
This is a repository copy of A universality–distinction mechanism-based multi-step sales 
forecasting for sales prediction and inventory optimization.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/201408/

Version: Published Version

Article:

Li, D., Li, X., Gu, F. et al. (3 more authors) (2023) A universality–distinction mechanism-
based multi-step sales forecasting for sales prediction and inventory optimization. 
Systems, 11 (6). 311. ISSN 2079-8954 

https://doi.org/10.3390/systems11060311

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Citation: Li, D.; Li, X.; Gu, F.;

Pan, Z.; Chen, D.; Madden, A.

A Universality—Distinction

Mechanism-Based Multi-Step Sales

Forecasting for Sales Prediction and

Inventory Optimization. Systems

2023, 11, 311. https://doi.org/

10.3390/systems11060311

Academic Editor: Vladimír Bureš

Received: 10 April 2023

Revised: 12 June 2023

Accepted: 14 June 2023

Published: 19 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

A Universality–Distinction Mechanism-Based Multi-Step Sales
Forecasting for Sales Prediction and Inventory Optimization

Daifeng Li 1,*, Xin Li 1, Fengyun Gu 1, Ziyang Pan 1 , Dingquan Chen 1 and Andrew Madden 2

1 School of Information Management, Sun Yat-sen University, Guangzhou 510275, China;

lixin237@mail2.sysu.edu.cn (X.L.); gufy@mail2.sysu.edu.cn (F.G.); panzy25@mail2.sysu.edu.cn (Z.P.);

chendq@mail.sysu.edu.cn (D.C.)
2 Information School, University of Sheffield, Sheffield S10 2TN, UK; admadden@hotmail.com

* Correspondence: lidaifeng@mail.sysu.edu.cn

Abstract: Sales forecasting is a highly practical application of time series prediction. It is used to

help enterprises identify and utilize information to reduce costs and maximize profits. For example,

in numerous manufacturing enterprises, sales forecasting serves as a key indicator for inventory

optimization and directly influences the level of cost savings. However, existing research methods

mainly focus on detecting sequences and local correlations from multivariate time series (MTS),

but seldom consider modeling the distinct information among the time series within MTS. The

prediction accuracy of sales time series is significantly influenced by the dynamic and complex

environment, so identifying the distinct signals between different time series within a sales MTS is

more important. In order to extract more valuable information from sales series and to enhance the

accuracy of sales prediction, we devised a universality–distinction mechanism (UDM) framework

that can predict future multi-step sales. Universality represents the instinctive features of sequences

and correlation patterns of sales with similar contexts. Distinction corresponds to the fluctuations

in a specific time series due to complex or unobserved influencing factors. In the mechanism, a

query-sparsity measurement (QSM)-based attention calculation method is proposed to improve the

efficiency of the proposed model in processing large-scale sales MTS. In addition, to improve the

specific decision-making scenario of inventory optimization and ensure stable accuracy in multi-step

prediction, we use a joint Pin-DTW(Pinball loss and Dynamic Time Warping) loss function. Through

experiments on the public Cainiao dataset, and via our cooperation with Galanz, we are able to

demonstrate the effectiveness and practical value of the model. Compared with the best baseline,

the improvements are 57.27%, 50.68%, and 35.26% on the Galanz dataset and 16.58%, 6.07%, and

5.27% on the Cainiao dataset, in terms of the MAE(Mean Absolute Error), MAPE(Mean Absolute

Percentage Error), and RMSE(Root Mean Squared Error).

Keywords: time series; sales forecasting; deep learning; multi-step prediction

1. Introduction

Sales forecasting is an area of research with considerable practical significance due to
its potential to improve commercial decision-making. However, the influences of external
observable and unobservable factors, e.g., the weather, seasonal promotions, adjustments
in sales strategies, etc., make forecasting particularly challenging. Such factors cause
irregular fluctuations in sales, resulting in large deviations in sales forecasts. In many
circumstances, even a slight reduction in such deviations can bring great benefits. For ex-
ample, the optimization of sales forecasting for high-profit commodities can greatly reduce
losses in profit caused by stock shortages. A second area in which there is scope for de-
velopment, and where there appear to have been few studies, is that of specific enterprise
decision-making scenarios, such as inventory optimization. In Galanz’s e-commerce busi-
ness scenario, the average profit per unit of goods surpasses its inventory management
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cost. As a result, shortages lead to greater losses than excess inventory, which means that,
with the same sales prediction deviation, predicting less than the actual sales may lead to
greater losses than predicting more, which is one of the challenges of sales forecasting.

The problem of dealing with complex and diverse influencing factors is generally
addressed by using a multi-step time series prediction based on multivariate time series
(MTS). The specific models can be divided into traditional time series prediction methods
and deep learning models. Figure 1 shows an actual sales sequence, together with the
results of multi-step time series predictions made using, respectively, deep learning models
(MLCNN [1]) and traditional methods (ES [2]). Both predictions deviate considerably from
actual values when there are sudden peaks in sales.

Figure 1. Sales sequence analysis: the blue line represents the sequence of real sales, the green line

represents the prediction of the ES model, and the orange line represents MLCNN.

Existing research has proven that deep networks are capable of capturing valuable
implicit information, and can be effective in predicting abnormal fluctuations in sales
sequences. In the M4 time series forecasting competition, the winning method, [3], adopted
a hybrid hierarchical prediction scheme, incorporating the standard exponential smoothing
model (ES) into a common framework with long short-term memory (LSTM) networks;
this approach resulted in better performance compared to traditional and machine learning
methods. Traditional time series analysis methods and machine learning models, such
as the autoregressive model (AR) [4], moving average (MA) [5], random forest (RF) [6],
and XGBoost (XGB) [7], are widely used in sales forecasting. However, these methods
are difficult to use when modeling large-scale MTS. For example, more than 10,000 time
series need to be considered at the same time in traffic MTS prediction tasks. Sales fore-
casting is another complex and computationally intensive MTS task. It needs to consider
various factors, including price, preferential strategy, and the sales of related commodities.
The accuracy of these methods in capturing nonlinear correlation patterns needs to be
improved. As is obvious from Figure 1, the exponential smoothing (ES) model fails to
predict the nonlinear changes in a real sales sequence, leading to the accumulation of
errors in the multi-step prediction. To some extent, deep learning models can solve the
problems that traditional machine learning methods have with MTS prediction. They can
fit each sequence independently and share general rules for different sequences. LSTNet [8]
makes use of the advantages of CNN(Convolutional Neural Networks) and RNN(Recurrent
Neural Networks) to capture the dependency patterns associated with different periods
and it shares knowledge in multivariate time series (MTS). Deep learning models are also
capable of automatically extracting features to reduce the work of artificial design features.
Temporal fusion transformers [9] can automatically select relevant features and suppress
unnecessary ones through a series of gating layers. Moreover, deep models improve the
efficiency of dealing with long-period and large-scale MTS data [10].

Previous studies that applied deep learning models to fields such as traffic, finance,
and industrial production, have shown promise, but there are deviations in the multi-step
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sales forecasting tasks. Consequently, deep learning is a key research direction for MTS
prediction and is the focus of this paper. However, as is evident from Figure 1, although the
deep learning model is more effective at capturing fluctuations than the ES model, it
does not accurately predict sudden large fluctuations, which is the first challenge in our
research. Ad hoc marketing strategies or other unforeseen factors can lead to unusual
fluctuations in sales series. Furthermore, compared to other time series forecasting tasks,
such as transportation and finance, one main difference is that sales time series are more
susceptible to external uncertainties that can dynamically alter the internal correlations
between sales time series. These external uncertainties are critical factors that cannot be
predetermined or observed in advance and may result from various causes, such as product
reviews on social media, regional promotions, and the introduction of new competitive
products. The differences were further verified in previous studies [1,10–12]. Deep learning
models used to predict public MTS, such as transportation, energy, exchange rates, etc.,
often obtain good performances, and the improvements brought about by the new models
are limited. The reason for this is that public MTS data exhibit more pronounced correlation
patterns compared to sales time series, and these patterns are less influenced by external
changes. Thus, the future trends of those MTS could be predicted more easily than those of
sales time series.

Currently, few sales forecasting studies are based on specific decision-making scenarios.
This is particularly important because the general model may not be directly applicable to
specific scenarios, mainly due to issues such as mismatched decision objectives. Specific
decision-making scenarios entail more constraints in mathematical expressions. This paper
exemplifies the decision-making scenario of inventory optimization and emphasizes the
integration of constraints into the deep learning model to achieve end-to-end efficient
training and application. As mentioned above, one of the main targets of inventory
optimization is to design a constraint that makes the predicted sales greater than the true
sales, on the premise of minimizing prediction errors as much as possible, thereby reducing
shortage risks. Modeling this constraint is the second challenge of our research since it
requires finding an optimal balance between inventory shortages and excesses, considering
time delays and abnormal fluctuations.

