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Abstract
When humans share space in road traffic, as drivers or as vulnerable road users, they draw on their full range of communicative and 
interactive capabilities. Much remains unknown about these behaviors, but they need to be captured in models if automated vehicles 
are to coexist successfully with human road users. Empirical studies of human road user behavior implicate a large number of 
underlying cognitive mechanisms, which taken together are well beyond the scope of existing computational models. Here, we note 
that for all of these putative mechanisms, computational theories exist in different subdisciplines of psychology, for more constrained 
tasks. We demonstrate how these separate theories can be generalized from abstract laboratory paradigms and integrated into a 
computational framework for modeling human road user interaction, combining Bayesian perception, a theory of mind regarding 
others’ intentions, behavioral game theory, long-term valuation of action alternatives, and evidence accumulation decision-making. 
We show that a model with these assumptions—but not simpler versions of the same model—can account for a number of previously 
unexplained phenomena in naturalistic driver–pedestrian road-crossing interactions, and successfully predicts interaction outcomes 
in an unseen data set. Our modeling results contribute to demonstrating the real-world value of the theories from which we draw, 
and address calls in psychology for cumulative theory-building, presenting human road use as a suitable setting for work of this 
nature. Our findings also underscore the formidable complexity of human interaction in road traffic, with strong implications for the 
requirements to set on development and testing of vehicle automation.

Significance Statement

Before automated vehicles can be deployed in highly interactive traffic environments, they need to be capable of taking part in these 
interactions in a safe and human-acceptable manner. However, this requires quantitative models of how humans interact, commu
nicate, and understand each other. We demonstrate that several phenomena of this nature in driver–pedestrian interaction can be 
explained by adopting a range of existing but previously separate mathematical theories in psychology, and integrating these into 
one model. This is useful because it provides a concrete demonstration of integration of psychological theory, increases our under
standing of human road user interaction, and demonstrates the high complexity underlying the human behaviors with which auto
mated vehicles will need to coexist.

Competing Interest: The authors declare no competing interest.
Received: November 20, 2022. Revised: March 22, 2023. Accepted: April 25, 2023 
© The Author(s) 2023. Published by Oxford University Press on behalf of National Academy of Sciences. This is an Open Access article 
distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

Introduction
A large share of our daily interactions with other humans in soci
ety happen while moving on or near roads, as drivers, pedestrians, 

cyclists, and so on. The empirical literature suggests that interac

tions between road users depend on much of the same complex 

underlying cognitive machinery as other forms of human 

interaction, including decision-making mechanisms (1), speed- 

accuracy tradeoffs between goal-achieving and risk-taking (2), 

game-theoretic reasoning (3), a theory of mind to estimate the in

tentions of others (4) and how those intentions are influenced by 

one’s own actions (5), such as implicit and explicit communica

tion (6, 7). However, no integrated theory or model exists which 

combines these putative cognitive mechanisms to more compre
hensively explain and predict road user interaction behavior.

In recent years, there has been a push toward introducing au
tomated vehicles on public roads, but safe and human-acceptable 
deployment of these vehicles into more complex, interactive envi
ronments currently remains hampered by a lack of models of how 
human road users interact. Such models are needed both in real- 
time algorithms to predict human behavior (8, 9) and for simu
lated testing with virtual human agents (10, 11). This need has 
prompted a surge of research developing road user interaction 
models. Most of these models have been application-oriented 
and emphasize high-level metrics of average deviation between 
observed and predicted trajectories, such as root mean square 
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error (8–11), rather than engaging with the specific behavioral 
phenomena and putative underlying cognitive mechanisms im
plicated by the empirical literature. Other models take this more 
cognitive–behavioral perspective, but limit the scope to one or a 
few mechanisms at a time (12–15). This leaves the question 
open: How complex is the cognitive machinery underlying human 
interaction on the road, and what will it take to capture the result
ing behavior in models?

At the same time, it should be noted that there are entire sub
fields of psychology focusing exclusively on each of the cognitive 
mechanisms listed above, with computational cognitive models 
developed to account for behavior in abstract tasks in the labora
tory (16–24). Some authors find this somewhat fragmented state 
of psychological theory limiting, and there is a recurring argument 
for more cumulative theory-building, where one possible way for
ward is integration of separate theories into larger models, to de
scribe human behavior in more complex, real-world tasks (25, 26). 
Here, we take on this challenge by developing a psychological 
model of road user interaction, focusing on interactions between 
drivers and pedestrians, which is a particularly difficult scenario 
for automated vehicles (8). Drawing from theoretical work on 
model selection in psychology (27), we diverge from previous 
road user interaction modeling work by starting not from a data 
set to be fitted, but instead from a set of behavioral phenomena 
we wish to account for. We adopt mathematical formulations 

from existing computational psychological theories about percep
tion, cognition, action, and interaction, and integrate these into a 
single, modular framework, allowing us to investigate what theor
etical assumptions are required to reproduce what behavioral 
phenomena.

Fig. 1A shows the five empirically well-established driver–ped
estrian interaction phenomena we use as our primary targets for 
modeling, including different forms of apparent implicit commu
nication (priority assertion: drivers speeding up when denying pri
ority to pedestrians (5, 28); short-stopping: drivers exaggerating 
deceleration to encourage pedestrians to cross (6, 29)), hesitation 
(yield acceptance hesitation and gap acceptance hesitation: pedestrians 
slowing down to delay their crossing in front of both yielding and 
nonyielding cars (1, 2, 6)), and interpretation of others’ intentions 
(early yield acceptance: pedestrians beginning to cross before a yield
ing vehicle has come to a full stop (1, 6)). These phenomena were 
chosen here for having been hypothesized to draw from a wide 
range of underlying cognitive mechanisms (1–6), and similar phe
nomena are present also in interactions involving other types of 
road users, e.g. driver–driver interactions (30, 31).

Online Supplementary Fig. S1 shows the perception–action 
loop of the full model framework we developed to account for 
the targeted empirical phenomena, and Fig. 2 shows the maximal
ly successful model variant we identified within this framework 
(the lowest-complexity model explaining the largest number of 

A

B

C

Fig. 1. Behavioral phenomena and deterministic model results. A) The targeted phenomena, with the modeled agent in blue (the driver in the first two 
columns, and the pedestrian in the other three). B) Distributions of behavior metrics obtained across the parameter space of six selected deterministic 
model variants (explained further in the text; see also Online Supplementary Fig. S1). The light blue vertical lines and arrows indicate the region where 
each phenomenon is increasingly clearly exhibited. C) Example time-series simulations for three of the models in B. Gray dotted lines show behavior of 
the nonmodeled agent; shaded rectangles indicate when agents are in the contested road space.
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phenomena). Two framework assumptions (shown in gray in 
Fig. 2) are shared among all our tested model variants: First, based 
on theories of motor primitives (32) and intermittent sensori
motor control (33), which have been shown to explain driver be
havior in both routine and near-crash situations (34, 35), and 
based on observations and models of stepwise adjustments to 
pedestrian walking speed (2, 36, 37, 38), we model the longitudinal 
locomotion of driver and pedestrian as constructed from intermit
tent adjustments to acceleration and speed, respectively. Second, 
aligning with a long modeling tradition in psychology and neuro
science (21), we assume that agents decide what motor primitives 
to apply by estimating the value (or utility, or predicted reward) 
from applying each alternative action.

