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Abstract. We give a comprehensive account on the parameterized com-
plexity of model checking and satisfiability of propositional inclusion
and independence logic. We discover that for most parameterizations
the problems are either in FPT or paraNP-complete.
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1 Introduction

The research program on team semantics was conceived in the early 2000s to
create a unified framework to study logical foundations of different notions of
dependence between variables. Soon after the introduction of first-order depen-
dence logic [28], the framework was extended to cover propositional and modal
logic [29]. In this context, a significant step was taken in [5], where the focus
shifted to study dependencies between formulas instead of variables. The frame-
work of team semantics has been proven to be remarkably malleable. During the
past decade the framework has been re-adapted for the needs of an array of dis-
ciplines. In addition to the modal variant, team semantics has been generalized
to temporal [19] and probabilistic [4] frameworks, and fascinating connections
to fields such as database theory [11], statistics [1], real valued computation [9],
verification [20], and quantum information theory [16] have been identified.

Boolean satisfiability problem (SAT) and quantified Boolean formula prob-
lem (QBF) have had a widespread influence in diverse research communities.
In particular, QBF solving techniques are important in application domains
such as planning, program synthesis and verification, adversary games, and non-
monotonic reasoning, to name a few [27]. Further generalizations of QBF are
the dependency quantified Boolean formula problem (DQBF) and alternating
DQBF which allow richer forms of variable dependence [10,24,25]. Propositional
logics with team semantics offer a fresh perspective to study enrichments of SAT
and QBF. Indeed, the so-called propositional dependence logic (PDL) is known
to coincide with DQBF, whereas quantified propositional logics with team se-
mantics have a close connection to alternating DQBF [10,30].
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Instructor Time Room Course Responsible

Antti 09:00 A.10 Genetics Antti
Antti 11:00 A.10 Chemistry Juha
Antti 15:00 B.20 Ecology Antti
Jonni 10:00 C.30 Bio-LAB Jonni
Juha 10:00 C.30 Bio-LAB Jonni
Juha 13:00 A.10 Chemistry Juha

i1i2 t1t2t3 r1r2 c1c2 p1p2

00 110 11 11 00
00 111 11 00 10
00 000 00 01 00
01 001 01 10 01
10 001 01 10 01
10 010 11 00 10

Table 1. (Left) An example database with 5 attributes and universe size 15. (Right)
An encoding with 3 · ⌈log

2
(3)⌉+ ⌈log

2
(5)⌉+ ⌈log

2
(4)⌉ many propositional variables.

Propositional dependency logics extend propositional logic with atomic de-
pendency statements describing various forms of variable dependence. In this
setting, formulas are evaluated over propositional teams (i.e, sets of proposi-
tional assignments with common variable domain). An inclusion atom x ⊆ y is
true in a team T , if ∀s ∈ T ∃t ∈ T such that s(x) = t(y). An independence atom
x⊥zy expresses that in a team T , for any fixed value for the variables in z the
values for x and y are informationally independent. The extension of proposi-
tional logic with inclusion and independence atoms yield inclusion (PINC) and
independence (PIND) logics, respectively.

Example 1. Table 1 illustrates an example from relational databases. The set
of records corresponds to a team, that satisfies the dependency Responsible ⊆
Instructor. Moreover, it violates the independence Instructor⊥CourseTime as
witnessed by tuples (Antti, 11:00, A.10, Chemistry, Juha) and (Juha, 13:00, A.10,
Chemistry, Juha). In propositional logic setting, datavalues can be represented
as bit strings of appropriate length (as depicted in Table 1).

The complexity landscape of the classical (non-parameterized) decision prob-
lems — satisfiability, validity, and model checking — is well mapped in the propo-
sitional and modal team semantics setting (see [14, page 627] for an overview).
Parameterized complexity theory, pioneered by Downey and Fellows [2], is a
widely studied subarea of complexity theory. The motivation being that it pro-
vides a deeper analysis than the classical complexity theory by providing further
insights into the source of intractability. The idea here is to identify meaningful
parameters of inputs such that fixing those makes the problem tractable. One
example of a fruitful parameter is the treewidth of a graph. A parameterized
problem (PP) is called fixed parameter tractable, or in FPT for short, if for
a given input x with parameter k, the membership of x in PP can be decided
in time f(k) · p(|x|) for some computable function f and polynomial p. That
is, for each fixed value of k the problem is tractable in the classical sense of
tractability (in P), and the degree of the polynomial is independent of the pa-
rameter. The class paraNP consists of problems decidable in time f(k) · p(|x|)
on a non-deterministic machine.

In the propositional team semantics setting, the study of parameterized com-
plexity was initiated by Meier and Reinbold [23] in the context of parameter-
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PIND PINC
Parameter MC SAT MCs SAT

formula-tw paraNP18 FPT19 paraNP17 in paraNP13

formula-team-tw FPT8 - FPT8 -
team-size FPT7 - FPT7 -
formula-size FPT8 Trivial FPT8 Trivial
formula-depth FPT8 FPT9 FPT8 FPT9

#variables FPT8 FPT9 FPT8 FPT9

#splits paraNP18 FPT19 paraNP17 P14 if #splits=0
arity paraNP18 paraNP19 paraNP17 paraNP10

Table 2. Overview of parameterized complexity results with pointers to the results.
The paraNP-cases are complete, except for only membership in the first row. MCs

denotes model checking for strict semantics whereas MC/SAT refer to both semantics.

ized enumeration problems, and by Mahmood and Meier [22] in the context of
classical decision problems, for PDL. In the first-order team semantics setting,
Kontinen et al. [18] studied parameterized model checking of dependence and
independence logic, and in [17] introduced the weighted-definability problem for
dependence, inclusion and independence logic thereby establishing a connection
with the parameterized complexity classes in the well-known W-hierarchy.