The two challenges mentioned above not only have theoretical values but also have
practical values, which are essential in sales prediction. Many complex and changeable
variables in the market will significantly influence the prediction results for products.
For example, various online promotional activities will have huge impacts on sales fluc-
tuations. Some products with dozens of daily sales may reach thousands of sales in one
day due to temporary promotional activities. Of course, there are also many goods that
are not sensitive to price fluctuations and are not significantly affected by external factors.
This will make solving the target problem that is to be predicted more complex. There-
fore, it is necessary to model and analyze the unique characteristics of each time series
separately to better understand the fluctuation patterns of each time series. Due to the
impact of fluctuations, there may be a significant deviation between the predicted sales
and the true sales. This deviation can result in additional operational or cost losses in
different decision-making scenarios. In the inventory optimization scenario, assume that,
at time t, the task is to predict the sales at time t + 1. When the predicted sales at time
t + 1 are much lower than the true value, the problem is even more serious because the
enterprise will bear the losses caused by the inventory shortage. The inventory loss can
be calculated as the product price × |true sales − predicted sales| at time t + 1. Thereby,
solving these two challenges is essential for enterprise decision-making, especially in the
domain of inventory optimization. The improvement in sales prediction could help top
manufacturing enterprises in saving hundreds of millions of dollars in average annual
inventory costs.

To summarize, in the multi-step prediction of MTS, existing research methods are
not adept at capturing non-linear changes or accurately predicting sudden fluctuations.
This is because the current research mainly focuses on extracting sequence correlations be-
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tween time series in an MTS, while seldom considering the differences between time series.
To solve these problems, we designed a universality–distinction mechanism framework,
which independently models the universality and distinction of the sales sequence. First,
the universality mechanism can extract instinct features and common correlation patterns
with a similar context from MTS. The instinct features are unique characteristics of each
commodity, such as the sales range level and the distribution of sales numbers. Common
correlation patterns within a similar context signify the general association between differ-
ent types of time series, such as the correlations between the sales of a specific commodity
and its promotional activities during a given time. Second, ad hoc marketing strategies
or other unforeseen factors can lead to unusual fluctuations in sales series. A manual
inventory strategy will incorporate the analyses of historical sales and current market
conditions to formulate or adjust inventory plans. We devised a distinction extraction
module that simulates manual inventory strategies to capture the sales fluctuations caused
by these unexpected factors. The red box shown in Figure 1 is the prediction window and
clearly shows the effects of existing models on predicting sudden high sales. The yellow
box is part of a historical sales series that experienced similar fluctuations to those in the
red box. The distinction extraction module captures the unique characteristics of a specific
time series from its similar sub-sequences (ex: two windows in Figure 1) and improves the
prediction of sudden fluctuations. By modeling the universality and distinction indepen-
dently, the impacts of large fluctuations can be reduced and the deviations in the prediction
of abnormal fluctuations can be minimized.

In addition, although the proposed universality and distinction mechanism can obtain
more accurate representations of common and different data from time series in an MTS,
we need to design an optimal loss function to adopt the information that was extracted for
better sales predictions in a complex environment, such as the issues of shape distortion and
time delays in multi-step forecasting. More importantly, the purpose of sales prediction is to
realize inventory optimization. According to the investigation results, the cost of shortages
is higher than the cost of excess inventory under the same conditions. Considering the
characteristics of commodity inventory costs, as well as the issues of shape distortion
and time delay in multi-step forecasting, we developed a loss function called Pin-DTW to
improve predictive performance.

The main innovations of the model presented in this article are as follows.

• We propose a universality–distinction mechanism (UDM) framework, which con-
sists of universality extraction and distinction-capturing components to improve the
accuracy of predictions of multiple future steps.

• “Universality” refers to the inherent characteristics and common correlation patterns
found in sales sequences with similar contexts. The shared knowledge is initially
learned through a universality extraction component that ensures the overall predic-
tion window’s accuracy.

• “Distinction” refers to the process of identifying differences between time series in a
sales MTS. To achieve this more efficiently, we propose an attention-based encoder–
decoder framework with query-sparsity measurements, which enables us to capture
distinct signals based on the states of future multi-step sales.

• We developed a novel loss function called Pin-DTW by jointly combining the pinball
and DTW losses to enhance predictive performance. The DTW loss can make better
use of the representations obtained from UDM to handle issues of time delay and
shape distortion in future multi-step predictions. The pinball loss can be used to
control the inventory shortage risk.

The purpose of our research was to design an end-to-end component that integrates a
deep learning model and considers a specific decision-making scenario, which can be easily
inserted into existing sales forecasting models or frameworks. This has the potential benefit
of improving the overall prediction performance of the model in nonlinear relationship
discovery and informing specific decision-making scenarios, resulting in cost savings and
improved efficiency for enterprise production and sales. An example of our cooperation
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with Galanz is described in detail in the experiments section. The source code and data are
available at https://github.com/lx237/2023UDM (accessed on 11 February 2023).

2. Related Work

2.1. Time Series Prediction

Time series prediction involves a wide range of fields, including inventory manage-
ment [13], macroeconomic forecast [14], natural phenomena observations [15], and medical
and industrial detection [16]. Highly structured data have strong and complex depen-
dencies among different time steps, and it is a great challenge to effectively model the
complex dependencies. The VAE(Variational Auto-Encoder) provides flexible nonlinear
mapping and effective inference capabilities [16]; it has been proposed that the VAE can
be extended as a recurrent framework to model high-dimensional sequences. Aiming
to predict sparse multivariate sequences, [17], a dynamic Gaussian-mixture-based deep
generative model was devised, which can model the transitions of latent clusters of tem-
poral features and the emissions of MTS using dynamic Gaussian mixture distributions.
From the perspective of time series representation [18], a contrastive learning framework
named TS-TCC(Time-Series representation learning framework via Temporal and Contex-
tual Contrasting) was proposed. TS-TCC creates two views by applying strong and weak
augmentations to learn robust representations of time series. Experiments have demon-
strated the effectiveness of the TS-TCC framework for time series prediction, classification,
and other downstream tasks.

Long sequence prediction is also a challenge in time series prediction, where the
model is required to accurately capture the long-term dependencies between the input and
output. Traditional time series analysis methods, such as the well-known autoregressive
moving average (ARMA) and its variants, have proven to be effective in various real-world
applications, but they cannot model nonlinear relationships. Yao Q et al. proposed a
dual-stage attention-based recurrent neural network (DA-RNN) that can properly capture
long-term dependencies and select relevant driving sequences to make predictions [11].
In addition, the informer, which is based on the transformer, can effectively capture the
dependencies in long sequences. This enhances the capability for long time series prediction
and effectively controls the time and space complexity of model training. The generative
informer decoder can also avoid the diffusion of cumulative errors [10]. Farnoosh et al.
proposed deep switching autoregressive factorization (DSARF), a deep generative model
designed for spatiotemporal data; it has the ability to unravel recurring patterns in the data
and perform robust short-term and long-term predictions [12].

Existing work generally reveals the potential trends and patterns from the perspective
of time and features, but the efficiency of these models is not always sufficiently explained.
A novel strategy called series saliency [19] was proposed for time series analysis and
prediction, considering both accuracy and interpretability.

2.2. Sales Forecasting

Sales forecasting is an application that involves time series prediction, which is of
practical significance and value to enterprises. In practical research, sales are related to
many factors, such as marketing strategies, the weather, and holidays, the complexity of
which determines the difficulty of sales forecasting. Aiming to fully capture the dynamic
dependencies among multiple influential factors [20], a novel framework for sales pre-
diction named TADA+ was proposed, which is enhanced by an online learning module
used to carry out trend alignment with dual-attention and multitask RNNs. This is one
application of deep learning models, and there are other types of predicting methods,
which are classified as follows:

2.2.1. Machine Learning Methods

Hirche et al. [21] used weighted random forest (WRF) to predict under- and over-
performing consumer-packaged goods of retail stores, including convenience stores, drug-
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stores, food stores, liquor stores, and mass merchandise retail stores. Forecasting future
sales changes in products holds great significance for retailing companies. Machine learn-
ing models and traditional time series models were both employed to analyze and predict
Walmart sales, and the experiments showed that the former performed better [22]. Ma-
chine learning methods are widely used in measuring market performance for retail stores,
and are also essential in facilitating the transformation from a traditional offline sales model
to the B2C model. Brick-and-mortar retail has been hit harder than ever by the COVID-19
pandemic. In [23], the authors achieved this transformation by building a purchase pre-
diction model with XGBoost and random forest. Accurately predicting sales is of high
importance to improve the effectiveness of the supply chain. In inventory management, ma-
chine learning models, such as RF, XGB, and LGBM models, are used to extract knowledge
from large amounts of historical data to predict future orders [24].

