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Multi-Model Specifications and their application to
Classification Systems

Alan Burns
The University of York
UK
alan.burns @york.ac.uk

ABSTRACT

Many safety-critical systems are required to have their correctness
validated prior to deployment. Such validation is typically performed
using models of the run-time behaviour that the system is expected
to exhibit and experience during run-time. However, these systems
may be subject to different requirements under different circum-
stances; also, there may be multiple stakeholders involved, each with
a somewhat different perspective on correctness. We examine the
use of a multi-model framework based on assumptions (Pre and Rely
conditions) and obligations (Post and Guarantee conditions) to repre-
sent the workload and resource related needs of complex Al system
components such as DNN classifiers. We identify three kinds of
multi-models that are of particular interest: Independent, Integrated
and Hierarchical. All the individual models comprising an indepen-
dent multi-model must remain valid at all times during run-time;
at least one of the models comprising an infegrated multi-model
must always be valid. With hierarchical multi-models all models are
initially valid but the component’s behaviour may gracefully degrade
through a series of models with successively weaker assumptions
and commitments (we show that Mixed-Criticality Systems, widely
studied in the real-time computing community, are particularly well-
suited for representation via hierarchical multi-models). We explain
how this modelling framework is intended to be used, and present al-
gorithms for determining the worst-case timing behaviour of systems
that are specified using multi-models.
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1 INTRODUCTION

The safety properties of many safety-critical systems must be verified
before they may be deployed out in the field. Since such verification
occurs prior to run-time, it is typically performed upon carefully-
constructed models of the run-time behaviour that the system is
expected to exhibit. Such models are designed to emphasize the
salient features of interest from the perspective of verification.
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The verification of timing correctness properties (e.g., that dead-
lines are met) is usually done by the application of results from
real-time scheduling theory. The models used in real-time schedul-
ing theory make assumptions regarding the form of the workload
that will need to be accomodated and the characteristics of the plat-
form upon which such executions will occur. The validity of the
verification depends upon the actual workload and platform being
compliant with these model assumptions. For instance, the widely
used Liu & Layland task model [20] assumes that the real-time work-
load comprises an a priori known number of recurrent processes that
are called rasks, each of which generates pieces of work (“jobs”)
a specified minimum duration (called the task period) apart, with
each job needing to execute for no more than a specified duration
of time (called the worst-case execution time or simply WCET); for
such a workload executing upon a single fully preemptive processor,
results in [20] a guarantee that any workload for which the sum of
the ratios of the WCET-to-period parameters of all the tasks does not
exceed In 2 (= 0.69) is scheduled by the Rate-Monotonic scheduling
algorithm such that each job completes execution prior to the arrival
of the next job of the same task. However, this guarantee need not
hold if any of the assumptions are violated — if either the workload
or the processing platform is not compliant with the model, or if the
WCET-to-period ratios sum to more than the specified bound.

In this paper we model such workload and resource-usage specifi-
cations as a contract between assumptions (A) and obligations (O)
(or commitments) [10, 17, 18, 23]: if the system behaves according to
the assumptions then the obligations (including meeting deadlines)
shall be delivered!.

At runtime a system that has been verified according to the ap-
propriate schedulability test may depend upon the validity of the
assumptions regarding the characterisation of the work that must be
performed and the resources required for this work. And if these
assumptions hold then a verified implementation guarantees to meet
its obligations. (Note that the system does not need to check dur-
ing run-time that its assumptions are being met, although a more
resilient/robust implementation may choose to do so.)

And if the assumptions do turn out to be invalid at some time
during operation then the system is allowed to undertake any action,
including shut-down (although again a more resilient or robust im-
plementation may make an effort towards meeting its commitments
at least partially, invalid assumptions notwithstanding).

In 2007, Vestal [29] proposed a generalization to the Liu & Lay-
land task model [20], the distinctive feature of which is that the
WCET parameter of each task is no longer a single value. Instead,

]Assumptions are often described [8] as a combination of Pre-conditions (#) and
Rely conditions (R), while Obligations are a combination of Postconditions (Q) and
Guarantee conditions (G).
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each task is characterized by multiple WCET parameter values rep-
resenting different estimates, that may be trusted to different levels
of assurance, of the actual (unknown) maximum duration for which
each job of the task may actually execute. Each task is assigned a
“criticality” level, informally denoting its importance to some stake-
holder in the system. The correctness criterion is that all tasks at or
above a particular criticality level commit to meet their deadlines
assuming that the actual execution durations of all jobs do not exceed
the WCET estimates made at the level of assurance corresponding
to that criticality level. MCS’s have been very widely studied in the
real-time scheduling literature (see, e.g., [6] for a survey); we will
see, in Section 2.1, that this Vestal model for MCS’s is essentially
what we are terming here a hierarchical multi-model.

For relatively simple components a single model, such as the
Liu & Layland characterization [20] of each task by a single period
parameter and a single WCET estimate, is adequate. In general,
however, it is the case that the work that each task in a component
has to undertake may vary according to ambient operating conditions
(for example, the number of planes in a radar image, the number
of faces in a recognition system, or the number of cars in a traffic
control system), and as a consequence the expectations upon the
system —the obligations that can reasonably be expected from it—
may vary. It may also be the case that different stakeholders have
somewhat different expectations of the system. We will show how
both these cases may be modelled by specifying multiple assumption-
obligation pairs for a single component. It is not always the case
that the worst-case load on the system is when these parameters are
at their maximum. What may maximise the load on one task may
reduce the load on other tasks; these relations must be taken into
account if overly pessimistic scheduling analysis is to be avoided.

The first contribution of this paper is therefore an extension of the
properties of a mixed-criticality system to a more general notion of a
multi-model specification. And rather than linking assumptions only
to execution times (the resources needed), in this paper we allow
them to also incorporate assumptions about the number of relevant
entities in the input space (the work that has to be done). We believe
that this framework is widely applicable to a range of systems, in
particularly those that incorporate Al algorithms and other forms of
Learning-Enabled components [21] such as classifiers.