In the following, we extend on this base model with different 
combinations of assumptions from other psychological theories. 
For each tested model variant, we comprehensively searched a 
space of plausible model parameterizations, simulated each mod
el parameterization across kinematical variants of the targeted 
scenarios, and quantified, using various behavior metrics, 
whether the model exhibited the phenomena in Fig. 1A. This mod
el selection process first considered fully deterministic model var
iants only, thereafter expanding the selection to also include 
stochastic model assumptions. We then narrowed down our mod
el selection further using data from a controlled experiment, and 
performed a validation test of the final model by comparing its 
predictions to data from a second experiment. Below, our main 
findings will be presented; details about the model, model selec
tion metrics, data sets, and tests are presented in the Methods sec
tion, and full results across all tested model variants are provided 
in the Online Supplementary Material.

Results
Short-term value estimation captures only basic 
collision aversion
Fig. 1B shows, for six selected deterministic model variants, distri
butions of observed behavior metrics across each model’s entire 
tested parameter space, thus showing the range of behaviors 
each model is capable of expressing. Fig. 1C shows example 
time-series simulations for selected model parameterizations.

In game-theoretic models of human interaction (3, 18), value is 
often formulated as a single payoff obtained after a one-shot 
interaction (a single, simultaneous decision by all players). We 
first formulated value estimation as this type of payoff, a short- 

term (0.5 s) prediction into the future from each time step for 
each possible movement adjustment, with positive reward from 
making locomotor progress, a cost for being on a collision course, 
discomfort/effort costs from speed and accelerations, and a cost 
for violating priority rules. We found that this base model variant 
(black dashed line in Fig. 1B and C) could account for two of our 
targeted phenomena, namely yield acceptance hesitation (the 
pedestrian slows down before beginning to cross in front of the 
yielding vehicle; vp/vp,free < 1 in Fig. 1B for many model parame
terizations) and early yield acceptance (the pedestrian begins 
crossing before the yielding car has come to a full stop; vv(tcross) > 
0 in Fig. 1B), although with a tendency for very early yield accept
ance (high vv(tcross) values).

However, this simple model was not able to account for the oth
er three targeted phenomena: short-stopping (as can be seen in 
Fig. 1C, the slightly positive average excess deceleration d − dstop 

in Fig. 1B for this model does not translate to stopping short; see 
further Online Supplementary Section 2.1 and Figs. S5 and S6), pri
ority assertion (no vv/vv,free > 1), or gap acceptance hesitation (no 
vp/vp,free < 1).

Extending short-term value estimation with a 
theory of mind is not enough
It has been hypothesized that phenomena like short-stopping, 
priority assertion, and hesitation arise because human road 
users have a theory of mind about each other (19, 39), in the spe
cific sense that they reason about each other’s intentions during 
interactions (1, 4, 6). Separate psychological theories exist for 
how humans infer others’ intentions by considering the situation 
at hand from the other’s perspective and either observing their 
actions (19, 20) (referred to here as observation-based behavior 
estimation), or judging what behavior would be rational—i.e. 
value-maximizing—for the other agent (18, 22) (value-based be
havior estimation), in the latter case sometimes also considering 
the impact of one’s own actions on the other (12) (action- 
sensitive, value-based behavior estimation). We show in the 
Methods section how several such theories can be combined 
into a joint, modular model of behavior estimation, capable of 
considering both the actual observed movement of the other 
agent, and what would be rational of the other agent, with or 
without consideration of the impact of one’s own actions. Since 
the possible outcomes of a (collision-free) interaction is always 
that one or the other agent passes the crossing location first, 
we assume that the agents are estimating the behaviors of the 
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Fig. 2. Maximally successful model variant. Colors indicate assumptions included in the base model (gray) and selected in the deterministic (green) and 
stochastic (blue) model tests. See Online Supplementary Fig. S1 for an illustration of the full model framework from which this specific model variant is 
derived.
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other agent in terms of probabilities of these two intended access 
orders. We extended the base model with all possible variants of 
this behavior estimation model, and found that some of the re
sulting model variants were capable of exhibiting gap accept
ance hesitation (yellow and green dashed lines in Fig. 1B and C; 
vp/vp,free < 1), but there were still no parameterizations for which 
these model variants were capable of priority assertion or short- 
stopping (Fig. 1B and C, Online Supplementary Fig. S5; again, as 
can be seen for the yellow dashed line in Fig. 1C, the slightly posi
tive excess deceleration d − dstop in Fig. 1B did not translate to the 
model actually stopping short).

Fig. 3A illustrates this limitation, in an example simulation of 
the driver agent model, with action-sensitive, value-based behav
ior estimation (i.e. the driver assumes that the pedestrian will be
have rationally, to maximize own reward, in response to the 
driver’s actions) in a scenario with pedestrian priority, where as 
mentioned human drivers will often exaggerate deceleration 
and short-stop. In this simulation, the driver agent never judges 
that the own action a will affect the behavior b of the pedestrian 
(there is complete overlap between the dashed and solid lines 
for value Vb|a and probability Pb|a of pedestrian behavior b given 
own action a). The reason for this weak coupling between own ac
tions and behavior of the other is that the short-term payoff model 
has a highly constrained view of future events. This prevents the 
driver from seeing a benefit of increasing deceleration (black solid 

line in bottom panel of Fig. 3A) beyond the minimum required to 
yield to the pedestrian (black dotted line).

Implicit communication from theory of mind and 
long-term value estimation
In contrast to the short-term payoff assumption, in models of 
reward-driven behavior, it is often assumed that humans maxi
mize value over a longer prediction horizon (40), sometimes also 
in interactive, game-theoretic settings (12, 13). We tested a second 
value estimation formulation which evaluates, for each possible 
motor primitive, the long-term value for the agent of passing be
fore or after the other agent, after having applied the motor primi
tive in question. We used the same rewards and costs as for the 
short-term payoff model, but now integrated these into the 
agent’s anticipated future, with exponential temporal discount
ing, i.e. a preference for earlier rewards (40). The obtained values 
quantify simultaneously how desirable and available the two pos
sible access orders are for the agent, or differently put the agent’s 
expected affordances for the two access orders (41, 42), after apply
ing a given motor primitive.