2.2.2. Deep Learning Models

Existing studies have applied deep learning models to sales forecast tasks. Refer-
ence [25] compares the performances of some deep learning models, including simple
RNN, LSTM networks, bidirectional LSTM networks, encoder–decoder LSTM networks,
and CNN, in the multi-step time series prediction task, and the bidirectional and encoder–
decoder LSTM network provided the best performance in terms of accuracy. Reference [26]
proved the effectiveness and robustness of LSTM in comparison to FF-recursive and FF-
multi-output models in the multi-step prediction of noise-free, chaotic time series. Ref-
erence [27] collected and preprocessed the historical sales volumes and multi-channel
online sentiment data to forecast the movement direction of car sales in Taiwan with a
CNN-LSTM model. As one of the classic deep learning models, LSTM performed well in
terms of advertising expenditures, sales, and demand forecasting [28]. Reference [29] used
a deep learning method to predict new product sales in the fashion industry, which was
compared with the linear regression, random forest, SVR(Support Vector Regression), and
ANN(Artificial Neuronal Networks) models, and the evaluation results show that the deep
learning model was no better than the use of single models (such as random forest). Refer-
ence [30] proposed a new deep neural framework for e-commerce sales prediction, named
DSF(a novel deep neural framework for sales forecasting), which was applied to the Al-
ibaba e-commerce dataset. DSF uses five kinds of features related to sales, including static
and dynamic features (such as user behavior characteristics and promotional activities),
to forecast sales, which can explicitly simulate the influence of competitive relations and
improve model performance.

2.2.3. Integrated Models

Reference [31] put forward a meta-learning framework based on a dual-channel
convolution neural network (DCCNN), which automatically learns feature representation
in original time series data, and then links the feature representation with a set of weights.
The weights are used in basic model combinations, such as random forest and GBRT,
and finally find the best combination. A hybrid method composed of a linear model
(ARIMA) and a non-linear model (LSTM) was employed to calculate a monthly sales
quantity budget based on an enterprise’s previous income data [32]. In the demand
forecasting task for multi-channel fashion retailers [33], an integrated approach combining
k-means clustering, extreme learning machines, and support vector regression was utilized
to address challenges caused by the lack of historical data and product demand uncertainty.

Existing research has succeeded in the multi-step prediction of MTS and sales fore-
casting. However, research has mainly focused on modeling the correlation patterns
between time series, and seldom considered how to model and capture the nonlinear
dynamic changeable patterns and distinct fluctuation signals. In this research, we designed
a universality–distinction mechanism framework to solve these problems to a certain extent.
The universality extraction is used to capture linear and non-linear correlation patterns
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from the MTS, and distinction capturing can capture distinct fluctuation signals of each
time series based on the extracted correlation patterns.

3. Model

This section describes the proposed universality–distinction mechanism (UDM) frame-
work in detail. UDM is a mechanism proposed to improve the performance of future sales
predictions. According to previous studies [34,35] and the practical operating methods
of e-commerce and manufacturing enterprises, inventory optimization is an objective of
sales forecasting. Thus, in order to better optimize inventory, we firstly need to accu-
rately predict future sales. The sales value predicted in this study is very important and
is used as a reference for the minimum inventory level, which is provided for marketers
to determine the final inventory level, in combination with marketing plans. As shown
in Figure 2, first, the UDM framework starts with a convolutional component to encode
the multivariate sales sequence and map the input to a higher dimension space. Then,
the encoded sequence will be fed into a universality-extracting component to extract com-
mon knowledge. Next, the distinction-capture module is used to identify the differences
between different prediction steps. Finally, the vector representations that consider the
universality and distinctions are mapped to a one-dimensional space as the final output
result. In addition, in order to ensure the accuracy and stability of the model, we devised a
Pin-DTW loss function to minimize the shape and time delay loss by considering inventory
shortage risks. We will introduce each component of our architecture and the loss function
in the following subsections.

Figure 2. The framework of the universality–distinction mechanism.
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3.1. Problem Statement

Assume that there are N products X = {X1, · · · , Xi, · · · , XN} of different models
in a warehouse. The sales time series of the ith product Xi = Xi

n×t through timespan
1 ∼ t has n features. Features include the product type, shop discount, and discount
rate. The main aim of this research is to predict the sales Yt+1∼t+k of all N products at
time t + 1 ∼ t + k, where Yt+1 = {Y1

t+1, · · · , YN
t+1}. The objective function can be described

as follows: Ŷt+1 = UDM(X1∼N
1∼t ). X1∼N

1∼t are divided into many batches, and each batch
Xn×t×b (n is the number of features, t is the length of the historical sales sequence, and b is
the batch size) is individually input into the UDM. The input Xn×t×b is first encoded by a
convolution component, and the output is Eh×t×b. The output is then fed into a universality-
extracting component to extract common correlation patterns Oh×t×b and generate features
Oh×k×b that fuse future information for the final predictive task. Based on the encoded
original input Eh×t×b and the common correlation patterns Oh×t×b, we can obtain the
matrix Zh×t×b with distinct fluctuation signals. These three matrices are mainly used to
generate the final predictions Ŷbk through an efficient attention mechanism in distinction
capturing. Here, f E and f D refer to the encoder function with the self-attention mechanism
and the decoder function with cross-attention mechanism, respectively. The prediction
Ŷbk represents the future k-step predicted values in a batch. Assuming that the real sales
are from time t + 1 ∼ t + k is Yt+1 ∼ Yt+k; the target of the prediction task is to minimize
the deviation between these two sequences. We use a joint LPin−DTW loss function, which
consists of LPin and LDTW to prevent a greater out-of-stock cost and align the ground-truth
sequence and predicted value sequence. Some important variables and their explanations
are listed in Table 1.

Table 1. Variable and explain.

Variable Explain

Xn×t×b The input time series

Eh×t×b The matrix of the encoded input time series

Ut, Ut+1, ..., Ut+k−1 The construals derived from CNNs

Oh×t×b The common correlation patterns

Zh×t×b The distinct fluctuation signals

f EE, f EO, f EZ Three encoder functions with self-attention for Eh×t×b, Oh×t×b

and Zh×t×b

QSM
A measurement function used to select important q(t) from matrix Q for

the efficient attention calculation

f DE, f DO, f DZ Decoder functions with cross-attention

Wsg Shared weights of the GRU(Gate Recurrent Unit) component

Wz, Wr The parameters of the update gate and reset gate in the future-state GRU

Ŷb×k The k-step predictions for one batch

LPin−DTW A joint LPin and LDTW loss function

LPin A loss function used to prevent higher out-of-stock costs

LDTW
A loss function used to align two sequences neatly, reducing the

influence of delays and fluctuations

3.2. Convolutional Component

For the input time series (TS) Xn×t×b, we adopted a two-layer convolutional network
with batch normalization and ReLU activation functions, as shown in Figure 2, as the first
part of UDM. For each filter, the kernel size is 1 × 1. Batch normalization helps to accelerate
network convergence, and we assigned the ReLU activation function to add nonlinear
factors to improve the network’s expression ability. This convolutional component is used
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to increase the input dimension and information interactions between different features.
The input Xn×t×b is encoded by the component as Eh×t×b(h is the hidden size):

Eh×t×b = ReLU(BN(Conv2(Conv1(Xn×t×b)))), (1)

where the ReLU function is ReLU(x) = max(0, x) and the encoded sequences Eh×t×b are
high-dimensional vectors with latent representations and abstract information.

3.3. Universality Extracting

The encoded sequences Eh×t×b are fed into a universality-extracting component, which
is a component used to extract the common temporal features and local correlation patterns
and generate construals of multiple future k time steps. This module contains k layers,
a convolutional neural network (CNN), a shared GRU, and a future-state GRU, which
are described as follows. First, at the i-th CNN layer, where i ≤ k, the CNN model is
used to capture the local correlation patterns of the MTS at a future time step t + i, based
on the correlation patterns captured from time t + i − 1. The correlation patterns can be
seen as the construals of future k predictive steps, and are regarded as having a relatively
universal law to describe non-linear correlations between different time series within MTS.
In our model, we constructed seven different construals for seven predictive steps using a
seven-layer CNN:

Ut = Ψ1(Eh×t×b),

Ut+1 = Ψ2(Ut),

......