The second contribution is to consider how the worst-case execu-
tion time of software components that are based on deep learning
and related Al technologies can be computed. Such components are
increasingly being deployed for classification problems in complex
autonomous resource-constrained cyber-physical systems. Many of
these systems are employed (or are being considered for employ-
ment) in safety-critical applications and require accurate predic-
tions to be delivered in real time using limited computing resources
(this is sometimes called “edge AI” where the efficient execution
of machine intelligence algorithms on embedded edge devices is
required [9, 31]).

A number of schemes have been produced that aim to determine
the worst-case path through a sequence (or cascade) of classifiers.
For example Razavi et al. [24] note “Deep learning (DL) inference
has become an essential building block in modern intelligent appli-
cations. Due to the high computational intensity of DL it is crucial
to scale DL inference serving systems in response to fluctuating

Alan Burns and Sanjoy Baruah

workloads to achieve resource efficiency.” They provide a heuris-
tic to reduce the typical execution time of an object recognition
system that is made up of a set of different classifier (including
face recognition, optical character recognition, and natural language
understanding). In this paper we demonstrate that a relative straight-
forward approach (compared with more general forms of WCET
analysis) based on Dynamic Programming can be used to derive
worst-case execution times for systems of classifiers whose temporal
behaviours are bounded by workload assumptions.

Having derived this modelling and analysis technique for classi-
fication systems we use it to illustrate the multi-model framework.
The remainder of the paper is therefore organised as follows. In the
next section we introduce the notion of a multi-model and define
three different forms: independent, integrated and hierarchical. In
Section 3 we then define a single-model specification scheme based
on Assumptions and Obligation for a SIMO-based classification
system, and illustrate how timing analysis can be performed upon
systems that are specified in this manner. Section 4 then describes
a Multi-Model classification system, building upon the modelling
framework for a single classification system from Section 3. Conclu-
sions are drawn, and directions for future work suggested, in Section
5.

In this initial paper on Multi-Models and their application to
classification systems we will keep the discussion informal and
focus more upon communicating insight and intuition rather than
formally defining our approach and providing rigorous correctness
proofs. In this spirit we introduce the salient aspects of our proposed
approach via a number of examples.

2 MULTI-MODEL SYSTEMS

Here we consider systems having more than one model to specify
their expected runtime behaviour. Such multi-models?® are particu-
larly relevant if (i) there are different modes of operation that give
rise to different models; or (ii) there are different stakeholders that
define different assumptions and obligations for the system.

We noted in the introduction that Mixed-Criticality Systems
(MCS’s) are a specific example of the Multi-Model approach. We
therefore start with a review of MCS. Although the use of contracts
(mappings from assumptions to obligations) are used extensively in
component engineering, they have not been widely applied to the
temporal properties of real-time systems. Notable exceptions are
works by Benveniste et al. [3] and Stoimenov et al. [28].

2.1 Related Work: Mixed-Criticality Systems

Mixed-criticality systems (MCS), widely studied in the real-time
scheduling literature, provide an illustrative example of the use of
multi-models for representing complex components. As stated in
Section 1, each task in the task model proposed by Vestal [29] is
characterized by multiple WCET parameter values representing dif-
ferent estimates, that may be trusted to different levels of assurance,
of the actual (unknown) maximum duration for which each job of
the task may actually execute. Each task is also assigned a criticality
level, which is, informally speaking, an indicator of the importance
2The term ‘multi-model’ is used in a number of different contexts, in particular with
regard to multi-model databases; there are also similar notions such as compositional

analysis — here we use the term to simply express that a single system is being specified
using more than one workload/resource model.
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of that task to overall system correctness. As stated in Section 1, the
Vestal [29] notion of correct system behavior is this: assuming that
the actual execution durations of all jobs of all tasks do not exceed
the WCET estimates made at the level of assurance corresponding
to a particular criticality level, the system commits to meet their
deadlines (i.e., complete execution prior to the arrival of the next job
of the same task) of all tasks with criticality level at or above that
criticality level.

From an analysis standpoint the important property of the Vestal
model is not the use of criticality but the fact that the task-set un-
der inspection has more than one model [4]. Vestal suggests that
different stakeholders would want to assign different values to one
of the parameters (the WCET) characterising each task: in effect
there is not one but a collection of models that are being applied to
the task-set, each modelling the system from a somewhat different
perspective. Since the 2007 publication of Vestal’s paper [29] there
have been over 500 papers produced that have extended and utilised
this notion of MCS [6, 7]. However, there have also been a number
of papers that have criticised the Vestal approach [13-16, 22]; much
of this criticism is based on different views as to the meaning of
“criticality.” But we point out that the rich body of results that have
appeared under the umbrella of MCS do not require or assign any
particular meaning to the term “criticality;” what they utilise and
exploit is the idea that there is more than one interpretation of the
temporal properties (i.e. parameters) of the tasks under considera-
tion. Testament to the usefulness of this multi-model extension is
the volume of applicable results that have been generated in under
15 years.

Burns et al. have illustrated [5, 8, 19] how the run-time behaviour
of a simple MCS may be specified by using Rely Conditions (As-
sumptions) and Guarantee Conditions (Obligations). In the Mixed-
Criticality framework there is a “degraded” mode with weaker Rely
and Guarantee conditions into which the system may transition. In
this degraded mode only the higher-criticality jobs are guaranteed to
meet their deadlines. This is therefore an example of a hierarchical
multi-model. In the following section we will argue that this is one
of three possible kinds of multi-model.

2.2 Types of Multi-Model

It is sometimes convenient to interpret assumption-obligation spec-
ifications in terms of mappings. Under such an interpretation, the
assumptions specify the set of all behaviors of the environment for
which the system is expected to behave correctly; the obligations
specify the corresponding correct system behaviors. Then correct
system execution maps each assumed behavior of the environment
to some correct system behavior — see the top diagram of Figure 1.
The middle diagram in this Figure depicts a MCS with a hierarchical
relationship between the assumptions and obligations. The bottom
diagram generalises this relationship; there are overlapping sets of
assumptions leading to overlapping obligations. In both of these
situations, correct behaviour of the system requires at least one of
the set of assumptions to remain true.

