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Dual spin max pooling 
convolutional neural network 
for solar cell crack detection
Sharmarke Hassan * & Mahmoud Dhimish 

This paper presents a solar cell crack detection system for use in photovoltaic (PV) assembly units. 
The system utilizes four different Convolutional Neural Network (CNN) architectures with varying 
validation accuracy to detect cracks, microcracks, Potential Induced Degradations (PIDs), and shaded 
areas. The system examines the electroluminescence (EL) image of a solar cell and determines its 
acceptance or rejection status based on the presence and size of the crack. The proposed system was 
tested on various solar cells and achieved a high degree of accuracy, with an acceptance rate of up to 
99.5%. The system was validated with thermal testing using real-world cases, such as shaded areas 
and microcracks, which were accurately predicted by the system. The results show that the proposed 
system is a valuable tool for evaluating the condition of PV cells and can lead to improved efficiency. 
The study also shows that the proposed CNN model outperforms previous studies and can have 
significant implications for the PV industry by reducing the number of defective cells and improving 
the overall efficiency of PV assembly units.

Solar cell crack detection plays a vital role in the photovoltaic (PV) industry, where automated defect detection is 
becoming increasingly necessary due to the growing production quantities of PV modules and limited application 
of manual/visual inspection. Previous research has focused on utilizing signal processing and image processing 
techniques to detect cracks and anomalies in solar cells. However, these conventional approaches often require 
complex structures and a large amount of data to achieve accurate results.

Convolutional neural networks (CNNs) have emerged as a powerful tool for crack detection, offering several 
advantages over traditional methods. CNNs can automatically learn and identify patterns in images, enabling 
them to accurately detect and classify cracks in PV panels, even when the cracks are not clearly visible or have 
complex shapes. Moreover, CNNs can be trained to detect cracks with high accuracy and efficiency, saving time 
and resources compared to manual inspection methods. This is especially crucial in the PV industry, where many 
PV panels need to be regularly and efficiently inspected.

CNNs serve as the dominant deep learning technique and have consistently outperformed most machine-
learning approaches in various real-world  applications1,2. Among the top-of-the-line CNNs, including 
 GoogleNet3,  ResNet4, and  DenseNet5, the architectures in order to achieve a high level of performance are all 
professionally designed by experts who have a deep domain understanding due to their experience in both 
investigating data and the development of CNNs. The problem is that not every user interested in a particular 
domain is equipped with such domain knowledge. As an example, users who have experience in the data at 
hand may not necessarily have an understanding of how to build algorithms for CNNs, or vice versa, depend-
ing on their familiarity with the  data6. Therefore, there is a surge of interest in automating CNN architectures, 
which will make the tuning of CNN architectures transparent to users without any domain  knowledge7–10. A 
CNN architecture design algorithm can, on the other hand, promote wide adoption of CNN architectures, thus 
promoting the development of the field of AI through the development of CNNs.

Based on the type of domain knowledge that is required when implementing the algorithms for CNN archi-
tecture design, existing CNN architecture design algorithms can be broken down into two different categories. In 
the first case, CNN architecture designs are created using a combination of "automatic and manual tuning"11,12, 
and what this means is that manual tuning would still be warranted in addition to the automatic tuning, based on 
expertise in designing CNN architectures. In this category you will find information about genetic CNN methods 
and hierarchical representation  methods13. Another type of CNN architecture design is the so-called "automatic" 
CNN architecture  design14, which does not require users to manually adjust its parameters when it is used by 
them. There is no doubt that the "automatic + manually tuning" design is often superior to the "automated" design 
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when considering the extra benefits that are produced by manual expertise in  CNNs15. As such, the "automatic" 
designs have a significant advantage over the "manual" designs, in that they do not need any manual  tuning16. 
Users without any domain knowledge of CNNs are much more likely to favour these automated designs.

An innovative deep CNN infrastructure has recently been developed by the authors  of17 known as Hypothe-
ses-CNN Pooling (HCP), in which an arbitrary number of object segment hypotheses were used as inputs to the 
system. Each hypothesis was connected to a shared CNN, and finally the CNN outputs for each hypothesis were 
aggregated with max pooling in order to produce the ultimate multi-label predictions from the CNN outputs. 
The flexibility of this deep CNN infrastructure can be attributed to a number of unique features, such as the fact 
that no ground-truth bounding box information is required for training, and that the entire HCP infrastructure 
is robust to possible noise and/or redundant hypotheses. Another recent  study18 concluded that degrading an 
image significantly decreases its classification performance, especially when the training images cannot reflect 
test image degradation levels. Their visual analysis of the CNN layers revealed that many critical low-level features 
were not clearly discernible in early layers, which might equate to dropped accuracy.

