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A B S T R A C T

In Industry 5.0, Digital Twins bring in flexibility and efficiency for smart manufacturing. Recently, the success
of artificial intelligence techniques such as deep learning has led to their adoption in manufacturing and
especially in human–robot collaboration. Collaborative manufacturing tasks involving human operators and
robots pose significant safety and reliability concerns. In response to these concerns, a deep learning-enhanced
Digital Twin framework is introduced through which human operators and robots can be detected and their
actions can be classified during the manufacturing process, enabling autonomous decision making by the robot
control system. Developed using Unreal Engine 4, our Digital Twin framework complies with the Robotics
Operating System specification, and supports synchronous control and communication between the Digital
Twin and the physical system. In our framework, a fully-supervised detector based on a faster region-based
convolutional neural network is firstly trained on synthetic data generated by the Digital Twin, and then
tested on the physical system to demonstrate the effectiveness of the proposed Digital Twin-based framework.
To ensure safety and reliability, a semi-supervised detector is further designed to bridge the gap between the
twin system and the physical system, and improved performance is achieved by the semi-supervised detector
compared to the fully-supervised detector that is simply trained on either synthetic data or real data. The
evaluation of the framework in multiple scenarios in which human operators collaborate with a Universal
Robot 10 shows that it can accurately detect the human and robot, and classify their actions under a variety
of conditions. The data from this evaluation have been made publicly available, and can be widely used
for research and operational purposes. Additionally, a semi-automated annotation tool from the Digital Twin
framework is published to benefit the collaborative robotics community.

1. Introduction

Collaborative robots (cobots) [1] are playing an increasingly im-
portant role in the smart manufacturing and Industry 5.0 era, as they
have the potential to boost productivity, ensure safety, and liberate
humans from labor-intensive activities [2–4]. The concept of human–
robot collaboration (HRC) in Industry 5.0 is mostly conveyed by smart
manufacturing where cobots work alongside humans in close proximity
in a shared workspace and they are pre-programmed to interact with
humans to carry out various tasks. However, human safety is a key
prerequisite for the deployment of such robots. Traditional approaches
to ensure robot safety in manufacturing require deployment of cages,
as shown in Fig. 1. Physical barriers, light gates, and laser rangefinders
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prevent direct contacts of cobots and humans [5]. These safety mea-
sures protect human workers, but they are bulky, inflexible (preventing
true collaboration), and expensive.

In recent years significant research has been carried out to develop
cage-free and more flexible safety solutions. Collision avoidance based
solutions have been proposed in [6–8], where the pre-programmed
trajectory of cobots are adapted to avoid collisions with dynamic
obstacles, e.g., humans and other objects in the shared workspace. Un-
fortunately, these solutions lack the ability to distinguish ‘humans’ from
other objects, which could subsequently cause severe consequences.
In addition, these solutions rely on the alignment of digital cobots
designed by Computer-Aided Design (CAD) tools [9] to re-built digital
cobots from Red, Green, Blue plus Depth (RGB-D) camera data. CAD
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Fig. 1. Figs. 1(a) and 1(b) shows the configuration of an industrial HRC process,
where an operator exchanges components with a cobot at a shared handover location.
The robot cell is open on one side, allowing staff to enter the cell under specific
circumstances.

models of cobots were combined with the data captured by RGB-D
sensors. This leads to an easy separation of robots from surrounding
objects and also from humans. The alignment between a CAD model
and the caged cobot is typically done with the assistance of hand-
eye calibration [9,10]. However, the calibration quality is critical in
determining the accuracy of alignment.

Besides CAD models, augmented and mixed reality techniques
which integrate computer-generated virtual information into real-world
scenes can help users to enhance their understanding and awareness
to support safe interaction in HRC tasks [11–13]. Meanwhile, thanks
to the rapid development of deep learning and computer vision tech-
niques, a series of modern approaches have been proposed [14,15],
demonstrating success in scene understanding and visual perception,
such as classification, object detection and segmentation.

Furthermore, Digital Twins of cyber–physical systems provide a
real-time digital representation of physical collaborative manufacturing
systems. This can greatly improve the systems’ intelligence regard-
ing design, production, operation, evaluation, health management and
performance optimization [4,16]. Digital Twins can contribute to a
range of different aspects in challenging HRC systems [17], including to
simulation, modeling, performance analysis, process monitoring, data
collection, data mining, data fusion, interaction as well as cognitive
service [18,19]. This makes Digital Twins and intelligent solutions
promising in avoiding the complex calibration process and in achieving
identification of cobots and other objects in HRC without calibration at
all.

Different definitions [18] of Digital Twins have been proposed and
developed over time. According to [20], a Digital Twin is a set of
coupled computational models and methods that evolve over time to
persistently represent the structure, behavior, and context of a unique
physical asset such as a component, system or process. A Digital Twin
represents a real system, e.g. a city, cobot, aircraft, and acts as a cou-
pled duplicate of the real world. It has several important characteristics:
(i) it is universal and can be applied to several domain areas, (ii) it has
a modular structure, which can be updated, expanded and developed
further, (3) it is connected with data – both computer generated
and from the real system. It can be used for a number of purposes –
design, increasing safety and autonomy, and others, including for new
functionalities. Fu et al. [18] point out four stages in the development
of Digital Twin, with an increasing usage of data in the last two stages,

Fig. 2. A HRC cell is available in the Sheffield Robotics Lab at the University of
Sheffield, UK. An HRC cell is shown in this picture, where there is an operator desk
in front of the cobot and the operator exchanges components with the cobot on the
desk. A Kinect sensor is mounted on the top of the cell to monitor the HRC operation.

including remotely, when data could be stored on a cloud and accessed
via the Internet of Things (IoT) technologies. The surveys [21,22]
systematically review the recent developments of artificial intelligence-
driven Digital Twin in the areas of cutting-edge robotics and smart
manufacturing. Besides, multi-access edge computing was incorporated
into Digital Twins, facilitating manufacturing processes towards smart
and flexible [23,24].

Having in mind these recent trends [25,26], one can identify sev-
eral gaps between the research in Digital Twin techniques and their
applications in industry: (i) Digital Twins need further developments in
order to represent manufacturing systems in a wide range of complex
environmental conditions and diverse production stages, (ii) In the
majority of cobot systems, safety is guaranteed via caged environments
or additional safety sensors when the cobots are operated at higher
speeds so as to meet production demands of end users, (iii) the level
of autonomy varies across different applications and is on the increase
thanks to recent developments in intelligent sensing, computer vision
and artificial intelligence techniques.