As stated above, our objective is to develop efficient algorithms
that satisfy multiple models — multiple assumption-obligation spec-
ifications. We consider such a multi-model framework to be very
general, and applicable to modelling a variety of different situations,

RTNS 2023, June 7-8, 2023, Dortmund, Germany

System

Figure 1: The top diagram depicts system execution as a map-
ping from a set A of assumed behaviors of its environment
to a set O of system behaviors that fulfils its obligations. The
middle diagram depicts a mixed-criticality system in which the
sets of assumptions and obligations satisfy a subset/ superset
relationship. And the bottom diagram depicts the execution of
multi-model systems with overlapping integrated assumptions
and obligations.

with the different models accorded different interpretations. For
example:

Different Environmental Conditions (‘Modes’). A system that
is intended to operate in several different environmental conditions
may be expected to behave very differently under these different
conditions. For such systems, the expected behaviors under the
different environmental conditions may be represented as different
models. (For instance, the expected number and type of objects in
an image may vary significant depending upon the time of day.)

Different Stakeholders. It may sometimes be the case that rather
than developing individual bespoke systems for several different
stakeholders, it is more efficient to develop a single system that is
capable of meeting all their needs.

Generalising from the representation of MCS’s as multi-models we
identify three forms of relationship between the individual models
within a Multi-Model framework:

(1) independent multi-models,
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(2) integrated multi-models, and
(3) hierarchical multi-models.

We shall look at each of these relationships assuming, for ease of
presentation, that there are just two individual models, a and b, in
each case. Recall that each model (e.g., a) is defined by a set of
assumptions (A%).

Independent Multi-Models. For independent multi-models, an
implementation must assume that both sets of assumptions remain
true at all times. It follows that all obligations are met. The multi-
model is violated if, for example, A¢ or AP fails at run-time. It
follows that there is just one mode of behaviour: (i) A% A AL,

Integrated multi-models. Here an implementation may assume
that one, or both, sets of assumptions hold. It follows that one set of
assumptions may fail as long as the other set remain valid. Hence
there are three modes of behaviour that are determined by these
assumptions: (i) A A Ab, (i) A2 A AP and (iii) A A AL,

Hierarchical Multi-Models. This is a special case of integrated
multi-models that additionally satisfy a hierarchical relationship
(mixed criticality systems are examples). Where a system degrades,
from a model with A? to one with A? satisfying A% = A’ (and
0% = OP) the assumptions and obligations are said to be weakened.
Consequently one of the modes of behaviour (A% A -~AP) cannot
arise, and hence we just have: (i) A% A A and (i) ~A* A AL,
Indeed as A% = AY, (i) can be written simply as A4,

Figure 2 illustrates the constraints associated with these three model
types.

Note that independent multi-models, in which all assumptions
must always be satisfied, are really just a partitioning of the system’s
behavior and hence do not add to the expressive power of the mod-
elling approach. It is the integrated and hierarchical multi-models
that are novel constructs. Note also that it is possible for an integrated
multi-model to include hierarchical elements, and this is discussed
further in Section 4.4.

AN AP (0= 09 A 0Y)

A% A AL (0 = 0P) A A-AL; (0= 0%

Figure 2: “Mode” changes in Multi-Models. Independent: no guaran-
tees upon any transition out of the initial (blue) mode. Integrated: guar-
antees as shown. (Hierarchical: A = A’ and hence the right-most
path is impossible.)

Alan Burns and Sanjoy Baruah

The use of integrated multi-models will be illustrated in Section 4
by applying it to models of a typical classification system. The single
model version of which is introduced in the next section.

3 A SINGLE-MODEL CLASSIFICATION
SYSTEM

In this section we present a single-model specification scheme based
upon Assumptions and Obligations for a classification system, and
illustrate how timing analysis can be performed upon systems so
specified. We will use the example of Single Input, Multiple Output
(SIMO) classifiers to provide an application context for the purposes
of illustrating our ideas. In systems such as Faster R-CNN [27],
SIMO classifiers break down a complex image into a number of
‘boxes’ (Rols — Regions of Interest) and then the content of each
Rol is classified. (Note, the approach described in this paper is also
applicable to YOLO (You Only Look Once) classifiers [25, 26].) To
make things concrete, in Sec. 3.1 we introduce a toy example of the
use of such a specification.

For software components such as classifiers it is necessary to
define a workload and resource-usage model that will allow the
worst-case input sequence to be derived and the worst-case execution
time for this sequence to be computed. We assume that a single
execution of the classifier involves analysing a sequence of Rols that
are required to be placed into one of a finite set of classes. There
must be a bound on the number of Rols and there may also be bounds
on the number of entries in each class. In addition, there may be
further (arbitrary) constraints over the mix of classes in the input
sequence.

The proposed workload model uses Assumptions to capture the
above constraints. We allow the cost (required execution time on
the available computing resource) for each Rol to be class specific.
Moreover, we allow these costs to be sensitive to knowledge that
the classifier may have obtained from the input sequence that it has
already processed. For example, if the applicable Assumptions imply
that there can be at most one Rol of class Cy in any sequence of
Rol’s, then once such a Rol has been identified in a sequence the
classifier may be able to reduce its execution time by simplifying
the processing of subsequent Rol’s — the Assumptions can be relied
upon.

Below (Sec. 3.1) we first illustrate this modelling approach via
a simple contrived example. We then show (Sec. 3.2) how the max-
imum execution duration for our example can be derived for a se-
quence of Rol’s satisfying a given set of assumptions; this maximum
execution duration immediately yields an obligation (guarantee) on
whether the processing of the sequence of Rol’s can meet a speci-
fied deadline or a predefined bound on the total execution time. In
Section 4 this single model approach will be generalised so that a
classifier can be subject to the requirements of more than one model.

3.1 An Example Classifier - CADIS

Our illustrative toy example’ concerns a CADIS (for Cat And Dog
Identification System), a software component that is tasked with
identifying the breeds of all the cats and dogs that appear in an input

3This toy example is very loosely based on an Identify Friend or Foe (IFF) application
system that uses DNN-based image processing to distinguish between friendly and
hostile aircraft, and may further classify each kind.
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image — see Fig. 3. Given such an image, an Initial component first
breaks it down into a number of “boxes” (Rols — Regions of Interest),
each of which contains an image of interest (i.e., an image of either
a cat or a dog) — we assume this takes an execution duration of one
time unit per identified Rol. Each Rol is then passed on to a Cat
Breed Classifier (CBC).