A recent  study19 examined the use of CNN networks for medical imaging applications. An experiment evalu-
ated three techniques, including support vector machines with rotation and orientation free features, transfer 
learning on CNN networks, and capsule network training. Accordingly, CNN methods perform better than 
traditional methods because they learn and select features automatically. Transfer learning models yield the 
most accurate results.

Increasing production quantities of PV modules and limited application of manual/visual inspection are 
driving the need for automated defect detection in the photovoltaic (PV) field. Research in this area has focused 
on detecting cracks and anomalies in solar cells using signal processing and image processing  techniques20–23. 
Nevertheless, a recent  study24 developed a method for automatically detecting PV module defects in electro-
luminescence images, using a light convolutional neural network architecture to identify defects in EL images, 
achieving 93.02% accuracy on the solar cell dataset. Additionally, the classifications of solar cell defects are based 
on two machine learning approaches proposed  by25 utilizing features extraction-based support vector machines 
(SVMs) and convolutional neural networks (CNNs). Using suitable hyperparameters, algorithm optimizers, and 
loss functions, they have achieved 91.58% accuracy in cell detection classification.

It takes a large amount of data to compile the existing CNN-based solar cell detection methods (usually more 
than 100 images for each cell) as well as highly complex structures for the CNN to work  accurately26,27. In recent 
years, CNN-based algorithms for the detection of solar cell cracks have also been tested in non-industrial set-
tings, where they gain access to EL images and develop their models afterwards, without purifying the validity 
of their models when applied in an industrial setting (for example, time of processing, speed of cracked solar cell 
detection, detection of abnormal solar cell structures, test the CNN model against different solar cells containing 
different busbars, etc.).

Typically, CNN models are slow due to an operation known as “max pooling” within their  architecture28, 
and this method is frequently used to inspect solar cells. In real-world applications of CNN models, training 
CNNs with multiple layers takes a long time if a computer does not have a high-performance GPU. Neither max 
pooling nor multi-layer CNNs were used in our work.

CNN are becoming increasingly important in the PV industry for crack detection. The use of CNNs in crack 
detection can provide several benefits over traditional methods. One of the main benefits of using CNNs for crack 
detection is their ability to automatically learn and identify patterns in images. This allows them to accurately 
detect and classify cracks in PV panels, even in cases where the cracks are not clearly visible or have complex 
shapes. Additionally, CNNs can be trained to detect cracks in images with high accuracy and efficiency, which 
can save time and resources compared to manual inspection methods. This is particularly important in the PV 
industry where large number of PV panels need to be inspected regularly and efficiently. Moreover, the use of 
CNNs for crack detection can improve the safety and reliability of PV systems by detecting and preventing cracks 
that can lead to system failures or safety hazards. This can help to increase the overall performance and lifespan 
of PV systems, which can lead to cost savings for PV system owners and operators.

Our work expands upon the existing approaches in the field of CNNs for crack detection, aiming to enhance 
the detection ability in this domain. Through the development of a CNN architecture specifically tailored for 
crack detection, we have introduced new elements to improve the effectiveness of the model. By employing a 
training network, we conducted thorough evaluations of different architectures and made necessary adjust-
ments to enhance validation accuracy. Notably, our modifications included transitioning from mean pooling 
to max pooling, increasing the number of convolutional layers, and introducing a novel pooling method. These 
enhancements resulted in a significant improvement in validation accuracy, achieving a noteworthy level of 
96.97%. To highlight the distinctiveness of our approach, we named it "DSMP-CNN" denoting the utilization of 
a Dual Spin Max Pooling Convolutional Neural Network architecture. The DSMP-CNN architecture represents 
a unique variation of CNNs that incorporates the dual spin pooling mechanism along with the conventional max 
pooling layer. This innovative approach is strategically designed to enhance the accuracy of crack detection by 
capturing the distinctive features of cracks and other defects present on solar cells. By integrating the DSMP-
CNN architecture into our proposed system, we have achieved highly precise evaluations of the acceptance/
rejection status of photovoltaic cells, based on the identification of black spots, cracks, PIDs, and shaded areas.

In summary, the major contributions of our research can be highlighted as follows:

• Novel CNN Architecture: We propose the DSMP-CNN architecture, which combines the advantages of mean 
pooling and max pooling with a dual spin pooling mechanism. This unique approach captures distinctive 
features of cracks and other defects on solar cells, leading to improved accuracy in crack detection.
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• High Accuracy and Efficiency: Through extensive testing on various solar cells, our proposed DSMP-CNN 
architecture achieves a high degree of accuracy, with an acceptance rate of up to 99.5%. This demonstrates 
the effectiveness of our approach in accurately evaluating the acceptance/rejection status of photovoltaic cells 
based on the presence and size of defects, including cracks, microcracks, PIDs, and shaded areas.

