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Abstract. Electrostatics (or steady-state temperature) probing fields in a domain contain-
ing a rigid inclusion, e.g., the domain outside an underground pipe, can be described by a
Dirichlet problem for the Laplace equation in an annulus in which on the inner boundary the
solution takes an unknown, but constant, value. For such a problem, the boundary element
method (BEM) is well-suited. The extra unknown represented by the constant value of the
electric potential on the inner boundary is determined by imposing that the integral of the
current flux over the outer boundary of the annular domain vanishes. Numerical results are
presented and discussed showing the convergence and accuracy of the BEM.

1.1 Introduction

One of the most crucial engineering topic for the nuclear power plant’s safety administration
is corrosion in pipes [8]. Corrosion can lead to leaks, ruptures, and other forms of damage in
pipes, which can cause safety hazards and costly repairs. Detecting and monitoring corrosion is,
therefore, essential for ensuring the integrity of the pipes and the safety and efficiency of nuclear
power plants.

Electrostatics or steady-state temperature fields can be used to detect corrosion in pipes by
evaluating changes in the electric field and temperature distribution caused by corrosion-induced
changes in the thermal properties of material. This requires resolving Laplace’s equation in an
approximately annular domain with corrosion deviations, and imposing boundary conditions on
the inner and outer boundaries to estimate the electric potential or temperature distribution.
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These methods involve solving the Dirichlet problem for the Laplace equation in an annular
domain, where the solution takes an unknown, but constant, value on the inner boundary.

The boundary element method (BEM) has gained a great deal of study in a variety of
engineering disciplines for the purpose of solving mainly linear partial differential equations
(PDE) with fundamental solution available in explicit form, and significant advancements have
been made in the theoretical, numerical and practical aspects. The BEM has received considerable
attention from both academic research groups and the engineering community [6, 2]. The BEM
remains a topic of active research, and it continues to present a range of challenging issues for
theorists, numerical analysts and experimenters alike. Our numerical simulations show that the
BEM can accurately determine the current flux and the electric potential on the inner boundary
and inside the solution domain, providing a fast an accurate direct solver for the nonlinear
minimization that is usually employed in the detection of corrosion [3, 7].

The paper is organised as follows. In Section 1.2, we formulate the mathematical problem
under investigation, whilst in Section 1.3, the BEM is implemented. Section 1.4 discusses the
numerically obtained results in order to demonstrate the convergence and accuracy of the BEM.
Finally, conclusions are included in Section 1.5.

1.2 Mathematical formulation

Let Ω1 ⊂ Ω0 be two-dimensional simply-connected bounded domains with sufficiently smooth
boundaries ∂Ω1 and ∂Ω0, e.g., of class C

2, see Fig. 1.1. The solution domain Ω := Ω0\Ω1 is the
doubly-connected annular domain in between ∂Ω0 and ∂Ω1. Let us assume that Ω is a body with
constant conductivity (anisotropic functionally graded media are also ameneable with our BEM).
In domain Ω, the electrostatic field is taken into consideration by seeking a harmonic function
u ∈ C2(Ω) ∩ C1(Ω), representing the electrical potential, satisfying the Laplace’s equation

∆u = 0 in Ω, (1.1)

subject to the Dirichlet boundary conditions

u = f on ∂Ω0, (1.2)

u = a on ∂Ω1, (1.3)

where f ∈ C(∂Ω) is a given Dirichlet data on the outer boundary ∂Ω0 and a is a constant.
Equation (1.3) models the fact that Ω1 is a (perfectly conducting) rigid inclusion (while noting
that an adiabatic zero-Neumann boundary condition on ∂Ω1 models a cavity). If a is given,
then the problem in Eqs. (1.1)-(1.3) has a unique solution u. However, if the constant a is not
known then the additional condition

∫

∂Ω0

∂u

∂n
ds = 0, (1.4)

where n is the outward unit normal to the boundary ∂Ω, ensures the uniqueness of solution
(u, a) to the problem in Eqs. (1.1)-(1.4), see [3]. The BEM numerical approximations of the
problem in Eqs. (1.1)-(1.3) with a known, or Eqs. (1.1)-(1.4) with a unknown, will be illustrated
in Section 1.3.
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In electrical impedance tomography (EIT), the obstacle Ω1 is also unknown and in order to
compensate for this missing information one measures the current flux g ∈ C(∂Ω0) given by

∂u

∂n
= g on ∂Ω0. (1.5)

However, this more complex nonlinear inverse problem of EIT, [1, 3, 5], will not be investigated
herein.