Rol
Image — Initial CBC ) DBC

! l l

¢ {Cat, Dog} Breed of Cat Breed of Dog

Figure 3: CADIS - A Cat And Dog Identification System

(1) The CBC first determines whether the image contained in this
Rol is of a cat — we assume this operation takes at most two
time units. If the answer is “no” (hence it must be a “dog”)
then this Rol is immediately passed on to the Dog Breed
Classifier (DBC). If however the answer is “yes,” the CBC
processes the Rol further (taking up to an additional six time
units to do so) to identify the actual breed of the cat.

(2) However if it is known (because it follows from the current
state of the system and its assumptions) that the Rol passed
on to the CBC cannot possibly contain the image of a dog,
it follows that it must contain the image of a cat. In this
event, the CBC can skip the first step and immediately begin
processing the Rol to identify the cat breed (with at most six
time units of processing).

(3) In a similar vein, if it is known that the Rol passed on to the
CBC cannot possibly contain the image of a cat, the CBC
immediately passes this Rol through to the DBC.

The DBC processes any Rol passed on to it to identify the breed of
the dog in the Rol; we assume that such processing takes up to five
time units.

To summarise the execution durations (or worst-case execution
times — WCET’s) of the three classifiers in Figure 3:

o Initial: The WCET is 1 on any Rol determined to contain an
image of interest.

e CBC: If a Rol passed to it is known to contain a cat image,
then its WCET is 6. If it is known to contain a dog image,
then its WCET is O (since it can directly pass this Rol through
to the DBC). If it is a priori unknown whether it contains a
dog or a cat image, then its WCET is 8 (2+6) if it contains a
cat image and 2 (2+0) if it contains a dog image.

e DBC: Any Rol passed on to it must contain a dog image;
processing such a Rol has WCET of 5.

In the remainder of this section, we will seek to determine the
tightest guarantees that can be made on the maximum duration taken
to complete the processing of an unknown sequence of Rol’s. We
emphasize that the above description of both the functional behavior
and the WCET numbers of the three components — Initial, CBC, and
DBC — comprise a part of the assume conditions: they are part of
the assumptions upon which our analysis may rely.

RTNS 2023, June 7-8, 2023, Dortmund, Germany

In the absence of any further assumptions, it is evident that the
“worst” sequence (the one that requires the maximum duration to
process) is one in which each Rol contains the image of a cat: for
such a sequence, each Rol would experience a WCET of 1 in the
Initial classifier, and 2 + 6 = 8 in the CBC, for a total bound of 9N
for N Rols. So if N is bounded to be, for example, no greater than 4:

AL N<4
(i.e. no input image will contain more than 4 RolI’s) then the maxi-
mum duration cannot exceed (9 X 4) = 36.

In this Assumption, which can be looked upon as a predicate that
holds true throughout the execution of the classifiers, N denotes
the number of Rols that have been passed from Initial to CBC. The
Assumption predicate (A is assumed to be true whenever CBC or
DBC undertakes an action (i.e. executes an operation). So N can be
thought of as a state variable that counts the number of Rols seen
thus far. Similar state variables, N, and Ny, may denote the number
of cat images and dog images that have been forwarded from Initial.
Bounds on these values may also form part of the specification.
The role of the Assumption predicate is to bound the work that the
classifiers may be required to do. The simplest way of doing this is
to bound N as the above example illustrates.

For a more interesting example, let us suppose that our assump-
tions additionally asserts that there will be at most two dogs and at
most two cats in the sequence:

A N<4AN.<2ANy <2

Each Rol will have a WCET=1 in the Initial classifier (for a total
WCET of 4 for this classifier); let us compute the execution duration
upon the other two classifiers for particular sequences.

o If the four animal images were to appear in the order (D, D,
C, C) within the sequence, each would have a WCET of 1
in Initial. The first two would each have a WCET of 2 in the
CBC followed by 5 in the DBC; hence, each would have a
WCET of 1 + 2 + 5 = 8. However, it will subsequently follow
(from (A) that there are no more dog images in the sequence,
and hence the remaining animal images do not need to be
pre-processed in the CBC; each would consequently only
experience a WCET of (1 + 6). Summing over all four Rol’s
we have a duration equal to 8 + 8 + 7 + 7 = 30.

o If, however, they were to appear in the order (C, D, C, D)
within the sequence, it may be verified that only the last pet-
image Rol (the last “D”) would skip the first step in the CBC,
for a total duration bound of (1+2+6)+(1+2+5)+ (1 +
2+6)+(1+5),or32.

It may be verified by exhaustive enumeration (in Sec. 3.2 below, we
obtain a more efficient means of doing so) over all possible orderings
of the two dogs and the two cats in the Rol sequence that (C, D, C,
D) represents the worst case and that 32 is consequently the duration
bound under the assumption that there are at most two cat images
and at most two dog images in the sequence of 4 Rol’s.

Another, less intuitive, example is where the Assumption pred-
icate asserts that there may be a maximum of 2 dogs and 3 cats in
our 4-Rol sequence:

A N<aAN <3AN; <2
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The above cases all still apply but there are additional sequences
where there are 3 cats and 1 dog. For example, (C, C, D, C) gives
9+9+8+49 (=35). The same result occurs wherever the single dog
appears in the first three Rols.

The specification of the classifier is completed by asserting that
the Obligation on the classifier, expressed as a Postcondition, @, is
that all pets have their species (type) and breed identified:

Q def Vi e Species(Rol;) A Breed(Rol;)

The index i is bounded by A (in effect i < 4 in the example).
The predicates Species and Breed simply return TRUE when that
attribute has been identified. This Postcondition is required to be true
when the classifier completes. The other aspect of the component’s
obligations is that the execution time (e) of the classification system
(Initial, CBC and DBC) is bounded to a known acceptable value, V.

This is best expressed as a Guarantee condition (G) [8]:

G def es<V
In the above example if V is equal or greater than 35 then this
obligation can be satisfied.

