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It is well-known that the fields of pure radially-polarised optical vortex modes do not possess
the usual phase function eiℓϕ of typical twisted light and so they do not carry angular momentum.
However, recent work has confirmed that radially-polarised modes with helical wave fronts have
been created in the laboratory by several groups and they can now be readily generated using
commercially available devices. They are endowed with the phase function eiℓϕ for arbitrary values
of the winding number ℓ. Crucially, the original theoretical treatments disregard the longitudinal
electric and magnetic field components. We show here that the longitudinal components must be
included, not just for the consistency of the treatment, but because only this can lead to angular
momentum. We show that for such created modes the cycle-averaged angular momentum is αh̄ℓ
where α = (Pw2

0)/(h̄c
2) is a dimensionless constant, with P the power in the mode and w0 the mode

width at focus.

Vector optical vortex modes are modes of light with
spatially-varying polarisation [1] as exemplified by the
modes with radial and azimuthal polarisation. Radially-
polarised modes, in particular, have so far featured in
useful applications, including focusing and microscopy,
laser machining and optical trapping, among others [2–
5]. A characteristic property of these modes is that their
beams can be focused into much smaller waists than in
the case of uniformly-polarised modes.

However, conventional radially-polarised optical vortex
modes have been known as non-rotating waves as they
do not have the usual azimuthal phase function eiℓϕ and
so do not carry angular momentum. Until recently, no
rotating radially-polarised mode with helical wave fronts
has been created in the laboratory. The theoretical work
has consistently predicted that the phase angle of this
type of mode is zero [6–9].

However, recently a number of reports [10] confirm-
ing that radially and azimuthally-polarised optical vor-
tex modes, typically of the Laguerre-Gaussian type, have
been created in the laboratory [11–14] and seem to be
routinely producible using commercially available devices
in the form of polarisation converters followed by phase
plates which adds an azimuthal phase dependence. [15].
These reports indicate that such modes are endowed with
the phase function eiℓϕ, with the magnitude of the wind-
ing number as large as |ℓ| up to 200 [16].

It therefore appears reasonable to suggest that there
is a pressing need to emphasise the distinction between
the pure vortex modes and the recent radially-polarised
modes. The former are devoid of ‘twistedness’ and lack-
ing vortex properties, including angular momentum, but
the latter have twisted wavefronts and are expected to
possess angular momentum.

In what follows we describe how the experimental tech-
nique involving linearly polarised optical vortex of wind-

ing number ℓ entering a polarisation converter simply
changes the linear polarisation to a radial polarisation,
but leaves the vortex features of the linearly polarised
incident mode unchanged. Once the radially-polarised
mode is created due to passing a linearly-polarised mode
through a polarization converter, it is then made to pass
through a device which has a spiral phase plate ( or sev-
eral spiral phase plates, or a stack of these, up to 200).
Each spiral phase plate has a step that adds an integral
number of 2π per turn. This would keep the radial po-
larization and add an azimuthal phase and so results in a
radially-polarised optical vortex with the usual eiℓϕ phase
function [17]. It is this type of radially-polarised modes
that we focus on in this article.
The starting point in the development of the currently

available theory of radially-polarised vortex modes is to
state the wave equation to be satisfied by the electric field
vector, namely

∇×∇×E+
ω2

c2
E = 0 (1)

This equation arises from the two Maxwell curl equations,
namely

∇×E = iωB; ∇×B =
iω

c2
E; (2)

In fact Eq.(1) and the curl equations (2) are
the same statement. So once we have used the two curl
equations we should not then also use Eq.(1).
The standard procedure demands that the electric field

be radially polarised and it simply multiplies the general
amplitude function Ψ by the polarisation unit vector ρ̂

E = ρ̂Ψ(ρ, ϕ, z) (3)

where the function Ψ(ρ, ϕ, z) has the dimensions of the
electric field and is to be determined subject to the parax-
ial limit. It is easy to show that the unit vector ρ̂ can
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be written in terms of Cartesian unit vectors x̂ and ŷ so
that Eq.(3) becomes