This affordance-based model, combined with action-sensitive, 
value-based behavior estimation, was capable of exhibiting not 
only yield acceptance hesitation and early yield acceptance but 
also short-stopping (Fig. 1B; d − dstop > 0, leading to a substantial 

A B

C

D E F

Fig. 3. Model behavior in the driver short-stopping (panels A–C) and pedestrian gap acceptance hesitation (panels D–F) scenarios. A) Short-term payoff 
model with action-sensitive value-based behavior estimation, unable to exhibit short-stopping. B) Affordance-based model with action-sensitive 
value-based behavior estimation, exhibiting short-stopping. C) Detailed view of the affordance-based value estimation (from t = 0.5 s in B). D) Model with 
value noise, not exhibiting gap acceptance hesitation. Thin lines show example simulations; thick lines and shaded areas show median and 20–80 
percentiles across 500 different model parameterizations. E) As in panel E, but for a model with sensory noise, exhibiting gap acceptance hesitation. 
F) Internal model states for the simulations in E; thin lines are for the example simulation highlighted in blue in E.
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final stopping distance as seen in Fig. 1C) and (modest) priority as
sertion (vv/vv,free > 1). Fig. 3B shows an example simulation of this 
model in the same scenario as in Fig. 3A. It can be seen that the 
highest-value outcome for the affordance-based driver would 
consistently be that the pedestrian crosses first (green Va|b lines 
higher than red), and from about t ≥ 0.5 s, at which point the driv
er has reached a sufficient deceleration for yielding, the driver 
would prefer that the pedestrian crossed first without the driver 
having to decelerate further (dashed green Va|b highest). To illus
trate the calculations underlying this preference, Fig. 3C provides 
a snapshot of the affordance-based value estimation of Va|b at 
time t = 0.5 s, showing how the driver agent envisions the different 
possible future outcomes from this point, in terms of own future 
speeds, and associated momentary and cumulative reward. 
Using a similar evaluation of future values for the pedestrian, 
the driver agent can now also estimate that the value, and there
fore probability, for the pedestrian of actually beginning to cross 
in front of the car is higher if the driver does increase deceleration 
further (solid green Vb|a and Pb|a higher than dashed green lines). 
Thus, on balance, since the value of yielding to a yielding pedes
trian is low (dark red lines in Fig. 3B and C), the driver chooses 
to further increase deceleration, resulting in short-stopping.

Value-transformed sensory noise explains gap 
acceptance hesitation
As shown earlier, gap acceptance hesitation can arise in these de
terministic models due to uncertainty about the other agent’s be
havior, but this was not the case in any of the model variants 
capable of exhibiting the other four targeted phenomena. Thus, 
our maximally successful deterministic model (gray and green 
boxes in Fig. 2; solid green lines in Fig. 1B and C) leaves gap accept
ance hesitation unexplained. There are many theories of percep
tion and cognition which instead describe uncertainty as arising 
from nondeterministic processes, and we integrated two domin
ant such theories into our framework: Bayes-optimal interpret
ation of noisy sensory input (23, 24) and accumulation of noisy 
evidence in favor of an action (e.g. noisy action value) to a thresh
old before committing to a decision (16, 17). In both of these the
ories, noise is added at model input, as sensory noise and value 
noise, respectively. However, we separated out the assumptions 
about where noise is injected, to create a larger set of different 
models combining the two theories.

We found that the presence of sensory noise, but not value 
noise, caused the model to exhibit gap acceptance hesitation. 
Fig. 3D shows that adding symmetric value noise at the pedes
trian’s decision-making stage (16, 17) introduces similarly sym
metric variations in pedestrian walking speed, with no clear 
influence of the approaching car, and no bias for slowing down. 
In contrast, the simulations with sensory noise in Fig. 3E show a 
distinct onset of pedestrian deceleration, either to a full stop to 
wait for the car to pass, or followed by an acceleration to cross be
fore the car. The reason for this model behavior can be seen in 
Fig. 3F: The sensory noise causes a symmetric uncertainty about, 
for example, the vehicle’s time to arrival (TTA), but since the con
sequences for the pedestrian of a lower rather than a higher TTA 
are highly asymmetric, the model’s value estimation transforms 
the symmetric sensory noise into value noise that is asymmetric, 
skewing more towards low values Va (the shaded areas indicating 
20–80 percentiles of Va extend much further below than above the 
medians). This skew is particularly large for the action of main
taining initial speed to cross in front of the car, resulting in a 
risk-averse preference for slowing down, i.e. gap acceptance 

hesitation. It can be noted that the same risk aversion causes 
those pedestrians who do cross in front of the car to do so at an 
elevated walking speed, even though this is objectively unneces
sary; this type of elevated road-crossing speed is also well known 
in human pedestrians (2, 43).

Model with Bayesian perception and evidence 
accumulation predicts empirical data
We next combined the deterministic and stochastic model var
iants that were successful in the tests described above, generating 
a number of more complex model variants, with populations of 
parameterizations sampled from those that had been previously 
successful in the separate deterministic and stochastic tests. We 
subjected the resulting models to further tests. First, we used a 
data set from a high-fidelity pedestrian simulator experiment, 
where 60 participants in a CAVE virtual reality environment de
cided if and when to cross in gaps between approaching, constant- 
speed vehicles. The resulting data set of 7,200 trials showed non
trivial distributions of crossing onset time (Fig. 4A), with an early 
mode of crossing, of mass depending on gap size, and in the 
deceleration trials also a second mode of crossing as the yielding 
vehicle was approaching zero speed. We generated population- 
level predictions for these experimental conditions from all of 
our more complex model variants, and found that only those 
model variants which included both Bayesian perceptual filtering 
and evidence accumulation predicted the bimodal crossing pat
tern of the humans (Fig. 4A; see further Online Supplementary 
Fig. S18). We consider the simplest of these model variants our 
maximally successful model (Fig. 2).

Next, we tested this maximally successful model in interactive 
simulations, where both driver and pedestrian were controlled by 
the model (Fig. 4B), and found that the model was capable of 
collision-free two-agent interaction. Beyond the main phenomena 
targeted in this paper it also exhibited one additional phenom
enon: In time-symmetric vehicle–pedestrian encounters without 
clear pedestrian priority (leftmost panels in Fig. 4B), vehicles al
most always end up passing first (5).

Finally, we conducted a controlled experiment where 32 pairs 
of human participants interacted as driver and pedestrian, in a 
high-fidelity, distributed driver–pedestrian simulator. We varied 
the presence of a zebra crossing indicating pedestrian priority, 
and cued the pedestrian participant to step up to the curb from be
hind a vision obstruction when the driver participant was at dif
ferent time gaps from the crossing, thus varying the initial 
kinematics of the interaction. As can be seen in Fig. 4C, in the ob
tained data set of 1,280 human–human interactions, the outcome 
in terms of who passed the crossing first varied with both initial 
kinematics and priority rule, and we found that two-agent simu
lations of our model in these experimental conditions predicted 
these dependencies well (Fig. 4C).