Aiming at contributing towards bridging these gaps, this paper
proposes an intelligent Digital-Twin-based safe human–robot collab-
oration framework. A Digital Twin is built to simulate the physical
HRC system which is shown in Fig. 2. A communication framework
is further designed so that the Digital Twin can be synchronized with
the physical HRC platform with the support of the Robot Operating
System (ROS) [27]. Consequently, information including robot poses
and kinematics can be shared between the digital and the physical
systems flexibly and in a real-time manner. Owing to the Digital
Twin’s ability to create photo-realistic digital cobots and maintaining
holistic cobot parameters, a diverse amount of synthetic cobot data
with accurate labels are generated by the digital system. These data
combined with human data from the COCO repository [28], are used to
train deep learning models to monitor interactive operations of robots
and humans. The challenges stemming from the simulated Digital
Twin environment and the real environment are addressed by further
proposing a semi-supervised deep learning detector. Our Digital Twin
system is applied to analyze and validate how the environment, e.g. the
lighting conditions, affect the performance of the deep-learning action-
recognition system. With the proposed deep learning detector, humans
and robots are monitored in the physical environment to ensure their
safe separation. Therefore, by adopting a Deep Learning-enhanced
Digital Twin Framework, this work contributes towards cost-effective
and flexible systems for intelligent sensing and decision making.
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The main contributions of this work are as follows: (i) a semi-
supervised framework for object detection is proposed by adopting a
faster region-based convolutional network [29]; (ii) a Digital Twin of a
physical HRC system is developed that generates synthetic robot data to
train deep learning models for monitoring human–robot collaborative
behaviors. (iii) the performance of the developed Digital Twin system
is validated and evaluated over both synthetic and real data sets,
demonstrating that it can achieve accurate recognition of human–
robot behaviors for safety assurance. Research outputs include publicly
available datasets generated by our Digital Twin of a Universal Robot
10 (UR10) robot [30], and a semi-automated annotation tool [31].

The remainder of this paper is organized as follows. Section 2 gives
an overview of related work from three perspectives: (i) needs and chal-
lenges in the manufacturing industry, (ii) machine learning methods
for solving complex cobot tasks, (iii) Digital Twins of HRC systems.
Section 3 describes the developed framework for safe and reliable HRC
in detail. Section 4 describes the real and synthetic datasets along
with the semi-automated annotation tool used in this work. Section 5
presents evaluation and validation of the detection and classification
results under different lighting conditions, whilst explaining safety
criteria for decision making and demonstrating how to implement or
adopt our framework into practical cases. Finally, Section 6 summarizes
the results and discusses future work.

2. Related work

2.1. Digital twins for HRC safety and resilience in manufacturing

Simulation models play a variety of roles in designing, testing and
delivering products in industry. However, the frequently changing de-
mands, the need for real-time process monitoring, and the need for cost-
effective production [32] pose new challenges to simulation techniques.
Digital Twins extend traditional simulation approaches by taking real-
time and historic data from their counterpart physical systems into
consideration. Such techniques have drawn significant attention from
both industry and academia [19,20], especially for production lines in
which humans work in shared spaces with robots. Digital Twins can
combine cyber and physical information together throughout a product
lifecycle, and are recognized as one of the most prospective tools for
the design, maintenance and monitoring in smart manufacturing [19].
Thanks to the advances of the artificial intelligence, cyber–physical
system, big data, information fusion and advanced sensing, Digital
Twin technology is developing and shaping the manufacturing industry
towards intelligent HRC [18].

Malik and Brem [3] propose a framework that applies a Digital Twin
to industrial assembly systems. The system adaptability and dynamics
due to the human presence are represented within the Digital Twin
which significantly improves the safety in HRC. In [33], a machine
learning-enhanced Digital Twin is proposed as an experimental plat-
form to verify the proposed deep learning model for path planning
before further actions in physical environments. This is particularly
beneficial for scenarios where humans are involved in validation as
any unaddressed issues could lead to injuries to humans. Besides, deep
learning methods can be embedded into a rich Augmented Reality (AR)
environment by mapping the virtual and physical objects during the
multi-functional interaction, and can have a better preview of target
objects [34]. Park et al. [35] design a hands-free interaction system in
mixed reality environments with the assistance of a Digital Twin.

In contrast to previous studies, our Digital Twin is able to assist in
the training of deep learning models by generating training datasets
in addition to testing and validating the model. This enhances the
efficiency of training the deep learning model in terms of both time
and labor costs.

The next subsection presents an overview of recent advances in deep
learning methods for object detection.

2.2. Fully-supervised and semi-supervised deep learning for object detection

Several fully-supervised object detection algorithms have been pro-
posed and one of the famous series are region-based convolutional neu-
ral networks, also named two-stage detectors, including R-CNN [36],
Fast R-CNN [37] and Faster R-CNN [29]. In these two-stage methods,
the first stage is to extract image features through backbone networks,
for instance, ResNet [38]. The second stage generates region proposals
for further localization and classification of objects. During the evolu-
tion of region-based convolutional neural networks, the computation
costs of region proposal generations decrease significantly from a se-
lective search [39] to the Region Proposal Network (RPN) in faster
R-CNN [36]. The RPN can achieve real-time performance and it has
made great progress in detection accuracy.

The object detection algorithms reviewed above belong to the group
of fully-supervised algorithms which means that they require huge
amount of labeled data during the training process. In contrast to fully-
supervised algorithms, semi-supervised ones use partly labeled data and
partly unlabeled data or pseudo-labeled data, which can significantly
reduce the volume of labeling data to some extent. Pseudo-label based
approaches adopt the teacher-student model in which a teacher model
firstly is trained to generate pseudo-labels. Unlabeled data combined
with the pseudo-labels are then used to train the target student model.
In FixMatch [40], Sohn introduces weakly-augmented data for gener-
ating pseudo-labels and then the same strongly-augmented images are
applied to predict whether the results match the weakly-augmented
one. In [41] pseudo-labels are generated by using data augmentation
and high efficiency is achieved compared with fully-supervised faster
R-CNN [36]. Xu et al. [42] propose a soft teacher model which per-
forms pseudo-labeling on weakly augmented data. The teacher model
is updated by using the student model which applies an exponential
mean average (EMA) strategy.

In previous studies on semi-supervised solutions [43], data pre-
processing and data augmentation are required to train a well-
performed detector. Additionally, the detector only considers a single
domain where both the labeled and unlabeled data are from the same
domain. It may result in detection accuracy degradation, especially
in new unseen environments. Our semi-supervised object detection
approach considers both domains from the physical environment and
the simulation, and hence can achieve satisfactory performance in new
real environments.

2.3. Bridging the gap between simulation and the physical world

It is expensive to collect and annotate huge amounts of data for
training a deep learning model. Especially, there is no public dataset
available that can be used to train deep learning models in new en-
vironments, especially for manufacturing purposes, for instance, using
a deep learning-based detector to detect robots and humans in HRC.
Digital Twin is an efficient option in which simulations in the digital
system can generate a great amount of labeled data [17,26]. These
generated data can be used for training deep learning models and
applied to real-world environments. Techniques known as Simulation
to Real (Sim2Real) [44–46] could be utilized in such tasks. In addition,
they enable only the (simulated) virtual world to be employed during
the training, validation, and testing phases of the deep neural network
(DNN) models. However, there are still cases showing that such models
tend to perform inaccurately when evaluated in real world applications,
due to the discrepancies between the simulated virtual and the real
worlds.

