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Rising atmospheric CO2 has stimulated plant productivity, with terrestrial ecosystems 16 

currently absorbing nearly one-third of anthropogenic CO2 emissions1. There is growing 17 

evidence that nitrogen (N) availability constrains eCO2 responses1-4, yet we know much less 18 

about the role of phosphorus (P). This is important because P-limited ecosystems are globally 19 

widespread, and the biogeochemical cycles of N and P differ fundamentally. Using a free-20 

airCO2-enrichment (FACE) experiment on two contrasting P-limited grasslands, we show that 21 

competition between plants and microbes for P can determine plant productivity responses to 22 

eCO2. In a limestone grassland, aboveground productivity increased (16%) and microbial 23 

biomass P remained unchanged, whereas in an acidic grassland, aboveground productivity 24 

and P uptake declined (11% and 20%, respectively), but P immobilisation into microbial 25 

biomass increased (36%). Our results demonstrate that strong competition with microbes can 26 

cause plant P uptake to decline under eCO2, with implications for the future productivity of P-27 

limited ecosystems.  28 

The ability of terrestrial ecosystems to sequester more C as CO2 levels rise represents potentially the 29 

single most important biogeochemical feedback limiting climate change1. This ability can be 30 
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constrained substantially by nutrient availability1-4, with Earth system models indicating that 31 

nitrogen (N) limitation reduces this capacity for greater C sequestration by as much as 58%5. 32 

However, between a third and a half of terrestrial ecosystems are limited by P, not N6,7. Despite the 33 

spatial extent of P limitation, we know very little about how P limitation affects ecosystem 34 

responses to eCO2, thus significantly limiting our ability to predict future rates of C uptake by the 35 

terrestrial biosphere8,9.   36 

Crucially, understanding of eCO2 responses in N-limited ecosystems does not transfer to P-limited 37 

ecosystems because the mechanisms differ so greatly. While C can be utilised by soil microbes to 38 

fix atmospheric N, there is no biological equivalent that may increase ecosystem P stock, which is 39 

reliant principally on weathering of mineral P. Thus, total ecosystem P stocks will only increase if 40 

weathering of P-containing minerals is enhanced. Where the primary minerals have already been 41 

weathered, and secondary mineral P is insoluble, competition between plants and microbes for P 42 

may control productivity responses. Similarly, in acidic soils inorganic P is likely bound to abundant 43 

iron (Fe) and aluminium (Al)10, to which plant and microbe access may be extremely limited and 44 

thus competition for organic P is more intense. Furthermore, unlike the N cycle, soil microbial 45 

biomass (MBP) is typically a larger store of P than above ground plant biomass (AGBP), especially 46 

during ecosystem retrogression11, where  ecosystems become increasingly P-limited during soil 47 

development as they age. Thus, changes in competition between plants and microbes could 48 

potentially control the response of P limited ecosystems to eCO2, but this has not been investigated 49 

to date.  50 

Many of the strategies employed by plants to acquire P require C, either through mycorrhizal 51 

symbiosis, or the production of C-rich compounds such as organic acids to mobilise organic- and 52 

mineral-bound P, or root surface enzymes such as phytases and phosphatases to mineralise organic 53 

P sources12. Therefore, the expected increase in C entering ecosystems via photosynthesis under 54 

eCO2 may then provide a mechanism by which P limited productivity is alleviated, consequently 55 

increasing C sequestration. However, it has been shown that changes in C input can shift investment 56 

by soil microbes away from C acquisition to N and P acquisition under eCO2
13, and the 57 

consequences for competition between plants and microbes is unclear14.   58 

Currently, only one FACE experiment has been established on an ecosystem of proven P-limitation.  59 