Ut+k−1 = Ψk(Ut+k−2),

(2)

where Eh×t×b is the matrix of the encoded sequence. Ψi, i ∈ [0, k] are one-dimensional
convolutional layers (Conv1D), where the kernel size is 3, stride is 1, and padding is 1.
After the convolution operation, we apply the LeakyReLU function as an activation function.
Moreover, we use the dropout operation to avoid overfitting. Ut, Ut+1, ..., Ut+i, Ut+k−1 are
the construals extracted by the multi-layer CNNs described above.

3.3.1. Shared GRU

The construals Ut, Ut+1, ..., Ut+k−1 derived from CNNs of different steps are then
individually fed into a shared GRU to share information and model the relations among
multiple predictive steps. Similar to MLCNN [1], the shared component learns the states
of MTS at a future time step t + i, where i ≤ k, based on the correlations between different
times in Ut+i; the formula could be described as follows:

For i in range(0, k)

Oh×t×b = shared − GRU(Ut+i, Oh×t×b|Wsg),

Ŷt+i,b = f L(Oh×t×b),

(3)

where Oh×t×b is the sequence correlation representations of the MTS from time 0 to t in
a batch b, and the length of the hidden state of the representation is h. The shared GRU
is mainly based on a gated recurrent unit (GRU) component [36], which can model the

sequence correlation-based hidden state O[h, t
′
, b] in Oh×t×b at a different time t

′
, where

t
′
≤ t. Shared GRU has two parameters: the first parameter Ut+i is the local correlation

matrix, which is related to the value at a future time step t+ i. The second parameter Oh×t×b

indicates that the sequence correlation-based hidden states for a future time step t + i
accumulate based on the Oh×t×b at time t + i − 1 (in Equation (3), the “For” loop is used to
realize the accumulation). Wsg is the set of shared weights of the GRU component. For each

GRU, Ŷt+i,b will be predicted based on the shared parameters Wsg, and the predicted value
will be used to update the Wsg, which will be taken as the initial parameters for the next
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GRU with the input as Ut+i+1. For the t
′
th hidden state O

h,t
′
,b

of GRU, the formula could
be described as follows:

O[h, t
′
, b] = GRU(O[h, t

′
− 1, b], Ut+i(:, t

′
)), (4)

where GRU is the recurrent unit of the GRU component; O[h, t
′
, b] is the t

′
th sequence

correlation-based hidden state of tensor Oh×t×b, and the length of the hidden state is h.

Ut+i(:, t
′
) represents the t

′
th column of Ut+i; this is used to represent the local correlations

at a time point t
′
, and the local correlations will have a significant influence on the value in

a future time step t + i. The formula indicates that the hidden state O[h, t
′
, b] is determined

by its previous hidden state and the t
′
th column of Ut+i.

3.3.2. Future-State GRU

The future-state GRU is designed to use each local correlation matrix Ut+i, where
i ≤ k represents the future sequence correlation-based hidden state at each future time step
t + i. Its main purpose is to obtain the initial representations at each future time step by
integrating knowledge of instinct features and common correlation patterns from different
construals. For example, many sales of a commodity at a future time step t + i have a high
probability of being correlated with the average sales number, which ranges from time
0 to t; this could be regarded as an intrinsic feature of the commodity. As introduced in
the previous section, the construals are the set of local correlation matrices: Ut + i (Ut+i

has t rows; the t
′
th row can be seen as the representation of the local correlation patterns

between time series at time t
′
), which is provided for all predictive steps to learn the

universality of future steps. Assume that at time t + i, the hidden state of the future-state
GRU at time t + i is computed as follows :

zt+i = σ(Wz · [Ot+i−1, Ut+i]),

rt+i = σ(Wr · [Ot+i−1, Ut+i]),

Ôt+i = tanh(W · [rt+i ∗ Ot+i−1, Ut+i]),

Ot+i = (1 − zt+i) ∗ Ot+i−1 + zt+i ∗ Ôt+i.

(5)

where ∗ indicates Hadamard product.
This future-state GRU fuses future information by aggregating instinct features and

correlation patterns from observable time series, which range from time 0 to t. Thus, this
operation can produce fusion features Oh×k×b = Ot, Ot+1, ..., Ot+k−1 for the final predictive
task. σ is the sigmoid function, and Ut+1 is the construals at time t + 1. z is the update gate
and r is the reset gate of GRU. Wz and Wr are the parameters of the update gate and reset
gate, respectively.

3.4. Distinction Capturing

As introduced above, universality extraction can extract common correlation patterns
from the representation E[h, t, b] of MTS, and the outputs of universality extraction are
O[h, t, b] and O[h, k, b]. Distinction capturing is then designed to capture distinct fluctuation
signals of each time series from MTS, and the captured fluctuation signals can help to attain
fused knowledge from different construals to simulate the influences of changeable and
complex environments, and then learn the distinctions of different future steps. Distinction
capturing is mainly based on an encoder–decoder framework, and the mechanisms of both
the encoder and decoder are described as follows:

3.4.1. Encoder Layer

The input Encx of distinction capturing consists of three parts: The original input
E[h, t, b] from the convolution component, the input O[h, t, b] from universality extracting,
and the input-containing distinct fluctuation signals Z[h, t, b] = E[h, t, b]−O[h, t, b]. All the
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inputs are fed into an attention-based encoder layer with a query-sparsity measurement
mechanism f E to obtain the encoded output Encout. The formula is as follows:

Encout = [Eout, Oout, Zout] = [ f EE(Eh×t×b), f EO(Oh×t×b), f EZ(Zh×t×b)], (6)

where f EE, f EO, and f EZ are the encoder functions used to transfer theEncx = [Eh×t×b, Oh×t×b,
Zh×t×b] to the hidden representation Encout. Similar to the self-attention of the transformer [37],
the proposed f EE, f EO, and f EZ adopt a similar strategy to generate the corresponding query

Q, key K, and value V for the self-attention calculation. Assume that, at time t
′
, we define:

qE(t
′
) = QE(E[h, t

′
, b]),

qO(t
′
) = QO(O[h, t

′
, b]),

qZ(t
′
) = QZ(Z[h, t

′
, b]),

q(t
′′
) ∈ {qE(t

′′
), qO(t

′′
), qZ(t

′′
)},

(7)

where QE, QO, and QZ are encoding functions from f EE, f EO, and f EZ, respectively, used

to represent the states of MTS at time t
′
. The states are also defined as the query, indicating

that the states are mainly used to find the most related “keys” from the MTS. For all

t
′
≤ t, the query matrices QE, QO, and QZ are defined as [qE(0); qE(1); ...; qE(t

′
); ...; qE(t)],

[qO(0); qO(1); ...; qO(t
′
); ...; qO(t)] and [qZ(0); qZ(1); ...; qZ(t

′
); ...; qZ(t)].

According to the theory of self-attention in the transformer, the states of q(t
′
) are influ-

enced by the previous time series. Assume that, at time t
′′
, where t

′′
≤ t

′
, the correlations

between time t
′

and t
′′

are evaluated based on k(t
′′
) ∈ {kE(t

′′
), kO(t

′′
), kZ(t

′′
)}:

kE(t
′′
) = KE(E[h, t

′′
, b]),

kO(t
′′
) = KO(O[h, t

′′
, b]),

kZ(t
′′
) = KZ(Z[h, t

′′
, b]),

k(t
′′
) ∈ {kE(t

′′
), kO(t

′′
), kZ(t

′′
)},

(8)

where KE, KO, and KZ are encoding functions from f EE, f EO, and f EZ, respectively, which

are used to represent the unique characteristics of MTS at time t
′′
. Thus, assume q(t

′
) ∈

{qE(t
′
), qO(t

′
), qZ(t

′
)}; the correlations between t

′
and t

′′
could be described as q(t

′
)× k(t

′′
)T,

which indicates how much the value at time t
′′

will influence the value at time t
′
. For all

t
′′
≤ t, the key matrices KE, KO, and KZ are defined as [kE(0); kE(1); ...; kE(t

′′
); ...; kE(t)],

[kO(0); kO(1); ...; kO(t
′′
); ...; kO(t)] and [kZ(0); kZ(1); ...; kZ(t

′′
); ...; kZ(t)].

As introduced in [9,37], if the correlations between time t
′

and t
′′

are high, we could

use the value at time t
′′

to calculate the attention weight of t
′′

towards the target time t
′
.