The main objective of [47] is to detect objects on the table in a real-
world environment and to estimate the object’s position. To satisfy the
requirements of transferring the model trained in the simulator to the
physical world, Tobin et al. [47] randomized with respect to distractors,
objects, backgrounds and lighting conditions. The model was trained
directly on the simulator, and succeeded in estimating the position
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Fig. 3. Theoretical framework of using deep learning and Digital Twin techniques for monitoring Cobots towards safety and reliability. The framework is comprised of three
layers: (i) Digital Twin layer, (ii) deep learning layer, and (iii) real data generation layer. Digital Twin layer illustrates the Digital Twin in which a ROS-based communication
system is designed for information transmission including robot pose, the orientation and position of the camera, etc. between the digital and the physical system. Deep learning
layer represents how the synthetic dataset with accurate annotations is generated, then the detector is trained with the dataset. The detector is applied to monitor humans and
the cobot in the physical system. In the meanwhile, it also illustrates how a semi-supervised detector is trained which will be explained in Section 3.4. In the real data generation
layer, a deep learning-based annotation tool is developed to assist to collect and annotate real data.

of various shape-based objects on the table in the physical world.
With respect to object detection, Tremblay et al. [48] applied similar
strategies as in [47] to detect real objects in complex backgrounds.
Compared with the method developed in [47], they introduced a new
component called flying distractors which improve the accuracy of
detection. Furthermore. Tremblay et al. investigated the importance
of each randomization parameters. During the training process, en-
vironment parameters are uniformly randomized in the simulation
model, but the sample complexity grows with the increasing number of
randomization parameters [47–49]. However, it is difficult to find out
what could cause failures during this randomization process. To solve
the problems described above, Mehta et al. [50] find out the most in-
formative environment variations in the range of given randomization
parameters.

Domain Randomization is adopted in the digital system of the
proposed Digital Twin in this paper. A simple and efficient scheme
generates the synthetic dataset. The digital system has the same con-
figuration as the physical system which is shown in Fig. 3, besides the
randomization parameters. Furthermore, previous studies only consid-
ered the synthetic data but ours also adopt the unlabeled real data so
as to minimize the gap in Sim2Real [44–46].

3. The deep learning-enhanced digital twin framework

Traditional solutions to prevent hazardous human activities with
cobots include physical safety barriers, proximity sensors, and light
gates, which have major disadvantages of big size, difficult main-
tenance, inability to adapt under various operating conditions, and
sometimes high cost [51,52]. To meet the high requirements for cobots
towards safety and reliability, this paper proposes an intelligent and
flexible deep learning-enhanced Digital Twin framework for monitor-
ing the human–robot collaboration with a high level of autonomy in
manufacturing.

The performance of our framework is demonstrated and evaluated
on a Universal Robots UR10 platform using a Microsoft Kinect V2 sen-
sor as shown in Fig. 2. The framework does not require any complicated
and time-consuming sensor calibration.

Fig. 3 shows the Digital Twin including the proposed deep learning
model which consists of three layers: (i) Digital Twin layer, (ii) deep

learning layer, and (iii) real data generation layer. In the Digital Twin
layer, a virtual robot in the digital system captures the pose of the
physical robot in the physical space during the working process via the
ROS, so that the virtual robot performs in the same way as the physical
robot. The virtual visual sensor in the digital system has a different
function — to capture synthetic data of the robot with random position
and orientation. The data annotation information is also generated
automatically along with the collection of the synthetic data. During
the synthetic data preparation, Domain Randomization as described in
Section 3.2.2 is applied to the digital system with the aim of bridging
the reality gap between the real world and the simulation.

In the Deep Learning layer, the synthetic data from the digital
system is provided for training a faster R-CNN detector. The detector
combined with the deep learning annotation tool is applied to collect
the annotated real data in the Real Data Generation layer. With the real
data, a semi-supervised method described in Section 3.4 is implemented
to train a new detector. This semi-supervised detector monitors the
interactions between humans and robots in the physical system of the
Digital Twin layer to achieve a safe HRC.

This framework provides a cost-efficient solution to generate data
with accurate annotations and other types of sensor information such as
mask, bounding boxes, RGB, and depth information. A semi-supervised
deep learning model is presented to narrow the gap between the digital
system and the physical system. Consequently, the detector proposed in
this work can achieve more accurate detection, compared to those fully
supervised detectors which are purely trained with real or synthetic
data.

3.1. Communication design of the digital twin

In traditional simulators, e.g., Gazebo [53] and CoppeliaSim [54],
all designs, simulations and experiments are finished in such a closed
environment without connecting to any other physical systems. How-
ever, a Digital Twin requires not only simulation but also a physical
test. Consequently, to satisfy this requirement, a data transmission
framework is needed.

In our Digital Twin, bidirectional data transmission is enabled be-
tween the physical system and the digital system, which should be
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Fig. 4. A ROS based communication framework is designed for the Digital Twin. In
this framework, cameras, cobots and users are regarded as nodes. In a ROS framework,
nodes communicate with each other through topics, services, and actions provided by
ROS.

capable of performing multiple processes in a real-time manner. Un-
realCV [55] built a file transfer protocol (FTP)-based communication
system that only listens to a single socket and the one-way transmission
allows only one pack of control data during the whole transmission.
Consequently, it cannot support a multi-user control at the same time,
i.e., the camera and the cobot cannot be controlled in parallel. A higher
level communication design is required to meet the synchronous data
transmission between the digital system and the physical system in the
Digital Twin.

ROS has been used to facilitate the implementation of the overall
system. ROS is a distributed system where a synchronous data transmis-
sion can be achieved when the digital system and physical system do
not need distant communication. A ROS based communication frame-
work is built for the Digital Twin to achieve data transmission among
multiple clients. Fig. 4 shows how the communication framework is
implemented in the Digital Twin. Clients such as cameras, cobots
and users are regarded as nodes. Different nodes communicate with
each other through topics, services, and actions provided by ROS. For
instance, a node can publish defined messages (data) onto a topic,
and other nodes subscribing to the topic can receive the message. In
our case, joint angles of the physical cobot in the physical system are
published, and joint angle data are subscribed by the digital cobot in
the digital system (see Fig. 3). As a result, both physical and digital
cobots move synchronously and keep the same poses. In the meantime,
the digital robot can also publish verified robot poses and trajectories
to the physical system so that the physical robot can implement specific
task without further tests and trials.

3.2. A digital twin for synthetic and real data acquisition

3.2.1. Data acquisition and data types
Unreal Engine 4 (UE4) [56] is a powerful gaming engine that has

the capability to simulate a physical world realistically. To some extent,
the usage of UE4 can minimize the reality gap due to its photorealism.
The developed Digital Twin framework uses UE4 as a digital system
environment to generate the synthetic data with annotation informa-
tion for training the developed faster R-CNN [36] and validating its
performance for detection of the areas of the human and of the cobot
and making decisions on whether the safety standards are satisfied.
With the assistance of the communication framework in the Digital
Twin, users can control the camera mounted on the top of the physical
robot cell and the physical robot in the physical system to collect
the real data as well. In the physical system, to capture images of
how the robot carry out its task, the robot arm is moving from one
pose to another. At the same time, users can control the camera to
collect data from frame to frame. The size of collected images is 1920
× 1080. Furthermore, with the trained detector and an annotation

Fig. 5. The synthetic data including different types of sensing information of the cobot
generated from the Digital Twin.

tool described in Section 4.1, can collect and annotate the raw data
efficiently and reduce manually labeling time effectively compared to
traditional manual data acquisition and annotation.