We focus on the parameterized complexity of model checking (MC) and sat-
isfiability (SAT) of propositional inclusion and independence logic. We consider
both lax and strict semantics. The former is the prevailing semantics in the team
semantics literature. The past rejection of strict semantics was based on the fact
that it does not satisfy locality [8] (the locality principle dictates that satisfaction
of a formula should be invariant on the truth values of variables that do not oc-
cur in the formula). Recent works have revealed that locality of strict semantics
can be recovered by moving to multiteam semantics (here teams are multisets)
[3]. Since, in propositional team semantics, the shift from teams to multiteams
has no complexity theoretic implications, we stick with the simpler set based
semantics for our logics. In the model checking problem, one is given a team T

and a formula ϕ, and the task is to determine whether T |= ϕ. In the satisfiability
problem, one is given a formula ϕ, and the task is to decide whether there exists
a non-empty satisfying team T for ϕ. Table 2 gives an overview of our results.
We consider only strict semantics for MC of PINC, since for lax semantics the
problem is tractable already in the non-parameterized setting [14, Theorem 3.5].

2 Preliminaries

We assume familiarity with standard notions in complexity theory such as classes
P,NP and EXP [26]. We give a short exposition of relevant concepts from pa-
rameterized complexity theory. For a broader introduction consider the textbook
of Downey and Fellows [2], or that of Flum and Grohe [7].
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A parameterized problem (PP) Π ⊆ Σ∗ × N consists of tuples (x, k), where
x is called an instance and k is the (value of the) parameter.

FPT and paraNP. Let Π be a PP over Σ∗ × N. Then Π is fixed parameter
tractable (FPT for short) if it can be decided by a deterministic algorithm A in
time f(k) · p(|x|) for any input (x, k), where f is a computable function and p is
a polynomial. If the algorithm A is non-deterministic instead, then Π belongs
to the class paraNP.

The notion of hardness in parameterized setting is employed by fpt-reductions.

fpt-reductions. Let Π ⊆ Σ∗ ×N and Θ ⊆ Γ ∗ ×N be two PPs. Then Π is fpt-
reducible to Θ, if there exists an fpt-computable function g : Σ∗ × N → Γ ∗ × N

such that (1) for all (x, k) ∈ Σ∗ ×N we have that (x, k) ∈ Π ⇔ g(x, k) ∈ Θ and
(2) there exists a computable function h : N → N such that for all (x, k) ∈ Σ∗×N

and g(x, k) = (x′, k′) we have that k′ ≤ h(k).
We will use the following result to prove paraNP-hardness. Let Π be a PP

over Σ∗ ×N. Then the ℓ-slice of Π, for ℓ ≥ 0, is the set Πℓ := {x | (x, ℓ) ∈ Π }.

Proposition 2 ([7, Theorem 2.14]). Let Π be a PP in paraNP. If there
exists an ℓ ≥ 0 such that Πℓ is NP-complete, then Π is paraNP-complete.

Moreover, we will use the following folklore result to get several upper bounds.

Proposition 3. Let Q be a problem such that (Q, k) is FPT and let ℓ be a
parameter with k ≤ f(ℓ) for some computable function f . Then (Q, ℓ) is FPT.

Propositional Team Based Logics. Let Var be a countably infinite set of
variables. The syntax of propositional logic (PL) is defined via the following
grammar: ϕ ::= x | ¬x | ϕ ∨ ϕ | ϕ ∧ ϕ, where x ∈ Var. Observe that we allow
only atomic negations. As usual ⊤ := x ∨ ¬x and ⊥ := x ∧ ¬x. Propositional
dependence logic PDL is obtained by extending PL by atomic formulas of the
form =(x;y), where x, y ⊂ Var are finite tuples of variables. Similarly, adding
inclusion atoms x ⊆ y where (|x| = |y|) and independence atoms x⊥zy gives
rise to propositional inclusion (PINC) and independence (PIND) logic, respec-
tively. When we wish to talk about any of the three considered logics, we simply
write L. That is, unless otherwise stated, L ∈ {PDL,PINC,PIND}. For an
assignment s and a tuple x = (x1, . . . , xn), s(x) denotes (s(x1), . . . , s(xn)).

Team Semantics. Let ϕ, ψ be L-formulas and x, y, z ⊂ Var be finite tuples of
variables. A team T is a set of assignments t : Var → { 0, 1 }. The satisfaction
relation |= is defined as follows:

T |= x iff ∀t ∈ T : t(x) = 1,

T |= ¬x iff ∀t ∈ T : t(x) = 0,

T |= ϕ ∧ ψ iff T |= ϕ and T |= ψ,

T |= ϕ ∨ ψ iff ∃T1, T2(T1 ∪ T2 = T ) : T1 |= ϕ and T2 |= ψ,

T |= x ⊆ y iff ∀t ∈ T ∃t′ ∈ T : t(x) = t′(y),

T |= x⊥zy iff ∀t, t′ ∈ T : t(z) = t′(z), ∃t′′ : t′′(xzy) = t(xz)t′(y).
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Intuitively, an inclusion atom x ⊆ y is true if the value taken by x under an
assignment t is also taken by y under some assignment t′. Moreover, the inde-
pendence atom x⊥zy has the meaning that whenever the value for z is fixed
under two assignments t and t′, then there is an assignment t′′ which maps
x and y according to t and t′, respectively. We can interpret the dependence
atom =(x;y) as the independence atom y⊥xy. The operator ∨ is also called a
split-junction in the context of team semantics. Note that in the literature there
exist two semantics for the split-junction: lax and strict semantics (e.g., Hella
et al. [14]). Strict semantics requires the “splitting of the team” to be a partition
whereas lax semantics allows an “overlapping” of the team. Regarding PDL and
PIND, the complexity for SAT and MC is the same irrespective of the consid-
ered semantics. However, the picture is different for MC in PINC as depicted
in [14, page 627]. For any logic L, we denote MC under strict (respectively, lax)
semantics by MCs(MCl). Moreover, MCl is in P for PINC and consequently,
we have only MCs in Table 2.