Importantly, this study in Eucalypt forest15 in Australia, found that net primary productivity did not 60 

increase in response to eCO2, with forest maturity or P-limitation proposed as potential 61 

explanations16,17. Meta-analysis of eCO2 productivity responses indicated that P availability is an 62 
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important constraint18, but without direct experimental evidence from P-limited ecosystems, major 63 

uncertainty surrounds eCO2 responses of P-limited ecosystems that are widespread and prevalent 64 

globally. This holds especially true for grasslands, which represent 20% of terrestrial net primary 65 

productivity19 and are the most spatially extensive P-limited ecosystem in temperate regions7.  66 

To address this, we established a Free Air Carbon dioxide Enrichment (FACE) experiment, where 67 

intact soil-turf monoliths were exposed to either ambient CO2 (ca. 410 ppm) or eCO2 of 600 ppm. 68 

The monoliths used for the experiment were extracted from a long-term N and P manipulation study 69 

established in 1995 on two adjacent naturally P-limited grasslands20: a limestone grassland and an 70 

acidic grassland, which represent different stages of ecosystem retrogression. The limestone soil sits 71 

over a potential source of readily weatherable mineral P in calcium phosphates (Ca; Ca-P). This 72 

contrasts with the acidic soil, where Ca is 95% less abundant, and inorganic P is likely bound to 73 

abundant Fe and Al, to which plant and microbe access may be extremely limited, and thus 74 

competition for organic P is more intense10. In addition to control (no nutrient addition) plots, 75 

nutrient inputs have been manipulated through long-term (ca. 25 years) additions of P (35 kg P ha-1 76 

y-1 (P)), and two levels of N addition (35 kg N ha-1 y-1 (LN) and 140 kg N ha-1 y-1 (HN)). Addition 77 

of P alleviates the P-limitation of productivity and N additions simulate atmospheric N deposition: 78 

in line with the latest understanding of N loading impacts27, these are now also alleviating 79 

Plimitation, potentially by more weathering of Ca-P in the limestone soil, and possible stimulation 80 

of organic P mineralisation by microbial phosphatases13,21. CO2 fumigation began in 2018 with the 81 

FACE system supplying eCO2 during the hours of daylight from April until November in each year 82 

for three years (2018-2020).   83 

Aboveground biomass responses to eCO2  84 

There were consistent, contrasting responses to eCO2 of aboveground primary productivity between 85 

the two ecosystems (grassland x CO2 interaction; F1,60= 8.60, p< 0.01; Fig. 1).   This was due to 86 

cumulative above ground biomass production in the limestone grassland increasing 16% in response 87 

to eCO2, (p= 0.03; Fig. 1) whilst in the acidic grassland it declined by 11% (p= 0.05, Fig. 1). These 88 

contrasting responses were consistent through years 2-3 (2019-2020) and multiple harvests within 89 

these years (Fig. 1; F1, 449= 14.67 p< 0.0001, and Supp Fig. 3). The increased productivity in the 90 

limestone grassland is broadly in line with previously reported eCO2 responses22,23, where swards 91 

increased by 7- 20% in the first 3-4 years of fumigation. The decline in productivity in the acidic 92 

grassland was unexpected but not unprecedented: of 139 studies in a meta-analysis, two grassland 93 

systems showed significant declines in productivity under eCO2
17. The mechanisms for driving 94 
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these previously reported reductions are not understood, but our outdoor study of grasslands 95 

supplied with eCO2 after several decades of different nitrogen and phosphorus addition treatments, 96 

provide this mechanistic understanding of the contrasting plant responses for the first time.   97 

Nutrient treatment response of biomass   98 

Aboveground biomass increased with both nitrogen and phosphorus additions in both ecosystems 99 

(F1,60= 23.15, p< 0.0001, Supp Fig.3). Total productivity was in the order 0N < LN < HN < P across 100 

both grasslands, though the acidic grassland was less sensitive to N addition (grassland x nutrient, 101 