E = {x̂ cos (ϕ) + ŷ sin (ϕ)}Ψ (4)

and it can also be written as

E =
1

2

{

(x̂− iŷ)eiϕ + (x̂+ iŷ)e−iϕ
}

Ψ (5)

Note that the radial polarisation in Eq.(5) is represented
by a point on the surface of the first order Poincare unit
sphere [18]. However, the form of field represented by
Eq.(5) may be the source of the suggestion that radially-
polarised modes do not carry angular momentum. The
argument leading to this conclusion is as follows. The
radially-polarised beam can be regarded as a superposi-
tion of two beams: one with ℓ = +1 (OAM= +h̄) and
spin σ = −1 (left-circularly polarized, so spin angular
momentum −h̄), and the other has ℓ = −1 (OAM= −h̄)
and spin σ = +1 (right-circularly polarized, so spin an-
gular momentum +h̄). It follows that the total spin and
the total orbital angular momenta of each superposition
are zero [19]. This is assumed to hold true irrespective
of the form the vortex properties of the mode function
Ψ. At this stage the only feature that Ψ has is that it
has the space-time phase exp i(kzz − ωt) where kz is the
axial wavenumber along the propagation direction.
The conventional theory based on the above equations

is reviewed in the article by Zhan [6] in which the main
step was to demand that since ρ̂ is not a constant vector,
the transverse electric vector field on the right-hand side
of Eq.(3) satisfies Eq.(1) in the paraxial regime. This led
to a paraxial equation where there is no phase function
exp (iℓϕ) and as a consequence, the mode has no angular
momentum.
We now argue that a rigorous and a consistent treat-

ment can be developed which focuses on the manner of
production as described recently for radially-polarised
modes endowed with the exp (iℓϕ) phase. We show how
this treatment leads to the field equations as well as the
equation for the amplitude function and is based on elec-
tromagnetic potentials with a gauge condition [20, 21].
The standard electromagnetic theory in terms of the

vector potential A and scalar potential Φ are such that
B = ∇ × A and E = iωA − ∇Φ. Substituting in the
first curl equation ∇×B = −(iω/c)E, we have

∇(∇ ·A)−∇2
A =

ω2

c2
A+

iω

c2
∇Φ (6)

In the Lorenz gauge we have iω
c2
Φ = ∇ ·A and we there-

fore find

∇2
A+

ω2

c2
A = 0 (7)

Each of the three Cartesian components of A =

(Ax, Ay, Az) satisfy ∇2Ai+
ω2

c2
Ai = 0. So, in the paraxial

regime we write

Ai = Ui(x, y, z)e
ikzz−iωt (8)

Substituting Ai as a component of Eq.(7) we have for the
functions Ui, i = x, y

∇2
⊥Ui +

∂2Ui

∂z2
+ 2ikz

∂Ui

∂z
= 0 (i = 1, 2, 3) (9)

where∇2
⊥ = ∂2

∂x2+
∂2

∂y2 . A version of wave equation for the
amplitude function component U emerges on dropping
the term ∂2U/∂z2 which is regarded as small relative
to the term kz∂U/∂z. Thus we obtain from Eq.(9) on
dropping the second term

i
∂U
∂z

= − 1

2kz
∇2

⊥U (10)

This is the paraxial approximation which is widely used
and identified as providing a reasonable description of
optical beam propagation along the z-axis. Physically it
emphasises the fact that the beam profile for most laser
beams changes slowly with axial position z relative to its
profile at the focal plane.
In cylindrical coordinates r = (ρ, ϕ, z) the paraxial

equation (10) is as follows

1

ρ

∂

∂ρ

(

ρ
∂U
∂ρ

)

+
1

ρ2
∂2U
∂ϕ2

+ 2ikz
∂

∂z
U = 0 (11)

A Laguerre-Gaussian mode of winding number ℓ that is
linearly-polarised along x̂ is a solution of this Paraxial
equation such that

Ax(ρ, ϕ, z) = x̂U(ρ, ϕ, z) (12)

where U is given by

U(ρ, ϕ, z) = F(ρ, ϕ, z) = F̃ℓ,p(ρ)e
i(ℓϕ+kzz) (13)

with the amplitude function defined as

F̃ℓ,p(ρ) = E0

√

p!