3 Graph Representation of the Input

In order to consider specific structural parameters, we need to agree on a rep-
resentation of an input instance. We follow the conventions given in [22]. Well-
formed L-formulas, for every L ∈ {PDL,PINC,PIND}, can be seen as bi-
nary trees (the syntax tree) with leaves as atomic subformulas (variables and
dependency atoms). Similarly to PDL [22], we take the syntax structure (de-
fined below) rather than syntax tree as a graph structure in order to consider
treewidth as a parameter. We use the same graph representation for each logic
L. That is, when an atom =(x;y) is replaced by either x ⊆ y or x⊥∅y, the
graph representation, and hence, the treewidth of this graph remains the same.
Also, in the case of MC, we include assignments in the graph representation.
In the latter case, we consider the Gaifman graph of the structure that models
both, the team and the input formula.

Syntax Structure. Let ϕ be an L-formula with propositions {x1, . . . , xn} and
T = { s1, . . . sm } a team. The syntax structure AT,ϕ has the vocabulary, τT,ϕ :=
{VAR1, SF1,≽2,DEP2, isTrue2, isFalse2, r, c1, . . . , cm }, where the superscript de-
note the arity of each relation. The universe of AT,ϕ is A := SF(ϕ) ∪ Var(ϕ) ∪
{ cA1 , . . . , c

A
m }, where SF(ϕ) and Var(ϕ) denote the set of subformulas and vari-

ables appearing in ϕ, respectively.

– SF and VAR are unary relations: ‘is a subformula of ϕ’ and ‘is a variable in ϕ’.
– ≽ is a binary relation such that ψ ≽A α iff α is an immediate subformula

of ψ. That is, either ψ = ¬α or there is a β ∈ SF(ϕ) such that ψ = α ⊕ β

where ⊕ ∈ {∧,∨}. Moreover, r is a constant symbol representing ϕ.
– DEP is a binary relation connecting L-atoms and its parameters. For exam-

ple, if α = x ⊆ y and x, y ∈ x ∪ y, then DEP(α, x) and DEP(x, y) are true.
– The set { c1, . . . , cm } encodes the team T . Each ci ∈ τT,ϕ corresponds to an

assignment si ∈ T for i ≤ m, interpreted as cAi ∈ A.
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∧r

∨2

x3 ¬

x1

∨1

x3 ⊆ x4 ∧1

x1 x2

x1 x2 x3 x4

∧1 Inc

¬ ∨1

∨2

∧r

∧r,∨1,∨2

∨1,∨2, Inc

∨2, Inc, x3

Inc, x3, x4

∨1,∨2,∧1

∨2,∧1, x2

∨2,∧1, x1

∨2, x1,¬

Fig. 1. An example syntax tree (left) with the corresponding Gaifman graph (middle)
and a tree decomposition (right) for (x3∨¬x1)∧

(

x3 ⊆ x4∨ (x1∧x2)
)

. We abbreviated
subformulas in the inner vertices of the Gaifman graph for better presentation.

– isTrue and isFalse relate VAR with c1, . . . , cm. isTrue(c, x) (resp., isFalse(c, x))
is true iff x is mapped to 1 (resp., 0) by the assignment in T interpreted by c.

The syntax structure Aϕ over a vocabulary τϕ is defined analogously. Here τϕ
neither contains the team related relations nor the constants cAi for 1 ≤ i ≤ m.

Gaifman graph. Let T be a team, ϕ an L-formula, AT,ϕ and A as above.
The Gaifman graph GT,ϕ = (A,E) of the τT,ϕ-structure AT,ϕ is defined as
E :=

{

{u, v}
∣

∣ u, v ∈ A, such that there is an R ∈ τT,ϕ with (u, v) ∈ R
}

. Anal-
ogously, we let Gϕ to be the Gaifman graph for the τϕ-structure Aϕ.

Note that for Gϕ we have E = DEP ∪ ≽ and for GT,ϕ we have that E =
DEP∪ ≽ ∪ isTrue ∪ isFalse.

Treewidth. A tree decomposition of a graph G = (V,E) is a tree T = (B,ET ),
where the vertex set B ⊆ P(V ) is a collection of bags and ET is the edge relation
such that (1)

⋃

b∈B b = V , (2) for every {u, v } ∈ E there is a bag b ∈ B with
u, v ∈ b, and (3) for all v ∈ V the restriction of T to v (the subset with all bags
containing v) is connected. The width of a tree decomposition T = (B,ET ) is
the size of the largest bag minus one: maxb∈B |b| − 1. The treewidth of a graph
G is the minimum over widths of all tree decompositions of G. The treewidth of
a tree is one. Intuitively, it measures the tree-likeness of a given graph.

Example 4 (Adapted from [22]). Figure 1 represents the Gaifman graph of the
syntax structure Aϕ (in middle) with a tree decomposition (on the right). Since
the largest bag is of size 3, the treewidth of the given decomposition is 2. Figure 2
presents the Gaifman graph of AT,ϕ, that is, when the team T = {s1, s2} =
{0011, 1110} is part of the input (an assignment s is denoted as s(x1 . . . x4)).