F3,60= 1.32, p> 0.2). Productivity only increased under HN (by 29%) in the acidic grassland relative 102 

to controls (p<0.005), whereas LN increased productivity in the limestone (by 39%; p<0.007), but 103 

did not further increase under HN. In both grasslands, P addition gave the highest shoot 104 

productivity, confirming this as the most limiting nutrient in these ecosystems. While N-loading 105 

may exacerbate P-demand, the increase in productivity arising from the N treatments is in line with 106 

current understanding that N addition can alleviate P-limitation in the long-term, by enhancing 107 

weathering of any Ca-P, and mineralisation of organic P by microbial phosphatases13,21.    108 
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Fig. 1 Contrasting aboveground shoot productivity responses in (a) limestone and (b) acidic grasslands 109 

exposed to ambient CO2 (dark green circles and bars) or 600 ppm CO2 (light green circles and bars), 110 

supplied from April 2018 (denoted by vertical arrows). The main panels for each grassland show the 111 

cumulative productivity over the study period, averaging across nutrient treatments (mean ± SE, n= 112 

20). Inset bar charts show the final accumulated shoot biomass (mean ± SE, n=5) in relation to the four 113 

multi-decadal nutrient treatments (0N= control, LN= 3.5 g N m-2 y-1, HN= 14 g N m-2 y-1, P= 3.5 g P m-2 114 

y-1).  115 

Plant-microbe competition for P as a driver of contrasting productivity responses  116 

Three growing seasons of eCO2, caused no change in the limestone grassland MBP (p> 0.5), 117 

contrasting with the 36% increase in MBP in the acidic grassland across all nutrient treatments (p< 118 

0.03, Supplementary Fig. 4). These responses were reflected in strong eCO2 effects on the ratios of 119 

above ground plant biomass P (AGBP) to MBP in the two grasslands (F1,185= 6.78, p= 0.01). Whilst 120 

eCO2 tended to increase AGBP:MBP in the limestone grassland this was not significant, in the 121 

acidic grassland it highly significantly decreased it (p< 0.0001). These contrasts gave a significant 122 

interaction between CO2 treatment and grassland type (F1, 185= 11.21, p= 0.001, Fig. 2). The 123 

AGBP:MBP responses to eCO2 were apparent from the end of the first year of enrichment and 124 

persisted throughout the experiment (Fig. 2).   125 

Increases in microbial P pools causing immobilisation, can reduce plant productivity24.  The decline 126 

in the AGBP:MBP under eCO2 in the acidic grassland implies that competition between soil 127 

microbes and plants for P intensified, increased plant growth limitation by P, and reduced shoot 128 

productivity. It has long been thought that, in the short term at least, microbes are the better 129 

competitors25 for limiting nutrients, and microbial N uptake can be an order of magnitude greater 130 

than by plants in grasslands26. None-the-less, while competition for P can be intense27, it is less 131 

well-understood28 and our work suggests an important role for this in mediating eCO2 productivity 132 

responses. The contrasting, lack of decline in AGBP:MBP under eCO2 in the limestone grassland 133 

shows  no evidence of microbial-driven exacerbation of plant P-limitation and allowed the positive 134 

plant productivity and shoot P content response to  eCO2 in this grassland (see NPP and AGBP, 135 

Table 1).    136 

Table 1 The mean (n= 5, with standard errors in parentheses) annual net primary production (NPP), 137 

aboveground biomass phosphorus (AGBP) and microbial biomass phosphorus (MBP) stocks from 138 

three years of CO2 fumigation (a= ambient, e= elevated) from the acid and limestone grasslands, 139 

subjected to four nutrient amendment treatments (0N= control, LN= 3.5 g N m-2 y-1, HN= 14 g N m-2 y1, 140 

P= 3.5 g P m-2 y-1).  141 
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Grassland Nutrient CO2 

2018 

NPP (g m-2) 
 2019 2020 Mean 2018 

AGBP (mg m-2) 

 2019 2020 Mean 

MBP (mg m-2) 

 2018 2019 2020 Mean 

Acid 

0N 
a 

e 

90.20 

96.98 

(13.09) 

(12.64) 

134.38 

107.51 

(15.51) 

(16.15) 

188.36 

174.86 

(16.54) 