(p+ |ℓ|)!e
− ρ

2

w
2
0

(√
2ρ

w0

)|ℓ|

L|ℓ|
p

(

2ρ2

w2
0

)

(14)
This describes the amplitude function of a paraxial
Laguerre-Gaussian mode of winding number ℓ, radial
number p and waist w0. The factor E0 can be determined
in terms of the applied power P.
The generation of a radially-polarised mode involves

passing the above linearly polarised mode through a po-
larisation converter, which simply changes the polarisa-
tion from x̂ to a radial polarisation ρ̂ and this radially-
polarised mode emerging from the polarisation converter
keeps the Laguerre-Gaussian profile of the incident mode,
changing its polarisation to ρ̂ and moves on to acquire a
phase function .
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As a result we may now write the vector potential of
the mode emerging from the polarisation converter as

Aρ,ϕ,z = ρ̂U(ρ, ϕ, z) (15)

Note that the mode function in Eq.(15) is the same U car-
ried by the linearly-polarised mode. From this radially-
polarised vector potential we can evaluate the fields.
First the magnetic field follows as B = ∇ × A. With
A given by Eq.(15), we obtain

B(ρ, ϕ, z) =
∂U
∂z

φ̂− 1

ρ

∂U
∂ϕ

ẑ (16)

For the electric field we make use of the Maxwell’s equa-
tion

∇×B =
1

c2
∂E

∂t
(17)

to obtain, to the same leading order as for the magnetic
field [20, 22]

E(ρ, ϕ, z) = c
∂U
∂z

ρ̂− c
1

ρ

∂(ρU)
∂ρ

ẑ (18)

In both the electric and the magnetic fields we have re-
tained the zero-order transverse terms and the longitudi-
nal field only to first order. In so doing, we have followed
Lax et al [22] who emphasised this as an essential feature
of paraxial wave optics. These authors showed that ‘the
first-order field is a longitudinal field, obtained explicitly
in terms of the zeroth-order field which is transverse.’
As pointed out earlier, the radially-polarised mode of

interest here is created as a result of a linearly polarised
optical vortex of winding number ℓ entering a polarisa-
tion converter which changes the linear polarisation to
a radial polarisation, but leaves the vortex features of
the linearly polarised incident mode unchanged. It is
then made to pass through a device which has a spiral
phase plate ( or several spiral phase plates, or a stack
of these, up to 200). Each spiral phase plate has a step
that adds an integral number of 2π per turn. This would
keep the radial polarization and the beam profile and
simply adds an azimuthal phase [23]. This results in a
radially-polarised optical vortex with the usual eiℓϕ phase
function. It is this type of radially-polarised modes that
we focus on in this article.
We now seek to examine whether the radially-polarised

modes whose fields are as specified above carry angular
momentum. We therefore consider the cycle-averaged
angular momentum density, which is defined as follows

j̄ =
1

2c2µ0
r×ℜ[E∗ ×B] (19)

where ℜ{...} indicates taking the real part of {...}. To
proceed we need the electric field and magnetic field for

the general paraxial form of a linearly-polarised mode.
We find

B(ρ, ϕ, z) = ikzφ̂F − ẑ
1

ρ

∂F
∂ϕ

(20)

and

E(ρ, ϕ, z) = ickzρ̂F − ẑc
1

ρ

∂(ρF)

∂ρ
(21)

Substituting for the fields using Eqs.(20) and (21), we
find straightforwardly

j̄ =

(

kz
2cµ0

)