Parameterizations. We consider eight different parameters for MC and six for
SAT. For MC, we include formula-tw, formula-team-tw, team-size, formula-size,
#variables, formula-depth, #splits and arity. However, for SAT, formula-team-tw

and team-size are not meaningful. All these parameters arise naturally in prob-
lems we study. Let T be a team and ϕ an L-formula. #splits denotes the number
of times a split-junction (∨) appears in ϕ and #variables denotes the number
of distinct propositional variables. formula-depth is the depth of the syntax tree
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x1 x2 x3 x4

c1 c2

∧1 Inc

¬ ∨1

∨2

∧r

∧r,∨1,∨2

∨1,∨2, Inc, c1, c2

∨2, Inc, x3, c1, c2

Inc, x3, x4, c1, c2

∨1,∨2,∧1, c1, c2

∨2,∧1, x2, c1, c2

∨2,∧1, x1, c1, c2

∨2, x1,¬, c1, c2

Fig. 2. The Gaifman graph for ⟨T, Φ⟩ (Example 4) with a possible tree decomposition.

of ϕ, that is, the length of the longest path from root to any leaf in the syntax
tree. team-size is the cardinality of the team T , and formula-size is |ϕ|. For a
dependence atom =(x;y) and inclusion atom x ⊆ y, the arity is defined as |x|
(recall that |x| = |y| for an inclusion atom), whereas, for an independence atom
x⊥zy, it is the number of distinct variables appearing in x⊥zy. Finally, arity
denotes the maximum arity of any L-atom in ϕ. Regarding treewidth, recall that
for MC, we also include the assignment-variable relation in the graph representa-
tion. This yields two graphs: Gϕ for ϕ, and GT,ϕ for ⟨T, ϕ⟩. Consequently, there
are two treewidth notions. formula-tw is the treewidth of Gϕ and formula-team-tw

is the treewidth of GT,ϕ. The name emphasises whether the team is also part
of the graph. As we pointed out formula-team-tw and team-size are both only
relevant for MC because an instance of SAT does not contain a team.

Given an instance ⟨T, ϕ⟩ and a parameterisation κ, then κ(T, ϕ) denotes
the parameter value of ⟨T, ϕ⟩. The following relationship between several of the
aforementioned parameters was proven for PDL. It is easy to observe that the
lemma also applies to PINC and PIND.

Lemma 5 ([22]). Let L ∈ {PDL,PINC,PIND}, ϕ an L-formula and T be
a team. Then, team-size(T, ϕ) ≤ 2#variables(T,ϕ), team-size(T, ϕ) ≤ 2formula-size(T,ϕ),
and formula-size(T, ϕ) ≤ 22·formula-depth(T,ϕ).

Moreover, recall that we use the same graph representation for PDL,PINC
and PIND. As a consequence, the following result also applies.

Corollary 6 ([22]). Let L ∈ {PDL,PINC,PIND}, ϕ an L-formula and T
be a team. Then formula-team-tw(T, ϕ) bounds team-size(T, ϕ).

4 Complexity of inclusion and independence logic

We start with general complexity results that hold for any team based logic
whose atoms are P-checkable. An atom α is P-checkable if given a team T ,
T |= α can be checked in polynomial time. It is immediate that each atom
considered in this paper is P-checkable.

Theorem 7. Let L be a team based logic such that L-atoms are P-checkable,
then MC for L when parameterized by team-size is FPT.
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Proof. We claim that the bottom up (brute force) algorithm for the model check-
ing of PDL [22, Thm. 17] works for any team based logic L such that L-atoms are
P-checkable. The algorithm begins by checking the satisfaction of atoms against
each subteam. This can be achieved in FPT-time since teamsize and conse-
quently the number of subteams is bounded. Moreover, by taking the union of
subteams for split-junction and keeping the same team for conjunction the algo-
rithm can find subteams for each subformula in FPT-time. Lastly, it checks that
the team T is indeed a satisfying team for the formula ϕ. For any team based
logic L, the FPT runtime is guaranteed if L-atoms are P-checkable. Finally, the
proof works for both strict and lax semantics.

The following corollary to Theorem 7 is derived using Lemma 5 and Propo-
sition 3.

Corollary 8. Let L be a team based logic such that L-atoms are P-checkable,
then MC for L when parameterized by k is FPT, if k ∈ {formula-team-tw,

formula-depth,#variables, formula-size}.

The following theorem states results for satisfiability.

Theorem 9. Let L be a team based logic s.t. L-atoms are P-checkable, then
SAT for L when parameterized by k is FPT, if k ∈ {formula-depth,#variables}.

Proof. Notice first that the case for formula-size is trivial because any problem
parameterized by input size is FPT. Moving on, bounding formula-depth also
bounds formula-size, this yields FPT-membership for formula-depth in conjunc-

tion with Prop. 3. Finally, for #variables, one can enumerate all of the 22
#variables

-
many teams in FPT-time and determine whether any of these satisfies the in-
put formula. The last step requires that the model checking parameterized by
team-size is FPT, which is true due to Theorem 7. This completes the proof.

Our main technical contributions are the following two theorems which estab-
lish that the satisfiability problem of PINC parameterized by arity is paraNP-
complete, and that SAT of PINC without disjunctions is tractable. We start
with the former. The hardness follows from the NP-completeness of PL. For
membership, we give a non-deterministic algorithm A solving SAT.

Theorem 10. There is a non-deterministic algorithm A that, given a PINC-
formula ϕ with arity k, runs in O(2k ·p(|ϕ|))-time and outputs a non-empty team
T such that T |= ϕ if and only if ϕ is satisfiable.

Proof. We present the proof for lax semantics first, towards the end we de-
scribe some modifications that solve the case for strict semantics. Given an
input PINC-formula ϕ, the algorithm A operates on the syntax tree of ϕ and
constructs a sequence of teams fi(ψ) for each ψ ∈ SF(ϕ) as follows. We let
f0(ψ) := ∅ for each ψ ∈ SF(ϕ). Then, A begins by non-deterministically select-
ing a singleton team f1(ϕ) for ϕ. For i ≥ 1, A implements the following steps
recursively.
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For odd i ∈ N, fi(ψ) is defined in a top-down fashion as follows.

