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Abstract—Ensuring the safety and reliability of autonomous
driving and vehicle-to-vehicle (V2V) communication in vehicular
ad hoc networks (VANETs) requires effective misbehavior de-
tection techniques. While threshold-based methods and various
machine learning (ML) models have been widely used to identify
and classify basic safety messages (BSMs) exchanged between
vehicles, they have limitations in terms of their application
and computational costs. In this paper, we propose a stacked
ensemble tree-based ML model for detecting misbehavior of
different types in VANETs. Our approach addresses the dynamic
nature of VANETs while keeping computational costs low. Our
experimental results show that the proposed stacked model
outperforms base tree ML models in terms of F1-score and recall,
while also reducing the model’s overall execution time. Our work
offers a promising approach for improving the performance and
efficiency of misbehavior detection in VANETs.

Index Terms—Vehicular Ad Hoc Networks (VANET), Vehicle-
to-everything (V2X), Vehicle-to-Vehicle (V2V), Misbehavior De-
tection, Machine Learning, Cybersecurity, Ensemble Models

I. INTRODUCTION

Vehicle-to-everything (V2X) communications have gained

attention in recent years for their potential to support both

safety and non-safety applications, such as forwarding colli-

sion warnings, route navigation, lane change warnings, and

multimedia content sharing. In Vehicular Ad Hoc Networks

(VANET), vehicles broadcast their current state (e.g., position,

speed, heading, etc.) to establish collective awareness, but this

also exposes the network to attacks that can disrupt traffic

flow and cause accidents [1]. Misbehavior can take the form

of exchanging false vehicles’ kinematics or more sophisti-

cated attacks such as denial-of-service (DoS) or Sybil attacks

[2]–[5]. Identifying misbehaving entities and distinguishing

between attacks and benign messages in VANET remain

major challenges due to the dire consequences of propagating

malicious messages. Cryptographic-based security techniques

are often ineffective in detecting misbehavior because the

attacks are often perpetrated by insider vehicles with valid

credentials [4], [6].

Various misbehavior detection schemes (MDS) have been

proposed in the literature to address this issue, but some

of the existing techniques have limitations in real-world ap-

plications [7]. One limitation is that traditional rule-based

(i.e., specification-based) detectors have difficulty adapting to

changing traffic conditions and new types of misbehavior, and

may have high false positive rates. Additionally, these methods

can be difficult to scale as the number of rules increases

with the number of vehicles in the network. Furthermore,

MDS must be able to distinguish between misbehavior and

anomalies caused by sensor faults. Machine learning/Deep

learning-based (ML/DL) misbehavior detection techniques can

overcome these limitations by allowing the system to learn

from data and adapt to changing conditions. However, Ma-

chine learning/Deep learning-based schemes are limited by the

availability of large labeled datasets for training, validation,

and testing, as well as the complex, and computationally

intensive training phase. Therefore, it is important to carefully

evaluate the trade-offs when designing a misbehavior detection

method for VANET.

In this work, we propose using tree and ensemble-based

machine learning techniques to address the challenges and

limitations of existing ML/DL techniques in misbehavior

detection schemes for VANETs. We investigate various tree-

based ML algorithms such as decision trees, random forests,

extra trees, and extreme gradient boosting (XGBoost) to de-

velop an MDS that can achieve high detection rates while min-

imizing computational overheads. To enhance the performance

(measured in terms of F1-score) of the proposed system, we

implement an ensemble learning model called stacking and

apply feature selection techniques to reduce the computational

time. We also evaluate our proposed solution using simulation

data obtained from VEINs using the F2MD framework [1].

Our results indicate that using a stacked ensemble ML misbe-

havior detection technique can effectively detect misbehavior

in real time without compromising the computational cost for

accuracy. Specific objectives include the following:

• Survey the literature for existing ML-based MDS for vehic-

ular networks

• Implement tree-based and ensemble ML techniques for

misbehavior detection in VANETs

• Evaluate performance of the proposed method for different

attack types

The remainder of the paper is organized as follows: sec-

tion II discusses related works. section III presents an overview

of the proposed solution. section IV discusses the experiment

and methods for evaluating the proposed solution. section V



presents and discusses the obtained results. Finally, section VI

concludes the paper and provides some future scope of work.

II. RELATED WORKS

Various traditional approaches for detecting misbehaviour in

vehicular networks have been proposed in the literature. For

instance, Clavijo-Herrera et al. [9] investigated the effective-

ness of three misbehavior detection mechanisms - threshold,

behavioral, and cooperative - using the F2MD framework.