• Real-World Validation: We validate the performance of our system using real-world cases, such as shaded 
areas and microcracks, which are accurately predicted by the DSMP-CNN architecture. This validation 
showcases the robustness and reliability of our approach in practical scenarios.

• Improved Efficiency and Reduced Defective Cells: By leveraging the power of DSMP-CNN, our research 
has significant implications for the PV industry. The proposed system can reduce the number of defective 
cells by accurately detecting and preventing cracks and other defects. This leads to improved efficiency and 
overall performance of PV assembly units, resulting in cost savings for PV system owners and operators.

Materials and methods
The CNN network is implemented using EL images taken directly from a manufacturing solar cell line facility, 
as shown in Fig. 1a. PV cells can be tested under EL cameras to find hidden defects in their structure; however, 
as described earlier, automation of detection is necessary for fast decision-making about whether the solar cell 
is cracked. In Fig. 1b, five healthy (non-defective) solar cells are displayed, while defective solar cells are shown 
in Fig. 1c. We implemented the CNN as part of the EL setup, so that the process could automatically determine 
if a solar cell should continue in production (defect-free cells) or if it should be reported as damaged and go into 
the recycling process (defective solar cells).

EL imaging is a technique used to visualize the electrical activity within a solar cell. In this process, a high-
voltage electrical current is applied to the solar cell, causing it to emit light. This light can be captured using a 
camera, and the resulting image can be analyzed to gain insight into the performance of the solar cell. EL imag-
ing can be used to identify areas of the solar cell that are not functioning properly, such as regions with high 
resistance or low light absorption (Fig. 1c). Additionally, it can be used to optimize the design of the solar cell 
to improve its overall efficiency.

Figure 1.  (a) Solar cell production line with in-house EL detection equipment, (b) Example of solar cells 
without any cracks “healthy samples”, (c) Example of solar cells with cracks “cracked samples”.
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In this study, the EL image resolution employed for CNN training, validation, and testing purposes ranges 
from 1000 × 1000 pixels to 2500 × 2500 pixels. This deliberate variation in image resolution was implemented to 
ensure that the developed detection algorithm can handle a wide range of resolution levels, encompassing both 
low and high-resolution images. By incorporating diverse resolution images, the algorithm’s effectiveness and 
robustness across different image qualities are thoroughly assessed and validated in this work.

When building CNNs, the following layers are typically utilized:

• The core of a CNN is the convolution layer. This layer contains a set of filters (or kernels), whose param-
eters are learned throughout the training process. A filter usually has a smaller size than the actual image. 
An activation map is created by combining each filter with an image. Each dot product is calculated at each 
spatial position between every filter element and the input when the filter is sliding across the image height 
and width.

• Batch normalization, or batch norm, is the second layer of CNN. During training, it ensures regularization, 
prevents overfitting, and increases the speed of CNNs. In this layer, each feature map is normalized along with 
its parameters. The batch norm would result in each feature having a different mean and standard deviation, 
and therefore, the CNN will produce additional accuracy in image feature extraction.

• In CNN, the third layer is referred to as the rectified linear unit (ReLU). This layer removes all negative 
values from the filtered image and replaces them with zeros. A certain quantity must be present as input 
for this function to activate. In other words, if the input is below zero, the output will also be zero. There is, 
however, a linear relationship between the input and the dependent variable once the input reaches a certain 
threshold. This means that it is capable of accelerating a deep neural network’s training data set at a faster 
rate than other activation functions.

• Pooling is the fourth layer of the CNN. Pooling can be divided into two types: max Pooling and mean Pooling. 
By using Max Pooling, we are able to extract the maximum value from a specific portion of an image covered 
by the kernel. Meanwhile, mean pooling is a method for averaging the values from a portion of the image 
which is covered by the kernel. While in practice, when it comes to selecting whether to use maximum or 
mean pooling, there is no standardised solution, so the choice needs to be made while training and verifying 
the accuracy of the CNN network over time.

• A fully connected layer refers to a neural network that comprises neurons that apply a linear transformation 
to input vectors in order to find a solution to the problem through the use of weight matrices. Consequently, 
every possible connection between the input vector and the output vector is present as a result of the use of 
layers, such that every input of the input vector influences every output of the output vector.

• In CNN network that predict a probabilistic distribution based on a multinomial distribution, the softmax 
function is used as the activation function in the output layer of the neural network model. This means that 
softmax is used as the activation function in multi-class classification problems when more than two class 
labels are required for a class to have membership in the CNN classification.