3.2 Determining the Maximum Execution
Duration

We now generalize from the examples above, and devise a general
procedure for determining the maximum duration needed to process
an image, given an assumption asserting that there are at most N™a%
Rol’s in the input image of pets (cats or dogs), of which at most
N will be of cats and NJ'** of dogs. We will show below that we
can guarantee to process this entire sequence of Rol’s in an interval
of duration not exceeding the value F(N™a%, NJ&X, Ng‘ax) obtained
by solving the recurrence defined in Fig 4 for F(N, N¢, Ng). This
recurrence may be understood as follows:

(1) If N equals zero or if N; and N; both equal zero, then there
can be no Rol of a pet; hence no Rol will be passed on from
the Initial classifier to CBC (and subsequently to DBC). This
is the base case. The cost of processing zero pets is of course
0.
Else, if (N; == 0) the CBC may assume that each Rol
passed on to it must be of a cat, and hence skip the pre-
processing and immediately move on to identifying the cat’s
breed, at a WCET of 6. Furthermore, it is evident that at most
min(N, N¢) Rol’s will be passed on from the Initial classifier
to CBC.

(3) Analogously to the above case, if (N, == 0) the CBC may
assume that each Rol passed on to it cannot be of a cat and
must hence be of a dog. It therefore immediately passes it on
to the DBC, which will process it with a WCET of 5.

(4) It remains to consider when both N, > 1 and N; > 1. Ob-
serve that the maximum time required to process the entire
sequence is the larger of the maximum processing time if
(i) the first Rol in the sequence is of a cat, or (ii) it is of a dog:

(1) In the former case, the CBC would take a total of up to 8
time units to process the first pet-containing Rol, (since
the pre-processing WCET on the CBC is 2, followed by a
further WCET of 6 for the actual breed identification), after
which the remainder of the sequence has at most (N — 1)

2
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pet-containing Rol’s of which at most N — 1 are of cats
and at most N of dogs.

(ii) In the latter case, the CBC would pre-process the Rol
(WCET of 2) and pass it on to the DBC (WCET of 5
for identifying the dog-breed), after which the remainder
of the sequence has at most (N — 1) pet-containing Rol’s of
which at most N, are of cats and at most Ny — 1 of dogs.

A Dynamic Program. The recurrence in Figure 4 clearly demon-
strates that the problem of computing F(N, N, N;) possesses the
optimal substructure property (see, e.g., [11, p. 379]), and is hence
amenable to solution as a Dynamic Program [2]. Notice that the
recursive calls made in computing F(N, N, Ny) are to F(N —1, N —
1,N;) and F(N — 1, N¢, N; — 1) — in both cases, two of the three
arguments are strictly smaller integers. Hence computing the values
F(x,y, z) in order and storing them in a table:

for x = 1 to N
for y = 1 to min(x, NJ"®)
for z = 1 to min(x, N;lna")
Compute and store F(x, y, z)
// Using previously computed-and-stored F values

clearly has running time no worse that O(N™* X NZ'¥ x NJ¥¥),
implying an asymptotic complexity no worse than O((N™2%)3), for
computing f(N™#, NaX, Nglax)‘

This straightforward derivation of a dynamic program contrasts
with more complex optimal solutions such as model checking, con-
troller synthesis, or two-player strategies. Moreover, the use of sim-
ple assumption predicates contrasts favourable with more compre-
hensive specification approaches such as guarded command lan-
guages, state diagrams etc. Nevertheless, the expressive power of
the approach does seem to be sufficient to allow a wide range of
constraints to be managed without recall to the use of these methods
or heuristic (non-optimal) solutions.

3.3 A Bottom-up Implementation

Although it may seem more natural to solve the dynamic program
obtained in Section 3.2 above in a top-down manner, here we apply
a bottom-up approach since that more easily generalises to the multi-
model case we will discuss in Section 4. Accordingly, let us first
reformulate the recurrence to facilitate bottom-up implementation:
let Fe(T, TC, TD) denote the maximum cost of processing an image
with T pets (Rols), TC cats and TD dogs. It is readily seen that the
bottom-up recurrence is

Fe(T,TC,TD) = max(Ce + Fe(T +1,7C + 1,TD),

D+ Fe(T+1,TC,TD +1))

where Cc is the cost of processing an extra cat (i.e. TC + 1), and Dc
is the processing cost of a further dog (i.e. TD + 1). The iteration
stops when Fe(T + 1, TC + 1, TD) and Fe(T + 1, TC, TD + 1) are both
invalid; i.e. not sanctioned by the model. If both are valid then the
maximum must be taken, with the cat costing Cc (8 in our running
example) and the dog Dc ((2+5)=7). If only the cat possibility is
valid then

Fe(T,TC,TD) = Cck + Fe(T +1,TC +1,TD)
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0, if (N ==0) or (N, == 0) A (Ng ==0))
6><min(N,NC), lf(Nd == 0)
F(N,N¢,Ny) =1 5Xxmin(N, Ny), if (N ==0)
8+ F(N—-1,N;, - 1,Ny;) .
otherwise

7+ F(N—1,Ne, Ny — 1)

Figure 4: Computing the worst-case cost of processing N Rol’s, under the assumption that there are < N, cat images and < N, dog images.

type SoFar is array(0..MaxN, 0..MaxN) of integer
with Default_Component_Value => -1
S : Sofar

function Fc(TC, TD : integer) return integer is

X,Y : integer := 0
VD, VC : boolean
begin

if S(TC,TD) > -1 then return S(TC,TD); end if

VD := Valid(TC, TD+1)
VC := Valid(TC+1, TD)
if VD and VC then
X := Cc + Fc(TC, TD+1)
Y := Dc + Fc(TIC+1l, TD)
X = max(X,Y)
S(TC,TD) := X
return X
end if

if VC then return Cck + Fc(TC+1l, TD); end if
if VD then return Dck + Fc(TC, TD+1l); end if
return 0

end Fc

Figure 5: Bottom-up implementation of the recurrence: Ada pseudo-
code.

where Cck is the cost of a cat when the type of the input is known
(so 6 in this example). And if only a dog is possible then

Fe(T,TC,TD) = Dck + Fe(T + 1,TC,TD + 1)

with Dck = 5.

In the above description, three parameter (T, TC and TD) are em-
ployed to illustrate the recurrence property. However, on inspective,
it is clear that T (the number of pets) is always equal to TC + TD
(number of cats plus the number of dogs). Hence the implementation
drops the T parameter.

