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Abstract: At transonic flight conditions, the buffet caused by the shockwave/boundary-layer inter-

action can degrade aircraft performance and even threaten their safety. In this paper, a closed-loop

control using an active shock control bump (SCB) has been proposed to suppress the buffet on a

supercritical airfoil flying at transonic speeds. A closed-loop control law is designed by using the lift

coefficient as the feedback signal and using the bump height as the control variable. The unsteady

numerical simulations show that the buffet can be effectively suppressed by an optimal combination

of the parameters of the control law, namely the gain and the delay time. Furthermore, the buffet

control effectiveness is still acceptably constrained by a prescribed maximum bump height, which is

believed to be practically important. In addition to being able to achieve both wave drag reduction

and buffet alleviation, the active SCB is less sensitive to the parameters of the control law and has a

shorter response time in comparison with the reference active trailing edge flap.

Keywords: transonic buffet; buffet alleviation; shock control bump; closed-loop control; flow control

1. Introduction

The aerodynamic shape design of civil transport aircraft is strongly constrained by
the transonic buffet boundary [1]. At high subsonic Mach numbers or high angles of
attack, periodic shock motion with large amplitudes can be observed on the wings. That is
because the interaction between the shock wave and the separated boundary layer results
in a self-sustained periodic shock motion [2]. The related ongoing oscillating loads on
aircraft may cause structural fatigue and even flight accidents, which severely limit the
flight envelope of civil transport aircraft. Therefore, research on suppressing the transonic
buffet is of practical significance for modern and future civil transport aircraft.

Transonic buffet involves complex shockwave/boundary-layer interactions that pose
significant challenges to numerical simulations. Jacquin et al. [3] performed the buffet
experiment on the OAT15A airfoil section in the ONERA S3Ch transonic wind tunnel
and developed an extensive experimental database for the validation of numerical buffet
simulations. It was found that the most promising approach was using high-fidelity
Reynolds stress models and higher-order methods which can capture essential flow physics,
such as detached-eddy simulations by Deck [4], Grossi et al. [5], Zhang et al. [6], and
Huang et al. [7]. However, such techniques are currently not practical for exploring a
large parameter space due to their extremely high computational cost. Levy [8] and
Iovnovich [9] assessed the efficacy of various unsteady Reynolds-averaged Navier-Stokes
(URANS) methods for capturing transonic buffets. Recently, Giannelis et al. [10,11] also
performed a related transonic buffet simulation using the URANS method based on the
k-ω SST turbulence model and obtained a good prediction of buffet frequency and shock
oscillation amplitude.
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The advancement of numerical methods in simulating the transonic buffet promoted
a lot of research on controlling the shockwave/boundary-layer interaction through various
control methods. Passive control methods such as streamwise slots [12,13], shock control
bumps [14], and vortex generators [15,16], and active control methods such as trailing edge
deflectors (TED) [17,18], fluidic vortex generators [19], and trailing edge flaps (TEF) [20],
have been extensively studied. For instance, the trailing edge deflector was designed to
change the airfoil trailing edge to achieve an effective buffet alleviation [18]. In particular,
Caruana et al. [17,18] developed a trailing edge deflector with a closed-loop control to
suppress the transonic buffet. Their study found that optimal control was achieved when
the TED oscillation frequency was close to the buffet frequency. In addition, the trailing
edge flap, considered a further development of TED, was also investigated by Gao et al. [20]
and Ren et al. [21]. They demonstrated that a well-designed control law was crucial for
effective buffet alleviation under various buffet conditions.

The passive shock control bumps (SCB) were also found to be able to delay the buf-
fet boundary. In early studies [22–24], the application of SCBs mainly sought to reduce
transonic pressure wave drag without the significant viscous drag penalty. In particular,
Birkemeyer et al. [22] found that the shock control bumps positioned significantly down-
stream of the shock wave could reduce pressure fluctuations close to the trailing edge, thus
delaying the shockwave/boundary-layer interaction. Later, Mayer et al. [25,26] compared
and assessed two types of contour bumps for delaying buffet onset based on the URANS
method. The results showed that besides delaying buffet onset by increasing the maximum
lift coefficient, two-dimensional bumps were also capable of damping buffet-related lift
oscillations in the buffet regime by an efficient shock strength reduction in combination
with positive effects on flow separation. Tian et al. [27] found that the downstream SCB
had better buffet performance over a range of freestream conditions and that the bump
could weaken the downstream adverse pressure gradient as well as suppress the separation
bubble at the shock foot merged with trailing edge separation. Geoghegan et al. [28–30]
conducted a number of parametric studies on oscillating shock control bumps (open-loop
control) for buffet alleviation. They found that the SCB location was an important param-
eter and should be placed between the shock wave and the trailing edge to suppress the
buffet. The main drawback of passive bumps and oscillating bumps is that the optimal
bump location for wave drag reduction is different from that for transonic buffet allevia-
tion. Therefore, a trade-off design is needed to improve the overall mean and unsteady
characteristics of an airfoil over a wide range of angles of attack [26].

Recently, it was found by Zhang et al. [31] that passive shock control bumps could
effectively cooperate with the active trailing edge flap, providing both wave drag reduction
and buffet alleviation. More importantly, it was found that buffet control assisted by a
passive shock control bump was even more robust than the reference active trailing edge
flap. Unlike the control device that relies on changing the flow dynamics near the trailing
edge, shock control bumps can reduce shockwave strength, providing an alternative and
possibly a more robust way to suppress the transonic buffet. The present paper reports
further advances in reducing the complexity of the active buffet control system proposed
in [31] by abandoning the active trailing edge flap. Instead, the bump height is assumed to
be an active control variable according to the feedback signal, namely the lift coefficient.
Note that a similar control method, named “local smart skin”, has been previously proposed
by Ren et al. [32]. The current study will further extend their study on a well-understood
buffet case and demonstrate the advantages of the active shock control bump in comparison
with the reference active trailing edge flap. The proposed SCB-based control system shows
more robust performances on buffet suppression over a wide range of flow conditions
compared to the active TEF system.

The paper is organized as follows. Firstly, the active control devices and the corre-
sponding closed-loop control law are introduced, followed by a validation of the numerical
methods. Secondly, the active shock control bump driven by the feedback of the lift
coefficient is investigated and the effects of parameters of the control law on buffet sup-
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pression are discussed. Finally, the advantages of the proposed buffet control method are
demonstrated by comparing it with the reference active TEF, followed by the conclusions.