• In the CNN network, the last layer is referred to as the classification layer. This is where a neural network is 
able to classify a class according to the rules that are defined by the CNN network. Two classes are included 
in our work, accept and reject, to indicate the status of the solar cell. In the event of cracks in the image, the 
solar cell will be rejected and will be transferred to the recycling unit of the PV manufacturing unit; otherwise, 
if CNN accepts the image, the actual solar cell will be placed in the manufacturing assembly unit.

To begin developing a CNN architecture for crack detection, we began by creating a training network from 
scratch. The architecture of the training network is divided into several stages, including input, convolutional, 
pooling, fully connected layers, and output. The initial convolutional network, referred to as Net1/Net2, started 
with an input layer of resized images of 227 × 227× 3 pixels. This was followed by two layers of convolutional filters 
with 32 filters, each connected with a batch normalization layer and a Relu activation layer. Mean/max pooling 
was applied, as illustrated in Fig. 2a and b. During initial experiments, the learning rate was set to 0.0001, the 
mini-batch size was set to 16, and the network was trained for 20 epochs. A summary of the key parameters of 
the architecture can be found in Table 1.

Using the training network, it was determined that the validation accuracy of Net1 is 81.5%, which is the 
standard for mean pooling, which is quite far from its validity. The accuracy improved to 87.5% when the mean 
pooling was repleted to max pooling, which is still not significant, but it is making progress towards the validity.

Following that, the main task was how to improve the validity accuracy of the architecture. In this case, we 
increased the number of convolutional layers from two to three by using double pooling maximum and mean, 
as shown in Fig. 3a, and keeping all the other parameters and learning factors unchanged. From there, we were 
able to improve the validity accuracy to 93.75%.Taking into consideration the fact that the three convolution 
layers improved the validation accuracy, we decided to keep the layers the same but changed the design of the 
architecture, changing the double pooling from Max and mean to double Max pooling as shown in Fig. 3b. 
From there, the validation accuracy improved to 96.97%, which demonstrates that Net4 is the most appropirate 
architecture to employ for our research.

As shown in Fig. 4, the deployment of a CNN network for solar cell inspection begins by capturing an EL 
image of the solar cell as it exits the manufacturing line. EL imaging is a method used to test the quality of a 
solar cell by measuring the light emitted from the cell when a small current is applied to it. Once an EL image of 
the solar cell has been obtained, it is then incorporated into the CNN network for analysis. The CNN network 
is trained to recognize patterns and features in the image that indicate the presence of cracks or fractures in the 
solar cell. It uses this information to decide whether to accept or reject the cell.
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Figure 2.  Developed CNN network architectures. (a) Two-layer convolutions and mean pooling (referred as 
Net1), (b) Two-layer convolutions and max pooling (referred as Net2).

Table 1.  Summary of CNN input parameters for Net4.

Parameter Value Parameter Value

Image input size 227 × 227x3 Pixels Initial learn rate 0.0001

Convolutional layers 32 filters Epochs 20

Filter size 3, 3 Mini batch size 16

Learn rate drop factor 0.1 Validation frequency 16

Random rotation (degree)  − 90, 90 Solver Sgdm
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If the CNN network determines that the cell is free of cracks or fractures, it is classified as "accepted" and 
sent for assembly into a solar panel. On the other hand, if the network detects cracks or fractures in the cell, it is 
classified as "rejected" and sent for recycling. The use of a CNN network in this process allows for a high level of 
automation and accuracy in the inspection of solar cells, as the network can quickly and reliably identify defects 
that may not be visible to the human eye.

During the development of the CNN architecture for solar cell inspection, one of the major challenges faced 
was adjusting parameters that affect the accuracy, such as the number of training cycles (epochs), validation 
accuracy, and the rate at which the model learns (learning rate). It was discovered that if the learning rate was 
too high, the model would converge to a suboptimal solution quickly, and if the learning rate was too low, the 
process could become  stuck29,30. To overcome this challenge, the team started by using a learning rate of 0.01 and 
10 epochs for the first CNN network (Net1). Initially, the validation accuracy was 56%, but this was gradually 
improved by increasing the learning rate to 0.0001 and increasing the number of epochs to 20. This resulted in 
a maximum validation accuracy of 81.5% for Net1 as seen in Fig. 5a.

Since further increasing the number of epochs was not improving accuracy, the team focused on improv-
ing the CNN architecture. They replicated the mean pooling of Net1 to the maximum pooling of Net2, which 
resulted in an improvement in validation accuracy of 87.5%, as seen in Fig. 5b. We continued to improve the 
architecture by keeping the same learning rate and epochs and adding three convolution layers with max-mean 
pooling and max-max pooling, respectively, resulting in validation accuracies of 93.75 and 96.97% for Net3 
and Net4 as seen in Fig. 5c and d. This allowed them to achieve a high level of accuracy with 20 epochs and a 
learning rate of 0.0001.