Their results showed that the threshold method outperformed

the other two approaches in terms of accuracy and F1-score in

the simulation scenarios tested. Begriche et al. [13] proposed

and evaluated a reputation system based on Bayesian statistical

filter to detect malicious nodes propagating blackhole and

greyhole misbehavior in VANET.

Recently, machine learning models have found applica-

tions in misbehavior detection and achieved promising results.

Kamel et al. [8] proposed an ML approach for detecting

Sybil attacks in Cooperative Intelligent Transport Systems

(CITS) and achieved a high accuracy (92.5%). Ghaleb et

al. [7] presented a hybrid approach that combines statistical

and ensemble learning-based classifiers to detect misbehaving

nodes. Though the work in [7] achieved an accuracy of

92.8%, the method proposed in [7] relied on the assumption

that mobility information obtained from neighboring vehicles

is consistently accurate and reliable for creating dynamic

thresholds. This assumption may not hold true in the presence

of malicious nodes that distribute false or misleading data,

potentially leading to traffic illusions. Furthermore, the size

and complexity of their algorithm may restrict its practical

application in large-scale traffic scenarios. Ercan et al. [11]

proposed a ML-based approach for detecting position falsi-

fication attacks in vehicular networks. Their approach was

based on using new features that they developed to train an

ensemble of KNN and RF classifiers on the VeReMi dataset

centrally. The trained model was then distributed to vehicles in

the network for detecting misbehavior in a distributed fashion.

Their results demonstrated the efficacy of their approach,

which was extensively evaluated in terms of accuracy, F1-

score, and computation time for each attack type at different

traffic densities.

Sharma et al. [12] proposed a data-centric misbehavior

detection framework that combines ML algorithms and plau-

sibility checks to detect and classify misbehavior in vehicular

networks using messages received from other vehicles in the

network. Their approach was evaluated using six supervised

ML algorithms on the VeReMi dataset, including voting and

boosting-type ensemble models. The ensemble learning al-

gorithms outperformed the others for most attacks, with an

improvement of about 15% in the area under the curve (AUC).

Integrating plausibility checks further improved precision and

recall by 5% and 2% respectively. Gyawali et al. [4] proposed

a hybrid method that combines ML and reputation-based mis-

behavior detection for 5G vehicular networks. The proposed

MDS was trained using dataset generated through extensive

simulation based on realistic vehicular network scenarios. To

improve the accuracy of the proposed technique, Dempster-

Shafer theory was employed for collaborative feedback com-

bination, including a beta distribution-based reputation update

and revocation scheme.

Some limitations can be noted when reviewing the misbe-

havior detection approaches in the literature. As can be seen

in Table I, majority of the misbehavior detection approaches

in the related work are only applicable on specific attack types

and cannot be adapted to detect other types of misbehavior in

vehicular networks. For instance, the focus of the work in [8]

and [12] were limited to the Sybil and position forgery type of

misbehavior respectively, overlooking other possible sources

of attacks. Similarly, the work in [9] only considered four

denial-of-service (DOS) attacks and its results may not be ap-

plicable under varying traffic scenarios. In another work [11],

the proposed approach was deployed for detecting position

falsification attacks. However, the method proposed in [11]

may not generalize to large-scale vehicular networks where

different attacks types may exist. Although the approaches

proposed in [7], [10] and [14] were deployed to deal with

more than one attack type, the computation latency was not

considered when the effectiveness of the proposed misbehav-

ior detection approaches was evaluated in those work. The

computational complexity of ML based misbehavior detection

approaches may pose a challenge with large-scale applications

when they are not factored into the design process [?].

This paper therefore present a robust ML based misbehavior

detection approach which can be applied to a range of attack

types and also takes into account practical considerations such

as the ML algorithm computation latency, which is essential

for real-world deployment.

III. PROPOSED MISBEHAVIOR DETECTION SYSTEM

The proposed MDS utilizes four popular tree-based algo-

rithms, including Decision Tree, Random Forest, Extra Trees,

and Extreme Gradient Boosting. This binary classification

model aims to accurately identify whether a message is an

attack or normal message.