1. fi(ϕ) := fi−1(ϕ) for i ≥ 3.

2. If ψ = ψ0 ∧ ψ1, let fi(ψ0) := fi(ψ) and fi(ψ1) := fi(ψ).

3. If ψ = ψ0 ∨ψ1, then non-deterministically select two teams P0, P1 such that
P0 ∪ P1 = fi(ψ) \ fi−1(ψ) and set fi(ψj) := fi−1(ψj) ∪ Pj for j = 0, 1.

For even i, fi(ψ) is defined in a bottom-up fashion as follows.

4. If ψ ∈ SF(ϕ) is an atomic literal, then immediately reject if fi−1(ψ) ̸|= ψ

and set fi(ψ) := fi−1(ψ) otherwise. If ψ ∈ SF(ϕ) is an inclusion atom, then
construct fi(ψ) ⊇ fi−1(ψ) such that fi(ψ) |= ψ. For ψ := x ⊆ y, this is done
by (I) adding partial assignments t(y) := s(x) whenever an assignment s is a
cause for the failure of ψ, and (II) non-deterministically selecting extensions
of these assignments to the other variables.

5. If ψ = ψ0 ∧ ψ1, or ψ = ψ0 ∨ ψ1 let fi(ψ) := fi(ψ0) ∪ fi(ψ1).

A terminates by accepting when a fixed point is reached. That is, we obtain j ∈ N

such that fi(ψ) = fi+1(ψ) for each ψ ∈ SF(ϕ) when i ≥ j. Moreover, A rejects
if Step 4 triggers a rejection. Notice that the only step when new assignments
are added is at the atomic level. Whereas the split in Step 3 concerns those
assignments which arise from other subformulas through union in Step 5. We
first prove the following claim regarding the overall runtime for A.

Claim I. A runs in at most O(2k · p(|ϕ|)) steps for some polynomial p, where k
is the arity of ϕ. That is, a fixed point or rejection is reached in this time.

Proof of Claim. In each iteration i, either A rejects, or keeps adding new
assignments. Furthermore, new assignments are added only in the cases for in-
clusion atoms. As a result, if A has not yet reached a fixed point the reason is
that some inclusion atom has generated new assignments. Since we take union
of subteams in the bottom-up step, the following top-down iteration in Steps 2
and 3 may also add assignments in a subteam. That is, the subteams from each
ψ ∈ SF(ϕ) are propagated to other subformulas during each iteration. Now,
each inclusion atom of arity l ≤ k can generate at most 2l new assignments due
to Step 4 in the algorithm. Let n denote the number of inclusion atoms in ϕ

and k be their maximum arity. Then A iterates at most 2k · cn times, where c
is some constant due to the propagation of teams to other subformulas. This
implies that, if no rejection has occured, there is some j ≤ 2k · cn such that
fi(ψ) = fj(ψ) for each subformula ψ ∈ SF(ϕ) and i ≥ j. We denote this fixed
point by f∞(ψ) for each ψ ∈ SF(ϕ).

Now, we analyze the time it takes to compute each iteration. For odd i ≥ 1,
Steps 1 and 2 set the same team for each subformula and therefore take linear
time. Notice that the size of team in each iteration is bounded by 2k · n. This
holds because new assignments are added only in the case of inclusion atoms
and A starts with a singleton team. Consequently, Step 3 non-deterministically
splits the teams of size 2k · n in each iteration i for odd i ≥ 1. Moreover, Step 4
for even i requires (1) polynomial time in |fi(ψ)|, if ψ is an atomic literal, and
(2) non-deterministic polynomial time in 2l · |fi(ψ)| if ψ is an inclusion atom of
arity l ≤ k. Finally, the union in Step 5 again requires linear time. This implies
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that each iteration takes at most a runtime of 2k · p(|ϕ|) for some polynomial p.
This completes the proof of Claim 1.

We now prove that A accepts the input formula ϕ if and only if ϕ is satisfiable.
Suppose that A accepts and let f∞(ϕ) denote the fixed point. We first prove by
induction that f∞(ψ) |= ψ for each subformula ψ of ϕ. Notice that there is some
i such that f∞(ψ) = fi(ψ). The case for atomic subformulas is clear due to
the Step 4 of A. For conjunction, observe that the team remains the same for
each conjunct. That is, when ψ = ψ0 ∧ ψ1 and the claim holds for f∞(ψi) and
ψi, then f∞(ψ) |= ψ0 ∧ ψ1 is true. For disjunction, if ψ = ψ0 ∨ ψ1 and f∞(ψi)
are such that f∞(ψi) |= ψi for i = 0, 1, then we have that f∞(ψ) |= ψ where
f∞(ψ) = f∞(ψ0) ∪ f∞(ψ1). In particular f∞(ϕ) |= ϕ and the correctness of our
algorithm follows.

For the other direction, suppose ϕ is satisfiable and T is a witnessing team.
Then there exists a labelling function for T and ϕ, given as follows.