Thus, the value function at time t
′′

could be defined as follows:

vE(t
′′
) = VE(E[h, t

′′
, b]),

vO(t
′′
) = VO(O[h, t

′′
, b]),

vZ(t
′′
) = VZ(Z[h, t

′′
, b]),

v(t
′′
) ∈ {vE(t

′′
), vO(t

′′
), vZ(t

′′
)},

(9)

where VE, VO, and VZ are encoding functions from f EE, f EO, and f EZ, respectively,

which represent the MTS values at time t
′′
. For all t

′′
≤ t, the value matrices VE, VO, and

VZ are defined as [vE(0); vE(1); ...; vE(t
′′
); ...; vE(t)], [vO(0); vO(1); ...; vO(t

′′
); ...; vO(t)] and

[vZ(0); vZ(1); ...; vZ(t
′′
); ...; vZ(t)]. Similar to canonical self-attention, we use QE, KE, and

VE to calculate the self-attention of f EE; QO, KO, and VO to calculate the self-attention
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of f EO; and QZ, KZ, and VZ to calculate the self-attention of f EZ. Finally, the encoding
representations Eout, Oout, and Zout of the input could be calculated by f EE, f EO, and f EZ.

3.4.2. Query-Sparsity Measurement (QSM)-Based Attention

However, the time complexity and memory usage caused by the quadratic com-
putation of canonical self-attention are O(L2). According to existing research [10,38],
the self-attention score forms a long-tail distribution, which means that only a few dot–
product pairs contribute to most of the attention, while others generate trivial attention.
Thus, on the basis of existing research on improving the transformer’s efficiency [10,38,39],
we propose a novel strategy to select the most important q(t) from matrix Q based on
the query-sparsity measurement (QSM). The main purpose of the QSM is to use a mea-
surement function to select a few important q(t) from Q for the attention calculation of

those dominant q(t
′
)× k(t

′′
) pairs, and ignore the less important q(t). This operation can

enhance the efficiency of the model without compromising its performance, especially for
MTS types, such as sales time series, because the MTS needs to process a large amount of
spatiotemporal information at each time point.

In this research, we employ the Kullback–Leibler (KL) divergence to realize OSM; this

can be used to distinguish the “important” queries. Assume that, at time t
′
, the QSM could

be represented as follows:

For f EE : QSM(qE(t
′
) = KL(qE(t

′
)||KE),

For f EO : QSM(qO(t
′
) = KL(qO(t

′
)||KO),

For f EZ : QSM(qZ(t
′
) = KL(qZ(t

′
)||KZ)),

(10)

where QSM(q(t
′
) indicates the important score of q(t

′
), and KL(q(t

′
)||K) can calculate the

KL divergence between q(t
′
) and K = [k(0); k(1); ...; k(t)]. A high QSM value means the

current q(t
′
) is more important. We can select the top u (u is a hyperparameter) q(t

′
), t′ ∈ t

to form a new matrix, Qu, and the new matrix can be used to calculate the attention weights
of each time point based on the self-attention mechanism. Since the sequence length of K is
t, the time complexity could be reduced from O(t2) to O(t ln t).

3.4.3. Decoder Layer

The main task of the research is to predict the values of the future k time steps at the
current time t. Thus, the main purpose of the decoder layer is to obtain the embedding
representations at a future time step t + 1, t + 2, ..., t + k. As introduced in Section 3.2,
the universality-extracting component can obtain the original representations O[h, k, b]
based on the detected correlation patterns. The output of the encoder layer (Eout, Oout, and
Zout) is fed into the decoder layer as input. The decoder layer can optimize O[h, k, b] based
on the input, to obtain distinct fluctuation signals, and the main function of the decoder
layer is as follows:

Decout = α × f DE(O[h, k, b], Eout) + β × f DO(O[h, k, b], Oout) + γ × f DZ(O[h, k, b], Zout), (11)

where f DE, f DO and f DZ are decoder functions. α, β, and γ are weight parameters used
to evaluate the importance of each decoder function in future predictions. Similar to the
encoder functions f E, all decoder functions are based on an attention-based decoder layer
with a query-sparsity measurement mechanism f D. The difference is that f D adopts a
cross-attention [37,40] mechanism to calculate the attentional relationships between two
sequences. Take f DE as an example; its query matrix Q is calculated based on O[h, k, b].
Its key and value matrix, K and V, are calculated based on the input Eout. Thus, for each

k
′
≤ k, the calculation process of the decoder’s self-attention can be described as follows:

O[h, k
′
, b] will find a set of the most related time points t

′
from the input, Eout, Oout, and

Zout, based on the matching query Q from O[h, k, b] and key K from the input, and the
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values V of each input are used to calculate the attention weights. The calculations of Q, K,
V in the decoder functions can be referred to using Equations (5)–(7). Finally, we can attain
output Ŷ after the Encout is fed into a fully connected layer, which is also the prediction of
our model. The formula is shown as follows:

Ŷb×k = f L(Decout), (12)

where f L is the fully connected layer; Ŷb×k contains the predicted values at each time point

t + k
′
, where k′ ≤ k. Ŷb×k indicates the future predicted values at time t + k in batch b.

3.5. Loss Function

UDM can identify the representations of common and different types of knowledge
from sales MTS by adopting universality and distinction mechanisms. However, effectively
leveraging the representations in specific sales prediction scenarios presents an additional
challenge. In this research, we mainly discuss the use of UDM in inventory optimization
scenarios. Based on our investigation and research on Galanz, inventory levels are often
used by marketers as references to forecast future sales based on recent sales histories
combined with future marketing plans. However, relying on the marketer’s experience and
traditional statistical learning methods to estimate sales often results in significant devia-
tions. Our work uses models to achieve more accurate predictions to provide references for
marketers. Setting inventory levels based on predicted sales, whether higher or lower than
actual sales, can result in different cost losses. However, according to our findings, when
the absolute value of predicted losses is the same or within the same range, underestimating
sales will result in greater cost losses compared to overestimating the sales, because if the
predicted sales are smaller than the true sales, there will be an inventory shortage risk.
As discussed in previous sections, specific scenarios are usually represented as additional
constraints in general scenarios. For the inventory optimization scenarios, the constraint
aims to investigate the optimal value between the shortage and excess inventory. To achieve
this target, we need to conduct the optimization by focusing on two aspects: (1) Simul-
taneously considering the shape distortion and time delay of multi-step predictions can
further improve the prediction accuracy by better utilizing UDM representations. (2) When
addressing the first aspect, we try to make the predicted value greater than the true value
to reduce the risk of shortage. A joint Pin-DTW loss function is proposed to cope with
the above problems. The DTW loss is used for the optimization of the first aspect and
the pinball loss function is used for the optimization of the second aspect. We used the
weight α to combine the pinball and DTW losses. For the k step-prediction task, Ŷ1∼k is
the prediction and Y1∼k is the true value. The Pin-DTW loss function can be calculated
as follows:

LPin−DTW(Y1∼k, Ŷ1∼k) = αLPin(Y1∼k, Ŷ1∼k) + (1 − α)LDTW(Ŷ1∼k, Y1∼k), (13)

Pinball loss [41] is used for the quantile prediction, which is appropriate for the actual
sales forecast scenario. When the predictions are smaller than the real sales, this will lead
to out-of-stock costs. This will lead to overstock costs. Based on this investigative result,
enterprises generally need to sacrifice inventory or out-of-stock costs to some extent to
minimize the costs, which corresponds to our need to make forecasts higher or lower than
the real demand. This objective can be transformed into a quantile prediction task, so we
adopt the pinball loss function. Assuming that τ is the target quantile, yi ∈ Y1∼k is the
actual value, and ŷi ∈ Ŷ1∼k is the quantile prediction, the calculation formula of the pinball
loss function is as follows:

LPin(Y1∼k, Ŷ1∼k) =
1

k

k

∑
i=1

Li
Pin(yi, ŷi), (14)
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Li
Pin(yi, ŷi) =

{

(yi − ŷi)τ, i f yi ≥ ŷi

(ŷi − yi)(1 − τ), i f yi > ŷi,
(15)

DTW(Dynamic Time Warping) [42] is a framework for multi-step forecasting that can
be used to calculate the similarity between two time series of the same length, which can
neatly align two sequences and reduce the influence of delay and fluctuation. The DTW
loss function, which compares the prediction Ŷ1∼k with the actual ground truth future
trajectory Y1∼k = (y1, . . . , yk) of length k, is composed of two terms, which are balanced
by the hyperparameter θ ∈ [0, 1]. The calculations of Lshape and Ltemporal are explained in
DILATE [42] in detail.