2. Problem Definition

2.1. Baseline Airfoil

The OAT15A supercritical airfoil, which has been widely tested in wind tunnel ex-
periments for studying the transonic buffet, was chosen as the baseline airfoil. In order
to develop an extensive experimental database for validating the numerical methods,
Jacquin et al. [3] performed the buffet experiment on the OAT15A airfoil section in the
ONERA S3Ch transonic wind tunnel. The wind tunnel model is an OAT15A profile with a
relative thickness of 12.3%, a chord length (c) of 230 mm, a span of 780 mm, and a blunt
trailing edge of 0.5%c thickness. With the stagnation conditions of Pst = 105 Pa, Tst = 300 K
and a Reynolds number of Rec = 3 × 106, the flow Mach number varies in the range of
0.70 to 0.75, and the angle of attack between 2.5◦ and 3.91◦. The boundary layer transition
is fixed at the 7%c on the upper and lower surfaces of the airfoil [3].

2.2. Definition of Active Control Devices

As shown in Figure 1, the active SCB is added on the upper surface of a given baseline
airfoil, and the bump function represents the distance between the baseline airfoil and the
bump surface. The bump length is denoted as lb, and the bump crest position relative to
the starting point is denoted as cb. The coordinate of the bump crest can be obtained as:

xc = (x0 + cb)/c (1)

where x0 is the coordinate of the starting point of the bump. The local coordinate normalized
by the bump length, xb, satisfies

0 ≤ xb =
x − x0

lb
≤ 1 (2)
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Henne function shown as:

= =  (3)

The resulting SCB function is therefore given by the following equation:

( )=   (4)
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Figure 1. The definition of an active shock control bump.

The SCB shape function normalized by the bump height is defined by the Hicks-Henne
function shown as:

H(xb) = sin4(πxb
m), m = ln(0.5)/ ln(cb/lb) (3)

The resulting SCB function is therefore given by the following equation:

Fb(xb, t) = hb(t) · H(xb) (4)
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where hb(t) represents the transient bump height, which is a function of time t.
For comparison, the reference active trailing edge flap previously studied in [31] is

presented as shown in Figure 2. The airfoil shape has been decomposed into the thickness
distribution and the mean camber line. Only the mean camber line, denoted as yte, will be
changed in the TEF control. The mean camber line associated with the trailing edge flap
is parameterized by a third-order polynomial. The starting location of the flap is denoted
as x0,te, and the flap length is given by lT = c − x0,te. The local coordinate of the flap
normalized by the flap length is denoted as xte = (x − x0,te)/lT . The mean camber line
associated with the trailing edge flap is defined as:

yte = hte(t) · xte
3 (5)

where hte(t) represents the transient displacement of the trailing edge.

For comparison, the reference active trailing edge flap previously studied in [31] is 
presented as shown in Figure 2. The airfoil shape has been decomposed into the thickness 
distribution and the mean camber line. Only the mean camber line, denoted as 𝑦𝑡𝑒, will 
be changed in the TEF control. The mean camber line associated with the trailing edge 
flap is parameterized by a third-order polynomial. The starting location of the flap is de-
noted as 𝑥0,𝑡𝑒, and the flap length is given by 𝑙𝑇 = 𝑐 − 𝑥0,𝑡𝑒. The local coordinate of the 
flap normalized by the flap length is denoted as 𝑥𝑡𝑒 = (𝑥 − 𝑥0,𝑡𝑒)/𝑙𝑇. The mean camber 
line associated with the trailing edge flap is defined as:

=   (5)
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and the far-field cells are largely unaffected.

Figure 2. The definition of an active trailing edge flap.

Note that for an open-loop control such as the work of [28], hb(t) or hte(t) are specified
by a user-defined function. For the closed-loop control, hb(t) or hte(t) are determined by
the corresponding control law, which will be introduced in the next section.

2.3. Closed-Loop Control Law for Buffet Alleviation

Assuming that a real-time feedback signal, namely the lift coefficient here, can be
obtained, the control devices defined in the previous section can be actively adjusted to
suppress the lift oscillation by feedback control. Following the work of [20], the closed-loop
control law is designed as follows:

h(t) = k(CL(t − ∆t)− CL0) (6)

where h(t) represents either the bump height, hb(t), or the displacement of the trailing
edge, hte(t); CL0 is the design lift coefficient; ∆t is the delay time, and k is the gain to control
the active device with the help of fluctuating lift coefficient CL(t). According to the control
law, the control device will automatically adjust when the lift coefficient deviates from the
design lift coefficient.

In unsteady simulations, the adjustment of the active control device can be regarded
as surface deformation. The mesh is updated by a distance-based dynamic mesh algo-
rithm [33]. As shown in Figure 3, the mesh near the active surface maintains a good quality
and the far-field cells are largely unaffected.
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3. Numerical Methods

3.1. Flow Solver

The compressible viscous flow was simulated by the open-source code CFL3D [34,35].
The governing equations were the unsteady Reynolds-averaged Navier-Stokes equations.
An upwind Roe flux difference splitting algorithm with a third-order upwind MUSCL
scheme was selected to resolve the inviscid fluxes to resolve the shock waves. The diffusive
fluxes were treated using the second-order central differencing method. According to
a recent study on the numerical methods for transonic buffet [10], the Spalart-Allmaras
one-equation turbulence model was unable to produce shock unsteadiness on the OAT15A
airfoil under the condition of M∞ = 0.73, α = 3.5◦, and Rec = 3 × 106, whereas the Stress-
Omega Reynolds Stress Model (SORSM) amplified the pressure fluctuations. Menter’s
k-ω SST model [36] with a reduced a1 coefficient was found to be able to capture the
shock unsteadiness properly. Based on our previous experiences [31], Menter’s k-ω SST
turbulence model with the a1 coefficient of 0.286 was used for the closure of the Reynolds-
averaged Navier-Stokes equations. In addition, an implicit dual-time marching scheme was
adopted and the physical (outer) time step size was chosen to be 2 × 10−5 s, corresponding
to about 750 time-steps per buffet cycle. The flow solution was assumed to be converged
when the L2 norm of the residual reduced to 10−5 during the inner (pseudo-time) iterations.