Compared to in stock sensors such as RGB cameras that provide spe-
cific types of data, the Digital Twin system is more efficient and flexible
in obtaining various sensing information with the help of UE4. Fig. 5
displays examples of different types of sensing information generated
by UE4. UE4 renders objects with their original colors to generate RGB
images as shown in Fig. 5(a) and it also provides depth information
in Fig. 5(b). Depth information gives rich 3D information which is of
benefit to get the location and orientation of objects. With additional
user-defined color information, UE4 can also render an object with a
defined single color. Consequently, the annotation of the object can
also be obtained with the defined color. The accurate annotation, as
demonstrated in Fig. 5(c) and (d), is useful for instance segmentation
and object detection.

Different from UnrealCV [55], our Digital Twin framework provides
more flexibility for users in how the annotation of an object is repre-
sented. In UnrealCV [55], masks of different objects can be obtained
when the specific color is known. For instance, the blue color often
represents the background, the green is the robot and the orange is
the ground floor in Fig. 5(c). However, it is impossible for users to get
component masks of an object, because their mask rendering solution
only queries from object to object when rendering an object mask
scene. This means that the components of the object are not queried
during rendering and they cannot be rendered as different colors.
Fig. 5(c) illustrates that the robot is rendered with single color. In our
digital system, the rendering logic is different from the UnrealCV [55]
where the digital system both queries what objects exist in a scene
but also checks the components of the objects during rendering of a
mask scene. Consequently, it can render the components with defined
colors which are specified by users when generating mask annotation
in which the components of the cobot is rendered with different colors
as shown in Fig. 5(d), compared to Fig. 5(c). Furthermore, different
components can be identified in one object and the component masks
can be obtained once the colors are known as shown in Fig. 6.

Through our Digital Twin, it is easy and efficient to get these types
of information which are expensive in traditional manual annotation.
The flexibility of the data generation in our Digital Twin is able to
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Fig. 6. (a) represents a RGB image of the cobot, while the masks of the cobot and its components are illustrated from (b) to (c). The digital system can generate different
component masks which is defined by users. The cobot mask can be separated into different components and components can be combined as the one. Consequently, users can
obtain masks based on their requirements to meet different tasks.

meet different tasks including robot detection, robot grasping, pose
estimation, etc.

3.2.2. Domain randomization
Bridging the reality gap between the physics simulators and the real

world is challenging. The aim of the Sim2Real tool is to transfer the
virtual models to the real world situations. One approach to generating
high quality realistic virtual images is to deploy high-quality rendering
simulators such as Unity3D [57], UE4 [56] and OpenGL [58]. In the
next paragraphs, we introduce the main mathematical notations and
concepts that are needed for the description of the DNN model.

A domain, defined as , is composed of a 𝑑-dimensional feature
space  ⊂ 𝑅𝑑 with a marginal probability distribution 𝑃 (𝐗), and the
task in this domain is defined as  . Given a training set 𝐗 =

{
𝐱1,… 𝐱𝑛

}
and its labels 𝐘 =

{
𝑦1,… , 𝑦𝑛

}
of the label space  , the conditional

probability distribution is 𝑃 (𝐘 ∣ 𝐗).
In Sim2Real, it is assumed that there are two domains: a source

domain (i.e. simulator) 𝑠 = {𝑠, 𝑃 (𝐗𝑠)} with a task  𝑠 = {𝑠,

𝑃 (𝐘𝑠 ∣ 𝐗𝑠) } and target domain (i.e. physical world) 𝑡 =
{ 𝑡, 𝑃

(
𝐗𝑡

)}
and its corresponding task  𝑡 =

{ 𝑡, 𝑃
(
𝐘𝑡 ∣ 𝐗𝑡

)}
.

The solution introduced by Tobin et al. [47] is a simple but powerful
technique for training models on simulated images, i.e. on the source
domain 𝑠. The model is able to be transferred to the physical world,
i.e. target domain 𝑡. The basic concept of [47] is that by randomizing
and rendering in the simulator, the model trained with the randomized
synthetic images can be adapted to the real images. Tobin et al. [47]
assumed a hypothesis that a set of randomization parameters can be
controlled in the simulator. In the process of generating simulated
data, if the variability of the simulator is diverse enough, the physical
world may appear as another variation in the simulator, i.e. 𝑡 ⊂

𝑠 and 𝑃
(
𝐘𝑡 ∣ 𝐗𝑡

)
⊂ 𝑃 (𝐘𝑠 ∣ 𝐗𝑠). Consequently, the model trained in

the simulator will generalize to the physical world with no cost of
additional adjustment on training and represent well the real world.

In our framework, Domain Randomization is applied in the digi-
tal system to generate abundant samples with the aim of bring the
simulated images close to the real ones. It is demonstrated that the
model trained over the synthetic data with Domain Randomization has
accurate performance under different lighting conditions which will be
illustrated in Section 5. The Domain Randomization helps improving
the deep learning detector and its ability to work under a variety of

conditions. Advantages of the digital system are its flexibility, ability to
annotate images accurately and to diversify inputs in the feature space.
Limitations exist in generating a real dataset with respect to sample
diversity. These limitations are linked to a number of factors such
as the fixed orientation and position of sensors, unchanged lighting
conditions and unchanged backgrounds. These limitations may cause
inadequate generalizations and lack of model adaptation in new envi-
ronments. However, these limitations can be regarded as changeable
variations with respect to randomization parameters in the simulators.
The randomization parameters considered in the digital system are
the following: strength and color of the direct light, position and
orientation of the direct light, position and orientation of the camera,
images of backgrounds which are from the COCO dataset [28] along
with poses of the robot. With these randomization parameters, different
kinds of samples can be easily generated, with different appearances,
Consequently, the generated dataset can be diverse enough to help the
source domain (simulation) to get closer to the target domain (real). It
is difficult to collect such different kinds of samples in the real world
system due to device limitations.

3.3. A digital twin for intelligent sensing and machine vision tasks in
changeable environments

The Digital Twin framework proposed in this paper adopts the faster
R-CNN [29] as a detector to verify the performance of the model
trained with different synthetic and real data, under different lighting
conditions. The architecture of the considered faster R-CNN [36] is
presented in Fig. 7. The Faster R-CNN [36] consists of two stages:
(1) feature extraction from the input image, and (2) generation of
potential region proposals where the location of the object of interest
is, calculated with a region proposal network (RPN). As shown in [29],
Faster R-CNN can achieve accurate detection in real-time performance.
By using the Non-Maximum suppression operation [59], proposals with
low confidence are filtered. The remaining proposals and feature maps
are refined by the next layer for the Region of Interest (RoI) Pooling
stage. The corresponding proposals are classified as different objects as
well as their bounding boxes are predicted.