Similarly, the loss function for CNN models is a key parameter to consider, as it measures the variance 
between the predicted output and the actual ground truth data. To accomplish this, all the critical parameters of 

Figure 3.  Enhanced CNN network architectures. (a) Three-layer convolutions and max-mean pooling (referred 
as Net3), (b) Three-layer convolutions and max-max pooling (referred as Net4).
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the CNN model will be adjusted through the training process with the objective to minimize the loss function 
in a way that will enhance the model’s ability to predict the loss function more accurately as well as its overall 
performance.

An ideal loss graph has two lines labelled red for training loss and blue for validation loss, both of which need 
to decrease and converge to indicate that the loss model is reducing the prediction error of the model. Based on 
the Net4 Architecture, shown in Fig. 6, it appears that initially, the loss of the model was a fraction higher, but as 
the model was constantly trained, the loss of the model was progressively reduced towards zero, showing a high 
degree of learning and that the model is performing well and minimizing both loss and error.

A confusion matrix is a table that summarizes the performance of a classification model by displaying the 
number of correct and incorrect predictions made on a dataset. In this case, Table 2 presents the results of the 
confusion matrix for the CNN model Net4, which was applied to 150 images consisting of 75 healthy solar cells 
and 75 cracked solar cells. Additionally, the accuracy and precision of the model were calculated using (1) and 
(2), and the results are as follows:

• The accuracy of 93.3% indicates that the model correctly classified 93.3% of all the samples, encompassing 
both cracked and non-cracked solar cells in the dataset. This means that the model’s overall performance in 
accurately predicting the class of the solar cells was 93.3%.

• The precision of 92.2% implies that out of all the samples the model identified as cracked, 92.2% of them were 
indeed cracked solar cell images. Precision measures the proportion of correctly predicted positive cases, 
indicating that the model’s ability to correctly identify cracked solar cells was 92.2% precise.

These results suggest that the CNN model Net4 performed well in classifying the solar cell images, with a high 
accuracy and precision. However, it’s important to note that the interpretation of these results relies on the 
assumption that the values in the confusion matrix are accurate and correctly reported.

(1)Accuracy =
TP + TN

TP + TN + FP + FN
=

71 + 69

71 + 69 + 6 + 4
= 93.3%

Figure 4.  Incorporating the CNN network into decision making for the identification of solar cell cracks in an 
industrial setting application.
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Figure 5.  Validation accuracy of CNN network architectures. (a) Net1, (b) Net2, (c) Net3, (d) Net4.

Figure 6.  Net4 CNN network learning Loss vs learning iterations (epochs).

Table 2.  Confusion matrix of the developed CNN model “Net4”. Significant values are in bold and italic.

Actual value

Actual no cracks Actual cracks

Predicted value
Predicted no cracks 71 4

Predicted cracks 6 69
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Results and discussion
The proposed CNN was tested by inserting various solar cells into the system and evaluating the accuracy of its 
predictions in determining whether the solar cell should be accepted or rejected. The first solar cell examined was 
a relatively healthy one with minor black spots (these usually appear in the EL due to the resolution/calibration of 
the camera), as shown in Fig. 7a. To ensure consistency and facilitate effective learning, the captured EL images 
were pre-processed to ensure a uniform resolution or resized to fit a specific resolution range (e.g. 1000 × 1000 
pixels to 2500 × 2500 pixels). The system predicted that the cell would be accepted with 98.2% accuracy and 
rejected with 1.8% accuracy, which is a precise prediction as the cell is in good condition and has only a small 
number of black spots. The system made this prediction by analyzing the size, shape, and quantity of the black 
spots on the solar cell and comparing them to a database of accepted and rejected solar cells, using mathematical 
algorithms to predict the cell’s acceptance/rejection status with a high degree of accuracy.

The second case (Case 2) was a healthy solar cell with fewer black spots (better EL image resolution) than the 
first case, as shown in Fig. 7b. The model predicted that the cell had a 99.5% acceptance rate and a 0.5% rejec-
tion rate, resulting in accepting the cell for the assembly phase. This illustrates that the proposed model is more 
precise in predicting the performance of a solar cell than conventional methods, and that it can recognize cells 
with fewer black spots, which can lead to improved efficiency.

In a subsequent phase of experimentation, solar cells with significant cracks were analyzed. Specifically, Case 
3, as depicted in Fig. 8a, focused on the examination of solar cells with major cracks. Upon running the system, 
it was determined that the solar cell had a rejection rate of 99.1% and an acceptance rate of 0.9%, which is a valid 
prediction as the cell is visibly damaged by the presence of significant cracks.

