
This is a repository copy of Towards Long-horizon Motion Planning in Dynamic 
Environments.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/201337/

Version: Accepted Version

Proceedings Paper:
Zhang, Xiaoliang, Millard, Alan Gregory orcid.org/0000-0002-4424-5953 and Liu, 
Pengcheng orcid.org/0000-0003-0677-4421 (Accepted: 2023) Towards Long-horizon 
Motion Planning in Dynamic Environments. In: The 24th Annual Conference Towards 
Autonomous Robotic Systems (TAROS2023). . (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Towards Long-horizon Motion Planning in

Dynamic Environments

Xiaoliang Zhang[0009−0008−9111−1828], Alan G. Millard[0000−0002−4424−5953], and
Pengcheng Liu[0000−0003−0677−4421]

Department of Computer Science, University of York, York, UK
{xiaoliang.zhang, alan.millard, pengcheng.liu}@york.ac.uk

Abstract. In contrast to mobile robots, the planning space of manip-
ulators (robot arms) is high-dimensional, which poses great challenges
for motion planning. Classical motion planning approaches face com-
putation difficulty in such scenarios, and dynamic obstacles exacerbate
the problem. We propose a Deep Reinforcement Learning (DRL) based
motion planning approach, with a Gaussian Mixture Regression (GMR)
sampling tool, to tackle this problem. Benefiting from the reduction of
training difficulty in DRL networks, the proposed architecture is effective
for a long-horizon manipulation tasks in dynamic environments.

Keywords: Motion planning · Manipulators · Deep Reinforcement Learn-
ing · Gaussian Mixture Regression · Dynamic environments.

1 Introduction

Motion planning (MP) for manipulators with dynamic constraints is a challeng-
ing problem, but essential for safe human-robot collaboration (sHRC), where
robots must avoid human bodies (dynamic constraints) in real-time. Sampling-
based motion planners (SBMP) are often used for MP in high-dimensional space.
However, SBMP still faces limitations in very high-dimensional space [1], and
faces difficulty in processing dynamic environments [2] due to its high com-
putational cost. On the other hand, Deep Reinforcement Learning (DRL) has
been widely used in MP, and model-free DRL is especially powerful in unknown
environments. Unfortuantely, DRL methods face difficulty in long-horizon ma-
nipulation tasks due to the extremely large search space to explore [3], especially
when there is a sparse reward. Gaussian Mixture Models (GMM) are simple to
implement, and take uncertainty in the environment into consideration, but they
are not good at avoiding geometric constraints [4].

In this paper, we propose a hybrid MP model for manipulators in dynamic
environments with GMM/GMR (Gaussian Mixture Regression) and DRL. Con-
cretely, a GMM/GMR is trained from demonstrations of an expert in a certain
task, then it is used as an aiding tool to train a DRL model. In the training
of DRL model, the GMM/GMR is applied to bias the training of DRL, thus
reducing its searching space to help it converge.
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Fig. 1. Architecture of the Proposed Model

The advantages of this work include: (1) by the help of a trained DRL, it
can respond to a dynamic environment in real-time. (2) GMR can help train the
DRL, by reducing the search space and decreasing its training difficulties, thus
for long-horizon tasks that pose challenges in the training of DRL, our proposed
method is more powerful. (3) it can process the MP in high-dimensional space,
as DRL is well-suited to high-dimensional space.

2 Methodology

We propose a hybrid model for a long-horizon manipulator MP with dynamic
constraints, consisting of DRL and GMR. The GMM/GMR, trained by demon-
stration from humans, functions as a exploration guiding tool for the following
DRL-based MP model. The DRL-based MP model can generate motions at the
next time step based on the current state, and goal configuration. Instead of
exploring the space just by its own policy, the exploration is biased towards im-
itating the behavior of the GMM/GMR, the search space is thus reduced. The
architecture of our proposed model is shown in Figure 1.