3.2. Grid Convergence Study

A C-type grid has been generated to carry out the simulations. The grid extends
80 chord lengths in the upstream and normal directions, and 100 chord lengths in the
downstream direction illustrated in Figure 4. Three meshes of different grid densities
named G1, G2, and G3 were created to assess the mesh independence, with the detailed
parameters provided in Table 1. In order to capture the shock wave accurately, the G2
grid near the trailing edge was refined, with the maximum cell size less than 0.5%c in
the streamwise direction. A maximum wall y+ < 1 was achieved at the boundary layer
in the wall-normal direction of all grids, as required for the near-wall resolution of the
turbulence model. The grid convergence was assessed under the condition of M∞ = 0.73,
α = 3.5◦, using the k-ω SST turbulence model and based on the computed buffet charac-
teristics. Table 2 shows the results of the buffet characteristics, including the peak-to-peak
lift difference, the mean lift coefficient, and the buffet frequency. The differences in the
computed flow properties between the medium and finest grids are negligible. As a result,
the mesh-independent solution is achieved with the G2 grid, and the G2 grid was employed
for all subsequent simulations.
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Table 1. The details of the computational grids.

Grid Airfoil Nodes First Layer 𝒚𝒎𝒂𝒙+ Cell Count
G1 417 1.5 × 10−6 0.75 55,000
G2 517 1.2 × 10−6 0.70 83,000
G3 647 1.0 × 10−6 0.50 106,000

Table 2. The computed buffet characteristics using different levels of grid.

Grid ∆𝑪𝑳 Mean 𝑪𝑳 𝒇𝒔𝒃 (Hz)
G1 0.050 0.896 76
G2 0.166 0.881 75
G3 0.159 0.882 75

Experiment [3] 0.220 - 69

 
(a) (b) 

Figure 4. Computational grid. (a) Near-wall grid. (b) Far-field grid.

3.3. Validation
The comparison of the mean and RMS pressure coefficients on the upper surface of 

the airfoil is presented in Figure 5. Note that the RMS pressure coefficient is defined as (𝑝 − 𝑝𝑎𝑣𝑒)𝑟𝑚𝑠/𝑞0 , where 𝑝 , 𝑝𝑎𝑣𝑒  and 𝑞0  represent the static pressure, the mean static 
pressure, and the freestream dynamic pressure, respectively. The freestream flow condi-
tions are 𝑀∞ = 0.73, 𝛼 = 3.5°, and 𝑅𝑒𝑐 = 3 × 106. It can be observed that the predicted 
mean pressure coefficient shows good agreement with the experimental data. According 
to previous studies [37,38], the peak pressure fluctuation and the pressure fluctuation are 
sensitive to the turbulence model and the flow transition location. Although the peak pres-
sure fluctuation and the pressure fluctuation near the trailing edge are slightly lower than 
the experimental data, the shock movement is well captured by the numerical simulation. 
The mean velocity profiles at different stations on the upper surface of the airfoil are 
shown in Figure 6. It can be seen that the calculated results match well with the experi-
mental data, consistent with the results of [5,7,10].

Figure 4. Computational grid. (a) Near-wall grid. (b) Far-field grid.

Table 1. The details of the computational grids.

Grid Airfoil Nodes First Layer y+
max Cell Count

G1 417 1.5 × 10−6 0.75 55,000

G2 517 1.2 × 10−6 0.70 83,000

G3 647 1.0 × 10−6 0.50 106,000

Table 2. The computed buffet characteristics using different levels of grid.

Grid ∆CL Mean CL fsb (Hz)

G1 0.050 0.896 76
G2 0.166 0.881 75
G3 0.159 0.882 75

Experiment [3] 0.220 - 69

3.3. Validation

The comparison of the mean and RMS pressure coefficients on the upper surface
of the airfoil is presented in Figure 5. Note that the RMS pressure coefficient is defined
as (p − pave)rms/q0, where p, pave and q0 represent the static pressure, the mean static
pressure, and the freestream dynamic pressure, respectively. The freestream flow conditions
are M∞ = 0.73, α = 3.5◦, and Rec = 3 × 106. It can be observed that the predicted
mean pressure coefficient shows good agreement with the experimental data. According
to previous studies [37,38], the peak pressure fluctuation and the pressure fluctuation
are sensitive to the turbulence model and the flow transition location. Although the
peak pressure fluctuation and the pressure fluctuation near the trailing edge are slightly
lower than the experimental data, the shock movement is well captured by the numerical
simulation. The mean velocity profiles at different stations on the upper surface of the
airfoil are shown in Figure 6. It can be seen that the calculated results match well with the
experimental data, consistent with the results of [5,7,10].
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4. Results and Discussions
4.1. The Design of the Active SCB

In previous studies, it was found that the bump crest location was the key parameter 
for both wave drag reduction and buffet suppression. Tian et al. [27] showed that passive 
SCBs positioned between 10 and 18% aft of the mean shock location were capable of sup-
pressing shock oscillations in a buffeting flow field. Furthermore, Geoghegan et al. [28–
30] showed that for the OAT15A airfoil with oscillating SCBs, buffet suppression existed 
for a much wider range of positions including SCBs positioned aft and in front of the mean 
shock location. 

Figure 7 shows the range of the shock movement on the upper surface of the OAT15A 
airfoil. The freestream flow conditions are 𝑀∞ = 0.73, 𝛼 = 3.5°, and 𝑅𝑒𝑐 = 3 × 106. It can 
be estimated that the upper and lower limits of shock location are 0.44c and 0.54c, respec-
tively, resulting in a mean shock location of 0.49c. Therefore, in this study, the bump crest 
is fixed at the mean shock location, i.e., xc = 0.49c. In addition, the active SCB is designed 
to be symmetrical and has a length of 0.3c, according to our previous study [31].
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4. Results and Discussions

4.1. The Design of the Active SCB

In previous studies, it was found that the bump crest location was the key parameter
for both wave drag reduction and buffet suppression. Tian et al. [27] showed that passive
SCBs positioned between 10 and 18% aft of the mean shock location were capable of sup-
pressing shock oscillations in a buffeting flow field. Furthermore, Geoghegan et al. [28–30]
showed that for the OAT15A airfoil with oscillating SCBs, buffet suppression existed for
a much wider range of positions including SCBs positioned aft and in front of the mean
shock location.

Figure 7 shows the range of the shock movement on the upper surface of the OAT15A
airfoil. The freestream flow conditions are M∞ = 0.73, α = 3.5◦, and Rec = 3 × 106. It
can be estimated that the upper and lower limits of shock location are 0.44c and 0.54c,
respectively, resulting in a mean shock location of 0.49c. Therefore, in this study, the bump
crest is fixed at the mean shock location, i.e., xc = 0.49c. In addition, the active SCB is
designed to be symmetrical and has a length of 0.3c, according to our previous study [31].
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Figure 7. The lift response and the shock location on the upper surface of the OAT15A airfoil. (a) 
Time history of the lift coefficient. (b) The upper limit of shock location. (c) The lower limit of shock 
location.