Decision Tree (DT) uses a divide-and-conquer strategy that

consists of decision nodes and leaf nodes to represent a

decision test and the resulting class, respectively [15]. Random

Forest (RF) is an ensemble learning classifier that leverages the

majority voting rule to select the classification result from the

class with the most votes from decision trees [16]. Extremely

Randomized Trees (ET) is another ensemble model that builds

a collection of randomized decision trees by analyzing various

subsets of the dataset [17], [18]. Similarly, Extreme Gradient

Boosting (XGBoost) is an ensemble learning algorithm that

utilizes gradient descent to aggregate several decision trees

for optimal speed and performance [18]. While other ML

algorithms, such as K-Nearest Neighbor (KNN) and Support

Vector Machines (SVM), were considered, their high com-

putational costs were prohibitive factors. Additionally, the

ensemble learning feature of tree-based models, coupled with

their ability to calculate feature importance, made them ideal

for our specific use case.



TABLE I
SUMMARY OF RELATED WORKS

Refer-
ences

Technique Focus Area Accuracy/F1-
Scores

Computation
time (ms)

Evaluation
Method

Pub.
Year

[4] Machine-Learning and Reputation
based

False alert and position
falsification attacks

96%/- 2.01 Simulation
dataset

2020

[7] Statistical and Machine-Learning
based

Different attack types 92.8%/- n/a Simulation
dataset

2019

[8] Machine-Learning based Sybil Attacks 92.5%/96.4% n/a Simulation
dataset

2019

[9] Threshold, Behavioral and
Cooperative

Denial of Service (DoS) attacks 97%/99.3% n/a Simulation 2021

[10] Machine-Learning based Different attack types 97%/- n/a Simulation
dataset

2020

[11] Machine-Learning based Position falsification attacks 90.3%/- 10728.4 Simulation
dataset

2022

[12] Plausibility checks and
Machine-Learning based

Position falsification attacks 69.84%/- n/a Simulation
dataset

2021

[13] Reputation based Blackhole and greyhole attacks -/- n/a Simulation 2020

n/anot applicable

IV. METHODOLOGY

In this section, we provide a brief overview of the steps

involved in developing the proposed solution. Figure 1 presents

an overview of the framework for ensemble machine learning-

based misbehavior detection. We describe each process of the

proposed model below.

A. Simulation Settings and Scenarios

We created two separate data sets for training and testing

purposes by simulating two different traffic scenarios based

on the Luxembourg SUMO Traffic Scenario (LUST) network

in F2MD. F2MD is an extension to VEINS [19], an inter-

vehicular communication simulation framework that integrates

OMNET++ [20] as a network simulator and a road traffic

simulator (SUMO) for road traffic simulation [21]. The LUST

scenario is based on actual traffic information within the

city of Luxembourg and has been widely used for VANET

simulations [22].

The training dataset contains 6,298 vehicles with 4,695,795

messages, while the testing dataset includes 4,369 vehicles

with a total of 2,908,498 messages. The entire simulation

process took about 8 hours, and an attacker rate of 20%

was set. We performed the simulations on a workstation that

featured an AMD Ryzen 9 5900HX @ 3.3 GHz with Nvidia

RTX 3060 GPU and 32GBs of RAM. We tested all the

implemented ML algorithms on the same workstation using

the data obtained from the simulation with the parameters

provided in Table II.

B. Data Extraction

At this stage, simulated dataset were collected to train and

test the machine learning algorithms of our proposed model.

We briefly describe the details of the data extraction as follows.

1) The data extracted from the VEINS/F2MD simulator is

encoded in JSON file format and follows the naming

TABLE II
SIMULATION PARAMETERS

Parameter Value

Mobility scenario SUMO LUST

Vehicle density 4369, 6298

Simulation duration 8 hours

Attacker probability 0.2

Bit rate 6Mbps

Simulation area 2.3 × 2.3 km2

Beacon size 64B

Beacon Interval 1s

Bandwidth 10Mhz

Channel Frequency 5.89Ghz

Sensitivity -89dBm

Transmit power 20mW

convention traceJSON-$vehicleID$-$A0-54$ ,

which represents the received messages for each vehicle

in the simulation. For example, the name of an arbitrary

file traceJSON-50-A7 represents:

• $vehicleID$ denotes the receiver vehicle ID, in

this case 50.

• $A0-15$ is the vehicles attack type. A0 means a

receiver vehicle is genuine. Vehicles in the network

can be either genuine or have any of the other 15 attack

types described in [1]. In this example case, the receiver

vehicle’s misbehavior is RandomSpeed .