Figure 1.1: The boundary value problem in Eqs. (1.1)-(1.3) and the BEM discretisation of the
boundary ∂Ω = ∂Ω0 ∪ ∂Ω1.

1.3 Boundary element method (BEM)

In [3], the author employed a single-layer representation of the harmonic function u that was
further differentiated in the tangential and normal directions at the boundary in order to apply
the conditions (1.3) and (1.4). In our study, we use a combined single-double layer classical
representation, based on the Green’s formula, which avoids these differentiations and enables
direct applications of conditions (1.3) and (1.4).

Application of the BEM to Laplace’s equation (1.1) in two-dimensions, [7], results in

η(p)u(p) =

∫

∂Ω

[

G(p, p′)
∂u

∂n
(p′)− u(p′)

∂G

∂n(p′)
(p, p′)

]

ds(p′), p ∈ Ω, (1.6)
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where η(p) = 1 if p ∈ Ω and η(p) = 1/2 if p ∈ ∂Ω (smooth), and G is the fundamental solution
of the Laplace equation, which, in two-dimensions, is given by

G(p, p′) = −
1

2π
ln |p− p′|. (1.7)

Applying Eq. (1.6) at p ∈ ∂Ω = ∂Ω0 ∪ ∂Ω1 and using the boundary conditions (1.2) and
(1.3) result in

∫

∂Ω
G(p, p′)

∂u

∂n
(p′)ds(p′)−

∫

∂Ω0

f(p′)
∂G

∂n(p′)
(p, p′)ds(p′)− a

∫

∂Ω1

∂G

∂n(p′)
(p, p′)ds(p′)

=







1
2f(p) if p ∈ ∂Ω0,

1
2a if p ∈ ∂Ω1.

(1.8)

We discretise the boundary ∂Ω = ∂Ω0 ∪ ∂Ω1 of the solution domain Ω = Ω0\Ω1 into a series
of M = 2N boundary elements. The outer boundary ∂Ω0 is discretised anti-clockwise into a
series of N straight line segments Γ0

j = [p
j−1

, p
j
] for j = 1, N , where p

N
= p

0
, while the inner

boundary ∂Ω1 is discretised clockwise into a series of N straight line segments Γ1
j−N = [p

j
, p

j+1
]

for j = N + 1, 2N , where p
2N+1

= p
N+1

. Let as denote

Γj =







Γ0
j for j = 1, N,

Γ1
j for j = N + 1, 2N.

Over each small boundary element Γj , the unknown Neumann data ∂u/∂n is assumed
constant and take the value at the midpoint (boundary element node)

p̃
j
=











(p
j
+ p

j−1
)/2 for j = 1, N,

(p
j+1

+ p
j
)/2 for j = N + 1, 2N,

namely

∂u

∂n
(p) ≈

∂u

∂n
(p̃

j
) =: u′j for p ∈ Γj , j = 1, 2N. (1.9)

We also approximate the Dirichlet data f in Eq. (1.2) by a piece-wise constant function as

f(p) ≈ f(p̃
j
) =: fj for p ∈ Γ0

j , j = 1, N. (1.10)

Denote

Aj(p) :=

∫

Γj

G(p, p′)ds(p′), Bj(p) :=

∫

Γj

∂G

∂n(p′)
(p, p′)ds(p′), p ∈ Ω, j = 1, 2N. (1.11)

With the approximations Eqs. (1.9) and (1.10), the boundary integral equation (1.8) is
approximated as

2N
∑

j=1

Aj(p)u
′

j −
N
∑

j=1

Bj(p)fj − a
2N
∑

j=N+1

Bj(p) =







1
2f(p) if p ∈ ∂Ω0,

1
2a if p ∈ ∂Ω1.