4.2. The Effects of Parameters of the Control Law on Buffet Alleviation
According to the closed-loop control law shown in Equation (6), there are two pa-

rameters, namely the gain, 𝑘𝑏, and the delay time, Δ𝑡. The effect of the gain will be first 
studied. The freestream flow conditions are chosen as 𝑀∞ = 0.73, 𝛼 = 3.5°, and 𝑅𝑒𝑐 =3 × 106, corresponding to a typical buffet case for the OAT15A airfoil. The delay time, Δ𝑡, 
was set to 0, and the design lift coefficient, 𝐶𝐿0, was set to 0.881, which is equal to the mean 
lift coefficient of the baseline airfoil. 

Figure 8 shows the time history of the responses by the active SCB with different 
gains. Note that the non-dimensional time was defined as 𝜏 = 𝑡 ∙ 𝑈/𝑐 , where 𝑡  and 𝑈 
represent the flow time and the reference velocity, respectively. The active SCB is de-
ployed at τ = 0 and runs until the steady-state flow is detected or the solution locks into 
a new buffet state. It can be seen that the active SCB can slightly suppress the amplitude 
of lift fluctuation. As shown in Figure 8b, with the increase of the gain, the amplitude of 
lift fluctuation decreases. However, as 𝑘𝑏 increases to 0.05, only 30% of the lift amplitude 
has been reduced. Therefore, it can be concluded that the gain has a relatively minor effect 
on buffet suppression, and the effect of the delay time should be taken into consideration 
as well.
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According to the closed-loop control law shown in Equation (6), there are two parame-
ters, namely the gain, kb, and the delay time, ∆t. The effect of the gain will be first studied.
The freestream flow conditions are chosen as M∞ = 0.73, α = 3.5◦, and Rec = 3 × 106,
corresponding to a typical buffet case for the OAT15A airfoil. The delay time, ∆t, was set
to 0, and the design lift coefficient, CL0, was set to 0.881, which is equal to the mean lift
coefficient of the baseline airfoil.

Figure 8 shows the time history of the responses by the active SCB with different gains.
Note that the non-dimensional time was defined as τ = t·U/c, where t and U represent
the flow time and the reference velocity, respectively. The active SCB is deployed at τ = 0
and runs until the steady-state flow is detected or the solution locks into a new buffet state.
It can be seen that the active SCB can slightly suppress the amplitude of lift fluctuation. As
shown in Figure 8b, with the increase of the gain, the amplitude of lift fluctuation decreases.
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Based on the above studies, we fixed the gain as 0.02 and investigated the effect of the
delay time on buffet suppression. Here the delay time, ∆t, is described by the buffet period,
T0, of the baseline airfoil. For example, ∆t = 9/36T0 means that the phase of the height
fluctuation has a lag of 90◦ relative to that of the lift fluctuation. Figure 9 shows the time
history of the responses under the control with the delay time ranging from 0 to 9/36T0.
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When the delay time is set to 3/36T0, the lift amplitude decreases by approximately
70% of that of the baseline airfoil. When ∆t becomes 6/36T0, the lift fluctuation is almost
suppressed to a steady state within about 200 non-dimensional time. When ∆t becomes
9/36T0, a stable flow is quickly established.

height fluctuation has a lag of 90° relative to that of the lift fluctuation. Figure 9 shows the 
time history of the responses under the control with the delay time ranging from 0 to 9/36𝑇0. When the delay time is set to 3/36𝑇0, the lift amplitude decreases by approxi-
mately 70% of that of the baseline airfoil. When Δ𝑡 becomes 6/36𝑇0, the lift fluctuation is 
almost suppressed to a steady state within about 200 non-dimensional time. When Δ𝑡 be-
comes 9/36𝑇0, a stable flow is quickly established.
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(b) 

Figure 9. Time history of responses with different delay times; 𝑘𝑏 = 0.02. (a) SCB height. (b) Lift 
coefficient.

The parameter space for closed-loop control was explored by studying various com-
binations of the gain and the delay time. Figure 10 shows the amplitude of lift fluctuation 
and the mean lift coefficient by using various parameters of the control law. It is clear that 
the active SCB is effective for buffet alleviation by using the delay time ranging from 0 to 15/36T0. Moreover, it can be found that the optimal delay time is equal to 9/36T0, inde-
pendent of the gain. In addition, it can be observed that the mean lift coefficient slightly 
increases under an effective closed-loop control. 

Figure 9. Time history of responses with different delay times; kb = 0.02. (a) SCB height.

(b) Lift coefficient.

The parameter space for closed-loop control was explored by studying various combi-
nations of the gain and the delay time. Figure 10 shows the amplitude of lift fluctuation
and the mean lift coefficient by using various parameters of the control law. It is clear
that the active SCB is effective for buffet alleviation by using the delay time ranging from
0 to 15/36T0. Moreover, it can be found that the optimal delay time is equal to 9/36T0,
independent of the gain. In addition, it can be observed that the mean lift coefficient slightly
increases under an effective closed-loop control.

Figure 11 shows the time history of the responses by using the optimal delay time
(∆t = 9/36T0) and different gains. To analyze the performances of the control system for
a quadrotor UAV, several performance indicators were used by Liu et al. [39,40]. In the
current study, following the work of [30], the settling time, denoted as ∆τs.t., is adopted
to quantify the response speed of the control system. It is defined as the non-dimensional
time when the amplitude of lift fluctuation decreases by 90% of that of the baseline airfoil.
By adopting kb = 0.02, the settling time is 104 and the maximum bump height is about
0.0016c. When the gain increases to 0.04, the settling time decreases to 23 and the maximum
bump height increases to 0.003c. This means that the control system has a shorter response
time by using a larger gain, at the cost of a higher bump height.
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Figure 11. Buffet control with different gains; ∆t = 9/36T0. (a) SCB height. (b) Lift coefficient.

Figure 12 shows the relation between the bump movement and the shock movement
for the case of kb = 0.02 and ∆t = 9/36T0. Note that the dash lines in the figure are the
limits of shock movement. It can be observed that as the shock moves from the lower limit
(point a) to the upper limit (point c), a bump with positive camber is needed to suppress
the shock movement. Inversely, as the shock moves from the upper limit (point c) to the
lower limit (point e), a bump with negative camber is needed.