2) Every traceJSON file comprises two distinct types of

messages:

• The first type, denoted as type:2 messages, refers to

self-messages that represents information derived from

the vehicle’s own sensors, such as GPS. Specifically,

type:2 messages contain the position and speed



Fig. 1. The proposed ensemble misbehavior detection model

traces of the vehicle with ID 50.

• The second type, referred to as type:3 messages,

represents messages received from other vehicles and

is annotated with the corresponding sender’s identi-

fication ( senderID ). If a sender is denoted as an

attacker, its message are deemed as an attack or a mis-

behavior. Each message possesses a unique identifier

( messageID ), which will be used to evaluate the

performance of our proposed MDS.

• Both type:2 and type:3 messages include state

information on vehicle position, speed, acceleration,

and heading. The features are accompanied by the cor-

responding noisy components, such as position noise,

speed noise, acceleration noise and heading noise,

which represent the confidence of the receiver on the

noise levels of the sender’s message. Lower noise levels

indicate more precise state information, and the noise

can arise due to various factors such as communication

channel disturbance or sensor measurement errors.

We solely collected type:3 data from the JSON file

because type:2 data corresponds to sensor readings

captured by individual vehicles, which are not considered

misbehavior but are rather benign. Such messages are

not shared with any other vehicle and remain confined

to the originating vehicle. At the conclusion of this

stage, we obtained a training dataset that consisted of

4,695,795 instances and 22 features, as well as a test

dataset comprising 2,908,498 instances and 22 features.

C. Data Preprocessing

During the preprocessing stage, we found a class imbalance

with more normal than attack messages due to the 20%

attacker rate that was used in the simulation. Oversampling

was considered but rejected due to increased dataset size

and added computational overhead. Instead, we measured

the proposed MDS performance with F1-score to adjust for

the class imbalance. Preprocessing also included finding and

eliminating duplicates, numerical feature normalization, and

replacing null values with zeros.

D. Feature Selection

During the feature selection stage, the goal is to select the

most important features to train the model while reducing

the computational cost. To achieve this, two methods were

employed. First, a correlation matrix was generated for the

dataset, and features with the highest correlation to the target

label were selected. Additionally, to avoid redundancy, features

with a high correlation to each other were compared, and one

of the two features with a correlation above 0.9 was removed.

This step led to the elimination of several features such as

rcvTime , sendTime , sender and messageID .

Secondly, an ensemble feature selection technique was

employed, which involved calculating the feature importance

lists generated by four tree-based machine learning models.

Tree-based algorithms are useful for feature selection because

they compute the importance of each feature based on each

individual tree and average the output of the trees to make

the result more reliable [18]. To select the most important

features, the sum of the total feature importance was set to

1.0. Features were ranked based on their importance, and those

with the highest importance were added to a list until the

sum of importance reached 0.9. This allowed the selection of

the top features while discarding the lesser important ones to

reduce computational costs.

By employing this multilevel approach to feature selection,

a final feature list of 9 was obtained, as shown in Table III,

which resulted in the best performance for the proposed MDS.

TABLE III
SELECTED FEATURES FOR MODEL BUILDING

Features Used Feature Discarded

sender type, messageID, sendTime, recvTime

pos x, pos y pos noise x, pos noise y

speed x, speed y spd noise x, spd noise y

acl x, acl y acl noise x, acl noise y

hed x, hed y hed noise x, hed noise y

E. Model Building

After performing the necessary preprocessing steps on the

dataset, four base models are trained. These models predict

output labels, which are then used as input for the final



stacking ensemble model. The ensemble method, known as

stacking, is employed to enhance the F1-score and reduce the

computational latency. Stacking is a widely used ensemble

technique comprising of two layers. The first layer contains

a small number of trained base predictors whose outputs

are utilized as inputs for a meta-learner in the second layer

to construct a robust classifier. In this particular case, three

of the four trained tree structure algorithms act as the base

models in the first layer of the stacking ensemble method. The

singular algorithm with the highest accuracy among these four

base models is chosen to be the meta-classifier in the second

layer. Ultimately, the trained stacked model is constructed to

categorize each instance of test data as either an attack or

normal message.

V. RESULTS AND DISCUSSION

In this section, we present the evaluation results for the

proposed MDS, which consists of four tree-based algorithms

and a stacked model. Given our class-imbalanced dataset, we

chose F1-score as the accuracy metric and also considered

recall and total execution time (sum of training and inference

time) as additional evaluation metrics. The dataset was divided

into 80% for training and 20% for validation. We evaluated

both the validation and test sets and discussed the performance

in three-parts.