It is worth emphasizing that Fig. 4 does not show fits of the 
model to either of the two considered data sets; simply predictions 
from the model after it has been constrained to exhibit our other 
targeted phenomena, and after excluding model parameteriza
tions with a tendency to “get stuck.”

Discussion
We have presented a framework for modeling road user interac
tions, demonstrating how a range of existing computational psy
chological theories fit together mathematically, and can be 
combined to create joint models integrating these theories. Our 
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framework describes behavior as shaped by long-term reward, be
havioral game theory, sensory noise, Bayesian perception, a the
ory of mind regarding the intentions of others, and evidence 
accumulation decision-making. Our main finding is that only a 
model which includes all of these assumptions can account for 
all of our five targeted phenomena, observed in naturalistic driv
er–pedestrian interaction (Fig. 1A). Previous models have ac
counted for early yield acceptance (1) and short-stopping (44) 
separately; our maximally successful model accounts for both, 
and our other three targeted phenomena as well. Furthermore, 
we found that this model, without further parameter-fitting, re
produced two additional phenomena (pedestrian crossing speed- 
up and driver advantage in symmetric vehicle–pedestrian en
counters), and successfully predicted behavior patterns observed 
in two controlled studies. We draw three main conclusions from 
our findings.

The first main conclusion is quite simply that a comprehensive 
understanding and modeling of human road user interaction 
seems likely to require substantial integration of psychological 
theory. As described in the Introduction section, this hypothesis 
has previously been indirectly discernible across the empirical lit
erature on road user behavior. Here, we explicitly formulated and 
tested it, and found clear support in its favor, by means of one of 
the largest-scale integrations of psychological theory of which we 
are aware. The fact that this integration was done in the context of 
road user interaction is meaningful also in the sense that it pro
vides a concrete demonstration of how the existing theories, often 
tested mostly in abstract laboratory tasks, can be put to use in a 
real-world context with high applied relevance.

Following on from the above, our second main conclusion is 
that constructing a task-specific model of a complex real-world 
task can indeed be a fruitful approach to cumulative theory- 
building in psychology, as has been suggested by some (25, 26). 
A more common approach to psychological modeling of real- 
world tasks has been to first pursue task-general cognitive archi
tectures (45, 46), and then build on these to model specific tasks, 
for example in driving (47). However, few or none of the model as
sumptions we have found useful here come “for free” in these ar
chitectures, so adopting these assumptions into an existing 

architecture would have resulted in an even more complex model 
than the one we have presented here. This type of combined ap
proach could also be useful, for example to address modeling 
challenges relating to road user distraction, for which ACT-R 
has been previously used (48). A benefit of the task-specific ap
proach to theoretical integration that we took here was that it al
lowed us to focus specifically on how the existing theories fit 
together mathematically, opening up new possible lines of psy
chological modeling research on these combined models. Most 
notably, our joint formulation of combined observation-based 
and value-based behavior estimation, as well as our approach of 
modeling noise in decision variables as value-transformed sen
sory noise, could merit targeted further investigation.

It is clear that there is still much room for future improvement 
of our model. For example, its priority assertion (Figs. 1B and C, 4B) 
is quite modest compared to what has been observed in human 
drivers (5). It is possible that this could be improved upon by minor 
adjustments to our current model formulations. Another possibil
ity is that human driver acceleration in these scenarios is deter
mined not only by a desire for own progress but also for 
minimizing waiting time for the pedestrian; this could be ac
counted for by extending our model framework to incorporate a 
theory such as social value orientation (13, 49). Another limitation 
of our most successful model is that some of the parameteriza
tions retained from the model selection tests showed a tendency 
to remain stationary at zero speed in some interactions. We dis
cuss in the Online Supplementary Section 2.3 how one main rea
son for this behavior is the specific formulation for evidence 
accumulation we adopted here; the large literature on evidence 
accumulation decision-making suggests a range of more general 
alternatives which could be tested (16, 17, 50, 51). Overall, discip
linary experts in the various subfields of psychological modeling 
from which we are drawing may find that parts of our framework 
ought to be formulated differently. This can suggest valuable ave
nues for further improvements to our model, with one question of 
specific interest being whether some alternative model formula
tions lend themselves better than others to integration within a 
larger theoretical construction, such as the one we have devel
oped here.

A B

C

Fig. 4. Predictions by the maximally successful model, and comparisons to controlled experiment data. A) Observed and model-predicted crossing 
initiation times in Experiment 1. B) Example of two-agent model simulations. The red rectangular areas in the top panels indicate positions in which the 
agents would be colliding. C) Observed and model-predicted interaction outcomes in Experiment 2.
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A more general limitation of any test of a theory is that some 
entirely different theory or set of theories might explain the 
same data just as well or better. In other words, the results we 
have presented here do not prove that human road user inter
action relies on the exact mechanisms we have posited in our 
most successful models. For example, the brain may directly esti
mate value of alternative actions without predicting any future 
states (52), or may use direct action policies or perceptual-motor 
heuristics, perhaps without any internal representation at all 
(53, 54). However, even if so, it seems likely that the rich variety 
of empirical phenomena addressed in this paper would still re
quire a highly complex set of state-action value mappings, 
perceptual-motor heuristics, or the like. Indeed, one conclusion 
drawn by Domeyer et al. (14) from their direct perceptual-motor 
modeling of driver–pedestrian interaction was that additional 
model mechanisms seemed necessary to capture what they inter
preted as changes of mind during interactions, and decision- 
making unfolding over time. This perspective is in line with our 
conclusion here about the need for cross-theoretical integration 
to model road user interaction, irrespective of what overall mod
eling framework is adopted. An important line of future work will 
be to test models based on different frameworks against each 
other.

Our third and final main conclusion concerns the model com
plexity resulting from theoretical integration: What we have 
shown here suggests that modeling of human road user inter
action is a formidable challenge. While the structure of our model 
framework as shown in Fig. 2 may in principle be general enough 
to address more complex road user interactions, the scenarios 
and phenomena we have modeled here are still just scratching 
the surface of interactions occurring in real traffic (31). It is pos
sible that the assumptions in our current model will be sufficient 
to describe human behavior in a more general range of scenarios, 
but given the complexity of the model, actually performing this 
generalization and testing whether it is successful is no small 
task.