To further validate the reliability of the testing, an additional examination of cracked solar cells was con-
ducted. This was done on Case 4, which was similar to Case 3, but with fewer cracks present, as shown in Fig. 8b. 
The system’s prediction was that 98.4% of the solar cells would be rejected, which is still a reasonable estimate, but 
the rejection rate was lower than that of Case 3, due to the presence of fewer cracks. A further example of crack 
detection can be found in Figs. S1 and S2 for 12 different healthy and cracked solar cells samples, respectively.

Based on the analysis of four distinct cases, it appears that the proposed system is capable of providing 
accurate predictions, as evidenced by the reference images. However, it should be noted that certain cases may 
present more of a challenge to predict, and these will be discussed in the following section.

There are many challenges associated with predicting whether a cell will be accepted or rejected, and one of 
the key challenges is predicting potential-induced degradation (PID). PID is a leading cause of module degrada-
tion and is caused by the high voltage generated between the encapsulants and the front glass surface, which is 
grounded through either the cell frame or the  substructure31. As a result of this, we started to conduct testing on 
the solar cells before and after PID. The PID test was carried out while connecting the solar cells with − 1000 V 
for 96 h duration, and after we obtained the EL images before and after the PID, we put on the CNN system to 
test whether can predict the PID as accepted or rejected. After running the system, it was determined that (case 
5) the acceptance rate of the solar cells before the PID was 99.2%, as shown in Fig. 9a. Despite the fact that the 
cells began to diminish after the PID occurred, this prediction resulted in a rejection of 98.2% for solar cells with 
a PID, as shown in Fig. 9b. These precise predictions demonstrate the effectiveness of the system in determining 

(2)Precision =
TP

TP + FP
=

71

71 + 6
= 92.2%

Figure 7.  Examined healthy solar cells with an acceptance/rejection percentage. (a) Case 1, (b) Case 2.
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Figure 8.  Examined cracked solar cells with an acceptance/rejection percentage. (a) Case 3, (b) Case 4.

Figure 9.  Examined solar cells with PID (case 5). (a) Before PID, (b) After PID.
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the acceptance rate of solar cells with and without a PID, making it a valuable tool for evaluating the condition 
of photovoltaic cells.

For the purpose of further validation for the PID a further case (case 6) was tested on the system with the 
same characteristics as Case 5 but with a much more noticeable dimming specifically after the PID occurred as 
shown in Fig. 10a and b.

Upon running the system, it predicts that the system can effectively differentiate between the solar cells prior 
and subsequent to the PID by accepting the percentage of cells prior to the PID of 99.4%, while at the same time 
making accurate predictions for the cells with PID, with a rejection rate of 99.4%. This indicates a remarkable 
performance of the system and suggests that it is capable of distinguishing between cells that have undergone 
PID and those that have not, with a high degree of accuracy and precision.

In our study, we examined solar cells with shaded areas, which are commonly observed in silicon-based solar 
cells due to a phenomenon known as shunting. Shunting occurs during the manufacturing process and results 
in localized shaded regions on the solar cell’s surface. By including shaded areas in our evaluation, we aimed to 
assess the effectiveness of our crack detection system in identifying and distinguishing between genuine cracks 
and these shunted regions.

Solar cells with shaded areas (labelled in red dashed circles in Fig. 11) are especially challenging to predict 
whether they will be accepted or rejected. This is because the shade will cause an uneven distribution of current 
in the busbars. This would lead to stress in the cell and consequently higher temperatures. In the light of that, 
we took a look at two cases of solar cells with shaded areas, referred to as cases 7 and 8, and conducted the same 
processing test on them as on the others. Based on the results of the analysis, it was predicted that both cases 
would be rejected with 98.5% and 98.9%, respectively, as shown in Fig. 11a and b, which were accurate predic-
tions given that the system has been trained to detect cells with shaded areas.

To provide further validation for the cases within the shaded area, we conducted thermal testing for both 
cases (case 7 and case 8) to put them on a solar simulator, under standard conditions, solar irradiance of 1000 
W/m2 and cell temperature 25 °C are employed. Using thermal imaging, it is possible to determine whether a 
cell sample has hot spots. In both cases, after getting the thermal images, it was revealed that the temperature 
of the cells had increased to 77.6 °C and 57.8 °C respectively, as shown in Fig. 12a and b, which eventually led 
to power loss in each case.