4.3. Buffet Control Constrained by Maximum Bump Height

The above study shows that the active SCB with a larger gain has better performance
in suppressing the buffet. However, the resulting high bump will bring new challenges for
practical applications due to the deformation achievable on the wings. In this section, we
consider imposing a constraint on the maximum height of the active SCB. The closed-loop
control law is redesigned as follows:

hb =

{

kb(CL(t − ∆t)− CL0), |hb| < hb,max

hb,max, |hb| ≥ hb,max
(7)

where hb,max is the maximum bump height.
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Figure 12. Bump movement and shock movement; 𝑘𝑏 = 0.02 and Δ𝑡 = 9/36𝑇0.(a) The responses. 
(b) Time b. (c) Time c. (d) Time d. (e) Time e.

4.3. Buffet Control Constrained by Maximum Bump Height
The above study shows that the active SCB with a larger gain has better performance 

in suppressing the buffet. However, the resulting high bump will bring new challenges 
for practical applications due to the deformation achievable on the wings. In this section, 
we consider imposing a constraint on the maximum height of the active SCB. The closed-
loop control law is redesigned as follows:ℎ𝑏 = {𝑘𝑏(𝐶𝐿(𝑡 − Δ𝑡) − 𝐶𝐿0), |ℎ𝑏| < ℎ𝑏,𝑚𝑎𝑥ℎ𝑏,𝑚𝑎𝑥 ,                             |ℎ𝑏| ≥ ℎ𝑏,𝑚𝑎𝑥  (7)

where ℎ𝑏,𝑚𝑎𝑥 is the maximum bump height. 
Figure 13 shows the response of the lift coefficient by using different gains. The max-

imum bump height of the active SCB is set to 0.002c. In the case of 𝑘𝑏 = 0.02, as shown in 
Figure 13a, the actual bump height is no more than the maximum height. As a result, the 
responses are identical to that of the previous control law without a height constraint. The 
settling time is 104. In the case of 𝑘𝑏 = 0.04, as shown in Figure 13b, the bump height 
reaches the height limit. The settling time is 35, showing an improvement in response 
speed. When the gain increases to 0.06, as shown in Figure 13c, the settling time reduces 
to 24. As the gain continues to increase to 0.08, as shown in Figure 13d, very little improve-
ment can be observed with regard to the settling time. It can be concluded that by impos-
ing a height constraint on the closed-loop system, its response speed can be significantly 
increased by using a large gain. 

Figure 12. Bump movement and shock movement; kb = 0.02 and ∆t = 9/36T0.(a) The responses.
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Figure 13 shows the response of the lift coefficient by using different gains. The
maximum bump height of the active SCB is set to 0.002c. In the case of kb = 0.02, as shown
in Figure 13a, the actual bump height is no more than the maximum height. As a result,
the responses are identical to that of the previous control law without a height constraint.
The settling time is 104. In the case of kb = 0.04, as shown in Figure 13b, the bump height
reaches the height limit. The settling time is 35, showing an improvement in response speed.
When the gain increases to 0.06, as shown in Figure 13c, the settling time reduces to 24. As
the gain continues to increase to 0.08, as shown in Figure 13d, very little improvement can
be observed with regard to the settling time. It can be concluded that by imposing a height
constraint on the closed-loop system, its response speed can be significantly increased by
using a large gain.

Figure 14 shows the change in the settling time with the gain by imposing various
height constraints. It is clear that the settling time can be effectively reduced by increasing
the gain. In addition, loosening the height constraint can further decrease the settling
time. However, as the gain exceeds 0.06, no apparent improvement can be observed in the
response speed.

4.4. Buffet Control over a Range of Flow Conditions

This section will investigate the robustness of the closed-loop control system under
various flow conditions. First, the angle of attack is changed, while the other flow conditions
are fixed as M∞ = 0.73 and Rec = 3 × 106. Figure 15 shows the lift coefficients and RMS
pressure coefficients for the baseline airfoil at an angle of attack ranging from 3.5◦ to 5.0◦. It
can be found that with the increase in the angle of attack, the amplitude of lift fluctuation
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gradually increases and the range of shock motion increases as well. In addition, the mean
shock location also changes as the angle of attack varies.

  
(a) (b) 

  
(c) (d) 

Figure 13. Comparison of the responses with different gains; Δ𝑡 = 9/36𝑇0 and ℎ𝑏,𝑚𝑎𝑥 = 0.002𝑐. (a) 𝑘𝑏 = 0.02. (b) 𝑘𝑏 = 0.04. (c) 𝑘𝑏 = 0.06. (d) 𝑘𝑏 = 0.08.

Figure 14 shows the change in the settling time with the gain by imposing various 
height constraints. It is clear that the settling time can be effectively reduced by increasing 
the gain. In addition, loosening the height constraint can further decrease the settling time. 
However, as the gain exceeds 0.06, no apparent improvement can be observed in the re-
sponse speed.

Figure 14. Settling time vs. the gain; 𝑡 = 9/36𝑇0 ; ℎ𝑏,𝑚𝑎𝑥 represents the maximum bump height.
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Figure 13. Comparison of the responses with different gains; Δ𝑡 = 9/36𝑇0 and ℎ𝑏,𝑚𝑎𝑥 = 0.002𝑐. (a) 𝑘𝑏 = 0.02. (b) 𝑘𝑏 = 0.04. (c) 𝑘𝑏 = 0.06. (d) 𝑘𝑏 = 0.08.

Figure 14 shows the change in the settling time with the gain by imposing various 
height constraints. It is clear that the settling time can be effectively reduced by increasing 
the gain. In addition, loosening the height constraint can further decrease the settling time. 
However, as the gain exceeds 0.06, no apparent improvement can be observed in the re-
sponse speed.