(20.73) 

137.65 

126.45 

(15.05) 

(16.51) 

85.12 

95.73 

(17.87) 

(15.72) 

148.99 

103.50 

(22.42) 

(21.53) 

262.85 

223.99 

(35.59) 

(22.06) 

165.65 

141.08 

(25.29) 

(19.77) 

1087.97 

1407.64 

(213.10) 

(314.34) 

1212.89 

1088.19 

(380.52) 1526.17 

(430.01) 2887.99 

(198.55) 1275.68 

(523.32) 1794.61 

(264.06) 

(422.56) 

LN 
a 

e 

121.84 

69.94 

(17.18) 

(5.6) 

182.69 

134.20 

(8.3) 

(18.96) 

192.69 

154.50 

(21.9) 

(5.72) 

165.74 

119.55 

(15.79) 

(10.09) 

121.74 

52.89 

(17.14) 

(3.78) 

187.39 

130.57 

(32.63) 

(20.66) 

268.91 

175.64 

(37.96) 

(4.14) 

192.68 

119.70 

(29.24) 

(9.53) 

1702.48 

1460.98 

(337.56) 

(372.79) 

1034.37 

1705.17 

(198.92) 1408.92 

(995.59) 1535.74 

(442.97) 1381.92 

(286.80) 1567.30 

(326.48) 

(551.73) 

HN 
a 

e 

106.64 

107.69 

(19.77) 

(11.18) 

200.05 

190.56 

(26.85) 

(12.13) 

212.33 

205.34 

(16.58) 

(19.68) 

173.01 

167.86 

(21.07) 

(14.33) 

99.91 

97.55 

(19.31) 

(13.59) 

157.98 

183.81 

(20.4) 

(14.81) 

244.30 

224.46 

(24.2) 

(23.64) 

167.40 

168.61 

(21.30) 

(17.35) 

1637.49 

1883.40 

(386.40) 

(236.50) 

892.86 

1754.74 

(277.86) 1754.76 

(563.96) 1218.73 

(270.32) 1428.37 

(481.62) 1618.96 

(311.53) 

(427.36) 

P 
a 

e 

142.68 

113.32 

(10.32) 

(32.51) 

208.33 

181.27 

(38.07) 

(26.33) 

256.70 

219.97 

(23.71) 

(34.94) 

202.57 

171.52 

(24.03) 

(31.26) 

421.38 

318.34 

(38.37) 

(66.2) 

515.33 

434.07 

(173.14) 

(104.78) 

767.59 

561.94 

(63.17) 

(89.93) 

568.10 

438.12 

(91.56) 

(86.97) 

1686.37 

2824.24 

(224.79) 

(640.19) 

1729.13 

2851.40 

(684.53) 1834.00 

(345.40) 3215.05 

(496.83) 1749.84 

(368.74) 2963.56 

(468.72) 

(451.44) 

Limestone 

0N 
a 

e 

41.00 

41.44 

(7.98) 

(6.72) 

80.42 

104.13 

(11.49) 

(11.8) 

162.37 

180.05 

(21.82) 

(7) 

94.60 

108.54 

(13.76) 

(8.51) 

39.21 

38.71 

(7.39) 

(5.24) 

74.59 

114.26 

(23.46) 

(17.75) 

243.22 

221.54 

(49.52) 

(9.41) 

119.01 

124.83 

(26.79) 

(10.80) 

1444.45 

1236.49 

(129.06) 

(193.49) 

1311.37 

1099.99 

(154.83) 1500.93 

(225.38) 1170.08 

(93.92) 1418.92 

(175.28) 1168.86 

(125.94) 

(198.05) 

LN 
a 

e 

73.26 

86.55 

(13.1) 

(21.86) 

120.23 

154.43 

(10.76) 

(38.62) 

187.38 

227.98 

(10.08) 

(29.17) 

126.96 

156.32 

(11.31) 

(29.88) 

66.94 

69.38 

(12.18) 