This high model complexity has implications not least in devel
opment and testing of vehicle automation. For example, auto
mated vehicles rely heavily on real-time algorithms for 
recognizing intentions of surrounding road users. However, the 
rapidly growing literature and data sets on this topic (8, 9, 55) rests 
largely on the premise that near-term movement of other road 
users is something that automated vehicles can just passively es
timate, rather than something they are intrinsically involved in 
influencing, as some authors have suggested (12) and as our 
work here suggests that human road users do. Another important 
application area is simulated benchmarking and virtual testing of 
automated vehicles, where scenario-general, realistic models of 
human road user interaction are needed (8, 10, 11). It is clear 
from our results that such models are not within easy reach. 
Mechanistic modeling is approaching its limits here, and a natural 
alternative is to instead look to data-driven, machine-learned 
models (10, 11). However, it should be noted that also with respect 
to this type of modeling, our results highlight the complexity of 
underlying mechanisms and behavioral phenomena that need 
to be learned and tested for. There is a mounting argument in fa
vor of thoroughly investigating machine-learned behavior (56), 
and recent analyses of machine-learned road user models have 
indeed shown that the standard approach of training these, to 
minimize deviation between model-predicted and human trajec
tories, is not guaranteed to yield human-like interaction behavior 
(57, 58). The mechanistic insights we have presented here, as well 
our approach of explicitly targeting interaction phenomena to be 

accounted for, may guide work towards more cognitively and be
haviorally informed machine learning, to capture the subtleties of 
interaction that matter to humans.

Methods
Model framework
Below we describe the model update, for each agent, at time step k 
in a discrete-time simulation of the maximally complex model 
(i.e. including all assumptions tested in this paper; as illustrated 
in the Online Supplementary Fig. S1). We start from the applied 
movement control and work backwards through the model. For 
the sake of brevity, we keep some details to Section 1 of the 
Online Supplementary Material, which also provides additional 
explanatory notes, and describes how individual assumptions in 
the model can be modularly disabled to create lower-complexity 
model variants. A list of all optional model assumptions is pro
vided in the Online Supplementary Table S1, together with the 
free model parameters associated with each assumption. Online 
Supplementary Fig. S2 shows the general geometry of the simu
lated pedestrian-vehicle interaction scenarios.

Movement control by motor primitives
As in reference (34), we assume that the agents construct their 
sensorimotor control C (speed and acceleration, for pedestrian 
and driver agents, respectively) as a superposition of fixed, stereo
typed motor primitives G with amplitude ga for action a (32):

C(k) =
􏽘k−1

i=0

ga∗(k−i)G(i), (1) 

where a∗(k) is the action chosen at time step k, which may often be 
the action a∅ of not adjusting control (i.e. with amplitude ga∅ = 0).

Action decisions based on accumulated action value estimates
At each time step, the agent chooses the action a∗ with the highest 
accumulated value V̂a(k), as long as that accumulated value is 
more than a threshold ΔVth higher than the value of the 
no-adjustment action a∅, i.e.:

a∗(k) =
argmax

a
V̂a(k), if max

a
(V̂a(k) − V̂a∅ (k)) > ΔVth.

a∅, otherwise.

􏼨

(2) 

The accumulated value of action a is calculated using a special 
case of the more general evidence accumulation schemes studied 
in the literature (16, 17, 50), effectively a first-order low-pass filter 

of the noisy action value Ṽa:

V̂a(k) = AT,σV (V̂a, Ṽa, k)

= 1 −
Δt
T

􏼒 􏼓

V̂a(k − 1) +
Δt
T

Ṽa(k) + ϵ(k)σV

���
Δt
√

,
(3) 

where T is a time constant, and where also normally distributed 
value noise ϵ(k) is injected, scaled to a standard deviation σV.

Noisy action value estimates
The Ṽa are calculated as a probability-weighted sum over the oth
er agent’s possible behaviors:

Ṽa(k) =
􏽘

b

Pb|a(k)Ṽa|b(k), (4) 

where Pb|a is the estimated probability of the other agent exhibit

ing behavior b given that the ego agent chooses action a at the 
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current time step, and Ṽa|b is the noisy value estimate of action a 

given that the other agent exhibits behavior b.

Noisy action value estimates given behaviors  
of the other agent
The Ṽa|b are calculated from the noisy perceived world state x̃:

Ṽa|b(k) = fs(uego[x̃(k), (a, b)]), (5) 

where fs is a tanh sigmoid function constraining the value to 
[ − 1, 1], and where uego estimates the unconstrained value for 

the ego agent, in two steps: (1) A prediction of the states of both 
ego and other agent a fixed time TP = 0.5 s into the future, given 
their current positions and speeds as specified in x̃(k), ego acceler
ation and any ego agent motor primitives previously triggered but 
not yet completed (i.e. the agent is keeping track of the current ef
fects of its past actions on the world, in line with theories about 
efference copy and corollary discharge (59, 60)), the future action 
a being evaluated, and the acceleration corresponding to the other 
agent’s behavior b. (2) An estimation of the value of reaching the 
predicted state. By value, we mean the total, possibly time- 
discounted, future reward (40). We tested two alternative versions 
of this value estimation, as described below.

Short-term payoff values
Aligning with the classical game theory perspective of a single 
payoff after a one-shot decision by the players (18, 3), in our first 
value function variant, previously introduced in (61), we assume 
that value is composed solely of a reward payoff at the predicted 
time point t(k) + TP. We assumed a reward function based on ego 
agent kinematics, collision aversion, and priority rules:

uego[x̃(k), (a, b)] = K(x̃P) − C(x̃P) − R(x̃P), (6) 

where x̃P is the predicted world state given x̃(k) and (a, b). The ego 
kinematics reward is defined as

K(x̃P) = kgv − kdvv2 − kdaa2, (7) 

where v and a are predicted ego speed and acceleration in x̃P, and 
the k† are reward function parameters (which we fix to yield 
human-like startup and equilibrium locomotion; Online 
Supplementary Fig. S3). The first term in Eq. 7 provides positive re
ward for making progress, whereas the second and third terms are 
costs from effort and discomfort associated with speed and accel
eration, of a form familiar from many optimal control models of 
human motor and locomotor behavior (33, 62, 63). As for the re
maining terms in Eq. 6, C quantifies the severity of an apparent 
collision course, and R, which in our tests is only relevant to driver 
agents in simulations with pedestrian priority, quantifies the ex
tent to which current deceleration is insufficient to stop before 
the pedestrian crossing.

Affordance-based values
In our second value estimation scheme, we instead assume that 
the agent anticipates rewards over its entire, time-discounted, fu
ture (12, 13, 40), but we avoid a computationally expensive tree 
search of future actions by noting that in the space-sharing con
flicts modeled here, the set of salient near-term futures for the 
agent can be plausibly limited to the the two access orders Ω ∈ 
{pass first, pass second} (31):

uego[x̃(k), (a, b)] = max
Ω

u′ego[x̃(k), (a, b), Ω], (8) 

where the value of each access order after applying action a 

(which as explained in the main text can be regarded as the extent 
to which a creates an affordance for Ω (41, 42)) is obtained by inte
grating over future rewards:

u′ego[x̃(k), (a, b), Ω] = ∫∞t(k) (K[x̃P(t′)] − L[x̃P(t′)]) · δ(t′ − t(k)) · dt′ − R(Ω),

(9) 

with δ providing exponential discounting (40). In Eq. 9, K is exactly 
the same ego kinematics reward function as in Eq. 7, but x̃P(t′) now 
describes the predicted world state at future time t′ not only given 
(a, b) but also given the ego agent access order Ω in question. Since 
the agent now has a concept of passing first or second, the priority 
rule cost R can be written directly in terms of Ω. Already with only 
K, Eq. 9 is collision-averse, obviating the need for the C in Eq. 7, 
but we also separately tested the impact of an additional cost L 

for experiencing visual looming (64), which was however not 
found crucial in our tests.