Figure 14. Settling time vs. the gain; 𝑡 = 9/36𝑇0 ; ℎ𝑏,𝑚𝑎𝑥 represents the maximum bump height.Figure 14. Settling time vs. the gain; t = 9/36T0; hb,max represents the maximum bump height.
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4.4. Buffet Control over a Range of Flow Conditions
This section will investigate the robustness of the closed-loop control system under 

various flow conditions. First, the angle of attack is changed, while the other flow condi-
tions are fixed as 𝑀∞ = 0.73 and 𝑅𝑒𝑐 = 3 × 106. Figure 15 shows the lift coefficients and 
RMS pressure coefficients for the baseline airfoil at an angle of attack ranging from 3.5° to 
5.0°. It can be found that with the increase in the angle of attack, the amplitude of lift 
fluctuation gradually increases and the range of shock motion increases as well. In addi-
tion, the mean shock location also changes as the angle of attack varies.
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Figure 15. Lift coefficient and RMS pressure coefficient for the baseline airfoil at various angles of 
attack at 𝑀∞ = 0.73. (a) Lift coefficient vs. angle of attack. (b) RMS pressure coefficient.

The same active SCB with a gain of 0.06 and a delay time of 9/36𝑇0 has been adopted 
for all cases ranging from 3.5° to 5.0° at 𝑀∞ = 0.73. Figure 16 shows the variation of the 
settling time with the angle of attack. It can be seen that as the angle of attack increases, 
the settling time gradually increases, meaning that the response speed decreases. How-
ever, this problem can be relieved by increasing the bump height. As the maximum bump 
height increases to 0.002c, the settling time is relatively insensitive to the angle of attack. 
Overall, it can be concluded that the closed-loop control system has good robustness over 
a range of angles of attack by using an optimal combination of parameters of the control 
law.
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The same active SCB with a gain of 0.06 and a delay time of 9/36T0 has been adopted
for all cases ranging from 3.5◦ to 5.0◦ at M∞ = 0.73. Figure 16 shows the variation of the
settling time with the angle of attack. It can be seen that as the angle of attack increases, the
settling time gradually increases, meaning that the response speed decreases. However,
this problem can be relieved by increasing the bump height. As the maximum bump height
increases to 0.002c, the settling time is relatively insensitive to the angle of attack. Overall,
it can be concluded that the closed-loop control system has good robustness over a range
of angles of attack by using an optimal combination of parameters of the control law.
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Figure 15. Lift coefficient and RMS pressure coefficient for the baseline airfoil at various angles of 
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The same active SCB with a gain of 0.06 and a delay time of 9/36𝑇0 has been adopted 
for all cases ranging from 3.5° to 5.0° at 𝑀∞ = 0.73. Figure 16 shows the variation of the 
settling time with the angle of attack. It can be seen that as the angle of attack increases, 
the settling time gradually increases, meaning that the response speed decreases. How-
ever, this problem can be relieved by increasing the bump height. As the maximum bump 
height increases to 0.002c, the settling time is relatively insensitive to the angle of attack. 
Overall, it can be concluded that the closed-loop control system has good robustness over 
a range of angles of attack by using an optimal combination of parameters of the control 
law.

Figure 16. Settling time vs. angle of attack at 𝑀∞ = 0.73; ℎ𝑏,𝑚𝑎𝑥 represents the maximum bump 
height.
Figure 16. Settling time vs. angle of attack at M∞ = 0.73; hb,max represents the maximum

bump height.

Then, the active SCB with a gain of 0.06, a delay time of 9/36T0, and a maximum
height of 0.003c has been adopted to test the effectiveness of buffet control over a range of
flow conditions. As shown in Figure 17a, the red dots indicate the chosen flow conditions.
At these flow conditions, it was found that the fluctuating loads could be completely
suppressed with the closed-loop control. Figure 17b–d shows the responses of airfoil lift
and bump height at the angle of attack of 4.5◦. It can be seen that the control device can
achieve buffet suppression in a short settling time. Therefore, it can be concluded that the
closed-loop control has the ability to control the buffet over a wide range of flow conditions.
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Then, the active SCB with a gain of 0.06, a delay time of 9/36𝑇0, and a maximum 
height of 0.003𝑐 has been adopted to test the effectiveness of buffet control over a range 
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closed-loop control has the ability to control the buffet over a wide range of flow condi-
tions.
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tive TEF. The active TEF has a length of 0.1c, the same as in the study of [35]. The 
freestream flow conditions are chosen as 𝑀∞ = 0.73, 𝛼 = 3.5°, and 𝑅𝑒𝑐 = 3 × 106. Figure 
18 shows the comparison of parameter spaces of two control methods. In the figure, the 
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The symbols “□” and “◊” indicate that the control is able to reduce the lift amplitude. The 
symbol “□” represents the case that the reduction of the lift amplitude is less than 30% of 
that of the baseline airfoil, while the symbol “◊” represents the case that the reduction of 
the lift amplitude is more than 30% of that of the baseline airfoil. The symbol “○” indi-
cates a fully positive control. It is clear that the effective region of buffet suppression using 
the active SCB is larger than that of using the active TEF. Therefore, the active SCB is less 
sensitive to the parameters of the control law, which is beneficial for the control system to 
work in a complex environment.

Figure 17. The responses at different flow conditions; kb = 0.06, ∆t = 9/36T0 and hb,max = 0.003c.

(a) Test flow conditions. (b) M∞ = 0.71, α = 4.5◦. (c) M∞ = 0.72, α = 4.5◦. (d) M∞ = 0.73, α = 4.5◦.

4.5. Comparison of Active Closed-Loop Buffet Control Using SCB and TEF

This section will compare the proposed buffet control method with the reference active
TEF. The active TEF has a length of 0.1c, the same as in the study of [35]. The freestream
flow conditions are chosen as M∞ = 0.73, α = 3.5◦, and Rec = 3 × 106. Figure 18 shows
the comparison of parameter spaces of two control methods. In the figure, the symbol “×”
indicates a negative control, i.e., increasing the amplitude of lift fluctuation. The symbols
“�” and “♦” indicate that the control is able to reduce the lift amplitude. The symbol
“�” represents the case that the reduction of the lift amplitude is less than 30% of that of
the baseline airfoil, while the symbol “♦” represents the case that the reduction of the lift
amplitude is more than 30% of that of the baseline airfoil. The symbol “#” indicates a fully
positive control. It is clear that the effective region of buffet suppression using the active
SCB is larger than that of using the active TEF. Therefore, the active SCB is less sensitive to
the parameters of the control law, which is beneficial for the control system to work in a
complex environment.

The fully controlled cases are further examined. Figure 19 shows the comparison of
the steady state Cp and C f x under the control methods. It can be seen that the two control
methods produce almost identical results. This is also confirmed by the aerodynamic
coefficients, as shown in Table 3. However, the settling time of buffet suppression using
the active SCB is only 40% of that of using the active trailing edge flap. Overall, the
proposed active SCB significantly outperforms the active TEF in terms of both robustness
and response speed.