(17.45) 

123.27 

128.08 

(13.9) 

(27.39) 

249.11 

268.20 

(21.74) 

(36.12) 

146.44 

155.22 

(15.94) 

(26.99) 

915.04 

935.88 

(145.24) 

(131.99) 

614.84 

975.62 

(168.40) 1085.06 

(261.97) 1026.40 

(172.16) 871.65 

(174.85) 979.30 

(161.93) 

(189.61) 

HN 
a 

e 

84.51 

81.47 

(20.81) 

(7.92) 

126.92 

171.53 

(26.74) 

(26.56) 

204.24 

243.07 

(18.58) 

(10.36) 

138.56 

165.36 

(22.04) 

(14.95) 

73.37 

66.47 

(18.18) 

(5.64) 

102.52 

172.39 

(10.76) 

(29.79) 

252.21 

294.52 

(29.91) 

(15.66) 

142.70 

177.79 

(19.62) 

(17.03) 

1011.25 

980.97 
(149.22) 
(90.36) 

866.56 

799.06 

(133.39) 1075.59 

(124.83) 1169.74 

(87.08) 984.47 

(153.37) 983.26 

(123.23) 

(122.85) 

P 
a 

e 

144.73 

113.53 

(6.36) 

(7.85) 

131.58 

225.78 

(20.68) 

(33.61) 

252.24 

258.96 

(32.67) 

(40.35) 

176.19 

199.42 

(19.90) 

(27.27) 

343.03 

207.57 

(17.31) 

(11.84) 

373.18 

559.72 

(89.99) 

(87.36) 

825.90 

669.42 

(103.02) 

(122.43) 

514.04 

478.91 

(70.11) 

(73.88) 

2343.18 

1764.72 

(179.32) 

(232.86) 

1784.44 

1489.09 

(164.71) 2238.94 

(103.20) 2650.19 

(285.94) 2122.19 

(867.64) 1968.00 

(209.99) 

(401.23) 



9  
  

145    



10  
  

Fig. 2 Contrasting ratio (on a log scale) of aboveground plant biomass P (AGBP) to soil 146 

microbial biomass P (MBP) in (a) limestone and (b) acidic grassland (b) exposed to ambient CO2 147 

(dark green circles and bars) or 600 ppm CO2 (red circles and bars), supplied from April  148 

2018. The main panels for each grassland show the time series measurements (mean ± SE, n= 149 

20), with the inset bar charts giving overall means (± SE, n=5) for each nutrient treatment (0N= 150 

control, LN= 3.5 g N m-2 y-1, HN= 14 g N m-2 y-1, P= 3.5 g P m-2 y-1). Vertical arrows denote start 151 

of CO2 fumigation.  152 

There was no evidence of CO2 × nutrient treatment interactions on plant productivity (Supp 153 

Fig 3; p< 0.7). Thus, the contrasting responses of the two grasslands appear to be driven by 154 

differences in microbial immobilisation even in plots receiving  P additions (see below). In 155 

the acidic grassland eCO2 still reduced plant productivity in plots receiving P, probably 156 

because the increase in immobilisation was greatest in this treatment; with microbial biomass 157 

P increased by a factor of 1.7 (Table 1). In this context, and in contrast to previous studies9,29, 158 

the ecosystems had undergone nutrient manipulation for > 25 years, thus the CO2 effects on 159 

each grassland-nutrient combination represented responses of grasslands that have largely 160 

stabilised to their new nutrient status rather than responding to a recent step-change in 161 

nutrient loading.   162 

The key to the differences in the outcome of microbial-plant competition may lie in 163 

differences in soil P chemistry between the two grasslands. In both cases, recently-fixed C 164 

that enters soil via roots and associated mycorrhizal fungi30 includes enzymes and organic 165 

acids, that liberate P needed to sustain a positive plant growth response31 to eCO2. However, 166 

in the limestone grassland soil, abundant calcium phosphates (Ca-P) offer potential new P 167 

inputs, the weathering of which may be enhanced by eCO2 increasing organic acid exudates31 168 

and arbuscular mycorrhizal fungal (AMF) activity32. In contrast, in the acid grassland, Ca is 169 