A further factor to be considered when predicting the condition of solar cells is the presence of micro-cracks. 
Micro-cracks are not major cracks that can result in a big loss of power and can be classed as healthy cells as 
outlined in red dashed circles in Fig. 13a and b. Therefore, micro-cracks need to be taken into account when 
assessing the condition of solar cells, as they do not cause a significant decrease in energy output. As a result, we 
began examining two solar cells with micro-cracks (case 9 and 10), which prompted the system to identify them 
as accepted solar cells. In the end, the running system concluded that both cases were healthy, with a percentage 
acceptance of 99.5% and 99.9%, respectively. This indicates that it is a reliable prediction since it isn’t a major 
crack and has minimal power loss.

For the purpose of validating the results of the CNN system, thermal testing was conducted in both cases 
9 and 10 by using the solar simulator with STC, with the same thermal imaging process that had been used in 
cases 7 and 8. As shown in Fig. 14a and b, the results of thermal testing indicated that a uniform distribution of 
heat across the surface of the solar cell was observed. Therefore, the surface temperature has been approximated 
to 25 °C, which is the standard temperature for testing. It is observed that the microcrack solar cells are not 

Figure 10.  Examined solar cells with PID (case 6). (a) Before PID, (b) After PID.
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exposed to hotspots. It is also noteworthy that for the microcracks, there was no increase in the temperature 
of the cell, which confirms that microcracks do not change the temperature of the cell or cause a hot spot to 
develop in the cell.

Comparative analysis
As a means of verifying the effectiveness of the proposed method, the obtained results have been compared with 
several well-developed CNN crack detection  methods26,28,32–34 that are widely used in the industry. A summary 
of the comparison is given in Table 3.

Figure 11.  Examined solar cells with shaded area. (a) Case 7, (b) Case 8.

Figure 12.  Thermal image of the examined solar cell with shaded area under STC Condition. (a) Case 7, (b) 
Case 8.
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Recent studies rely most heavily on transfer learning, which uses pre-trained networks instead of developing 
them from scratch by using different datasets. The most notable cases of transfer learning  are26,32,34, which are 
based on AlexNet, VGG-16, VGG-19, Inception-v3, Inception ResNet50-v2 and ResNet50-v2. Although the cases 
weren’t developed from scratch, the pre-trained network was tweaked a bit  by32. Interestingly, all these studies 
are competent to detect cracks, but not PIDs and shaded areas. Additionally, the results have not been validated 

Figure 13.  Examined solar cells with no major cracking. (a) Case 9, (b) Case 10.

Figure 14.  Thermal image of the examined solar cell with micro-cracks under STC Condition. (a) Case 9, (b) 
Case 10.
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with thermal testing. Furthermore, these studies do not discuss the potential of transfer learning to detect PIDs 
and shaded areas, or the possible benefit of thermal testing in validating the results.

Based  on28,33 developed CNN architectures, bidirectional attention feature pyramid network (BAFPN) and 
swarm optimization (PSO), both networks are able to detect cracks as efficiently as previous networks. In addi-
tion to their reluctance to detect PIDs and shaded areas, these networks have not been validated with thermal 
testing, and tending to require extensive data to train.

As a result of this study, four different architectures were developed from scratch, and we were able to assess 
the effectiveness and accuracy of these architectures as well as to improve the reliability of validations. We have 
validated the results of this network with thermal testing in order to be able to rely on it in PV assembly units 
to identify cracks, micro cracks, PID and shaded areas. Using this network, PV assembly units will be able to 
classify various solar cells in the most straightforward manner possible.

While this paper presents significant advantages, there are certain limitations to be acknowledged in this 
study. Firstly, the evaluation of the proposed system was conducted using a specific dataset, which might not 
fully capture the diversity of real-world scenarios involving various types of solar cells. For instance, solar cells 
with different busbar configurations or manufacturing variations were not extensively explored. Therefore, the 
generalizability of the findings to these specific cases may be limited.

Secondly, the study relied on EL images obtained from indoor environments and a solar cell production line. 
While these settings are relevant to the intended application, it is important to recognize that imaging conditions 
can vary in different scenarios. Factors such as lighting conditions, camera specifications, and imaging setups 
may differ when examining solar cells in outdoor environments or using different EL detection equipment. 
Hence, the transferability of the proposed system to these alternative imaging conditions may require further 
investigation and adaptation.

To address these limitations in future research, it is recommended to:

• Expand the dataset to encompass a broader range of solar cell types, including variations in busbar configura-
tions and manufacturing processes, to improve the representativeness of the evaluation.

• Incorporate EL images captured in diverse imaging conditions, such as outdoor environments or using dif-
ferent EL detection equipment, to assess the system’s performance under various scenarios.

• Consider conducting comparative studies or benchmarking against existing crack detection methods using 
multiple datasets to establish the robustness and effectiveness of the proposed system across different settings.

