure and shear traction on the separation of the stick and 
slip regions depend on the roughness parameters of surfaces.

4  Concluding Remarks

By adjusting the shear tractions within the contacting region 
globally and adopting an alternative convergence criterion 
regarding the load balance in the tangential direction, the 
partial-slip contact of two elastically dissimilar materials 
was successfully reproduced by the newly developed model. 

The identification of stick and slip regions within the con-
tacting area could be accomplished in a short time. (Usually, 
120 s for smooth sphere contact problems with 256 × 256 
nodes and 300 s for rough surface contact problems with 
512 × 512 nodes using a desktop PC with four cores).

The numerical results of rough stick–slip contacts 
under coupled partial-slip conditions lead to the following 
conclusions:

• Regardless of the roughness parameters, the tangential 
load needed for a nominally flat surface to reach gross 
sliding is higher than that needed for a smooth sphere.

• With an identical RMS slope, the contacting region is 
insensitive to the change of RMS roughness under con-
stant loads (low or medium). However, a higher RMS 
roughness leads to the decrease of stick region.

• The contact area or the stick area is found to decay expo-
nentially with the RMS slope under constant loads (low 
or medium); equations are proposed to determine the pro-
portion of stick and contacting area to the whole simula-
tion domain.

Fig. 11  Contact solutions of regions selected to zoom in for surface 1: a, b Pressure profiles of regions 1 and 2, respectively, and c, d separations 
of stick (dark) and slip (grey) zones for regions 1 and 2, respectively.
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• The linear response of the stick ratio to the input tangen-
tial load that occurs in the rough surface contact under 
uncoupled partial-slip conditions is now lost due to the 
additional interaction between shear tractions and nor-
mal pressures. Such coupling effects on the separation of 
stick and slip regions are found to vary with the surface 
roughness parameters. During the transition from par-
tial slip to gross sliding, there are multiple observations. 
Under low and medium tangential loads, the surface with 
a higher RMS gradient or a lower RMS roughness exhib-
its more ratio of contacting area in stick as mentioned 
above. However, the trend becomes irregular when the 
load keeps increasing to the final loading point needed 
to achieve the gross sliding.

Appendix 1

The Green functions Gij(i, j = x, y, z) of a specific point are 
determined by the material properties of the two contact-
ing bodies (E1, �1,E2, �2) and its local pointwise coordi-
nates (x, y). They are summarised by Wang and Zhu [31] 
as follows:
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Fig. 12  Contact solutions of regions selected to zoom in for Surface 5: a, b Pressure profiles of regions 1 and 2, respectively, and c, d separa-
tions of stick (dark) and slip (grey) zones for regions 1 and 2, respectively.
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Fig. 13  Contact solutions of regions selected to zoom in for Surface 7: a, b Pressure profiles of regions 1 and 2, respectively, and c, d separa-
tions of stick (dark) and slip (grey) zones for regions 1 and 2, respectively.

Appendix 2

The solutions of all the influence coefficient matrices in the 
discretised form are achieved through integrating over the 
small rectangular mesh area of 2a × 2b . They are summa-
rised by Ghanbarzadeh et al. [38] as follows:
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Fig. 14  Contact solutions of regions selected to zoom in for Surface 10: a, b Pressure profiles of regions 1 and 2, respectively, and c, d separa-
tions of stick (dark) and slip (grey) zones for regions 1 and 2, respectively.
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Fig. 15  a Contact solution 
under no tangential force, 
b–g separation of the stick 
(dark) and slip (grey) regions 
for the zoomed-in area under 
increasing tangential load, and 
h evolution of the stick ratio 
with increasing tangential load 
(Color figure online)
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Fig. 16  Evolution of the stick ratio with increasing tangential load 
for different rough surfaces: the two extended views (zoomed views 1 
and 2) show different trends of stick ratio with respect to the surface 

roughness parameters under high loading conditions (when contact is 
close to the sliding inception) when compared with those under low 
or medium loads (Color figure online)
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Appendix 3

The followings are the investigated nominally flat rough 
surfaces, where rough surfaces (1)–(6) exhibit different 
Rq values but the same g (1.3658), whilst rough surfaces 
(7)–(12) exhibit different g values but the same Rq (0.1 
μm).

Cxy =
�

2�G

[√
(y − b)2 + (x + a)2 −

√
(y − b)2 + (x − a)2 +

√
(y + b)2 + (x − a)2 −

√
(y + b)2 + (x + a)2

]
,

Cyx = Cxy.
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