LDTW(Ŷ1∼k, Y1∼k) = θLshape(Ŷ1∼k, Y1∼k) + (1 − θ)Ltemporal(Ŷ1∼k, Y1∼k). (16)

4. Experiment

4.1. Dataset

Galanz: This time series dataset was collected from Galanz, one of China’s leading
home appliance enterprises. This includes the historical sales data of 583 products from
11 warehouses over a 2-year period. In addition, four other features could be utilized:
product type, shop discount, performance discount, and discount rate.

Cainiao: This dataset is an official dataset provided by Aliyun for a specifically
designed public algorithm competition. This contains the inventories of commodities
in Cainiao’s national and regional warehouses from 20,141,001 to 20,151,227. The dataset
includes sales records of up to 200 products across 5 warehouses, as well as other features,
such as product types, user visit records, visits to carts, and collections of user visits.

More information about these two datasets is shown in Table 2. For both datasets, each
product was first grouped by warehouse, then by product type, to generate multivariate
time series (MTS). For each MTS, training and testing samples were generated by dividing
the whole series into a set of sub-series with the minimum length greater than 24 [1,30,43].
The sales of the last 1~7 time periods of each sub-series were taken as the prediction
label, and other periods were taken as features. This operation can obtain 55,361 samples
(GW1-N) from the Galanz and 74,595 samples (CW1-N) from Cainiao. To further assess
the practical values of the proposed model, warehouse IDs were used to divide Galanz
GW1-N into 11 groups (GW1~GW11) and Cainiao CW1-N into 5 groups (CW1~CW5). All
datasets were split in chronological order to produce a training set (60%), a validation set
(20%), and a test set (20%). Each group of both Galanz and Cainiao was separately trained
and tested by our proposed model, UDM.

Table 2. Information of datasets used in this paper.

Dataset Galanz Cainiao

Warehouses 11 5
Product category quantity 38 27

Instances 583 200
Sample rate 1 day 1 day

Features

Product type Product type
Historical sales Historical sales

Amount of shop discount User visits records
Perform discount amount Visits to cart

Discount rate Collections user visits
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4.2. Metrics

To evaluate the accuracy of the models’ performance on different datasets, we use
four metrics, where N stands for the number of predictions, and yi and ŷi are the ground
truth of the time series value and the prediction of the models, respectively. MAE stands
for the average absolute error between the prediction and the ground truth, MAPE cal-
culates the percentage difference between the prediction and the ground truth, RMSE
represents the expectation of the squared error between the prediction and the ground
truth, and CORR(Empirical correlation coefficient) represents the correlation between the
two sequences. For the first three metrics, a lower value is better, while for CORR, a higher
value is better. In terms of sales prediction tasks, MAE reflects the deviation between the
actual sales and model predictions.

• Mean absolute error (MAE ):

MAE =
1

N

N

∑
i=1

|yi − ŷi|. (17)

• Mean Absolute percentage error (MAPE ):

MAPE =
100%

N

N

∑
i=1

∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

. (18)

• Root mean squared error (RMSE ):

RMSE =

√

√

√

√

1

N

N

∑
i=1

(yi − ŷi)2. (19)

• Empirical correlation coefficient (CORR ):

CORR =
1

N
×

∑
N
i=1(yi − mean(y))(ŷi − mean(ŷ))

√

∑
N
i=1(yi − mean(y))2(ŷi − mean(ŷ))2

. (20)

4.3. Baselines

We compare UDM with three categories of methods:

• Traditional TS modeling methods, including FBProphet [44], exponential smooth-
ing [2], and ARIMA [45]. FBProphet is proposed by Facebook to forecast time series
data based on an additive model, where non-linear trends are fit with yearly, weekly,
and daily seasonalities. Exponential smoothing is one of the moving average methods,
which is carried out according to the stability and regularity of the time series to
reasonably extend the existing observation series and generate the prediction series.
ARIMA stands for the autoregressive integrated moving average. It considers the
previous values of the data, the degree of differencing required to achieve stationarity,
and the moving average errors to make predictions for future values.

• Informer [10]: A model based on the transformer can effectively capture the depen-
dencies in long sequences. It increases the capacities of long-time series predictions,
and effectively controls the time and space complexities of model training.

• MLCNN [1]: This is a deep learning framework composed of a convolution neural
network and recurrent neural network; it improves the predictive performance by
fusing forecasting information of different future times.

The comparison is used mainly for the final multi-step commodity sales prediction
performance using four metrics mentioned in Section 4.2, including MAE, MAPE, RMSE,
and CORR.
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4.4. Training Details

We conducted a grid search for the proposed UDM and all baselines, except ARIMA
(we utilized auto-ARIMA with an automatic parameter adjustment function) to find the
best hyperparameter settings. To begin with, for the task of multi-step sales sequence
forecasts, we set the output length to 7, which means that the models should predict the
sales sequence for 7 days. For all models, we set the maximum training iterations to 20 for
the Galanz dataset and 10 for the Cainiao dataset. For UDM, we used a batch size of 16
and a learning rate of 0.0001. In the convolutional component, we set the CNN layers to 2,
the dropout rate to 0.2, and the output size to 128. In the universality-extracting module,
the CNN module was configured with 7 layers, the number of layers was set to 4, and the
dropout rate to 0.2 for the shared GRU. Next, in the distinction-capture module, the head
of the prob-sparse attention layer was 8, the sampling factor was k = 7, and the activation
function was gelu. In the Pin-DTW loss function, we set the weight to α = 1/2 and the
target quantile to τ = 0.6.

For the informer model, we set d_model = 512, n_heads = 8, num_workers
= 2, e_layers = 2, d_layers = 2, batch_size = 16, learning_rate = 0.0001, and drop_out
= 0.05. We used MSE as the loss function and chose a prob-sparse attention mechanism in
the encoder. For MLCNN, we used the continuous mode based on the data type. We applied
a collaborative span of three and a collaborative stride of one. We set learning_rate = 0.0001,
n_CNN = 7, drop_out = 0.2, hidCNN = 10, hidRNN = 25, highway_window = 3, and we
tuned kernel_size ∈ [3, 5]. For both traditional time series prediction methods, ES and
FBProphet, we set alpha as 0.5 and beta as 0.9.

4.5. Main Results

We will now compare the performances of UDM and other baselines on Galanz
(GW1~GW11) and Cainiao datasets (CW1~CW5), as shown in Tables 3–5. The best results
are highlighted in bold, and the second-best results are underlined for each metric. Com-
pared with traditional time series-predicting methods and advanced deep learning models,
our proposed model (UDM) outperforms the other models on both Galanz and Cainiao
datasets. Compared with the best baseline, the improvements are 57.27%, 50.68%, and
35.26% on the Galanz dataset and 16.58%, 6.07%, and 5.27% on the Cainiao dataset in terms
of MAE, MAPE, and RMSE. For 11 Galanz warehouses datasets, UDM achieved the five
best results and the five second-best results on MAE, as well as the eight best results on
both MAPE and RMSE. In the Cainiao dataset, UDM demonstrated the best results in terms
of MAE, MAPE, and RMSE. Among the five baselines, the informer model achieved the
second-best results on the Galanz datasets. However, its prediction ability was not stable,
as shown by the large MAE, MAPE, and RMSE results on several datasets, such as GW1 and
GW8. Although the informer model is a very competitive baseline model, from the overall
effect evaluation, UDM is significantly better than the informer model. The average im-
provements compared to the informer model are 20.09%, 35.26%, and 78.58% on 11 Galanz
warehouses and 27.95%, 12.57%, and 31.32% on 5 Cainiao warehouses in terms of MAE,
RMSE, and MAPE. Compared to all the baseline models, the informer model can achieve
the 7 best MAE results and 2 best MAPE and RMSE results on 11 Galanz warehouses.
However, our model achieved the best results on the whole Galanz dataset (GW1-N) and
the whole Cainiao dataset (CW1-CWN) in terms of MAE, RMSE, and MAPE. For 11 Galanz
warehouses and GW1-N, UDM achieved the 5 best MAE results, 10 best RMSE results,
and 8 best MAPE results. For 5 Cainiao warehouses and CW1-N, UDM achieves the best
results in terms of MAE, RMSE, and MAPE. In inventory management, the predicted sales
component of our model serves as a reference for marketing personnel when stocking the
minimum inventory level. The predicted sales component is an important indicator when
arranging the inventory plan for up to two weeks in the future, and the inventory plan is
based on a strict calculation process. Based on actual testing in the enterprise, our method
saved approximately 20% of costs compared to traditional methods and avoids the risk of
out-of-stock methods, proving its effectiveness.
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Table 3. Evaluation of all baselines on 6 Galanz warehouse datasets (GW1-GW6). The best results are

highlighted in bold, and the second-best results are underlined for each metric.