The architecture of faster R-CNN [29] includes ResNet-50 [38] for
extracting features from images. The residual block is defined as

𝐲 =  (
𝐱,
{
𝑊𝑖

})
+ 𝐱, (1)
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Fig. 7. Architecture of the faster R-CNN. ResNet-50 extracts feature maps from the input image. In Region Proposal Network, regions of interest are generated. RoI Pooling processes
the regions of interest and their corresponding feature maps to get new feature maps with fixed size. The FC (Fully connected layer) predicts the classes and the bounding boxes
for these feature maps.

where 𝐱 is the input image for the residual block, 𝐲 is the output image
feature map which is coming out of the residual block. The function 
represents the residual mapping and

{
𝑊𝑖

}
denote the weights of layers

in the residual block. The detector block includes two sub-tasks: object
classification and bounding box regression for object detection. In the
two-stage detector, both loss functions in the Region Proposal Network
(RPN) and the final Region of Interests (RoI) results are considered.

In the Region Proposal Network (RPN) [29], the loss function 𝐿𝑅𝑃𝑁

of the RPN is defined as:

𝐿𝑅𝑃𝑁

({
𝑝𝑖
}
,
{
𝑡𝑖
})

=
1

𝑁𝑐𝑙𝑠

∑
𝑖

𝐿𝑐𝑙𝑠

(
𝑝𝑖, 𝑝

∗
𝑖

)

+𝜆
1

𝑁𝑟𝑒𝑔

∑
𝑖

𝑝∗𝑖 𝑅
(
𝑡𝑖 − 𝑡∗𝑖

)
,

(2)

where 𝑝𝑖 is the predicted probability of the 𝑖th anchor, which is a binary
result characterizing whether the anchor is an object or not, and 𝑡𝑖 is
the corresponding bounding box prediction, 𝑁𝑐𝑙𝑠 is the normalized pa-
rameter for the classification. The classification loss in RPN is denoted
as 𝐿𝑐𝑙𝑠, and 𝑝∗

𝑖
is the corresponding ground-truth, whose value is 1

(positive) or 0 (negative). The balanced parameter is denoted as 𝜆 while
the𝑁𝑟𝑒𝑔 are normalized parameters of the regression. The bounding box
is optimized with the smooth L1 regression loss function 𝑅, and 𝑡∗

𝑖
is

the ground-truth of the bounding box of anchor 𝑖. The smooth L1 loss
function 𝑅 is defined in the form:

𝑅
(
𝑡𝑖 − 𝑡∗𝑖

)
=

⎧⎪⎨⎪⎩

0.5
(
𝑡𝑖 − 𝑡∗

𝑖

)2
if |||𝑡𝑖 − 𝑡∗

𝑖

||| < 1

|||𝑡𝑖 − 𝑡∗
𝑖

||| − 0.5 otherwise.
(3)

For the classification loss function in the RPN, a binary cross entropy
loss is adopted

𝐿𝑐𝑙𝑠 = 𝑝∗𝑖 log(1 − 𝑝𝑖) + (1 − 𝑝∗𝑖 ) log(𝑝𝑖). (4)

In the final RoI area, the cross entropy loss 𝐿𝑟𝑜𝑖
𝑐𝑙𝑠

for object classifi-
cation and the smooth L1 loss 𝐿𝑟𝑜𝑖

𝑏𝑏𝑜𝑥
for bounding box regression are

introduced, so the total loss function 𝐿 required to be minimized is

𝐿 = 𝐿𝑅𝑃𝑁 + 𝐿𝑟𝑜𝑖
𝑐𝑙𝑠

+ 𝐿𝑟𝑜𝑖
𝑏𝑏𝑜𝑥

, (5)

where 𝑏𝑏𝑜𝑥 denotes the bounding box regression.

3.4. A semi-supervised teacher-student detector for Sim2Real

A detector trained with the synthetic data can achieve an effective
performance in the real world environment. It still needs to be vali-
dated whether the detector using both synthetic and real data would
have accurate performance within the Digital Twin. A semi-supervised
solution is proposed to train a detector of human actions and the
whole framework is shown in Fig. 8. Our semi-supervised method

is based on the faster R-CNN [29] framework. Our solution consists
in a teacher-student model to train a student model through semi-
supervised training. The teacher model is trained with synthetic data
𝑠𝑦𝑛 = {𝐗𝑠𝑦𝑛,𝐘𝑠𝑦𝑛}. Once the teacher model is trained, the real data
is input without the ground-truth 𝐗𝑟𝑒𝑎𝑙 to the teacher model during
the testing mode Then the model will give predicted labels of 𝐗𝑟𝑒𝑎𝑙,
which is denoted as 𝐘̃. However, the real data with its predicted

labels
{
𝐗𝑟𝑒𝑎𝑙 , 𝐘̃

}
cannot be used to train the student model directly,

because some redundant and low-quality results exist in its prediction
𝐘̃. To filter these redundant and low-quality results, the Non-Maximum
suppression operation [59] is implemented. The faster R-CNN predicts
objects in an image with their bounding boxes and classes with confi-
dence which are regarded as the predicted label 𝐘̃ for an input 𝐗𝑟𝑒𝑎𝑙. In
the Non-Maximum suppression operation, the bounding boxes of each
class are ranked by their confidence. The bounding boxes of each class
with the highest confidence are remained which are 𝐘̂ while the rest
are filtered. After 𝐘̃ being filtered, pseudo labels 𝐘̂ are obtained.

In the next step, the real data with its pseudo labels 𝑝𝑠𝑒𝑢𝑑𝑜 ={
𝐗𝑟𝑒𝑎𝑙 , 𝐘̂

}
is applied to train the student model. The weight of the

teacher model will be frozen as a pre-trained for training the student
model. The student model is the final model that is applied to monitor
the interactions between the robots and humans in the physical system.
It achieves more accurate and more robust results under changing
lighting conditions compared to the fully-supervised faster R-CNN. The
performance of our framework is evaluated in Section 5.

3.5. Relevance to the standards and regulations for HRC

Digital Twin technology provides an enormous potential for incor-
porating health and safety regulations into cobot systems and vice
versa, the Digital Twin can impact the standards and regulations to-
wards higher safety and reliability of these systems. Some of the main
safety regulation documents [51,52,60], especially applicable to man-
ufacturing, do not consider various levels of autonomy for the needs
in different industrial applications. A part of the technical challenge
is to identify and assess the underlying hazards and risks of these
cobot systems when not being operated in power and in force limiting
(PFL) mode. Particularly, this is especially important in highly auto-
mated manufacturing industry which employs intelligent sensing and
artificial intelligence systems. In the considered UR10 cobot system,
traditional sensors were used for which the current standards and
regulations [51,52] have well specified safety rules. These safety rules
include proximity and light gates, to avoid hazardous humane–robot
collisions.