2.1 The GMM/GMR Exploration Guiding Tool

We develop a GMM/GMR model similar to [4], which maps time to state. To
train the GMM/GMR, we first plan to collect N demonstrations from human
experts, each of which will be abstracted into T-time steps. GMM/GMR is the
mixture of several Gaussian models (Gaussian components) – in our model, we
have K Gaussian components, so:

P (x | θ) =
K∑

k=1

αkφ(x | θk) (1)
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where θk refers to the mean and covariance matrix of the k-th Gaussian
component, i.e., (µk, Σk). And φ(ξ | θk) is the k-th Gaussian component base.
x = (xi), i = 1, 2...N is the demonstrations. By introducing time t, we have:

P (x | t, k) ∼ N (x; x̂k, Σ̂k),

x̂k = µx,k +Σxt,k(Σtt,k)
−1(t− µt,k),

ˆΣxx,k = Σxx,k −Σxt,k(Σtt,k)
−1Σtx,k

(2)

Through an Expectation-Maximisation (E-M) algorithm, we can train the
GMR model and finally the GMR-based exploration tool. This will be imple-
mented with the DRL-based motion planner introduced in the next subsection.

2.2 GMR-guided Soft Actor-Critic

After we get P (x|t), we begin to design the DRL-based planner. We plan to apply
the Soft Actor-Critic (SAC) model to train our DRL network, due to its strong
adaptability to continuous space and outstanding capability in convergence. To
reduce the search space, we make an improvement in the exploration process
of the SAC. Typically, the SAC agent will execute actions based on its current
policy to collect transitions from environment. Instead, we want the agent to
perform exploration with probability γ1, or follow GMR with probability γ2 for
the whole episode exploration at the beginning of each one, which could reduce
the search space. We make γ1 and γ2 dynamic, as we want the agent to follow the
GMR more often in the beginning, since at this time the GMR model is more
experienced. Whereas with the improvement of the agent’s policy, the weight
explores on its own policy more. This means that γ1 will increase with training
and γ2 will decrease.

We name our SAC-based planner with GMR as GMR-guided SAC (GSAC),
and after it is trained offline, it can be set up for online usage, thus saving com-
putation time when used, compared with SBMP. To make it compliant with
dynamic obstacle avoidance, we need to design its reward function carefully like
in [5]. Anther concern is the inefficiency brought by sparse reward in a high-
dimensional space. We plan to use a composition of dense rewards to provide
the agent with timely feedback in case it gets lost in the large space. A typical
approach is to give the agent a small value in every step, to query whether it is
in collision or reach the goal. And once it happens that the agent collides with
obstacles or reaches the goal, a large reward can be given as a inspiration or a
punishment. We will design our reward function based on the above considera-
tions, and make improvement to make our model better. The architecture of a
SAC is rather complicated, which consists of 4 networks, one policy network, one
state value network, and two Q networks. We will implement these four networks
and their objective functions in detail in the next steps.

We will conduct the experiments on a Franka Panda robotic arm, a robot
with 7 DOFs. The action is represented by the deviation of each joint, at = ∆qt.



4 X. Zhang et al.

There should be an upper limit set on this deviation to avoid dealing damage to
the robot. To make the agent collect enough information about the environment,
we make state st = (qt, qe, dobs, dtar), where qt represents the coordinate of each
joint, qe is the position of the end-effector, dobs is the distance between each link
of the robot to the obstacles and dtar is the distance of the end-effector to the
target. However, the state and action space is still under evaluation and will be
further improved in the future based on the experiment results.

Our proposed work is built on the backbone of DRL-based MP in dynamic
environments, which is already verified in many past works like in [5] [6]. Based
on these works, we introduce a sampling method to enhance its performance,
thus it is plausible that our proposed model will perform well in the experiment.

3 Conclusions

In this paper, we introduced a DRL-based MP model to solve a long-horizon
manipulation task in dynamic environments, with the help of an innovative
GMM/GMR-based exploration strategy. Previous works using DRL-based model
for manipulation in dynamic environments demonstrated effectiveness and thus
we can conclude that our work will be more effective. We will move on to im-
prove our design and implement the experiment. Moreover, this model also has
the potential to be integrated with the ISO requirements for the sHRC.
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