95% less abundant, and inorganic P predominantly bound to Fe and Al10, to which plant and 170 

microbial access may be extremely limited33. Greater microbial biomass P will thus promote 171 

stronger competition for organic P, and may facilitate adsorption and occlusion of microbial 172 

biomass-derived P into the low-availability soil P pools. In this context, the limestone and 173 

acidic soils represent early and later stages of ecosystem retrogression respectively through 174 

loss of mineral P (especially Ca-P), acidification, and enrichment of highly recalcitrant Fe 175 

and Al secondary P minerals11,33. Our findings are likely to be applicable to other P-limited 176 

ecosystems at these different stages of ecosystem retrogression. Furthermore, because the 177 
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contrasting eCO2 responses of the two grasslands are consistent across the different nutrient 178 

treatments, this suggests the mechanisms hold true irrespective of nutrient status, suggesting a 179 

very strong controlling role of soil microbes and chemistry.  180 

P-limited ecosystem responses to eCO2  181 

Grasslands represent 20% of global terrestrial net primary productivity34 and make major 182 

contributions to soil C stocks. They are also the most spatially extensive P-limited ecosystem 183 

in temperate regions7. More broadly, greater than 40% of terrestrial ecosystems globally may 184 

be P-limited, highlighting the need to understand the impact of eCO2 on the productivity of 185 

these ecosystems. Overall, the quantity, pathways, function and fate of C below ground 186 

controls the future C gain in plants and soils under eCO2. We have shown that two P-limited 187 

grasslands show directly opposing above-ground biomass responses to eCO2, and that these 188 

responses may be driven by competition for the limiting P-resource between plants and soil 189 

microbes. These contrasting responses appear to be controlled by differences in soil 190 

chemistry, giving new insight into how P-limited ecosystems of contrasting stages of 191 

pedogenesis may respond to eCO2. Below-ground interactions between plants, microbes and 192 

soil strongly dictate the fate of the C and potential sequestration, therefore current climate 193 

models which do not consider plant-microbe competition for limiting resources may under- or 194 

over-estimate terrestrial C sequestration dependent on the outcome of the competition35. It is 195 

essential that plant microbial competition, and their interactions with soil chemistry, are more 196 

clearly understood to better predict how ecosystems will respond to eCO2 and climate 197 

change36.  198 
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Supplementary Information  343 

  344 

Supplementary Fig. 3 Contrasting aboveground productivity responses to ambient CO2 (a- dark 345 

green bars and filled circles) or elevated CO2 at 600 ppm (e-light greenbars and filled circles), in 346 

acidic, (left hand column) and limestone grasslands, (right hand column). Data show mean (± 347 

SE, n= 5) in time series and cumulative productivity (vertical bars, mean ± SE, n= 5) over the 348 

study period. Vertical arrows denote the start of CO2 fumigation.  349 

  350 

  351 
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  353 

  354 
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  355 

Supplementary Fig. 4. Soil microbial biomass P (MBP) responses to ambient CO2 (a- dark green 356 

bars and filled circles) or elevated CO2 at 600 ppm (e-light green bars and filled circles), in 357 

acidic, (left hand column) and limestone grasslands, (right hand column). Data show means (± 358 

SE) in time series (n= 5) and cumulative productivity (n= 5) over the study period. Vertical 359 

arrows denote start of CO2 fumigation.   360 

    361 

Methods  362 

Nutrient manipulation  363 

Sets of 10 intact soil-turf monoliths of area 0.35 x 0.35 m,  were taken from each treatment 364 

plot of  a long-term grassland nutrient manipulation experiment that was established in 1995 at 365 