This work proposes an autonomous decision-making framework
utilizing vision cameras, with the advantage of being able to rapidly
adapt to dynamic environments. Additionally, in consideration of the



Robotics and Computer-Integrated Manufacturing 85 (2024) 102608

8

S. Wang et al.

Fig. 8. Framework of the semi-supervised method applied to train a detector. A teacher model is firstly trained with the synthetic data. The unlabeled real data is fed to the
teacher model and the teacher model generates pseudo labels for the unlabeled real data during the testing mode. The pseudo labels are further filtered. Next a student model is
trained with the real data with filtered pseudo labels.

physical reconfiguration of safety sensors as robot movements are
reprogrammed for conducting different tasks, the positioning and in-
stallation of vision sensors are relatively easy to achieve, compared
with light gates and physical fences.

According to the relevant sensing standards [61] which illustrate
the requirements for equipment using vision based sensors, several
environmental factors should be considered when implementing such
sensors into real industrial applications, including optical occlusion,
various ambient temperatures and lighting conditions. Due to practical
considerations of complex industrial conditions, our detector for ac-
tions recognition of human–robot interactions is tested under different
lighting conditions in terms of the accuracy of object detection as
depicted in Section 5. In practice, our detector can be embedded both
in a Digital Twin platform and in the control algorithms of a cobot
system. Accordingly, if dangerous scenarios such as unsafe interactions
or abnormal operations are detected successfully, the operator would
be alerted by relevant warnings whilst brake signals would be sent to
the controller to delay or stop the robot movements for guaranteeing
safety.

4. Datasets

To build a deep learning-based detector, two different datasets
for training and testing are required. Table 1 gives details about the
two different datasets used: the synthetic dataset for training and the
real dataset for testing, described in Section 5.2. Benefiting from the
efficient synthetic data generation, a synthetic dataset along with the
annotation information is created within the digital system of the
Digital Twin for model training purpose. With respect to the testing
data, real datasets are collected from the physical system of the Digital
Twin under the real working environment. With the assistance of the
semi-automated annotation tool, the process of annotating the raw RGB
data can be speed up for constructing the real dataset.

4.1. Semi-automated annotation tool

It is usually time-consuming and labor-intensive to annotate real
data for each single image. Several commercial annotation tools are
available, such as V7 [62] and Labelbox [63], supply AI functions to
aid in data annotation. However, one major drawback is that these pre-
defined AI models usually only work well in very limited scenarios, for
example, detecting cars and humans for autonomous driving tasks. It
cannot meet various demands of annotating specific objects such as the
robot UR10, and is not applicable to diverse industrial scenes.

The deep learning model in this framework is working with a
semi-automated annotation tool which we developed [31] based on
Labelme [64]. The Digital Twin generates synthetic data and then the
deep learning model is trained and tested using these data. Further-
more, the deep learning model is deployed with the annotation tool for
acquisition and annotation of the real data from the physical system.

4.2. Real data

In order to validate this framework, a real dataset is acquired by a
Kinect V2 sensor based on a UR10 platform and the dataset is publicly
available on [30]. To simulate a real HRC scenario, three operators
dressed in different clothes took part in the test whilst the Kinect V2
camera was mounted horizontally on the ceiling, looking down over
the workspace. In this case, the field of view of the camera can capture
one or two operators at the same time. Fig. 9 depicts that when a
robot is working in a cell, an operator is moving into the cell and then
interacting with the robot.

The real data was collected under various experimental conditions,
by changing illumination levels and operators (humans). There are 4
different illumination levels and 2700 images were recorded respec-
tively at each illumination level. Besides, 1653 images were saved with
different operators. Totally this real dataset contains 12 453 images.

4.3. Synthetic data

The synthetic datasets include robot images that are generated using
the proposed Digital Twin technique whilst operator data is gathered
from the COCO database [28]. Fig. 10 shows people with different
appearances and robot images that are fed into training a detector.
With respect to the robot images generated from the digital system,
Domain Randomization techniques such as different lighting conditions
and different robot poses are applied during the data generation. To
make the synthetic robot data looks similar to the physical system, the
background of the synthetic data is captured from the physical system.

The reason for merging human samples with annotation information
from COCO data [28] with the robot data is that COCO [28] is a public
dataset for object detection research and has collected abundant human
images. It brings the advantage that the detector can learn diverse
human actions from the training data set to improve its generaliza-
tion. The detector is also capable of detecting different operators with
different appearance. This is irrespective of how many operators get
into the robot cell since it has learnt enough human data during the
training process. Consequently, it can be considered as an effective way
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Fig. 9. Images with annotation information in the real dataset. From (a) to (d), the whole process of human–robot collaboration is captured from the Kinect V2 sensor mounted
on the top of the UR10.

Fig. 10. Images with annotation information in the synthetic dataset. (a) and (b) shows human images from COCO database [28], while (c) and (d) are robot images generated
from the digital system of the Digital Twin.

Table 1
Numbers of images in different datasets. To guarantee the real data that contains
different light factors, the data is collected under different lighting conditions: full light,
semi-light, semi-dark and dark where the lighting condition is changing from light to
dark. With respect to the synthetic data, the data is generated without identifying
lighting conditions.

Datasets Full light Semi-light Semi-light Full dark Total

Real data 4861 2877 2977 3211 13,926
Synthetic data – – – – 20,823

to construct a training dataset for HRC scenario without extra data
collection and annotation. This synthetic dataset is randomly split into
two parts, including 20823 images for training and 5206 images for
validation.

The image database used in this research is shared online, including
the real dataset as well as the synthetic dataset.

5. Performance evaluation and validation

5.1. Evaluation metrics

The performance of the proposed framework has been evaluated
and validated over synthetic and real data under different lighting
conditions.

The Average Precision (AP) [65] is adopted as the main evaluation
metric, which is defined as

AP = ∫
1

0

𝑝(𝑟)𝑑𝑟, (6)

where 𝑝 denotes the precision function and 𝑟 - the recall function [66,
67]

Precision 𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
,

Recall 𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
,

(7)

where 𝑇𝑃 represents the true positive values, 𝐹𝑃 is the false negative
and 𝐹𝑁 is the false negative [65].

The average precision (7) represents the area under the precision–
recall curve. The average precision has a high value when both pre-
cision and recall are high, and it has a small value when either of
precision or recall is small. While the average precision 𝐴𝑃 is calculated

for each class, the mean average precision (mAP) is calculated by taking
the average of average precision across all the considered classes.

The IoU is defined as follows [66,67]

IoU =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
, (8)

where A is the predicted bounding box of an object and B is the
corresponding ground-truth bounding box.

The mean AP (mAP), AP at the Intersection over Union (IoU) over
50% (AP50) and the AP at the IoU over 75% (AP75) [28] are used to
evaluate the performance of the CNN trained over different datasets
and under different lighting conditions.

5.2. Experiment setting

The Digital Twin is an excellent physical-virtual integrated system
which can be used to study the impact of different environmental
conditions, including the potential factors which may affect object
detection, human action recognition and decision making. This Sec-
tion 5.2 presents results over real and synthetic data with the faster
R-CNN described in Section 3.3. Two faster R-CNN models are trained
with different datasets: one is trained only with real data, the other is
trained only with synthetic data. Then the performance of our semi-
supervised model is also evaluated which is described in Section 3.4
which considers both the real data without the ground-truth and the
synthetic data with the annotation. The teacher block within the semi-
supervised model is firstly trained with the synthetic data and next the
student model is trained with real data without the ground-truth. These
models are trained on four Tesla V100 GPUs. The three models have
been trained with the same strategy, with a stochastic gradient descent
(SGD) algorithm.