Method Metrics GW1 GW2 GW3 GW4 GW5 GW6

FBProphet

MAE 15.2847 30.3044 31.8755 34.4644 16.2163 16.7275
MAPE 57.9891 57.1674 55.8968 62.3766 55.8108 59.6338
RMSE 52.4318 276.4578 277.0762 303.1195 61.2255 63.1584
CORR 0.2373 0.1636 0.1613 0.2153 0.2248 0.2172

Informer

MAE 17.6240 9.1548 4.1450 29.5429 5.1940 15.0258
MAPE 394.9109 22.5000 19.1176 80.0000 11.9055 457.2982
RMSE 35.0193 38.1540 13.0211 41.3107 22.6037 17.4231
CORR 0.3087 0.0000 0.0000 0.0000 0.0566 0.2400

MLCNN

MAE 18.3824 33.6053 36.7638 37.6184 20.1129 20.7452
MAPE 371.8239 313.5209 312.2668 290.0065 354.7266 294.2883
RMSE 60.9568 281.9341 286.2610 308.5424 72.1018 77.0757
CORR 0.2163 0.1597 0.1681 0.1808 0.2084 0.1929

ES

MAE 21.2214 34.1332 37.0971 40.3494 22.1497 23.0650
MAPE 267.1900 239.7035 254.3169 271.8555 258.0128 271.5501
RMSE 63.8428 292.0610 294.4738 320.9468 72.0085 75.0383
CORR 0.1986 0.1589 0.1545 0.1985 0.1934 0.1985

ARIMA

MAE 14.2295 28.4680 30.0798 32.6718 15.3041 15.8134
MAPE 75.1275 67.6109 66.1797 76.7000 72.4418 75.8649
RMSE 52.2138 282.8495 283.7393 309.1383 65.1573 66.4925
CORR 0.1181 0.0961 0.0984 0.1154 0.1157 0.1146

UDM

MAE 10.4198 9.7407 5.2871 41.7966 7.3015 2.8003
MAPE 82.7683 16.1626 16.4438 52.9563 10.2945 16.9803
RMSE 34.2683 37.6247 12.4147 51.3284 21.7823 7.4525
CORR 0.3373 0.0577 0.2435 0.5420 0.0703 0.0059

4.5.1. The Advantage of the Informer

The informer is a representative transformer-based model, and is a competitive base-
line model in the experiment, especially in terms of its MAE performance. Although UDM
is significantly superior to the informer model on the entire Galanz datasets in terms of
all metrics, the informer model outperforms UDM on 6 Galanz warehouses, in terms of
the MAE metric. However, the performances of the two models on MAE are very similar;
our proposed UDM model achieved comparable results to the informer model on several
datasets where the informer model had previously shown superior performance, with only
minor deviations. The reason for this may be that, during the independent modeling
of universality and distinct aspects in UDM, information loss issues may have occurred,
causing a slight decrease in UDM’s performance on the MAE metric.

4.5.2. The Advantage of UDM

The informer model’s performance in terms of RMSE and MAPE was not as good
as its performance in MAE. The MAPE of the informer model exhibited large deviations
on Galanz warehouses GW1, GW6, and GW8, the MAPEs of which exceeded 300 (the
MAPEs of UDM on the same warehouses were 82, 16, and 11, respectively). The reason
for this is that the informer model is weaker than UDM at capturing fluctuation patterns.
A large MAPE often indicates that the true number of sales is small, but the number
of predicted sales is large, which means that the informer model often misjudges the
sudden peak values or the fluctuation trend. UDM proposes a novel distinct mechanism,
which can specifically model the unique characteristics of each time series, and learn
fluctuation patterns separately. The mechanism can better solve this problem, which the
informer model struggles to handle properly, and significantly improve the performance
in terms of MAPE. RMSE is another metric that can evaluate the stability of the model’s
performance. UDM outperformed the informer model on 8 Galanz warehouses and all
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Cainiao warehouses, which indicates that the performance of UDM is more stable than that
of the informer model. The informer model exhibited very large variations in the testing
datasets of certain Galanz warehouses. For example, the RMSE of the informer model
on the dataset of Galanz warehouse GW8 was 139, while the value of UDM on the same
dataset was only 31.

Table 4. Evaluation of all baselines over 5 Galanz warehouse datasets (GW7-GW11) and the whole

Galanz dataset (GW1-N). The best results are highlighted in bold, and the second-best results are

underlined for each metric.

Method Metrics GW7 GW8 GW9 GW10 GW11 GW1-N

FBProphet

MAE 9.0854 17.9634 28.0403 27.2752 11.2483 21.6805
MAPE 70.7815 59.7207 58.4812 51.8571 63.3920 59.3717
RMSE 25.1791 74.1755 265.7824 266.1724 40.2530 155.0029
CORR 0.2347 0.2153 0.1605 0.1716 0.2265 0.2025

Informer

MAE 0.0089 135.4354 3.8177 5.6080 0.0470 20.5094
MAPE 4.2647 399.4997 25.7501 87.0297 1.2546 136.6846
RMSE 0.0945 139.5018 8.4105 5.9640 0.1817 29.2440
CORR 0.0000 0.1250 0.1975 0.0986 0.0097 0.0942

MLCNN

MAE 10.5993 21.9535 31.4661 30.6287 13.3700 25.0223
MAPE 395.6474 296.0490 348.4923 282.7980 377.6082 330.6571
RMSE 26.1790 84.4675 273.0667 269.1123 43.8731 162.1428
CORR 0.2212 0.2081 0.1561 0.1635 0.2249 0.1909

ES

MAE 12.4604 24.1590 31.9851 31.6545 14.2210 26.5905
MAPE 201.3380 271.0901 241.4655 210.1611 189.3783 243.2783
RMSE 31.4932 84.5216 282.4325 282.8159 43.0267 167.5147
CORR 0.2028 0.1968 0.1601 0.1616 0.1976 0.1837

ARIMA

MAE 7.6219 16.8480 26.4030 25.6837 9.7364 20.2600
MAPE 74.3844 75.8856 68.5079 62.2803 70.6236 71.4188
RMSE 23.0878 77.0473 270.6166 271.3406 38.8939 158.2343
CORR 0.1303 0.1180 0.0938 0.0988 0.1200 0.1108

UDM

MAE 0.0089 9.4581 7.7964 0.5114 0.1156 8.6579
MAPE 2.3156 11.5199 95.4989 7.0528 10.0944 29.2807
RMSE 0.0943 31.7277 9.6884 1.6839 0.1855 18.9319
CORR 0.0000 0.1028 0.2198 0.0846 0.0089 0.1521

4.6. Ablation Study

To demonstrate the effectiveness of every UDM component, we compare UDM with
five variants, as follows:

• w/U: The universality-extracting component is removed from UDM.
• w/D: The distinction-capture component is removed from UDM.
• w/Pin-DTW: Pin-DTW loss is replaced by the MAE as the loss function.
• w/DTW: DTW is removed from the Pin-DTW loss function.
• w/Pin: Pinball loss is removed from the Pin-DTW loss function.

We kept all variant parameters the same as the completed UDM model to eliminate
the influence of model complexity. Figure 3a,b present the results of the Galanz and Cainiao
datasets, respectively, in detail. The important observations from these results are listed
as follows:

• Removing the distinction module causes great performance drops in terms of MAE
metrics on the Galanz and Cainiao datasets; this proves that extracting the distinction
module helps to achieve more accurate multi-step predictions.

• According to Figure 3a, the significant decline in MAE appears when the Pin-DTW
loss is replaced by the MAE loss function. The metrics also clearly decrease when
the pinball loss is removed from the Pin-DTW loss function, which illustrates the
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significant contributions of the joint Pin-DTW loss function, especially the pinball loss
function, to the Galanz dataset. However, Figure 3b shows that the DTW component
in the Pin-DTW loss function contributes more to the Cainiao dataset.

• Removing the universality module results in a more obvious decrease in MAE in the
Galanz dataset than the Cainiao dataset, which indicates that capturing the common
features of products from the same warehouse is effective in the Galanz dataset,
and great differences exist between the different warehouses.

Table 5. Evaluation of all baselines over 5 Cainiao warehouse datasets (CW1-CW5) and the whole

Cainiao dataset (CW1-N). The best results are highlighted in bold, and the second-best results are

underlined for each metric.