(1.12)
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The approximation of the boundary by straight line segments enables us to evaluate the
integrals Aj(p) and Bj(p) in Eq. (1.11) analytically for every p ∈ Ω and their expressions are
given by

Aj(p) = A(p, p
j−1

, p
j
) = −

1

2π







h(ln(h)− 1) if cb = 0,

c cos(β) ln(c/b)− h(1− ln(b)) + c ψ sin(β) if cb ̸= 0,
(1.13)

Bj(p) = B(p, p
j−1

, p
j
) =

1

2π



















0 if cb = 0 or p ∈ p
j−1

, p
j
,

ψ sign(αj−1(p)− αj(p)) if y ∈ [yj−1, yj ],

ψ sign(αj(p)− αj−1(p)) otherwise,

(1.14)

where sign is the signum function, defined by

sign(x) =



















−1 if x < 0,

0 if x = 0,

1 if x > 0,

and, see Figure 1.1, c = |p−p
j−1

|, b = |p−p
j
|, h = |p

j
−p

j−1
|, αj−1(p) ∈ [0, π] and αj(p) ∈ [0, π]

are the angles between the positive x-axis and the straight lines pp
j−1

and pp
j
in the upper half

plane, respectively, and the angles ψ ∈ [0, π] and β ∈ [0, π] are given by

ψ = arccos

(

c2 + b2 − h2

2cb

)

, β = arccos

(

c2 + h2 − b2

2ch

)

. (1.15)

Collocating Eq. (1.12) at p = p̃
i
for i = 1, 2N , we obtain

2N
∑

j=1

Aiju
′

j +

2N
∑

j=1

Bijfj = 0, i = 1, 2N. (1.16)

where

Aij := Aj(p̃i), Bij := −
1

2
δij −Bj(p̃i), i, j = 1, 2N,

fj = f(p̃
j
), j = 1, N and fj = a, j = N + 1, 2N, (1.17)

and δi,j the Kronecker delta symbol.
In the case a is known, the system of equations (1.16) can be written in compact form as

Au′ = −Bf (1.18)

and solved using the Matlab command of the LU decomposition method.
In the case a is unknown, the system of equations (1.16) can be written in the form

2N
∑

j=1

Aiju
′

j + a

2N
∑

j=N+1

Bij = −

N
∑

j=1

Bijfj , i = 1, 2N, (1.19)
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Figure 1.2: The analytical (1.25) and numerical normal derivatives on the outer and inner
boundaries, as functions of θ/(2π), obtained using the BEM with N = 40, for the problem given
by Eqs.(1.1), (1.22) and (1.23).

Equation (1.4) is also employed in the discretized form,

N
∑

j=1

hju
′

j = 0, (1.20)

where hj :=
∫

Γj
ds(p′) for j = 1, N .

The new system of linear equations (1.19) and (1.20) is solved using the Matlab command
of the LU decomposition method to find the Neumann values u′

j=1,2N
and the constant a.

Once the values of u′ (and a when unknown) have been found accurately, the following
discretisation of the integral Eq. 1.12:

u(p) =

2N
∑

j=1

Aj(p)u
′

j −

N
∑

j=1

Bj(p)fj − a

2N
∑

j=N+1

Bj(p), p ∈ Ω, (1.21)

provides explicitly the solution u(p) at any point p inside the solution domain Ω.

1.4 Numerical results and discussion

Let Ω0 and Ω1 be the discs of radii R0 and R1, where 0 < R1 = 0.5 < R0 = 1 centered at the
origin, as shown in Figure 1.1.
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uN uexactN = 10 N = 20 N = 40 N = 80

u(0.8, 0.0) 1.8793 1.9363 1.9467 1.9491 1.9500

u(0.6, 0.3) 1.0296 1.0568 1.064 1.0660 1.0666

u(−0.3, 0.6) -0.5179 -0.5284 -0.5320 -0.5330 -0.5333

Table 1.1: The exact (1.24) and numerical BEM solutions obtained with various numbers of
boundary elements N ∈ {10, 20, 40, 80}, for the problem given by Eqs. (1.1), (1.22) and (1.23).