I. The label for ϕ is T .
II. For every subformula ψ = ψ0 ⊕ ψ1 with subteam label P ⊆ T , the subteam

label for ψi is Pi (i = 0, 1) such that we have P0 = P1 = P , if ⊕ = ∧, and
P0 ∪ P1 = P if ⊕ = ∨,

III. Pψ |= ψ for every ψ ∈ SF(ϕ) with label Pψ.

Then we prove that there exists an accepting path when the non-deterministic
algorithm A operates on ϕ. We claim that when initiated on a subteam {s} ⊆
T , A constructs a fixed point f∞(ϕ) and halts by accepting ϕ. Recall that A

propagates teams back and forth until a fixed point is reached. Moreover, the new
assignments are added only at the atomic level. Let α := x ⊆ y be an inclusion
atom such that fi(α) ̸= ∅ for odd i, then A constructs a subteam fi+1(α) ⊇ fi(α)
(on a non-deterministic branch) containing assignments t from Pα such that
fi+1(α) |= α. Since, there are at most 2|y|-many different assignments for y, we
know that Step 4 applies to α at most 2|y| times. That is, once all the different
assignments for y have been checked in some iteration i: Step 4 does not add
any further assignments to fi′(α) for i′ ≥ i + 1. Finally, since there is a non-
empty team T such that T |= ϕ, this implies that A does not reject ϕ in any
iteration (because there is a choice for A to consider subteams guaranteed by
the labelling function). Consequently, A accepts by constructing a fixed point in
at most O(2k ·p(|ϕ|))-steps (follows from Claim I). This completes the proof and
establishes the correctness.

A minor variation in the algorithm A solves SAT for the strict semantics.
When moving downwards, A needs to ensure that an assignment goes to only one
side of the split. Moreover, since the subteams are selected non-deterministically
for atomic subformulas, (in the bottom-up iteration) only subteams which can
split according to the strict semantics are considered.

Example 11. We include an example to explain how A from the proof of Theo-
rem 10 operates. Figure 3 depicts the steps of A on a formula ϕ. An assignment
over {x1, . . . , x4} is seen as a tuple of length four. It is easy to observe that
the third iteration already yields a fixed point and that f3(ψ) = f4(ψ) for each
ψ ∈ SF(ϕ). In this example, the initial guess made by A is the team {0110}.
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∧r

∨2

x3 ¬x1

∨1

x3 ⊆ x4 ∧1

x1 x2

ψ f1(ψ) f2(ψ) f3(ψ)

ϕ 0110 0110,1111 0110,1111
∨2 0110 0110 0110,1111
∨1 0110 0110,1111 0110,1111

x3 ⊆ x4 0110 0110,1111 0110,1111
x1 ∧ x2 1111
x3 0110 0110 0110,1111
¬x1 0110 0110 0110

Fig. 3. The table (Right) indicates subteams for each ψ ∈ SF(ϕ) (Left). The teams
f1(ψ) and f3(ψ) are propagated top-down whereas f2(ψ) is propagated bottom-up. For
brevity we omit subformulas x1 and x2 of x1 ∧ x2.

The following corollaries follow immediately from the proof of Theorem 10.

Corollary 12. Given a PINC-formula ϕ with arity k, then ϕ is satisfiable if
and only if there is a team T of size at most O(2k · p(|ϕ|)) such that T |= ϕ.

Proof. Simulate the algorithm A from the proof of Theorem 10. Since ϕ is satis-
fiable, A halts in at most O(2k · p(|ϕ|))-steps and thereby yields a team (namely,
f∞(ϕ)) of the given size.

Corollary 13. SAT for PINC, when parameterized by formula-tw of the input
formula is in paraNP.

Proof. Recall the Graph structure where we allow edges between variables within
an inclusion atom. This implies that for each inclusion atom α, there is a bag
in the tree decomposition that contains all variables of α. As a consequence, a
formula ϕ with treewidth k has inclusion atoms of arity at most k. Consequently,
SAT parameterized by treewidth of the input formula can be solved using the
paraNP-time algorithm from the proof of Theorem 10.

Regarding the parameter #splits, the precise parameterized complexity is
still open for now. However, we prove that if there is no split in the formula,
then SAT can be solved in polynomial time. This case is interesting in its own
right because it gives rise to the so-called Poor Man’s PINC, similar to the case
of Poor Man’s PDL [6,21,23]. The model checking for this fragment is in P;
this follows from the fact that MC for PINC with lax semantics is in P. In the
following, we prove that SAT for Poor Man’s PINC is also in P.

Theorem 14. There is a deterministic algorithm B that given a PINC-formula
ϕ with no splits runs in P-time and accepts if and only if ϕ is satisfiable.

Proof. We give a recursive labelling procedure (B) that runs in polynomial time
and accepts if and only if ϕ is satisfiable. The labelling consists of assigning a
value c ∈ {0, 1} to each variable x.

1. Begin by labelling all PL-literals in ϕ by the value that satisfies them, namely
x = 1 for x and x = 0 for ¬x.
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2. For each inclusion atom p ⊆ q and a labelled variable qi ∈ q, label the
variable pi ∈ p with same value c as for qi. Where pi appears in p at the
same position, as qi in q.

3. Propagate the label for pi from the previous step. That is, consider pi as a
labelled variable and repeat Step 2 for as long as possible.

4. If some variable x is labelled with two opposite values, then reject. Otherwise,
accept.

The fact that B works in polynomial time is clear because each variable is labelled
at most once. If a variable is labelled to two different values, then it gives a
contradiction and the procedure stops.

For the correctness, notice first that if B accepts then we have a partition
of Var(ϕ) into a set X of labelled variables and a set Y = Var(ϕ)\X. When B

stops, due to step 3, ϕ does not contain an inclusion atom p ⊆ q such that qi ∈ q

and pi ∈ p for some qi ∈ X, pi ∈ Y , where pi appears in p at the same position
as qi in q. Let T = {s ∈ 2Var(ϕ) | x is labelled with s(x), for each x ∈ X}. Since
B accepts, each variable x ∈ X has exactly one label and therefore assignments
in T are well-defined. Moreover T includes all possible assignments over Y . One
can easily observe that T |= ϕ. T satisfies each literal because each s ∈ T satisfies
it. Let p ⊆ q be an inclusion atom and s ∈ T be an assignment. We know that
for each x ∈ q that is fixed by s, the corresponding variable y ∈ p is also fixed,
whereas, T contains every possible value for variables in q which are not fixed.
This makes the inclusion atom true.