An outline of the pseudo (Ada) code for the algorithm is given in
Figure 5. The function returns one of four values: (i) the maximum
of the two allowed paths, or else (ii) the value of taking a cat when
only a cat is valid, or else (iii) the value of taking a dog when only a
dog is valid, or else (iv) the value O as neither a cat nor a dog can be
taken.

The array S holds previously computed values — that can be used
to reduce the computational load. A simple two dimensional array
is used in the pseudo code, with all elements in this array being
initialised to —1.

Since the recurrence is bottom up, the initial call of the function
is:

Cost := Fc (0, 0)

The call terminates and returns when a recursive call is made that
has no valid successor (and hence returns 0).

The code implementing the function Valid is written according
to the assumptions, and is therefore model-specific. For example,
if there is a maximum of 6 pets, 3 cats and 4 dogs then the Valid
function is simply:

function Valid(TC, TD :
begin
return TC+TD <= 6 and TC <= 3 and TD <= 4

integer) is

end

This gives a result of 51 which is delivered by the sequence (C, C,
D,D, D, C).

The algorithm was coded in Ada and when executed on a normal
laptop returns ‘instantaneously’ from relatively large models such
as T = 400, TC = 200, and TD = 250; i.e., 400 Rols, < 200 cats
and < 250 dogs. For this particular example, the computed worst-
case execution time for the classifier is 3400, and happens when
a sequence of 199 cats is followed by 200 dogs and then a final
cat. In this example the function Fc was called 128,976 times with
the S array providing the (previously computed) answer on 48,326
occasions.

3.4 Extending the model — arbitrary constraints

The above example shows a model defined by the costs of each
operation and a function that checks for a valid operation. The costs
reflect assumptions made about the Rol. Typically, if something
about the type of the Rol is known then the cost of the operation
can be reduced. In the simple example above if the Rol is known to
not be a cat then it may be passed directly to the dog classifier and
its execution time reflects the fact that the input is definitely a dog.
We re-emphesize that the assumptions are, in effect, axioms — they
are true if the system behaves correctly, while if the system does not
behave correctly then nothing need be guaranteed.

In addition to constraints concerning the number of Rols and the
maximum number of each type of Rol, it is possible to add further
constraints that can help reduce the solution space for the algorithm.
So, for example, if it is known (i.e. it is a valid assumption) that
there are always more dogs than cats then Valid can reflect this:

function vValid(TC, TD :
begin
return TC+TD <= N and
TD + min (N-T, Nd-TD) > TC

integer) is

end

The function returns true if TC+TD is not too large and if the number
of dogs so far identified (TD) plus the minimum that could still be in
the input image is greater than the number of cats so far identified
(TC). If this is true then there is a possible future that will satisfy the
constraint and hence this is a Valid step.
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This example demonstrates the expressive power of the mod-
elling technique being proposed. A wide range of constraints can be
utilised. Some, for example incorporating cache effects that reduce
the execution time of repeating steps (e.g. a cat after a cat), may re-
quire modifications to the recurrence formulation so that the history
of identified Rol processed so far is available at each step; but this is
not a fundamental change to the scheme and is easily incorporated.

Depending upon the kinds of assumptions that it is permitted to
specify for a given application, determining satisfiability of assump-
tions may turn out to be considerably more complex than was the
case in the earlier examples. Indeed, one could envision assumptions
that are of arbitrary computational complexity to check — e.g., if one
of our CADIS stakeholders were to specify an assumption that the
number of cats is the index, in some given standard encoding, of a
Turing Machine that halts on all inputs, then determining satisfiabil-
ity of this assumption requires the solving of the Halting Problem
and is thus undecidable. Although this example is admittedly very
contrived and rather extreme, one could envision more plausible
assumptions that similarly encode, say, some NP-complete problem.
If checking the satisfiability of assumptions is computationally non-
trivial, then efficiency considerations must take the computational
complexity of doing so into account; it may be computationally more
efficient to simply assume that some or all of the assumptions hold
and thereby take on the responsibility of satisfying more obligations
than may be strictly necessary.

As part of future work we plan to give further consideration to
the properties of the constraints that are amenable to inclusion in
the proposed modelling framework. In this paper we now focus
on extending this classification example to illustrate Multi-Model
specifications.

4 USE OF THE CADIS EXAMPLE TO
ILLUSTRATE MULTI-MODEL
SPECIFICATIONS AND ANALYSIS

We now extend the CADIS example to illustrate the use of a Multi-
Model for classification. Suppose that the nature of the environment
in which the classifier is to be deployed gives rise to two types
of input image. As cats and dogs do not naturally share the same
space, the image will either contain mainly dogs or mainly cats,
but not significant numbers of both. Each of the two image types
will have different assumptions. Alternatively, the CADIS may be
used simultaneously by two stakeholders, one that is interested in
determining the breeds of all the dogs in an image and the other,
in determining the breeds of all the cats in the (same) image. Each
stakeholder may again make different assumptions.

As before let N be a counter of the number of Rol’s, N, the
number of these Rol’s containing images of cats, and N, the number
of those containing images of dogs. The assumptions bound all of
these counters. The image type that is predominantly populated with
dogs is defined by the model, DM. A second model, CM, captures
the properties of images that contain mostly cats.

Let the assumption predicate for the DM model be given by:

APM €N g AN, <1ANy <7
and for CM:

f
AM E N T AN <6ANy <1
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Both have the same Postcondition:
QPM QM def V; e Species(Rol;) A Breed(Rol;)
and Guarantee condition:
GPM geM def oy

Hence model DM allows up to 8 Pets with a maximum of 1 Cat and
7 Dogs; whereas CM allows up to 7 Pets, with a maximum of 6 Cats
and 1 Dog. If both scenarios are to be catered for by a single model
S then the assumption predicate must incorporate both extremes:

AS N <8AN.<6AN; <7

The algorithm of Section 3.3 reveals that the worst-case execution
duration of just DM is 63, just CM is 60 and of S is 70.