{ρρ̂} ×
{

ℓ
|F̃ |2
ρ

φ̂+ kz|F̃ |2ẑ
}

(22)

Direct evaluations lead us to the angular momentum den-
sity vector

j̄ =

(

kz
2cµ0

)

{

ℓ|F̃ |2ẑ − kz|F̃ |2ρφ̂
}

(23)

Since we have φ̂ = −x̂ sinϕ+ŷ cosϕ the angular momen-
tum density vector has all three Cartesian components.
It is also easy to verify that the first term of the angular
momentum density would not have existed if the longi-
tudinal components were not included
However, the transverse (x− and y−) components are

ϕ− dependent and, as we point out shortly, will result in
zero on angular integration.
Finally, we evaluate the total angular momentum as

the space integral of the angular momentum density.

J̄ =

∫ 2π

0

dϕ

∫ ∞

0

ρ dρ j̄ (24)

The x− and y− components give zero each due to van-
ishing angular integration. We are left only with the
z-component, so we have

J̄ = ẑℓ

(

kzπ

cµ0

)

IP (25)

where the integral IP is related to the applied power P of
the mode, evaluated as the space integral over the beam
cross-section of the z-component of the Poynting vector.
We have

P =
1

2µ0

∫ 2π

0

dϕ

∫ ∞

0

|(E∗ ×B)z|ρdρ (26)

with

(E∗ ×B)z = ck2z |F̃ |2 (27)

We can then write for IP

IP =

∫ ∞

0

|F̃ |2ρ dρ (28)
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Thus we obtain for the power P

P =

(

πck2z
µ0

)

IP (29)

Substituting for IP , we have for the total angular mo-
mentum per unit length

J̄ = ℓ

( P
kzc2

)

ẑ (30)

Thus we find that J̄ is axial and proportional to ℓ. Note
that we have determined the angular momentum without
specifying the type of mode. If we now assume that the
axial extent of the radial mode is of the order of twice the
Rayleigh range 2zR = w2

0kz, we can evaluate the angular
momentum carried by the radially-polarised mode, so we
can write

JT = 2zRJ̄ = h̄ℓ

( P
h̄c2

)

w2
0

= αh̄ℓ (31)

where α is a dimensionless constant

α =
Pw2

0

h̄c2
(32)

For orientation as to orders of magnitude we set the
mode waist w0 = λ = 102nm and the power P ≈ 1mW,
we then have α ≈ 1. This means that a radially polarised
mode with these parameters carries one unit h̄ℓ of angular
momentum.
In conclusion, we have shown how a theory focused on

the recently generated phase-bearing radially-polarised
optical vortex mode can be constructed, based on electro-
magnetic potentials. This provides the means of includ-
ing the longitudinal components of both the electric and
magnetic fields in a manner consistent with the Maxwell
curl equations and a path towards the paraxial regime.
We then followed a treatment based on the vector

and scalar potentials in the Lorenz gauge [20, 21] and
showed that it leads to the electric and magnetic field
equations which satisfy Eqs. (2) and (1). We then dis-
cussed how the radially-polarised vortex mode which is
endowed with the phase factor eiℓϕ is created using a
linearly-polarised optical vortex mode passing through
a polarisation converter followed by phase plates of the
desired number, resulting in the radially-polarised mode
being endowed with a phase function eiℓϕ. We then pro-
ceeded to evaluate the angular momentum density car-
ried by the radially-polarised mode as Eq.(23) which has
both azimuthal and radial components. Finally, we eval-
uated the integrated angular momentum density leading
to the total angular momentum carried by the radially-
polarised mode which is given by Eq.(31).
As far as we know, there has been no experiments

which have attempted to measure the angular momen-
tum of the radially-polarised modes in question. In view

of the prospects of radially-polarised modes in a num-
ber of applications, most notably quantum communica-
tions [12], we propose that experimental work be carried
out with the aim of measuring the angular momentum of
these modes.
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