To prove the other direction, suppose that B rejects. Then there are three
cases under which a variable contains contradictory labels. Either both labels of
the variable are caused by a literal (Case 1), or inclusion atoms are involved in
one (Case 2), or both (Case 3) labels. In other words, either ϕ contains x ∧ ¬x
as a subformula, or it contains x∧¬y and there is a sequence of inclusion atoms,
such that keeping x = 1 and y = 0 contradicts some inclusion atoms in ϕ (see
Figure 4).

Case 1 Both labels of a variable x are caused by a literal. In this case, x takes
two labels because ϕ contains x∧¬x. The proof is trivial since ϕ is unsatis-
fiable.

Case 2 One label of a variable y is caused by a literal (¬y or y) and the other
by inclusion atoms. Then, there are inclusion atoms pj ⊆ qj and variables
zj for j ≤ n such that: z0 = x, zn = y, and zj and zj+1 occur in the same
position in qj and pj , respectively, for 0 ≤ j < n. This implies that ϕ is not
satisfiable since for any team T such that T |= x∧¬y, T does not satisfy the
subformula

∧

j pj ⊆ qj of ϕ. A similar reasoning applies if ϕ contains ¬x∧ y
instead.

Case 3 Both labels of a variable v are caused by inclusion atoms. Then, there
are two collections of inclusion atoms pj ⊆ qj for j ≤ n, and rk ⊆ sk for
k ≤ m. Moreover, there are two sequences of variables zxj for j ≤ n and zyk
for k ≤ m, and a variable v such that, zx0 = x, zy0 = y, zxn = v = zym, and
1. for each j ≤ n, zxj appears in qj at the same position, as zxj+1 in pj ,
2. for each k ≤ m, zyk appears in sk at the same position, as zyk+1 in rk.
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x z1 z2 . . . zn−1 y
x zx1 zx2 . . . zxn−1 v

y zy
1

zy
2

. . . zym−1
v

Fig. 4. Intuitive explanation of two cases in the proof. (Left) x and ¬y propagate a
conflicting value to eachother. (Right) x and ¬y propagate conflicting values to v.

Var(ϕ) x1 x2 x3 x4 x5

Labels for Var(ϕ) 1 1 0
Propagation due to x5 ⊆ x4 1 1 0 0
Propagation due to x1x3 ⊆ x5x2 1/0 1 1 0 0

Fig. 5. Labels for literals and their propagation to inclusion atoms (See Example 15).

This again implies that ϕ is not satisfiable since for any T such that T |=
x ∧ ¬y, it does not satisfy the subformula

∧

j pj ⊆ qj ∧
∧

k rk ⊆ sk of ϕ.

Consequently, the correctness follows. This completes the proof.

Example 15. We include an example to highlights how B operates. Let ϕ :=
(x1∧x2∧¬x4)∧ (x1x3 ⊆ x5x2)∧ (x5 ⊆ x4). The table in Figure 5 illustrates the
steps of B on ϕ. Clearly, B rejects ϕ since the variable x1 has conflicting labels.

The FPT cases for SAT of PINC follow from Theorem 9. Regarding MC,
recall that we consider strict semantics alone. The results of Theorem 17 are
obtained from the reduction for proving NP-hardness of MCs for PINC [14].
Here we confirm that their reduction is indeed an fpt-reduction with respect to
considered parameters. The following lemma is essential for proving Theorem 17
and we include it for self containment.

Lemma 16 ([14]). MC for PINC under strict semantics is NP-hard.

Proof Idea. The hardness is achieved through a reduction from the set split-
ting problem to the model checking problem for PINC with strict semantics.
An instance of set splitting problem consists of a family F of subsets of a fi-
nite set S. The problem asks if there are S1, S2 ⊆ S such that S1 ∪ S2 = S,
S1 ∩ S2 = ∅ and for each A ∈ F there exists a1, a2 ∈ A such that a1 ∈
S1, a2 ∈ S2. Let F = {B1, . . . , Bn} and

⋃

F = S = {a1, . . . , ak}. Let pi
and qj denote fresh variables for each ai ∈ S and Bj ∈ F . Moreover, let
VF = {p1, . . . , pk, q1, . . . , qn, p⊤, pc, pd}. Then define TF = {s1, . . . , sk, sc, sd},
where each assignment si is defined as follows:

si(p) :=











1, if p = pi or p = p⊤,

1, if p = qj and ai ∈ Bj for some j,

0, otherwise.
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That is, TF includes an assignment si for each ai ∈ S. The reduction also yields
the following PINC-formula.

ϕF := (¬pc ∧
∧

i≤n

p⊤ ⊆ qi) ∨ (¬pd ∧
∧

i≤n

p⊤ ⊆ qi)

Clearly, the split of TF into T1, T2 ensures the split of S into S1 and S2 and vice
versa. Whereas, sc and sd ensure that none of the split is empty.

Theorem 17. MCs for PINC when parameterized by k is paraNP-complete
if k ∈ {#splits, arity, formula-tw}. Whereas, it is FPT in other cases.

Proof. Consider the PINC-formula ϕF from Lemma 16, which includes only
one split-junction and the inclusion atoms have arity one. This gives the desired
paraNP-hardness for MCs when parameterized by #splits and arity.

The proof for formula-tw is more involved and we prove the following claim.

Claim. ϕF has fixed formula-tw. That is, the treewidth of ϕF is independent of
the input instance F of the set-spliting problem. Moreover formula-tw(ϕF ) ≤ 4.

Proof of Claim. The PINC-formula ϕF is related to an input instance F of the
set splitting problem only through its input size, which is n. Therefore the for-
mula structure remains unchanged when we vary an input instance, only the size
of two big conjunctions vary. To prove the claim, we give a tree decomposition
for the formula with formula-tw(ϕF ) = 4. Since the treewidth is minimum over
all tree decompositions, this proves the claim. We rewrite the formula as below.