Noisy sensory input
We assume that the agent’s perceived world state x̃(k) includes 
perfect estimates of own position, speed, and acceleration, and 
noisy estimates of the other agent’s position and speed:

x̃(k) = P[x(k)]. (10) 

where, in the maximally complex model, P involves both sensory 
noise (23, 65, 24) and Bayesian perceptual filtering. The ego agent 
observes the position of the other agent along its line of travel with 
Gaussian noise of standard deviation σx(k), which is either con
stant σx(k) = σs, or varying with the true world state σx = fv[x(k)], 
in the latter case assuming that the agent estimates distance us
ing visual angle under the horizon (66), with constant angular 
noise at the agent’s retina (24), i.e. in practice with larger position 
noise at greater distances.

Bayesian perceptual filtering
In line with theories of Bayesian perception (23, 67), we assume 
that the agent makes use of a Kalman filter (24) estimating both 
position and speed of the other agent from the noisy observations 
of position described above. We do not assume that x̃(k) contains 
the maximum probability point estimate of the position and speed 
of the other agent, instead we assume that they are a random 
draw from the Kalman’s posterior distribution at time step k. 
This means that the noisy action values that get estimated from 
this perceptual input, and thereafter compared in the evidence 
accumulation decision-making, will span the distribution of ac
tion values for currently plausible world states. Since the value 
function is highly nonlinear, the average of the distribution of val
ues estimated across the Kalman posterior is typically not the 
same as the value that would be estimated for the average of 
the Kalman posterior.

Behavior probabilities given actions
The probability Pb|a that the other agent will exhibit behavior b giv
en that the ego agent chooses action a is modeled as a normalized 
exponential of the evidence Ab|a over the evidence for all behav
iors (a softmax function), with all behavior evidence taken from 
the previous time step k − 1:

Pb|a(k) = S[{Ab′ |a}b′ , b, k] =
eAb|a(k−1)

􏽐
b′ e

Ab′ |a (k−1)
. (11) 

We model the behavior evidence as a weighted sum of evidence 
AV,b|a from the estimated value of the behavior for the other agent, 
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given that the ego agent chooses action a, and evidence AO,b from 

observation of the other agent:

Ab|a(k) = βVAV,b|a(k) + βOAO,b(k), (12) 

where we can fix βO = 1 without loss of generality.

Behavior evidence from estimated behavior value given 
actions
The value-based evidence AV,b|a is defined simply as the noisy val
ue Ṽb|a for the other agent of behavior b given own action a, passed 
through the same type of evidence accumulation mechanism as 
for the ego agent’s value estimates in Eq. 3:

AV,b|a(k) = V̂b|a(k) = AT,σV (V̂b|a, Ṽb|a, k), (13) 

where the noisy behavior value Ṽb|a is calculated completely 

analogously to how the noisy action value Ṽa|b is calculated for 

the ego agent in Eq. 5:

Ṽb|a(k) = uoth[x̃(k), (b, a)]. (14) 

In practice, Eqs. 11 through 14 say that the ego agent judges the 
probability of the other agent’s behavior as the weighted exponen
tial of the (accumulated) value of that behavior. This type of for
mulation is common in models of value-based intention 
attribution, for example in behavioral game theory (18, 22).

Behavior evidence from observation of the other agent
Based on theories of human Bayesian inference about behaviors 
(or intentions, or goals) of others from observation of their actions 
(19, 20, 68), we assume the following update equation for the 
observation-based evidence AO,b:

AO,b(k) = 1 −
Δt
TOf

􏼒 􏼓

AO,b(k − 1) +
Δt

TO1
ln p[x̃(k) | x̃(k − 1), b], (15) 

where p[x̃(k) | x̃(k − 1), b] is the probability of the perceived world 
state x̃ at the current time step k given that the other agent is cur
rently exhibiting behavior b. These probabilities were modeled as 
normal distributions for the observed position of the other agent, 
with mean at the position predicted by x̃(k − 1) together with the 
acceleration corresponding to behavior b, and with standard devi
ation σO. TOf is a forgetting time constant, determining how quick
ly old observation evidence is considered obsolete, and TO1 

represents the time needed for the human to perform one of these 
evidence updates; this time need not be identical to the model 
simulation time step Δt. It is demonstrated in the Online 
Supplementary Material that Eqs. 11 and 15 provide a generalized 
Bayesian update equation, such that Eqs. 11 and 15 together form 
a combined value-based and observation-based behavior estima
tion scheme, where values provide a prior for the observations, 
but a prior which can vary over time as the world state changes.

Controlled experiments
Ethical approval for both experiments was given by the University 
of Leeds Research Ethics Committee (reference numbers 
LTTRAN-107 and AREA 21-022, respectively).

Experiment 1
In this experiment, which has been previously reported on in ref
erence (1), (69), 60 participants (35 male, 25 female; ages 19–36 
years, mean 27.3 years; all having lived at least one year in the 
UK) experienced repeated road-crossing scenarios in the 
University of Leeds Highly Immersive Kinematic Experimental 

Research (HIKER) laboratory, a 9 × 4 m high-fidelity CAVE pedes
trian simulator with projection on three walls and floor. As sche
matically illustrated in the Online Supplementary Fig. S4A, the 
task given to the participants was to observe two vehicles ap
proaching on a 3.5 m wide one-lane road, and cross between 
them if they felt comfortable to do so. The vehicles were initially 
driving at one of 25, 30, or 35 mph (11.2, 13.4, or 15.6 m/s), with a 
time gap between them of 2, 3, 4, or 5 s. In half of the trials, both 
vehicles maintained constant speed throughout, whereas in the 
other half of trials, the second vehicle yielded to the pedestrian 
with a constant deceleration starting and ending 38.5 and 2.5 m, 
respectively, from the pedestrian’s crossing location. In total, 
there were thus 3 × 4 × 2 = 24 different kinematic scenario 
variations.

After an initial practice block, each participant experienced 
three experimental blocks, where each block included two repeti
tions of each of the 24 kinematic scenario variations, with these 48 
trials presented in a randomized order, different for each partici
pant. In the original experiment, for 40 out of the 60 participants, 
in half of the trials where the second car yielded, it also displayed 
an external human–machine interface indicating its yielding in
tentions, but these trials were not included here, making for a to
tal data set of 3 × (20 × 48 + 40 × 36) = 7,200 road-crossing trials, 
out of which 77 (1.1%) were excluded due to gaps in the recorded 
data. The crossing initiation time (as shown in Fig. 4A) in each in
cluded trial was measured as the time from when the rear of the 
first vehicle passed the crossing location, until when the partici
pant began crossing the road.