However it is clear that the single model S covers combinations
that are not possible; for example there cannot be 4 Dogs and 3 Cats
in the same image. An integrated Multi-Model of DM and CM will
more accurately specify how the classifier can behave, for example:

(1) The first Rol received from Initial will be pre-processed in

CBC (WCET =2) to determine whether it is of a cat or a dog.
If the former, its breed is determined at an additional WCET
of 6; if the latter, it is passed on to DBC which determines
the dog-breed at an additional WCET of 5.
Suppose the outcome here were “cat” — from the perspective
of DM, its assumption predicate implies that all following
RolI’s are of dogs. (Analogously if the outcome were “dog”
the CM model will determine, based on its assumption predi-
cate, that all following Rol’s are of cats.)

(2) Our system seeks to satisfy the integration of both require-

ments. Hence regardless of the outcome above, neither as-
sumption is invalidated and consequently the second Rol of
interest must also be pre-processed.
Let us suppose that the outcome for this Rol is the opposite
of the outcome for the first (i.e., the first two Rol’s are either
(Cat, Dog) or (Dog, Cat)). The reader may verify that the
maximum duration required in Initial, CBC and DBC for
processing these two RoI’sis 2 + 8 + 7 = 17.

(3) The third Rol must also be preprocessed. Note that this pre-
processing necessarily invalidates one of the two assumptions
—if the outcome is “dog” then the assumption of the CM model
no longer holds (analogously if the outcome is “cat” then the
assumption predicate for the DM model is no longer valid).
Let us separately consider the possibilities when the prepro-
cessing (WCET=2) reveals that this third Rol is of a) a dog
or of b) a cat.

a) If this turns out to be a dog image then the assumption of
the CM model is not valid and henceforth our system need
only seek to satisfy the requirement of the DM model. It
may therefore assume that every subsequent Rol is of a
dog, and consequently no pre-processing in CBC is needed;
rather, the Rol is immediately passed through to the DBC
which identifies the dog breed at a WCET cost of 5. Since
there may be at most six such RoI’s (including the current
—third— one), the total processing duration does not exceed
6+ 6X5=36.
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b) If, on the other hand, the third Rol turns out to be of a
cat then the assumption defining the DM model is inval-
idated; henceforth our system need only seek to satisfy
the requirement of the CM model. It will therefore assume
that every subsequent Rol is of a cat, and consequently no
pre-processing in CBC is needed; rather, the Rol is imme-
diately processed to identify the cat breed (at a WCET 6).
Since there may be at most 5 such Rol’s (including the
current one), the total processing duration does not exceed
5+5X%X6=35.

Summarising the discussion above, (i) worst-case duration
for processing the first two Rol’s is 17; (ii) pre-processing the
third Rol takes a maximum duration of 2; and (iii) processing
the remaining Rol’s takes a maximum duration of either 36
(if of a dog) or 35 (if of a cat). Hence, the worst-case duration
for a system to satisfy the requirements of this sequence is

17 + 2 + max(36, 35) = 55

However, this sequence of images which has the property of sat-
isfying both models for as long as possible is not the worst-case.
Consider the sequence (D, D, D, D, D, D, C, D). After two Rols the
assumption of the CM model is broken and hence only the DM
model applies, but because the allowed single cat does not appear un-
til almost the end the preprocessing of all but the last Rol is required.
This means that the worst case is

8+(6X7)+8+5=263

We continue with the issue of using the Multi-Model to estimate
the worst-case cost (cost(MM)) of the classification. As it is neces-
sary to ensure that either (or both) of the assumptions remains true,
the Multi-Model caters for each of the single models and hence:

cost(MM) > max(cost(DM), cost(CM))

With this example the computed cost is as low as possible as cost(MM) =

63. This compares favourable with cost(S) = 70.

4.1 Necessary Properties for Integrated
Multi-Models

To integrate DM and CM to form an effective single Multi-Model

there are some necessary prerequisites:

e The two model assumptions are not inherently contradictory:
it is possible for both to be true.

o If both assumptions are true then the obligations are comple-
mentary.

In the example
APMANAM =N <7AN. <1ANg<1

butas N < N; + Ny then
APMANAM = N <2AN. <1ANg <1

Hence a maximum of two pets, one cat and one dog; both of which
will have their breeds identified.

A system that adheres to the integration of models DM and CM
may experience various Modes of behaviour:

e Mode 1: APM and AM are true. Both sets of obligations
are delivered
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e Mode 2a: APM remains true, ACM is false. Only obligations
of DM are satisfied.

e Mode 2b: APM is false, AM remains true. Only obligations
of CM are satisfied.

e Mode 3: APM and ACM are false. No obligations are satis-
fied.

In Fig. 2, the top-most mode corresponds to Mode 1, the two modes
depicted one layer down represent Modes 2a and 2b, and the mode
depicted at the bottom represents Mode 3. A system that enters Mode
3 (from either 2a or 2b) has failed. A transition from Mode 2a to 2b,
or vice versa, cannot be taken. Modes 1, 2a and 2b are all valid and
legal.

We note, as illustrated earlier, that the worst-case cost does not
necessarily occur when the system stays in Mode 1 for the longest
time.

A final example illustrates that the estimate of the Multi-Model
can lie between that of the combined model and the individual
models. Let

APM LN <3 AN, <O0AN, <3
and for CM:
ACM LN 3 AN, <3AN; <0

then the combined single model is :
AS © N <3AN. <3AN;<3

These give rise to the following computations: the cost of DM is 18,
CM is 21 and S is 27. However the Multi-Model results in a cost of
23, which is higher than either of the individual models but lower
that the combined single model.

4.2 How to compute the cost of the worst-case
load

To compute the worst-case duration any input adhering to a Multi-
Model specification requires only a trivial change to the algorithm
given earlier. For the single model case a Valid function was
required that checked that the next step in the recurrence was allowed
(was sanctioned by the model). For the Multi-Model case this is
simply extended:

function Valid(TC, TD :
begin
return Valid_CM(TC, TD) or Valid_DM(TC, TD)

integer) is

end

where Valid_CMand Valid_DM are the checks for each specific
model.

When applied to the earlier example this dynamic program does
return with the worst-case estimate of 63.