Method Metrics CW1 CW2 CW3 CW4 CW5 CW1-N

FBProphet

MAE 1.5912 1.3346 1.8584 2.3292 1.7956 1.7818
MAPE 62.1643 50.6469 67.7299 66.1445 61.5287 61.6429
RMSE 7.5401 6.5327 7.9424 12.1592 8.3002 8.4949
CORR 0.2532 0.2264 0.2422 0.2462 0.2480 0.2432

Informer

MAE 1.8133 1.5807 2.1339 2.7799 2.0071 2.0630
MAPE 87.9340 78.3794 61.2950 66.2499 93.0463 77.3809
RMSE 8.2744 7.2051 8.7268 13.8907 8.7783 9.3751
CORR 0.2476 0.2369 0.2628 0.2601 0.2405 0.2496

MLCNN

MAE 1.7142 1.4752 2.1640 2.6487 1.8236 1.9651
MAPE 63.3250 60.5524 94.3953 63.0208 88.9358 74.0459
RMSE 7.8343 6.9332 9.4610 13.4777 8.8779 9.3168
CORR 0.2353 0.2021 0.2581 0.2338 0.2190 0.2296

ES

MAE 2.0410 1.9012 2.6317 3.2389 2.3219 2.4269
MAPE 70.3472 65.9903 86.5732 86.4917 81.6856 78.2176
RMSE 8.3194 7.3440 9.4947 13.5777 9.5196 9.6511
CORR 0.2449 0.2059 0.2686 0.2394 0.2080 0.2333

ARIMA

MAE 1.6612 1.4361 1.8497 2.5363 1.6870 1.8340
MAPE 59.6706 49.3459 59.6440 63.6416 50.5761 56.5757
RMSE 7.8752 7.0230 7.9706 12.6939 8.4314 8.7988
CORR 0.1462 0.1392 0.1483 0.1527 0.1483 0.1460

UDM

MAE 1.3642 1.1498 1.5688 2.0236 1.3251 1.4863
MAPE 55.6866 47.1187 55.7236 58.4229 48.7573 53.1418
RMSE 7.2861 6.2559 7.3421 11.5921 7.7595 8.0472
CORR 0.2680 0.1985 0.2697 0.2065 0.1967 0.2279

Figure 3. Ablation study: (a) Analysis of the Galanz dataset. (b) Analysis of the Cainiao dataset.

More importantly, as can be seen in Figure 3a, removing the distinction-capture
component results in great drops in RMSE (41.77%) and MAPE (44.47%) in the Galanz
dataset. According to Figure 3b, there are obvious decreases in performance (28.63% and
18.6%) in terms of RMSE in the Cainiao dataset when the DTW loss or the distinction-
capture component is removed from UDM, and MAPE clearly goes down (15.40% and
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11.83%) when the universality-extracting component or distinction-capture component is
removed from UDM in the Cainiao dataset. The experimental results clearly exhibit that
the distinction-capture component plays the most important role in the stability of UDM.

4.7. Further Analysis

4.7.1. Parameter Sensitivity Analysis

Fine-tuning experiments on the Galanz dataset were carried out for three parameters
that can obviously affect the effectiveness of the UDM. These parameters are the hidden
size, the weight α in the Pin-DTW loss function, and the sampling factor in the distinction
module. As shown in Figure 4, we attained optimal results when the hidden size was set at
128, α was set at 1/2, and k was set at 7.

Figure 4. Results of the parameter sensitivity tests on the Galanz dataset. (a) Hidden size. (b) Weight

of the loss function. (c) Sampling factor in the distinction module.

4.7.2. Comparative Analysis of Attention

We compared the canonical self-attention mechanism and the prob-sparse attention
mechanism on Galanz and Cainiao datasets in terms of three metrics (running time, MAE,
and MAPE), and the results can be seen in Figure 5a. From these two datasets, the prob-
sparse attention mechanism performed better, with shorter running times on MAE and
MAPE metrics when compared to canonical self-attention.

Figure 5. (a) Contrast between canonical self-attention and prob-sparse attention mechanisms.

(b) Convergence analysis. (c) Training time analysis.

4.7.3. Convergence and Time Complexity Analysis

We analyzed the convergence of UDM by recording its MAE loss of training and
validating on the Galanz dataset. As shown in Figure 5b, UDM can easily be trained
with quick convergence. Figure 5c shows the training time and MAE comparison of
FBProphet, informer, MLCNN, ES, ARIMA, and UDM on the Galanz dataset. UDM uses
the attention mechanism in its distinction module, so it is reasonable that UDM takes
more time for training than MLCNN, which is based on CNNs and traditional time series
analysis methods (FBProphet and ES). In our study, we utilized auto-ARIMA, a model
equipped with an automatic parameter tuning ability. As a result, the implementation
of fitting and predicting with ARIMA requires comparatively more time. As we can see,
the inference time of UDM is less than that of ARIMA and the informer model, and UDM
performs better than other methods on the MAE metric.



Systems 2023, 11, 311 21 of 24

4.8. Case Study

A case study comparing the stability in the multi-step forecast task of the proposed
UDM model with five baselines can be seen in Figure 6. In this figure, the blue and green
parts are used as input sequences for the prediction of item D63, where blue is a historical
series and green is the source window. The yellow and red parts are found in the prediction
window, in which yellow is the ground truth and red is the model prediction. In this
case, the improvements in UDM for predicting the future seven-step sales are 78%, 76%,
and 78%, respectively, when compared to the informer model, in terms of MAE, RMSE,
and MAPE. The MAPE improvements are 74%, 73%, and 74%, respectively, compared to
MLCNN. The absolute improvements in CORR are 22% and 20% compared to the informer
model and MLCNN. Compared to the best performances from FBProphet, ES, and ARIMA,
the improvements are 76%, 75%, and 78%, respectively, in terms of MAE, RMSE, and MAPE.
Some valuable observations are as follows: (1) In our multi-step forecast tasks, the informer
model provides a flat prediction and cannot simulate the real fluctuations, as shown in
Figure 6a. Moreover, there is a large deviation between the predicted average and the
real average. (2) The MLCNN and ARIMA models can capture fluctuations but often
generate delayed predictions, resulting in an opposite change trend between actual and
predicted sequences, as illustrated in Figure 6b,e. (3) The results of FBProphet are similar
to those of the informer model; however, FBProphet presents a few waves that are contrary
to the ground truth, which can be seen in Figure 6c. (4) The results of the exponential
smoothing (ES) model are shown in Figure 6d; the errors between predictions and actual
values gradually become more obvious with increasing time steps. (5) Figure 6f shows the
results of the proposed UDM model, which demonstrates that not only can UDM make
more accurate predictions but it can also more closely simulate the variation trend of the
sales sequence compared to the baseline. Moreover, the UDM predictive accuracy remains
stable in multi-step predictions. In other words, UDM achieves accurate predictions for
each step, and the prediction error does not gradually increase over time steps, as seen in
the ES results. The stability of our model is mainly attributed to the universality component
in UDM. By extracting instinct features and common correlation patterns from multivariate
time series with similar contexts, our model ensures that the multi-step predicted values
remain within a reasonable range, thereby preventing error accumulation.

Figure 6. Case study: (a) informer, (b) MLCNN, (c) FBProphet, (d) exponential smoothing, (e) ARIMA

(f) UDM.
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5. Conclusions

In our paper, we propose a novel universality–distinction mechanism framework for
the multiple-step sales prediction task. Firstly, the universality-extracting module generates
construals for different predictive steps, which are integrated into the complete time
window information. At the same time, this module can model the relationships among
different future steps and learn their universality. An efficient self-attention mechanism
was then employed to distinguish the information of multiple predictive steps, which could
effectively capture future fluctuations. Finally, we developed a joint Pin-DTW loss function
that addresses the optimizations of two aspects of the second challenge: (1) how to make
better use of the extracted common and distinct representations from UDM to make more
accurate future multi-step predictions; (2) how to ensure that predicted sales are bigger
than the true sales as much as possible, on the premise of minimizing prediction deviations.
Both the deformation error and time delay error are seen for the first aspect, which could
be solved by a sequence-based DTW loss. For the second aspect, the main aim is to avoid
the risk of shortages in inventory optimization, and a pinball loss is proposed to solve
this problem. The combination of pinball and DTW, named Pin-DTW loss, can reduce
the risk of inventory shortage while further improving prediction accuracy and stability.
The experiments conducted on the Galanz and Cainiao datasets in the fourth section prove
that our proposed UDM model ensures accurate and stable sales prediction capabilities
while effectively reducing costs for enterprises.

However, some directions are worth exploring in the future. First, the outliers in
the sales sequence can greatly affect the accuracy of the forecast; therefore, improving
the model’s handling of outliers or abnormal values is an important direction for future
research. Second, we hope to further improve the forecasting efficiency and bring real
value to the enterprise supply chain.
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