Experiment 2
In this experiment, described in full detail in (70), the HIKER ped
estrian simulator used in Experiment 1 was connected to the 
University of Leeds Driving Simulator (UoLDS), a high-fidelity 
simulator where the participant is seated in part of a Jaguar 
S-type car, housed within a 4 m diameter spherical projection 
dome with a 300◦ field-of-view projection system, on an eight de
gree of freedom motion platform (a hexapod mounted on an XY 
translation table). This distributed simulation system, integrating 
the two simulators HIKER and UoLDS, allowed pedestrian and 
driver participants to interact in a shared virtual environment. 
As shown in the Online Supplementary Fig. S4B, the virtual scene 
was a two-lane road with 4.5 m wide lanes and a pedestrian refuge 
in the middle, with or without a zebra crossing. The pedestrian 
wore markers on their head and body to allow tracking their 
position and pose in the HIKER, rendered to the driver in the 
UoLDS as a set of colored spheres representing the pedestrian’s 
body motion (71).

A total of 32 pedestrians (ages 19–34 years, mean 25.1 years) 
and 32 drivers (ages 21–50 years, mean 31.5 years) were recruited 
into 32 pairs, with 8 pairs for each possible combination of genders 
in the driver and pedestrian roles. Both parties were informed that 
they would be interacting with another human in a number of 
road-crossing scenarios. They were instructed to handle the road- 
crossing interactions like they would in real traffic, imagining that 
they were late to a meeting (to minimize risk of some participants 
taking an overly passive role), and were reminded that a zebra 
crossing indicates pedestrian priority. The driver participants 
were instructed to consider the 30 mph (48 km/h) speed limit the 
same way they would in real traffic. The pedestrian participants 
were instructed to stand initially in each trial at a position where 
the two participants could not see each other due to a vision ob
struction, and to then step up to the curb to look for oncoming 
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traffic after hearing an auditory tone, from which point the partic
ipants could see each other and were free to interact as they saw 
fit. Unbeknownst to the participants, the auditory tone (which was 
only audible to the pedestrian participant) was triggered when the 
driver participant was at a certain time gap, one of 3, 4, 5, 6, or 7 s, 
from the pedestrian’s crossing location.

After a first practice block for just the driver participant, to get 
familiarized with the UoLDS, and a joint practice block involving 
both parties, each participant pair experienced two experimental 
blocks, each containing 20 trials, two repetitions of each of the 5 × 
2 = 10 different scenarios (the different time gaps, and presence or 
not of a zebra crossing), in a randomized order, different for each 
participant pair. From the driver’s perspective, the interactions 
with the pedestrian were interspersed with similar vision obstruc
tions and pedestrian crossing locations without a pedestrian pre
sent, to avoid the interactions being unnaturally predictable. In 
total, a data set of 32 × 2 × 20 = 1,280 interaction trials were re
corded, out of which one (0.1%) was excluded due to technical 
problems. We analyzed the recorded data from each trial to ob
serve who crossed first, pedestrian or driver (Fig. 4C).

Model selection
Our model selection approach was based on exhaustive investiga
tion of each model variant’s capability of reproducing a number of 
empirically observed phenomena, a previously advocated ap
proach to testing of cognitive models (27, 72). Our method is simi
lar in spirit to the “parameter subspace partitioning” method 
proposed in (27), but following that method exactly would have re
quired us to predefine quantitative thresholds for each phenom
enon, something which the available empirical evidence did not 
allow in all cases. Instead, we studied the behavior of each model 
variant across an entire plausible parameter space, using grid 
search. This approach also has the benefit of permitting a sensitiv
ity analysis of the impact on model selection of any chosen quan
titative thresholds, since the entire set of metric values across the 
parameter space is observed (as shown in Fig. 1B, and in for ex
ample Online Supplementary Figs. S5 and S13). The key findings 
from our model selection tests are presented in the main text of 
this paper, and the full results are provided in Section 2 of the 
Online Supplementary Material.

Deterministic model selection tests
Our first set of model selection tests addressed only those model 
assumptions which could be studied in deterministic simulation. 
In these tests, the model simulation time step was always Δt = 0.1  
s. We combined the short-term payoff and affordance-based val
ue estimation assumptions with all possible combinations of the 
model assumptions about behavior estimation, making for a total 
of 36 tested model variants. We tested each variant in a grid 
search with ten values per free model parameter, logarithmically 
spaced within the parameter ranges listed in Table S2, which also 
provides motivations for the chosen range for each parameter. 
The most complex models in the deterministic tests had five 
free parameters, and were thus tested across 105 parameteriza
tions. It could be argued that this grid was relatively coarse, and 
could generate “false negatives,” i.e. overlooking some model var
iants’ abilities to express some behavioral phenomena. However, 
it should be borne in mind that our purpose here was not precise 
parameter-fitting to quantitative data, and if only a very small 
subset of a model’s plausible parameter space supports an empir
ically observed behavior pattern, then this is weak evidence in fa
vor of the model, if compared to a model exhibiting the same 

pattern across a larger subset of its parameter space (27, 73). 
Nonetheless, we did further verify our main negative conclusions 
(about the short-term payoff models not being capable of priority 
assertion or short-stopping, and the maximally successful deter
ministic model not being capable of gap acceptance hesitation) 
using finer grids of 30 values per parameter for the models in 
question.

Across all of the tests mentioned above, we simulated each par
ameterization of each model variant to measure its ability of ex
hibiting the five targeted phenomena illustrated in Fig. 1A. For 
each phenomenon we defined a scenario, described in the 
Online Supplementary Table S3, where one agent (the agent ex
pected to exhibit a certain behavior in the phenomenon in ques
tion) was controlled by the model, and the other agent’s 
behavior was predefined. For each such scenario, we tested three 
kinematic variants, by varying the initial TTA (time to arrival at 
the conflict space) of the driver agent by { − 0.5, 0, + 0.5} s around 
the values mentioned in the Online Supplementary Table S3. This 
table also defines the metrics which we applied to the simulation 
results (see the x axes in Fig. 1B), to ascertain whether the modeled 
agent exhibited the sought-after behavior in any of the kinematic 
variants of each scenario. The vertical light blue lines and arrows 
in Fig. 1B indicate the metric value ranges indicative of the models 
exhibiting each phenomenon. We also defined quantitative 
thresholds for the metrics to determine which model parameter
izations to reject or retain for the later nondeterministic analyses. 
These thresholds are also listed in the Online Supplementary 
Table S3, and were chosen to be inclusive, to rather retain too 
many parameterizations than too few. Full results across all scen
ario metrics are provided in Online Supplementary Figs. S5 and S6, 
with selected simulation examples in Online Supplementary Figs. 
S7–S10, and with retained parameterizations for the maximally 
successful deterministic model and two other model variants in 
the Online Supplementary Figs. S10–S12, respectively.