For the distributed training, 16 samples per GPU are selected with
a total of 64 batch size and the overall convergence of the stochastic
gradient process takes up to 7 h. The model trained by real data takes
less than a half an hour. linear warmup, a learning rate schedule, is
applied for training with an initial learning rate of 0.08 and the learning
rate rises linearly after 500 iterations. Together with the stochastic
gradient, a technique called momentum is used. Instead of using only
the gradient of the current step in the search, the momentum uses the
gradient of the past steps to determine the next direction to move. A
weight decay of 0.0005 and momentum of 0.9 are applied during the
training process.
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Table 2
Results under different lighting condition, mAP, AP50 and AP75 is utilized to evaluate three object detection models. Real represents the faster R-CNN model trained with the real
data. Synthetic represents the faster R-CNN model trained with the synthetic data. Semi-supervised is the semi-supervised model.

Full light Semi-light Semi-dark Dark

mAP AP50 AP75 mAP AP50 AP75 mAP AP50 AP75 mAP AP50 AP75

Real 0.692 0.98 0.781 0.661 0.974 0.841 0.645 0.965 0.742 0.605 0.968 0.674
Synthetic 0.789 0.978 0.913 0.773 0.965 0.930 0.585 0.844 0.677 0.608 0.904 0.712
Semi-supervised 0.781 0.993 0.924 0.768 0.989 0.928 0.679 0.966 0.804 0.701 0.972 0.817

Table 3
mAP results at UR10 and Human under different lighting conditions. Real represents the faster R-CNN model trained with the real data. Synthetic
represents the faster R-CNN model trained with the synthetic data. Semi-supervised is the semi-supervised model.

Full light Semi-light Semi-dark Dark

𝑚𝐴𝑃𝑈𝑅10 𝑚𝐴𝑃ℎ𝑢𝑚𝑎𝑛 𝑚𝐴𝑃𝑈𝑅10 𝑚𝐴𝑃ℎ𝑢𝑚𝑎𝑛 𝑚𝐴𝑃𝑈𝑅10 𝑚𝐴𝑃ℎ𝑢𝑚𝑎𝑛 𝑚𝐴𝑃𝑈𝑅10 𝑚𝐴𝑃ℎ𝑢𝑚𝑎𝑛

Real 0.689 0.695 0.648 0.673 0.596 0.694 0.625 0.586
Synthetic 0.864 0.714 0.835 0.711 0.693 0.477 0.708 0.509
Semi-supervised 0.790 0.773 0.768 0.768 0.700 0.659 0.792 0.611

5.3. Performance evaluation of detection

Four lighting conditions are considered in the experiment for eval-
uating the three models. Two faster R-CNN models trained with two
different datasets and our semi-supervised model are evaluated under
different lighting conditions.

The first evaluation is within a steady manufacturing environment,
where a robot repeats the same routine with pre-defined program
in the robot cell. The detection algorithm can achieve accurate and
steady results by learning from similar scenes to the robot cell, i.e., the
training dataset should be diversified to cover as many scenes as those
in the robot working routine. Several environmental factors in real
manufacturing scenes may affect the performance of a deep learning-
based detector negatively, such as image noise, illumination, unseen
objects [68,69]. Among these factors in the robot cell, the room illumi-
nation has the greatest influence on the performance of the detection
algorithm. The change of illumination may results from the sunlight or
the lighting conditions of the factory which are unpredictable.

Table 2 shows that the semi-supervised solution achieves the best
performance compared to those trained only with the real or synthetic
data under four lighting conditions. From Tables 2 and 3, it is evident
that when the lighting condition is becoming worse, the APs of the
three models decline demonstrates that the lighting conditions is a
critical factor that affects the performance of faster R-CNN. Compared
to the model trained with the real data, the model trained with the
synthetic data and the semi-supervised model have better performance
when the lighting is sufficient (full light) which are roughly 10% better
than the model trained with real data. Especially in good lighting
conditions (full light and semi-light), both the model trained with
synthetic data and the semi-supervised model achieves over 76% mAP.

With respect to AP50 and AP75, AP75 gives closer matching be-
tween the predicted bounding box and the ground-truth compared to
the AP50 metric. From what AP50 and AP75 of these model in full light
and semi-light is illustrated, the faster R-CNN trained with the synthetic
data and the semi-supervised model are above 91%, while the faster
R-CNN trained with the real data in the full light condition only has
78% AP75 in full light and 84% in semi-light. The performance of the
model trained with the real data drops over 10% from AP50 to AP75,
while the other two show smaller reduction in the average precision
which means that the predicted bounding boxes of these models are
more accurate and closer to the ground-truth bounding boxes.

However, when the lighting is insufficient (semi-dark and dark), the
model trained on synthetic data shows a significant reduction in its
performance. The APs of the semi-supervised model drop less compared
to the model trained with synthetic data, when the lighting conditions
change. The semi-supervised model also outperforms the faster R-CNN
model trained with the real data. Hence, the semi-supervised solution
is robust to changes in the lighting conditions.

Table 3 gives the results for the mAP of UR10 robot and human
under different lighting conditions. The faster R-CNN trained with
the synthetic and the semi-supervised model also achieves better per-
formance than the network trained on real data with good lighting
conditions (full light and semi-light). However, mAPs with respect to
both UR10 and humans declines when the lighting is reduced.

Even when the faster R-CNN is purely trained with the synthetic
data, it achieves a remarkable 𝑚𝐴𝑃𝑈𝑅10 under full and semi-lighting
conditions. The semi-supervised model shows more robust behavior
when the lighting conditions are changing. Furthermore, with respect
to 𝑚𝐴𝑃ℎ𝑢𝑚𝑎𝑛, the semi-supervised algorithm has the best score com-
pared to those models that are only trained with the real or the
synthetic data. The 𝑚𝐴𝑃ℎ𝑢𝑚𝑎𝑛 is above 77% under full lighting and also
achieves 61% under the dark situation.

5.4. Decision making for safe HRC

The detection algorithm is implemented on a laptop with Nvidia
RTX 2070 GPU. When monitoring the robot and the operator in the
physical system, it can achieve the detection speed at about 20 frames-
per-second (fps), which meets the real-time monitoring requirement in
this case. However, the cumulative time delay due to data transmission
and model inference time may lead to negative effects on the monitor-
ing a safe HRC. In the meanwhile, some detection failures cannot be
ignored, even though it rarely happens.