We note, for completeness, that for independent Multi-Models
(where both models must be true at all times) then the following
code is appropriate.

function Valid(TC, TD :
begin
return Valid_CM(TC, TD) and Valid_DM(TC, TD)

integer) is

end

Both models must sanction the step.
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4.3 Discussion — Extending the Scope of the
Approach

The CADIS example discussed above has the property that the
temporal parameters of the models (Cc D¢, Cck, Dck) as illustrated
in Figure 5 are constant; they are not a function of the model that
is being applied (e.g. not a function of which of the single models
is valid when the parameter is employed). But this constraint is not
necessarily always true.

If we return to the example given in Section 4 then the worst-case
sequence of Rols was obtained from the DM model: (D, D, D, D, D,
D, C, D). One interpretation of the DM model is that it applies to
stakeholders that are only interested in determining the breeds of all
the dogs in any input image. By the time a Rol is processed that has
the sole cat the CM model has become invalidated. Hence only DM
applies. Arguably the DM stakeholder is not interested in the breed
of the solitary cat. And hence the cost associated with the cat should
be only 2 not 2 + 6. Giving an overall cost of 57 (not 63).

To illustrate how this can be taken into account consider the pa-
rameter Cc which is the cost of determining the breed of an identified
cat. In the examples discussed so far it has the constant value of 6.
To make its value model-specific requires a simple modification to
the code outlined in Figure 5, i.e. to include:

if Valid_CM then Cc := 6 else Cc := 0

Similar changes are needed to the other WCET parameters.

4.4 Integrated and Hierarchical Multi-Models

It was noted earlier that with a pure hierarchical model the assump-
tions are weakened as the system moves from one mode of operation
to another, degraded, mode. This means, with two models with pred-
icates Validl and Valid2, then if Validl is true then so is
Valid2. The normal mode of operation is governed by the first
model, the degraded mode by the second. In the degraded mode less
will be achieved — i.e., the obligations are reduced. And it follows
that the resources required will also be reduced.

So in the CADIS example rather than the classifier failing if there
are more than N™%* Rols in the input image, we could define a
degraded mode in which the type of the Pet within the Rol, but
not the breed, is computed. So in the normal mode we had the
assumptions and obligations as before:

A dgf
def
Q =

but in degraded mode (X):

N<4
V; e Species(Rol;) A Breed(Rol;)

df N <10

Vie1..4 ® Species(Rol;) A Breed(Rol;) A
V>4 ® Species(Rol;)

j{X
QX def

So if the number of Rols is bounded by the initial aassumption then
all Pets will have their type and breed identified. But if there is a 5th
Rol then rather than fail, the system degrades to a mode in which
only the species of the Rol is identified. To make this commitment it
is still necessary to bound the load on the system. And if the number
of Rols now raises above 10 then even the degraded mode will fail.

10
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Note in this simple example the two models have the appropriate
hierarchical relationship as A = AX.

It is of course acceptable to combine Integrated and Hierarchical
Multi-Models. So again with the CADIS use case if APM and AM
both fail then there could be a degraded model similar to the one
given above that delivers only a partial classification.

S CONCLUSIONS AND FUTURE WORK

We have proposed a framework for modelling and evaluating the
worst-case execution times of complex software components such
as classifiers. We have used a combination of assumptions and obli-
gations to define a workload model and a resource (CPU time)
requirements model. The assumptions are used to constrain potential
paths through the software and hence deliver effective estimates of
overall end-to-end timing behaviour. These estimates are obtained by
utilising a bottom-up recurrence algorithm that only considers steps
that are compliant with the defined assumptions. These assumptions
are also used to identify input elements and sequences that are easier
to process and hence lead to a reduction in the worst-case execution
time.

Although single models are potentially useful, a strong motivation
for the modelling approach adopted is to facilitate the combination
of models into, what has been termed here, Multi-Models. The
extensive literature on Mixed-Criticality systems has revealed a
large number of applications where one model is used to describe
the required behaviour in a “normal”” mode of operation, and another
the acceptable reduced behaviour in a “degraded” mode. These
Multi-Model descriptions are mostly hierarchical — the degraded
behaviour is a restricted form of the normal behaviour. In this paper
we have generalised this relationship to also include independent and
integrated Multi-Models. The integrated Multi-Model seems to be
particularly effective at describing and analysing complex systems
with multiple stakeholders or modes of operation.

In this first paper on these execution time Models and Multi-
Models we used an artificial simple example to motivate and illus-
trate the main ideas. Readers will hopefully be able to appreciate
that functionally similar applications (such as real-time classifiers
and other Al inspired autonomous components) within future Cyber
Physical Systems are likely to become increasingly common. For ex-
ample, a road-side monitoring unit could take periodic photographs
and be tasked with (a) estimating the real-time volume of traffic,
(b) classifying the traffic into cars, vans, lorries, bikes, motor bikes
etc, (c) estimate the total number of drivers/passengers for various
combinations of these vehicle classes, taking into account the fact
that a single photograph cannot simultaneously have a maximum
number of each vehicle class, (d) identify the number of self-driving
cars, (e) identify the number of cyclists not wearing helmets, etc.
A combination of these requirements could be expected to lead to
realistic independent, integrated and hierarchical Multi-Models.

There are a number of extensions that follow naturally from the
work presented in this paper:

o For classifiers that have multiple components, such as IDKs [1,
12, 30], the order in which components are arranged can have
a significant influence on the worst-case execution time of
the classification. In future work we will use the framework
developed to investigate this optimisation.
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o In future work we will also give further consideration to the
properties of the constraints that are amenable to inclusion in
the proposed modelling framework.

o A required extension to the framework is to consider multiple
concurrent components, their deadlines and system schedul-
ing; for Mixed-Ceriticality Systems this has been addressed [8]
within an assumptions/obligations formulation. In future work
we will integrate this approach with the more general Multi-
Model notion present in this paper.

e In the models presented in this paper the only failures con-
sidered are those caused by the input sequence failing to
comply with the defined assumptions. It is also possible to
introduce classification failures; e.g. a dog being wrongly
identified as being a cat, and hence its breed not being as-
certained unless it passes through both the CBC and DBC
components. With such failures the Assumptions must be
extended to include a Fault Model that bounds the number
of such mis-classification. This addition will be described in
detail in an extended version of this paper.
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