Table 3. Comparison of performances between the two control methods with a gain of 0.02.

Control Type CL CD ∆τs.t.

Baseline (Mean) 0.881 0.0398 -
Active trailing edge flap 0.881 0.0390 93

Active bump 0.881 0.0389 37
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The fully controlled cases are further examined. Figure 19 shows the comparison of 
the steady state 𝐶𝑝 and 𝐶𝑓𝑥 under the control methods. It can be seen that the two control 
methods produce almost identical results. This is also confirmed by the aerodynamic co-
efficients, as shown in Table 3. However, the settling time of buffet suppression using the 
active SCB is only 40% of that of using the active trailing edge flap. Overall, the proposed 
active SCB significantly outperforms the active TEF in terms of both robustness and re-
sponse speed.
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Figure 19. Comparison of Cp and Cfx in the steady state under the control methods. (a) Pressure

coefficient. (b) x component of the skin friction coefficient.

5. Conclusions

A closed-loop buffet control using an active shock control bump has been proposed
and investigated. A closed-loop control law has been designed by using the lift coefficient
as the feedback signal and using the bump height as the control variable. The location
of the active SCB has been located according to the mean shock location of the baseline
airfoil. The numerical tests based on the URANS simulations show that the proposed
control method can effectively suppress the transonic buffet on a supercritical airfoil. The
effects of parameters of the control law, including the delay time and the gain, on buffet
suppression have been studied. It was found that when the phase of height fluctuation
has a lag of 90◦ relative to the phase of lift fluctuation, the closed-loop system shows the
best performance in alleviating the buffet. Considering the potential practical constraint on
SCB height, the closed-loop control law was redesigned by imposing a height constraint,
which also showed a good performance. Furthermore, the proposed SCB closed-loop buffet
control system shows good robustness over a range of angles of attack. In comparison
with the reference active TEF, the study shows that the active SCB is less sensitive to the
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parameters of the control law and has a shorter response time. In terms of both robustness
and response time, the active SCB significantly outperforms the reference active TEF. The
future works include applying the active SCB on three-dimensional wings and adopting
more intelligent control algorithms, such as neural networks and sliding mode control.
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Nomenclature

c Airfoil chord length

CL Lift coefficient

CD Drag coefficient

CP Pressure coefficient

C f x x-component of skin friction coefficient

fsb Shock buffet frequency

hb Bump height

hte Displacement of the trailing edge

k Gain of the closed-loop control

lb Bump length

M∞ Freestream Mach number

p Static pressure

q0 Dynamic pressure

Rec Chord-based Reynolds number

T0 Shock buffet period

α Freestream angle of attack

β Flap deflection angle

τ Non-dimensional time

∆τs.t. Non-dimensional settling time of buffet suppression

∆t Delay time of the closed-loop control

PSD Power spectral density

Mean Cp Mean pressure coefficient

RMS Cp Root mean square

References

1. Li, R.; Deng, K.; Zhang, Y.; Chen, H. Pressure Distribution Guided Supercritical Wing Optimization. Chin. J. Aeronaut. 2018, 31,

1842–1854. [CrossRef]

2. Lee, B.H.K. Self-Sustained Shock Oscillations on Airfoils at Transonic Speeds. Prog. Aerosp. Sci. 2001, 37, 147–196. [CrossRef]

3. Jacquin, L.; Molton, P.; Deck, S.; Maury, B.; Soulevant, D. Experimental Study of Shock Oscillation over a Transonic Supercritical

Profile. AIAA J. 2009, 47, 1985–1994. [CrossRef]

4. Deck, S. Numerical Simulation of Transonic Buffet over a Supercritical Airfoil. AIAA J. 2005, 43, 1556–1566. [CrossRef]

5. Grossi, F.; Braza, M.; Hoarau, Y. Prediction of Transonic Buffet by Delayed Detached-Eddy Simulation. AIAA J. 2014, 52, 2300–2312.

[CrossRef]

6. Zhang, Y.; Yang, P.; Li, R.; Chen, H. Unsteady Simulation of Transonic Buffet of a Supercritical Airfoil with Shock Control Bump.

Aerospace 2021, 8, 203. [CrossRef]



Aerospace 2023, 10, 537 17 of 18

7. Huang, J.; Xiao, Z.; Liu, J.; Fu, S. Simulation of Shock Wave Buffet and Its Suppression on an OAT15A Supercritical Airfoil by

IDDES. Sci. China Phys. Mech. Astron. 2012, 55, 260–271. [CrossRef]

8. Levy, L.L., Jr. Experimental and Computational Steady and Unsteady Transonic Flows about a Thick Airfoil. AIAA J. 1978, 16,

564–572. [CrossRef]

9. Iovnovich, M.; Raveh, D.E. Reynolds-Averaged Navier-Stokes Study of the Shock-Buffet Instability Mechanism. AIAA J. 2012, 50,

880–890. [CrossRef]

10. Giannelis, N.F.; Levinski, O.; Vio, G.A. Influence of Mach Number and Angle of Attack on the Two-Dimensional Transonic Buffet

Phenomenon. Aerosp. Sci. Technol. 2018, 78, 89–101. [CrossRef]

11. Giannelis, N.F.; Levinski, O.; Vio, G.A. Origins of a Typical Shock Buffet Motions on a Supercritical Aerofoil. Aerosp. Sci. Technol.

2020, 107, 106304. [CrossRef]

12. Smith, A.N.; Babinsky, H.; Fulker, J.L.; Ashill, P.R. Normal Shock Wave-Turbulent Boundary-Layer Interactions in the Presence of

Streamwise Slots and Grooves. Aeronaut. J. 2002, 106, 493–500. [CrossRef]

13. Holden, H.A.; Babinsky, H. Separated Shock-Boundary-Layer Interaction Control Using Streamwise Slots. J. Aircr. 2005, 42,

166–171. [CrossRef]

14. Eastwood, J.P.; Jarrett, J.P. Toward Designing with Three-Dimensional Bumps for Lift/Drag Improvement and Buffet Alleviation.

AIAA J. 2012, 50, 2882–2898. [CrossRef]

15. Holden, H.; Babinsky, H. Effect of Microvortex Generators on Seperated Normal Shock/Boundary Layer Interactions. J. Aircr.