1.4.1 Example when a is known

With the boundary conditions (1.2) and (1.3) given by

u(r, θ)|r=R0=1 = f(R0, θ) = 3 cos(θ) on ∂Ω0, (1.22)

u(r, θ)|r=R1=0.5 = a = 0 on ∂Ω1, (1.23)

it is easy to see that the problem in Eqs. (1.1), (1.22) and (1.23) has the analytical solution

u(r, θ) = 4r cos(θ)−
cos(θ)

r
, R1 < r < R0, r ∈ [0, 2π). (1.24)

From (1.24), the exact current flux is given by

∂u

∂n

∣

∣

∣

∣

r=R0

= 4 cos(θ) +
cos(θ)

R2
0

,
∂u

∂n

∣

∣

∣

∣

r=R1

= −

(

4 cos(θ) +
cos(θ)

R2
1

)

, θ ∈ [0, 2π). (1.25)

As shown in Figure 1.2, the agreement between the BEM numerical solution and the exact
solution for the normal derivative is excellent.

In order to choose the right number of boundary elements for a specific problem, it is crucial
to know how fast the numerical solution reaches the true solution, as the number of boundary
elements increases. In Table 1.1, the number of boundary elements used determines the accuracy
of the numerical solution obtained using the BEM. For instance, at (−0.3, 0.6), the numerical
solution becomes more accurate since the absolute error {0.0153, 0.0049, 0.0012, 0.0003} decreases
as the number of boundary elements increases from N = 10 to 20, 40 and 80, as shown in Table
1.1. The solutions become more accurate as more boundary elements are used.

It is illustrative to examine the convergence behaviour of the BEM using a plot, see Figure
1.3(a), and calculate order of convergence of the BEM. The computational order of convergence
is defined as [4],

α ≈
ln
(

enew

eold

)

ln
(

Nnew

Nold

) , (1.26)

where enew and eold denote the absolute errors of the numerical solutions obtained with Nnew

and Nold boundary elements, respectively. For our problem we have calculated the order of
convergence for u(0.8, 0.0) and obtained α ∈ {2.3699, 2.0625, 1.9965} for {10, 20, 40} ∋ Nold =
Nnew/2, see Figure 1.3(a). This indicates that the order of convergence is quadratic.
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The L2-norm of error gives a measure of the overall accuracy of the numerical approximation,
see Figure 1.3(b). To compute the L2-norm numerically, we use a Gaussian quadrature technique
over a triangulated mesh that covers the domain Ω using the PDE Toolbox in Matlab. The sum
of the approximations over all mesh elements yields the L2-norm squared of the error. The
formula for the L2-norm of a function U(x, y) over a domain Ω is

||U ||L2(Ω) =

(
∫

Ω
U2(x, y)dxdy

)1/2

. (1.27)

By using Eq. (1.26), the estimated values of α of {4.7044, 1.8012, 2.1346} for {10, 20, 40} ∋
Nold = Nnew/2 are obtained for the L2(Ω) errors presented in Figure 1.3(b), indicating the
quadratic order of convergence.

(a)

10 20 30 40 50 60 70 80

10
-3

10
-2

10
-1

(b)

10 20 30 40 50 60 70 80
10

-3

10
-2

10
-1

10
0

Figure 1.3: The convergence of the BEM at (a) the point (0.8, 0.0) and (b) in L2(Ω) for the
problem given by Eqs. (1.1), (1.22) and (1.23).

1.4.2 Example when a is unknown

Consider now the same problem given by equations (1.1), (1.3) and (1.22) in the annular domain
Ω = {(r, θ)}| 0.5 = R1 < r < R0 = 1, θ ∈ [0, 2π)}, but now the constant a is unknown. Then,
equations (1.19) and (1.20) can be written as the linear system of algebraic equations

Ã

(

u′ = (u′j)j=1,2N

a

)

= C, (1.28)

where the matrix Ã is given by

Ãij =







































Aij if i = 1, 2N, j = 1, 2N

hj if i = 2N + 1, j = 1, N

0 if i = 2N + 1, j = N + 1, 2N + 1

0 if i = 1, N, j = 2N + 1

−1 if i = N + 1, 2N, j = 2N + 1,
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and

C = (Ci)i=1,2N+1 with Ci = −
N
∑

j=1

Bijfj for i = 1, 2N and C2N+1 = 0.