Wardlow, Peak District National Park, UK20. The limestone grassland (NVC classification  366 
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Festuca-Avenula CG2d) occurs on a shallow ranker (~ 10 cm A horizon down to limestone 367 

parent material) that is transitioning from a humic rendzina due to leaching10. The acidic 368 

grassland (Festuca-Agrostis-Galium U4e) is on a cryptic podzol, with an organic-rich A 369 

horizon ca. 10 cm deep above a loessic mineral horizon extending to at least 70 cm depth 370 

(though rooting and biological activity is largely limited to the top 15 cm). On each grassland, 371 

replicate 9 m2 experimental plots have received either no treatment (natural P limitation, 372 

application of distilled water only (0N)), monthly applications of P at 35 kg P ha-1 y-1 (P), or 373 

N at 35 and 140 kg N ha-1 y-1 (LN and HN, respectively)].   374 

The monoliths were taken during February and March 2017, being excavated to the bedrock 375 

(~10 cm) in the limestone grassland and to below the main rooting depth in the acidic 376 

grassland (~20 cm).  They were transported in polypropylene boxes to the Bradfield 377 

Environment Laboratory research station, also in the Peak District National Park.   Since roots 378 

readily reach the underlying limestone in shallow rendzina soils, a base of limestone 379 

chippings, sourced from a quarry on the same limestone as Wardlow (Bee Low limestone, 380 

Dove Hole Quarry, Derbyshire UK), was applied to the bottom of the limestone mesocosms.   381 

At the Bradfield research station, the mesocosms were set flush with the ground surface in 382 

holes dug out of the soil to ensure they were thermally buffered, and the surface of the turfs 383 

matched the surrounding vegetation.  The mesocosm sides were solid so there was no direct 384 

contact with the surrounding soils, and the base freely drained through holes covered with a 385 

mesh voile (to stop particulate loss and root outgrowth, or ingrowth of roots from surrounding 386 

plants). The Bradfield research station (ca. 390 m asl) is less than 20 km from Wardlow (ca. 387 

350 m asl) and has similar climate.  388 

CO2 enrichment  389 

Mesocosms were assigned to form groups of 8, comprising one of each of the four nutrient 390 

treatments from both grasslands, and these were placed within five miniFACE or five control 391 

rings of 1.6 m diameter that were supported ca. 20 cm above the ground surface. The mesocosms 392 

in control rings experienced ambient CO2 concentrations, whilst the miniFACE system37 Each 393 

ring consisted of PVC tubes with laser drilled micro-holes. The processors in the FACE ring 394 

control units received CO2 information from sensors (GTM222, Vaisala, Finland) installed in the 395 

centre of each ring. Microprocessors, linked to automated pressure regulators, controlled the 396 

pressure inside the releasing pipes and therefore delivery of CO2 to the rings. Fumigation started 397 
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in 2018, with fossil fuel-derived CO2 supplied by BOC Cryospeed (BOC Limited, Manchester, 398 

UK). During the hours of daylight, CO2 enrichment was set to a target of 600 ppm, which 399 

continued from the beginning of April until the end of October for three year (2018-2020). The 400 

FACE system achieved a mean of 598 ± 0.07 ppm across all elevated plots over the experiment, 401 

with the 5% and 95% quantiles being 555 and 643 ppm respectively.  402 

Biomass harvesting  403 

Aboveground biomass was harvested twice each year, at the end of June and during 404 

September. Plant biomass was cut at 2.5 cm and 5 cm height in the limestone and acidic 405 

grasslands respectively and oven dried at 70 °C until constant weight. Dried plant material was 406 

first homogenised using a food processor then milled to a fine powder (IKA 10 Mill, IKA®-407 

Werke GmbH & Co.KG, Staufen, Germany).   408 

Soil collection  409 

Soil was sampled once a year from each mesocosm contemporaneously with the autumn 410 

aboveground biomass harvest. Triplicate 2 cm diameter soil cores were taken from random 411 

locations within each mesocosm and in the acid grassland these were divided into the A and B 412 

horizons. Soil was passed first through a 10 mm sieve and then roots were removed by hand. 413 