ϕF := (¬pc ∧l
∧

i≤n

p⊤ ⊆li qi) ∨ (¬pd ∧r
∧

i≤n

p⊤ ⊆ri qi)

That is, each subformula is renamed so that it is easy to identify as to which side
of the split it appears (e.g., p⊤ ⊆li qi denotes the ith inclusion atom in the big
conjunction on the left, denoted as I li in the graph). The graphical representation
of ϕF with V = SF(ϕF ) ∪Var(ϕF ), as well as, a tree decomposition, is given in
Figure 6. Notice that there is an edge between x and y in the Gaifman graph if
and only if either y is an immediate subformula of x, or y is a variable appearing
in the inclusion atom x. It is easy to observe that the decomposition presented in
Figure 6 is indeed a valid tree decomposition in which each node is labelled with
its corresponding bag. Moreover, since the maximum bag size is 5, the treewidth
of this decomposition is 4. This proves the claim.

The remaining FPT-cases for MCs follow from Theorem 7 and Corollary 8.
This completes the proof to our theorem.

Recall that a dependence atom =(x;y) is equivalent with the independence
atom y⊥xy. As a consequence, (in the classical setting) hardness results for PDL
immediately translate to those for PIND. Nevertheless, in the parameterized
setting, one has to further check whether this translation ‘respects’ the parameter
value of the two instances. This concerns the parameter arity and formula-tw. This
is due to the reason that, a dependence atom =(x;y) has arity |x|, whereas, the
equivalent independence atom y⊥xy has arity |x ∪ y|.
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Fig. 6. The Gaifman graph (Left) and a tree decomposition (Right) for ϕF . Note that
we abbreviated subformulas in the inner vertices of the Gaifman graph for presentation
reasons. Also, edges between p⊤ and variables qi are omitted for better presentation,
but those are covered in the decomposition on the right.

Theorem 18. MC for PIND, when parameterized by k is paraNP-complete
if k ∈ {#splits, arity, formula-tw}. Whereas, it is FPT in other cases.

Proof. Notice that MC for PDL when parameterized by k ∈ {arity,#splits,

formula-tw} is also paraNP-complete. We argue that in reductions for PDL,
replacing dependence atoms by the equivalent independence atoms yield fpt-
reduction for the above mentioned cases. Moreover, this holds for both strict
and lax semantics.

For formula-tw and arity, when proving paraNP-hardness of PDL, the result-
ing formula has treewidth of one [22, Cor. 16] and the arity is zero [22, Thm. 15].
Moreover, only dependence atoms of the form =(; p) where p is a propositional
variable, are used and the syntax structure of the PDL-formula is already a
tree. Consequently, replacing =(; p) with p⊥∅p implies that only independence
atoms of arity 1 are used. Notice also that replacing dependence atoms by in-
dependence atoms does not increase the treewidth of the input formula. This is
because when translating dependence atoms into independence atoms, no new
variables are introduced. As a result, the reduction also preserves the treewidth.
This proves the claim as 1-slice regarding both parameters arity and formula-tw,
is NP-hard.

Regarding the #splits, the claim follows due to Mahmood and Meier [22,
Thm. 18] because the reduction from the colouring problem uses only 2 splits.

Finally, the FPT cases follow from Theorem 7 and Corollary 8.

Theorem 19. SAT for PIND, parameterized by arity is paraNP-complete.
Whereas, it is FPT in other cases.

Proof. Recall that PL is a fragment of PIND. This immediately gives paraNP-
hardness when parameterized by arity, because SAT for PL is NP-complete. The
paraNP-membership is clear since SAT for PIND is also NP-complete [12,
Thm. 1]. The FPT cases for k ∈ {formula-depth,#variables} follow because of
Theorem 9 . The cases for #splits and formula-tw follow due to a similar reasoning
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as in PDL [22] because it is enough to find a singleton satisfying team [13,
Lemma 4.2]. This completes the proof.

5 Concluding Remarks

We presented a parameterized complexity analysis for PINC and PIND. The
problems we considered were satisfiability and model checking. Interestingly, the
parameterized complexity results for PIND coincide with that of PDL [22] in
each case. Moreover, the complexity of model checking under a given parameter
remains the same for all three logics. We proved that for a team based logic L
such that L-atoms can be evaluated in P-time, MC for L when parameterized
by team-size is always FPT.

It is interesting to notice that for PDL and PIND, SAT is easier than MC
when parameterized by formula-tw. This is best explained by the fact that PDL is
downwards closed and a formula is satisfiable iff some singleton team satisfies it.
Moreover, PIND also satisfies this ‘satisfiable under singleton team’ property.
The parameters team-size and formula-team-tw are not meaningful for SAT due
to the reason that we do not impose a size restriction for the satisfying team
in SAT. Furthermore, arity is quite interesting because SAT for all three logics
is paraNP-complete. This implies that while the fixed arity does not lower the
complexity of SAT in PDL and PIND, it does lower it from EXP-completeness
to NP-completeness for PINC. As a byproduct, we obtain that the complexity
of satisfiability for the fixed arity fragment of PINC is NP-complete. Thereby,
we answer an open question posed by Hella and Stumpf [15, P.13]. The paraNP-
membership of SAT when parameterized by arity implies that one can encode the
problem into classical satisfiability and employ a SAT-solver to solve satisfiability
for the fixed arity fragment of PINC. We leave as a future work the suitable
SAT-encoding for PINC that runs in FPT-time and enables one to use SAT-
solvers. Further future work involves finding the precise complexity of SAT for
PINC when parameterized by #splits and formula-tw.
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