Table 1.2 shows the numerical BEM solutions at the points: (0.8, 0.0), (0.6, 0.3), and (−0.3, 0.6)

uN uexactN = 10 N = 20 N = 40 N = 80

u(0.8, 0.0) 1.9281 1.9504 1.9503 1.9501 1.9500

u(0.6, 0.3) 1.1169 1.0803 1.0701 1.0675 1.0666

u(−0.3, 0.6) -0.5623 -0.5401 -0.5350 -0.5337 -0.5333

a -4.7E-15 5.6E-14 -3.9E-13 -1.0E-12 0

Table 1.2: The exact (1.24) and numerical BEM solutions obtained with various numbers of
boundary elements N ∈ {10, 20, 40, 80} for the problem given by Eqs. (1.1), (1.3), (1.4) and
(1.22).

converging to the exact solution (1.24). The numerically retrieved values of the constant a are
also close to the exact value of zero. The estimated values of α ∈ {4.6420, 1.8231, 2.1155} for
{10, 20, 40} ∋ Nold = Nnew/2 are obtained for the L2(Ω) errors, indicating the quadratic order of
convergence. These values are similar to those obtained for the problem of the previous section
1.4.1 where a was known.

We consider now an example in which an analytical solution is not available. Here we take
the Dirichlet data (1.2) given by, [3],

u(r, θ)|r=R0=1 = f(R0, θ) = 10
(

exp
[

−4 sin2(θ/2)
]

− exp
[

−4 cos2(θ/2)
])

, θ ∈ [0, 2π). (1.29)

The numerical results presented in Table 1.3 show the convergence of the BEM numerical
solution.

uN
N = 10 N = 20 N = 40 N = 80

u(0.8, 0.0) 6.5303 6.2997 6.2097 6.1858

u(0.6, 0.3) 3.5701 3.2147 3.1353 3.1157

u(−0.3, 0.6) -1.4536 -1.2937 -1.2592 -1.2507

a -1.4E-15 1.2E-13 -1.2E-12 -4.4E-12

Table 1.3: The numerical BEM solutions obtained with various numbers of boundary elements
N ∈ {10, 20, 40, 80} for the problem given by Eqs. (1.1), (1.3), (1.4) and (1.29).

1.5 Conclusions

The BEM has been applied to solving the Dirichlet problem for the Laplace equation in an
annular domain in case the inner core represents a rigid inclusion. The constant value a of the
potential on the boundary of this perfectly conducting hole may be known or unknown. In case
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a is unknown, an extra condition that the integral of the current flux vanishes over the outer
boundary of the solution domain has been enforced. Numerical results have been presented and
discussed showing that the BEM is convergent as the number of boundary elements increases
and that the convergence is of quadratic order.

Future work will consist of solving the inverse problem in case the inner core, representing,
for example, a tumour, is unknown.

Acknowledgement

N.R. Altalhi would like to thank the Leeds and Taif universities for supporting her PhD research
studies at the University of Leeds. No data are associated with this article. For the purpose of
open access, the authors have applied a Creative Commons Attribution (CC BY) license to any
Author Accepted Manuscript version arising from this submission.

References

[1] Borman, D., Ingham, D.B., Johansson, B.T. and Lesnic, D. The method of fundamental
solutions for detection of cavities in EIT. Journal of Integral Equations and Applications, 21(3):
381-404, 2009.

[2] C. A. Brebbia, C.A., J. C. F. Telles, J,C.F. and Wrobel, L.C. Boundary Element Tech-

niques: Theory and Applications in Engineering. Springer Science & Business Media, Berlin, 2012.

[3] Gavrilov, S.V. Numerical method for solving an inverse problem for Laplace’s equation in a
domain with an unknown inner boundary. Computational Mathematics and Mathematical Physics,
59(1): 59–65, 2019.

[4] Grau-Sánchez, M., Noguera, M. and Gutiérrez, J.M. On some computational orders of
convergence. Applied Mathematics Letters, 23(4): 472–478, 2010.

[5] Karageorghis, A., Lesnic, D. and Marin, L. (2023) An efficient moving pseudo-boundary MFS
for void detection. Engineering Analysis with Boundary Elements, 147: 90–111, 2023.

[6] Katsikadelis, J.T. Boundary Elements: Theory and Applications. Elsevier, Amesterdam, 2002.

[7] D. Lesnic, D., Berger, J.R. and Martin, P.A. A boundary element regularization method for
the boundary determination in potential corrosion damage. Inverse Problems in Engineering, 10(2):
163–182, 2002.

[8] Yang, X., Choulli, M. and Cheng, J. An iterative BEM for the inverse problem of detecting
corrosion in a pipe. Numerical Mathematics, 14(3): 252-268, 2005.

10