• Collaborate with industry partners or research institutions to access a wider range of solar cell samples and 
imaging conditions, ensuring the findings are applicable to real-world scenarios.

• Conduct sensitivity analyses or perform experiments to evaluate the system’s performance under controlled 
variations in lighting conditions, camera settings, or other imaging parameters to assess its robustness and 
adaptability.

By addressing these limitations, future research can enhance the applicability and reliability of the crack 
detection system for a broader range of solar cell types and imaging conditions.

Table 3.  Comparison between our developed DSMP-CNN against several recently develop solar cell cracks 
detection  algorithms26,28,32–34.

Ref Year of study Solar cell cracks detection description

Validation

Solar cell cracks PID Thermal test

34 2020
Pre-trained AlexNet-CNN: a CNN transfer learning crack detecting method based on pre-trained AlexNet 
network

✓ x x

28 2021
BAFPN-CNN: is developed to accomplish multiscale feature fusion. This architecture, called bidirectional 
attention feature pyramid network (BAFPN), can make all layers of the pyramid share similar semantic 
features

✓ x x

26 2021
In this study, pretrained models of VGG-16, VGG-19, Inception-v3, InceptionResNet50-v2, ResNet50-v2, 
and Xception are individually assessed before aggregating them using the ensemble method. Ensemble 
learning further increases the accuracy while reducing the risk of relying on a single model

✓ x x

33 2022

PSO Pruner-CNN: The pruning problem of DCNN is formulated as a search problem, which is solved by 
particle swarm optimization (PSO) algorithm. To improve the quality of the pruning scheme, a tailored 
trick is considered that the automatic searching process with PSO algorithm is repeated for multiple 
rounds

✓ x x

32 2022

Modified pre-trained AlexNet: pre-trained AlexNet architecture is modified to extract more detailed 
feature maps and a novel and efficient. multi-scale CNN model is proposed. Since low-level convolutions 
have small-sized filters, two convolutional branches are added to series-connected 3 × 3 convolutional 
layers

✓ x x

This work 2023

DSMP-CNN: Dual Spin Max Pooling Convolutional Neural Network for Solar Cell Crack Detection. 
Through the development of new networks, we were able to assess the effectiveness of various architectures 
and improve the validation accuracy. Our approach of switching from mean pooling to maximum pool-
ing, increasing the number of convolutional layers, and changing the pooling method led to significant 
improvements in validation accuracy

✓ ✓ ✓
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Conclusions
A novel solar cell crack detection system for application in PV assembly units was developed and presented in 
this article. A proposed network incorporates four different CNN architectures with varying validation accuracy 
to detect cracks, microcracks, PIDs, and shaded areas, supported by thermal testing to validate the results. In this 
method, the system examines the EL image of the solar cell and identifies whether it predicts the solar cell to be 
accepted or rejected with precise. Moreover, the system utilizes a set of features to reduce the false-positive rate 
and increase accuracy of the crack detection process using a dual spin max pooling CNN architecture.

The proposed CNN system was tested on various solar cells to determine their acceptance/rejection status. 
The system was found to be highly accurate in determining the condition of solar cells based on the presence 
and size of black spots, cracks, PID, and shaded areas. The system achieved a high degree of accuracy, with an 
acceptance rate of up to 99.5% and rejection rate of up to 99.1% in different cases. Moreover, the system was 
validated with thermal testing using cases with real ranges, such as shaded areas and micro-cracks, which were 
predicted with high degrees of accuracy by the system. The results indicate that the proposed system is a valu-
able tool for evaluating the condition of photovoltaic cells and can lead to improved efficiency. Moreover, the 
study uncovered a superior performance of the proposed CNN model in comparison with previous studies in 
the detection of cracks, micro-cracks, PIDs, and shaded areas on solar cells.

This research is important to the PV industry and PV solar cell crack detection automation for several reasons:

• Accurate crack detection: The proposed DSMP-CNN system can accurately detect cracks, microcracks, PIDs, 
and shaded areas in photovoltaic cells, which can lead to improved efficiency and reliability of the cells.

• High accuracy: The system was tested on various solar cells and achieved a high degree of accuracy, with an 
acceptance rate of up to 99.5% and rejection rate of up to 99.1% in different cases.

• Improved efficiency: By automating the crack detection process, the proposed system can reduce manual 
inspection time and errors, leading to improved efficiency in the PV industry.

• Real-time detection: The system can quickly examine the EL image of the solar cell and predict its acceptance 
or rejection status in real-time, which can save time and resources for PV companies.

Data availability
The dataset generated and analysed in this study may be available from the corresponding author (S.H.) on 
reasonable request.
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