Stochastic model selection tests
One main aim of our tests of the stochastic model assumptions 
was to see whether they would permit the model to exhibit gap ac
ceptance hesitation, since none of the most successful determin
istic model variants could achieve this phenomenon. Therefore, 
we reused the same gap acceptance hesitation scenario as in the 
deterministic tests. However, rather than testing different kine
matic variants of the scenario, due to the model stochasticity we 
instead simulated each tested model parameterization across 
five repetitions of the base kinematic variant of the scenario (as 
specified in the Online Supplementary Table S3).

While we hypothesized that adding noise to the model might 
make it capable of exhibiting gap acceptance hesitation, we also 
expected that excessive noise could generate collision-prone 
model behavior, particularly in interactive simulations, where 
both road users were controlled by the model. Therefore, in the 
stochastic tests we included three such scenarios (with the 
same parameterization for both road users, for simplicity). One 
of these scenarios was a two-agent version of the gap acceptance 
hesitation scenario, with exactly the same initial conditions. The 
other two interactive scenarios were “encounter” scenarios (5), 
where both agents initially travelled at their respective equilib
rium speeds, both 3 s from the conflict space, i.e. with a clear col
lision conflict to be resolved. In one of these two encounter 
scenarios, the pedestrian had crossing priority. (These are the 
three scenarios in which the most successful model variant over
all is simulated in Fig. 4B.) We simulated also these scenarios five 
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times per tested parameterization, and observed whether colli
sions arose between the agents.

The inclusion of noise required a shorter simulation time step; 
we used Δt = 0.025 s. We performed the stochastic model tests in 
two steps. First, we wanted to test whether the stochastic assump
tions in themselves would be enough to achieve gap acceptance 
hesitation. Since the deterministic model tests rejected the short- 
term payoff value estimation scheme, we took the simplest pos
sible model with affordance-based value estimation as our start
ing point, and tested it with all 10 possible combinations of our 
stochastic model assumptions. Just as in the deterministic tests, 
we performed a grid search with 10 values for each parameter; 
see Online Supplementary Table S4. The full results of these tests 
are described in the Online Supplementary Section 2.2.1 (Figs. 
S13–S15).

Second, we wanted to see whether we could identify stochastic 
model variants which included the assumptions successful in the 
deterministic tests, but which still exhibited both gap acceptance 
hesitation and were collision-free. We also wanted to obtain a set 
of model parameterizations that we could test against our con
trolled experiment data, as an artificial population including 
some variability in behavior, interpretable as describing road 
users with different characteristics. To this end, we tested all pos
sible 24 combinations of the six deterministic model variants 
which achieved all of the targeted phenomena except gap accept
ance hesitation (see Online Supplementary Section 2.1.1), with the 
four simple stochastic model variants which achieved gap accept
ance hesitation and collision-free interactions in the tests de
scribed just above (see Online Supplementary Section 2.2.1). To 
obtain parameterizations for these models, we sampled from all 
possible combinations of the parameterizations that were found 
to achieve at least three of the targeted phenomena in the deter
ministic tests (example illustrations in the Online 
Supplementary Figs. S10–S12) with the parameterizations that 
met all of the criteria in the tests of the simple stochastic model 
variants (example illustrations in the Online Supplementary 
Figs. S14 and S15). The choice of requiring only three phenomena 
in the deterministic tests was made to promote variability in be
havior, as mentioned above. For each of these 24 more complex 
stochastic model variants, we randomly selected 5,000 of these 
combined parameterizations (or less, in the few cases where the 
number of combined parameterizations was less than 5,000), 
and subjected these parameterizations to exactly the same simu
lated tests as described above for the simpler stochastic model 
variants. The full results of these tests are described in the 
Online Supplementary Section 2.2.2 (Online Supplementary Figs. 
S16 and S17). It should be noted that our approach here, of com
bining successful model variants and parameterizations from 
the deterministic and simple stochastic tests, is far from providing 
an exhaustive exploration of the possible behaviors of all stochas
tic model variants and parameterizations permitted by our mod
eling framework. However, for the specific aims outlined above, 
this simplified approach proved useful, and again we think the ar
gument mentioned previously applies: Exhibiting a phenomenon 
across a relatively smaller region of model parameter space pro
vides relatively weaker evidence in favor of the model in question.

Tests on controlled experiment data
To compare the model’s behavior to the human behavior ob
served in the two controlled experiments, simulated scenarios 
were defined to closely replicate the experimental settings. For 
Experiment 1, where each scenario was defined by the vehicle 

speed and time gap, all simulations were initialized with the ped
estrian at zero speed, 1 m from the conflict space, with the two ap
proaching vehicles at their initial speed and at distances such that 
the first vehicle was 3 s from completely passing the pedestrian (to 
allow the model, like the participants in the study, to see the se
cond car for a while before the first car passed), and the second ve
hicle following its designated time gap later. The experimental 
instruction to the pedestrian to not pass before the first vehicle 
was in practice implemented by adding −∞ to the unconstrained 
value u (before the arctan sigmoid) of passing before the second 
vehicle, during that part of the simulation when the first vehicle 
had not yet passed the pedestrian. For each of the 23 complex sto
chastic model variants that met the retention criteria described in 
the previous section (reported on in the Online Supplementary 
Section 2.2.2), 500 of the retained parameterizations were drawn 
at random, and each such parameterization was tested on all 
scenarios in Experiment 1, with 6 repetitions of each scenario, 
as for the human participants. The pedestrian crossing initiation 
time in each scenario was measured as the time at which the ped
estrian agent began moving.

For Experiment 2, where the experimental scenarios were de
fined by the initial vehicle time gap and the presence or not of a 
zebra crossing indicating pedestrian priority, all simulations 
were initialized with the pedestrian at zero speed, 1.95 m from 
the conflict space, with the vehicle at 30 mph and at a temporal 
distance corresponding to the time gap for the scenario in ques
tion, minus one second. These initial conditions were chosen to 
reflect the typical observed response delay of the human pedes
trian participants between hearing the auditory tone at the start 
of the trial and reaching the point from which driver and pedes
trian participants were able to see each other. We tested our max
imally successful model variant on these scenarios, again drawing 
500 parameterizations at random from those retained in the mod
el selection tests described above and in the Online 
Supplementary Section 2.2.2.

In both of the tests described above, model parameterizations 
were excluded which were found to generate nonprogressing 
agent behavior, i.e. where the agents got stuck at zero speed. For 
Experiment 1, nonprogression was defined as the pedestrian agent 
not crossing even after the car had fully yielded, and for 
Experiment 2 it was defined as at least one of the two agents not 
entering the conflict space within 20 s of the start of the simula
tion. The full results of these tests are described in the Online 
Supplementary Section 2.3 (Figs. S18–S20).
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