2007, 44, 170–174. [CrossRef]

16. Rybalko, M.; Babinsky, H.; Loth, E. Vortex Generators for a Normal Shock/Boundary Layer Interaction with a Downstream

Diffuser. J. Propuls. Power 2012, 28, 71–82. [CrossRef]

17. Caruana, D.; Mignosi, A.; Robitaillié, C.; Corrège, M. Separated Flow and Buffeting Control. Flow Turbul. Combust. 2003, 71,

221–245. [CrossRef]

18. Caruana, D.; Mignosi, A.; Corrège, M.; Le Pourhiet, A.; Rodde, A.M. Buffet and Buffeting Control in Transonic Flow. Aerosp. Sci.

Technol. 2005, 9, 605–616. [CrossRef]

19. Dandois, J.; Lepage, A.; Dor, J.-B.; Molton, P.; Ternoy, F.; Geeraert, A.; Brunet, V.; Coustols, É. Open and Closed-Loop Control of

Transonic Buffet on 3D Turbulent Wings Using Fluidic Devices. Comptes Rendus Mec. 2014, 342, 425–436. [CrossRef]

20. Gao, C.; Zhang, W.; Ye, Z. Numerical Study on Closed-Loop Control of Transonic Buffet Suppression by Trailing Edge Flap.

Comput. Fluids 2016, 132, 32–45. [CrossRef]

21. Ren, K.; Chen, Y.; Gao, C.; Zhang, W. Adaptive Control of Transonic Buffet Flows over an Airfoil. Phys. Fluids 2020, 32, 096106.

[CrossRef]

22. Birkemeyer, J.; Rosemann, H.; Stanewsky, E. Shock Control on a Swept Wing. Aerosp. Sci. Technol. 2000, 4, 147–156. [CrossRef]

23. Qin, N.; Zhu, Y.; Shaw, S.T. Numerical Study of Active Shock Control for Transonic Aerodynamics. Int. J. Numer. Methods Heat

Fluid Flow 2004, 14, 444–466. [CrossRef]

24. Qin, N.; Wong, W.; Le Moigne, A. Three-Dimensional Contour Bumps for Transonic Wing Drag Reduction. Proc. Inst. Mech. Eng.

Part G J. Aerosp. Eng. 2008, 222, 619–629. [CrossRef]

25. Mayer, R.; Lutz, T.; Krämer, E. Numerical Study on the Ability of Shock Control Bumps for Buffet Control. AIAA J. 2018, 56,

1978–1987. [CrossRef]

26. Mayer, R.; Lutz, T.; Krämer, E.; Dandois, J. Control of Transonic Buffet by Shock Control Bumps on Wing-Body Configuration.

J. Aircr. 2019, 56, 556–568. [CrossRef]

27. Tian, Y.; Gao, S.; Liu, P.; Wang, J. Transonic Buffet Control Research with Two Types of Shock Control Bump Based on RAE2822

Airfoil. Chin. J. Aeronaut. 2017, 30, 1681–1696. [CrossRef]

28. Geoghegan, J.A.; Giannelis, N.F.; Vio, G.A. A Numerical Study on Transonic Shock Buffet Alleviation through Oscillating Shock

Control Bumps. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8 January 2018.

29. Geoghegan, J.A.; Giannelis, N.F.; Vio, G.A. A Numerical Investigation of the Geometric Parametrisation of Shock Control Bumps

for Transonic Shock Oscillation Control. Fluids 2020, 5, 46. [CrossRef]

30. Geoghegan, J.A.; Giannelis, N.F.; Vio, G.A. Parametric Study of Active Shock Control Bumps for Transonic Shock Buffet

Alleviation. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6 January 2020.

31. Zhang, S.; Deng, F.; Qin, N. Cooperation of Trailing-Edge Flap and Shock Control Bump for Robust Buffet Control and Drag

Reduction. Aerospace 2022, 9, 657. [CrossRef]

32. Ren, K.; Gao, C.; Zhou, F.; Zhang, W. Transonic Buffet Active Control with Local Smart Skin. Actuators 2022, 11, 155. [CrossRef]

33. Moigne, A.L.; Qin, N. Variable-Fidelity Aerodynamic Optimization for Turbulent Flows Using a Discrete Adjoint Formulation.

AIAA J. 2004, 42, 1281–1292. [CrossRef]

34. Sclafani, A.J.; DeHaan, M.A.; Vassberg, J.C.; Rumsey, C.L.; Pulliam, T.H. Drag Prediction for the Common Research Model Using

CFL3D and OVERFLOW. J. Aircr. 2014, 51, 1101–1117. [CrossRef]

35. CFL3D. Available online: https://nasa.github.io/CFL3D/ (accessed on 1 February 2023).

36. Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 1598–1605.

[CrossRef]

37. Giannelis, N.F.; Vio, G.A. Influence of Turbulence Modelling Approach on Shock Buffet Computations at Deep Buffet Conditions.

In Proceedings of the AIAA AVIATION 2021 FORUM, Virtual, 2 August 2021.



Aerospace 2023, 10, 537 18 of 18

38. Szubert, D.; Asproulias, I.; Grossi, F.; Duvigneau, R.; Hoarau, Y.; Braza, M. Numerical Study of the Turbulent Transonic Interaction

and Transition Location Effect Involving Optimisation around a Supercritical Aerofoil. Eur. J. Mech.-B Fluids 2016, 55, 380–393.

[CrossRef]

39. Liu, K.; Wang, R.; Wang, X.; Wang, X. Anti-Saturation Adaptive Finite-Time Neural Network Based Fault-Tolerant Tracking

Control for a Quadrotor UAV with External Disturbances. Aerosp. Sci. Technol. 2021, 115, 106790. [CrossRef]

40. Liu, K.; Wang, R.; Zheng, S.; Dong, S.; Sun, G. Fixed-Time Disturbance Observer-Based Robust Fault-Tolerant Tracking Control

for Uncertain Quadrotor UAV Subject to Input Delay. Nonlinear Dyn. 2022, 107, 2363–2390. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Problem Definition 
	Baseline Airfoil 
	Definition of Active Control Devices 
	Closed-Loop Control Law for Buffet Alleviation 

	Numerical Methods 
	Flow Solver 
	Grid Convergence Study 
	Validation 

	Results and Discussions 
	The Design of the Active SCB 
	The Effects of Parameters of the Control Law on Buffet Alleviation 
	Buffet Control Constrained by Maximum Bump Height 
	Buffet Control over a Range of Flow Conditions 
	Comparison of Active Closed-Loop Buffet Control Using SCB and TEF 

	Conclusions 
	References