To enhance the reliability and the safety of the HRC, three decision
making criteria are defined to minimize the negative effects described
above. A faster R-CNN detector has the capability to detect objects of
interest and their locations in an image. Because the camera used to
monitor the interaction between operators and robot is mounted on
the top of a HRC cell, it provides a horizontal two-dimensional vision
space [70]. With such a spacial relationship between camera frame
and the world frame, the detection information (bounding boxes) can
indicate how close between the operator and the robot and help to
make a safe decision making. The safety decision making criteria can be
defined as: (i) Safe: Only the robot is detected and no operator enters
the robot cell, the robot moves at normal moving speed as shown in
Fig. 11(a). (ii) Potential: In Fig. 11(b), the operator enters the robot
cell and the bounding boxes of both the operator and the robot are
detected and two bounding boxes are not overlapped. And the robot
reduces its speed to the half of the original speed. (iii) Dangerous: If
two bounding boxes are overlapped as shown in Fig. 11(c), it means
the operator is quite close to the robot. Therefore, the robot should
stop immediately to avoid collision with the operator.

With different speed settings, the detection algorithm can efficiently
reduce the risk of the collision when the operator is getting close
to the robot. The robot firstly can be aware of the presence of the
operator, then the robot reduces its speed. When an overlap between
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Fig. 11. Three safety criteria for safety decision making.

the bounding boxes surrounding the human and the robot end-effector
occurs, the robot stops immediately. This allows the operator to have
enough reaction time to potential danger.

By calibrating the camera parameters, the camera is positioned at
3 meters height from the ground. The horizontal distance between the
operators and the robot is about 20 cm when their bounding boxes are
overlapping at the beginning. In our work, the human can keep a safe
distance to the robot with the designed criteria based on the bounding
box information. This is a different solution compared to the approach
proposed by Liu and Wang [71] which is a collision-free HRC approach,
requiring the position information for both the human and robot. The
approach of Liu and Wang [71] requires extra sensor-robot coordinate
calibration for the purpose of collision sensing which is not necessary
in our case.

Inspired from [72], the Kalman filter and Hungarian matching
method are used here to improve the reliability of the inference process.
The state of each detection box is defined as 𝐱 = [𝑢, 𝑣, 𝑠, 𝑟, 𝑢̇, 𝑣̇, 𝑠̇]𝑇 ,
where (𝑢, 𝑣) is the center of the bounding box in an image, 𝑠 is the scale
parameter and the 𝑟 is the ratio of the height to width of the bounding
box. The other variables 𝑢̇, 𝑣̇, 𝑠̇ denote the respective speeds of the center
coordinates and scale of the bounding box. When a bounding box is
detected by the detector, it is applied to update its corresponding target
state with the Kalman filter. The IoU distance between the detected and
predicted box of an existing target that is tracked, is calculated. The
assignment between the current and predicted box is performed by the
Hungarian matching algorithm. To reduce the delays from the inference
time of the detector, the frequency of detection is reduced to detect an
image every 4 frames. It significantly improve the speed from 20 fps to
100 fps by sampling detection results when updating the states of the
tracking with this post-processing.

A detector may fail to detect objects in some frames which may
reduce the reliability of the monitoring process and could raise risks
of danger in HRC. Thanks to the Kalman filter, the negative effects
of such detection failures can be eliminated to a great extent. For
the multi-object tracking problem [72], occlusions are also key factors
that could reduces the quality of the tracking performance. Thanks to
the monitoring camera mounted on the top of the robot cell, some
occlusions can be avoided.

Although in [13], a similar deep learning approach is proposed, it
applies the Mask R-CNN [73] to extract mask information. The mask
information helps to reconstruct 3D relationship between the human
and the robot in order to calculate the direct distance for safe decision
making. Compared to [73], our inference speed outperforms the speed
reported in [73]. Mask R-CNN [38] which is an extension version of
faster R-CNN [29] requires extra computation cost to predict mask
information. It would be difficult to achieve a real-time performance
without extra post-processing, even though a real-time calculation is
reported in [38]. In our case, the Kalman filter has improved the
performance of action detection as well as the calculated speed. Con-
sequently, the improved method leads to a robust solution and safe
HRC.

5.5. Discussion and demonstration

From the analysis presented above, several advantages of the pro-
posed framework are evident. First, it is easy to setup and deploy the
proposed framework in manufacturing. Within the proposed Digital
Twin, users can simply build a Digital Twin of the physical manu-
facturing workspace by introducing CAD models of real objects into
the Digital Twin. The communication between the physical and digital
systems can be established by the ROS.

Traditional deep learning application in manufacturing usually re-
quires huge data collection and expensive manual annotation work.
However, these can be avoided in our proposed framework by im-
plementing efficient data generation and with semi-supervised method
using the Sim2Real technique.

Besides, flexibility is another significant advantage of the proposed
framework. This generative framework is not limited to detect hu-
mans and robot actions. It can also be extended to other objects by
introducing new objects through adding their CAD models into the
digital system. In the meanwhile, users also can specify annotation
method to meet their requirements described in 3.2.1. Moreover, faster
R-CNN can be replaced with another detection model within the semi-
supervised method. The adoption of the efficient data transmission
scheme between the digital and the physical systems, together with
the automatic annotation generation, can allow users to implement
other tasks, such as reinforcement learning [74] and Augmented Reality
(AR) [75] in HRC.

This work also evaluates and discusses the effect of one key environ-
ment factor, lighting condition, on detection performance. Additionally,
by introducing the Kalman filter and the Hungarian algorithm, the
detector is enhanced to avoid detection failures whilst the inference
speed is also improved. With these post-processing and decision making
rules, the safety distance between the human and robot is maintained
which enhances the reliability of the HRC environment.

Digital Twins combined with artificial intelligence have a huge
potential to make a difference in smart manufacturing. This was also
demonstrated in [76,77]. Moreover, the inclusion of cloud computing
services in Digital Twins can lead to cyber–physical cloud manufac-
turing systems [78]. Digital Twin can be served as a platform for
reinforcement learning training [75,79], and meanwhile, reinforcement
learning is promising to lead the next generation of Digital Twins.

6. Conclusions and future work

This work explores the feasibility of a Digital Twin in smart man-
ufacturing. It proposes a deep learning-enhanced Digital Twin for de-
tecting and classifying human and robot actions for enhancing safety
in manufacturing systems. A Digital Twin is designed for human–robot
collaborations which generates synthetic data directly in the digital
system. This helps with the generation of real data in the physical
system with accurate annotation. The Digital Twin is an efficient tool
for studying different levels of safety and to design decision making and
control algorithms for manufacturing purposes.
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The Robot Operating System is used to provide synchronous com-
munication with, and real-time control of, the robot. The Digital Twin
corresponding to the physical system is designed with the help of
Domain Randomization and the powerful photorealistic Unreal Engine
4. Training of the developed deep learning algorithms is achieved
successfully with synthetic data. A fully-supervised detection algorithm
is shown to achieve successful detection results in the real environment.
To ensure reliability of the system under different lighting conditions,
a semi-supervised detector is proposed to take both synthetic and real
data into the training and detection process, which helps in bridging
the gap between the two systems in detecting humans and robots.

Future work will focus on more challenging cases with multiple
robots and multiple operators. Apart from object detection, other tasks,
such as gesture recognition and pose estimation will be considered in
order to recognize both the actions of human operators and robots.
This will enable more complex decision-making and control, boosting
additional flexibility as well as enhancing the system resilience in
complicated tasks.
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