A. Before Feature Selection on Validation Set

The results of evaluating different algorithms on the valida-

tion dataset are summarized in Table IV. All four algorithms,

namely DT, RF, ET, and XGBoost, achieved high classification

results. RF and ET performed exceptionally well, reaching

99.8% in both recall and F1-score, indicating that they can

accurately identify attacks (misbehavior) with up to 99%

accuracy. However, RF had the worst performance in terms

of computational overhead, taking approximately 434 seconds

to train and infer on the validation set. This is partly because

unlike the other three algorithms which were multi-threaded,

RF is inherently single-threaded based on the python library

used.

To address this issue, DT, ET, and XGBoost were selected

as the base models for a stacked ensemble model, with

DT serving as the meta-classifier. This approach significantly

reduced the execution time to 1.7 seconds, a 99% improvement

over the base DT model’s execution time of about 185 seconds.

The stacked model achieved 99.8% in F1-score and recall,

matching the accuracy of the DT classifier while reducing

execution time.

B. After Feature Selection on Validation Set

To speed up the algorithms, the feature selection methods

from Section IV-C were used. This involved reducing the

training set size based on the features in Table III, and then

retraining the models on this modified dataset using the same

80-20% split. The classification accuracy for all 5 models

remained the same, as shown in Table V. In addition, feature

selection reduced the execution time of the models, with the

Stacked model and DT providing the best savings. Specifically,

TABLE IV
EVALUATION OF VALIDATION SET BEFORE FEATURE SELECTION

Method F1-Score Recall Total Execution Time (s)

DT 0.997 0.997 184.5

RF 0.998 0.998 433.4

ET 0.998 0.998 227.7

XGBoost 0.997 0.997 237.6

Stacked 0.998 0.998 1.7

DT reduced execution time by 63%, RF by 41%, ET by 38%,

XGBoost by 56%, and Stacked by 82%.

TABLE V
EVALUATION OF VALIDATION SET AFTER FEATURE SELECTION

Method F1-Score Recall Total Execution Time (s)

DT 0.997 0.998 68.1

RF 0.998 0.998 255

ET 0.998 0.998 140

XGBoost 0.997 0.997 105

Stacked 0.998 0.998 0.3

C. After Feature Selection on Test Set

The evaluation results of the trained models on the test

data are presented in Table VI. Unfortunately, the classification

performance of all 5 models decreased significantly on the test

data. The best performing model was the stacked ensemble,

achieving an F1-Score of 68.2% and recall of 53.7%. Despite

the low F1-score and recall performance of the models on

the test set, we consider the results promising. This is due

to the low computational overheads of the stacked model and

the broad range of attack types considered in the dataset. With

further fine-tuning, these characteristics can make the proposed

ensemble stacked model suitable for real-world deployments.

TABLE VI
EVALUATION OF TEST SET AFTER FEATURE SELECTION

Method F1-Score Recall Inference Time (s)

DT 0.602 0.617 0.4

RF 0.658 0.568 5.9

ET 0.67 0.514 7.4

XGBoost 0.63 0.588 0.6

Stacked 0.682 0.537 0.1

VI. CONCLUSION AND FUTURE WORKS

Misbehavior detection in VANETs is of absolute importance

for realizing fully self-autonomous driving and V2V com-

munication. In this paper, we propose a tree-based machine

learning misbehavior detection system that can effectively

detect misbehaviors of different types without incurring huge

computational costs. We introduce feature selection by corre-

lation and averaging and stack the tree-based algorithms into

an ensemble model to save costs and improve the model’s

execution time. We implement the proposed MDS in Python



and test its performance using simulated dataset obtained using

the F2MD framework. The results show that the proposed

stacked ensemble model has a higher F1-score and recall and

lower execution time than the base tree models, although by

a small margin. We argue that with further optimization, the

stacked ensemble model can offer a suitable balance in terms

of classification accuracy and costs.

In future work, we will explore further feature engineering

on the dataset, specifically creating new physics-based features

to model each attack type in the dataset, which can further

reduce the stacked model’s overfitting. Although this idea has

been explored in some existing literature, it has not been

explored in the context of detecting all possible known attacks.

Furthermore, we will extend the proposed work to a multiclass

classification approach to correctly classify messages as either

faults, attacks, or normal.
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