The remaining soil was then passed through a 2 mm sieve in preparation for chemical 414 

analyses, with a subsample placed in the oven at 105 °C to determine soil moisture content.  415 

Determination of soil and plant biomass P content  416 

Plant biomass underwent hydrogen peroxide acid digest modified from Grimshaw (1987)38 and 417 

Leake (1988)39. Dried plant material (20– 50 mg) was added to a glass digest tube and 1 cm3 of 418 

100% H2SO4 was added. The tubes were gently shaken and left overnight in a fume cupboard 419 

to ‘pre-digest’. Custom-made glass ‘cold fingers’ were used to cover the tubes, allowing acid 420 

condensate to safely reflux with the reagents. Two digest blanks per 30 samples were prepared 421 

for colorimetry, which consisted of 1 cm3 H2SO4 which underwent the same subsequent 422 

procedure as the plant sample digests. Samples were heated in a heating block (Grant heat 423 

block, BT5D model) to 350 °C. Before reaching the target temperature (and at approximately 424 

250 °C) samples were briefly removed from the block and swirled to mix the digestate. The 425 

tubes were allowed to reach 350 °C and remained at temperature for 15 minutes. Tubes were 426 

removed from the blocks, swirled again and allowed to partially cool.  427 
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Samples were clarified by addition of H2O2 while solutions were still hot, following a delay 428 

of 30 –60 seconds to prevent loss of sample by spitting. An initial volume of 800 μl H2O2 was 429 

added to each tube and boiled off in the heating block until most visible evaporation had 430 

ceased. Samples were cooled again and another 200 μl of hydrogen peroxide was added and 431 

boiled off. This latter addition was repeated once more to ensure all samples were clear and 432 

no more plant sample remained adhered to the tubes. The digest solutions were diluted to 10 433 

ml by adding 9 ml of ultra-high purity (UHP) water. Total P in the digest solutions was then 434 

determined using an adapted version of the molybdate blue reaction40,41.   435 

Determination of soil microbial biomass P  436 

Soil microbial P (MBP) was determined using the chloroform-fumigation method of Vance et 437 

al (1987)42. Gravimetric water content of soil was determined from oven drying a 4 g fresh 438 

weight subsample for 48 hours at 105°C. Two further 4 g fresh weight aliquots were weighed 439 

into acid washed (HCl) 50 cm3 beakers: one for fumigation and one for non-fumigation. One 440 

aliquot was placed in a vacuum desiccator with a beaker containing boiling chips and 20 ml 441 

chloroform (CHCl3). The desiccator was evacuated until chloroform boiled three times, venting 442 

between the first two times and left in darkness for 24 hours. After incubation, CHCl3 was 443 

removed by drawing a vacuum and venting 5 times.   444 

Both fumigated and unfumigated soils were extracted in 50 ml of 0.5 M sodium bicarbonate 445 

(NaHCO3; pH 8.5). Extracts were shaken for 1 hour on a rotary shaker and filtered through 446 

pre-leached Whatman 44 filter paper. Extracts were stored at -18 °C until quantification of P 447 

was determined using Inductively Coupled Plasma - Optical Emission Spectrometry (ICPOES; 448 

Thermo Fisher iCAP PRO). Soil MBP was calculated by subtracting the concentration of P in 449 

the non-fumigated aliquot from the fumigated aliquot and dividing by an adjustment factor of 450 

0.4 after Brookes et al. (1982)43.  451 

Statistical analyses  452 

Linear mixed effects models were used to test for fixed effects of eCO2, nutrient treatment, and 453 

grassland, with block as a random factor, on aboveground biomass, cumulative  454 
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457 aboveground biomass, aboveground biomass P, soil microbial P and AGB:MBP ratio. A log  

458 transformation was performed on AGBP:MBP before analysis. Differences between groups 

459  were assessed using least square means. All figures and analyses were performed 

using SAS 460  9.4 (SAS Institute, Cary, NC, USA).  


