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Table S1. Summary of crystallographic statistics.

PCNA:aPIP(ERCC6L2)

PDB accession code

8COB

Data Collection

Synchrotron/beam line

ESRF/ID30A-1

Wavelength (A) 0.96600

Space group P2121 2

a (A) 67.69

b (A) 109.08

c(A) 139.40

a(°) 90.00

B (%) 90.00

v () 90.00

Content of asymmetric unit 3

Resolution (A) 2 48.56 -2.73
(2.86 - 2.73)

Reym (%)2,2 10.7 (47.3)

1/o(l) 10.5(3.0)

Completeness (%)2 99.8 (97.9)

Redundancy? 5.0 (4.8)

CCy/2 (%)2 99.5 (50.0)

Unique reflections? 28128 (3678)

Refinement

Reryst (%)< 19.7

Rtree (%)2 25.4

Rmsd bond length (A) 0.014

Rmsd bond angle (°) 1.61

Number of atoms 6252

Average B factor (A2) 63.0

Ramachandran plot

Favoured (%) 97.13

Allowed (%) 2.19

Disallowed (%) 0.68

a Data for the highest resolution shell are given in parentheses.

b Rym = 2|/-</>|/%/, where / is measured density for reflections with indices hkl/.

CReryst = 2| |Fobs| - |Fcalc| |/Z|Fobs].

d Rfree has the same formula as Reryst, except that calculation was made with the structure factors from the test
set.




Figure S1.
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Figure S1. Examples of normal and aberrant centromeric CO-FISH patterns observed in hTERT-RPE1 cell lines. Related to Figure 1 I-K.
Scale bar: 2um.



Figure S2.
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Figure S2. Effects of ERCC6L2 deficiency on centromeric chromatin and DNA replication. Related to Figure 2.

(A) QIBC assay using cyclin A and DAPI intensities. Subpopulations of cells in distinct phases of the cell cycle are shown in coloured frames.
N(cells)>50,000. (B) Quantification of CENP-B intensities in different cell cycle subpopulations, identified as in A. (C) Quantification of CENP-C
intensities, as in B. (D) Quantification of replication fork speed calculated from the length of CldU labelled tracks (in kb) (left, untreated
condition), and IdU labelled tracks (right, in the presence of 10 mM Pola inhibitor CD437) during a 40 min period. N(tracks)>1500. (E)
Quantification of replication fork speed symmetry calculated as a ratio of individual IdU to CldU track lengths. N(tracks)>1500.

B and C: ****pP <(0.0001.



Chr1 (p36.33-q44)

Unique control peaks

Unique ERCC6L2-/- peaks
Centromere

Unique control peaks

Unique ERCC6L2-/_ peaks
Centromere

Chr4 (p16.3-q35.2)

Unique control peaks

Unique ERCC6L2_/_ peaks
Centromere

Unique control peaks

Unique ERCC6L2_/_ peaks
Centromere

Chr7 (p22.3-q36.3)

Unique control peaks

Unique ERCC6L2_/_ peaks
Centromere

Unique control peaks

Unique £rccel2” peaks
Centromere

Chr9 (p24.3-q34.3)

Unique control peaks
Unique £rcceL2” peaks

Unique control peaks
Unique ERCC6L2-/_ peaks

Chr10 (p15.3-q26.3)

Unique control peaks
Unique ERCC6L2_/_ peaks

Unique control peaks
Unique ERCC6L2_/_ peaks

Chr11 (p15.5-q25)

Unique control peaks

Unique ERCCoLs” peaks
Centromere

Unique control peaks

Unique ERCC6L2-/- peaks
Centromere

Chr12 (p13.33-q24.33)

Unique control peaks

Unique ERCC6L2_/_ peaks
Centromere

Unique control peaks

Unique ERCC6L2-/- peaks
Centromere

Chr19 (p13.3-q13.43)

Unique control peaks

Unique ERCC6L2_/_ peaks
Centromere

Unique contrc}l peaks
Unique ERCC6L2" "~ peaks
Centromere

Figure S3.

I N N EEEEy4 W12

I PN N | FEE B B [ CENoFE O

TOCIEIM CEE 0 Er W nrmen nen (v v v mw veyonm oo Il FHET I | | 1l | 1
mnam | I 1 0 i rmm oo {11 [ | | (1]
|
| | Wl [N Il ( 1l ] |
| |1 | FCRETEEE T I Lromnrm Il |
| | |
(W 7 T EE BEN T ) T N W T D BB ol e 0
| [ | W0 E T wm LN LT T O T e B M N1 A M| | [ (1]}
| Il | 111 1im [ | | (I ]| | [N | I I m
[ 11 | 1nl e el
[ [l e owmerr ol
(7T - B W NG BE W N BOEE B W5
L I 1 N Ot [t (O | M 1 1 AR VAN U I AR B0 0 THCAM 0 i
Hrrme 1l I nil | Tl Il 1] Il | (I B I I I I
| 11 i | | | | Il I Il
| Ieewm | | |

11p154 M KRN N BIEN ''p'2 KEPE |

NI 134 W q141 |

| EPEN 00223 I ERREE B EPS

(W W BN >EER i1 2131
[ TLR (FTTLTIY i Y B T | I Mmoo ri | | Il [ Il LS 0 L T (1T {111
[N EE| Wl | (Il I | [l Il (1
[ |
| | | I | I 1 [ (I
LT R RO T ] [ | |

19p13.3 [ep1s2 [ pt3.11 MEERNHA

(CCIPI 1311 [ [M0qis2| [48:8271q13.33 [ 1343




Unique Control motifs
Motif Complement

Reverse complement

1 GCTCACTGCAACCT AGGTTGCAGTGAGC
2 CTCCCTCCCTCCCT AGGGAGGGAGGGAG
3 ARAGAAAGAAAGAAA TTTCTTTCTTTCTYT
4 CCTCAGCCTCCCRAG  CTYGGGAGGCTGAGG
5 TGGGYRACAGAGY RCTCTGTYRCCCA

| 6 GAAGGAAGGAAGGAA TTCCTTCCTTCCTTC
7 GGCTGGAGTGCAGT  ACTGCACTCCAGCC

| 8 AGAGAGAGAGAAAGA TCTTTCTCTCTCTCT
9 CTGTAATCCCAGCT AGCTGGGATTACAG
10 ATYGCTTGAACCC GGGTTCAAGCRAT

Figure S3. Nascent DNA sequencing reveals differences in DNA replication in control and ERCC6L2‘/' cells. Related to Figure 3.
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(A) Comparison of the unique control and ERCC6L2'/' peaks on selected chromosomes identified by nascent DNA sequencing. Notable
differences are observed in centromeric regions, shown as zoomed views of the framed 10 Mb regions. (B) List of top 10 recurring motifs
among unique control and ERCC6L27/~ peaks identified by the MEME suitel. Shown are P values and numbers of sites. In addition to

standard symbols, MEME uses ambiguous symbols R (purine), Y (pyrimidine), M (A, C), K (G, T), S (C,G), and W (AT).



Figure S4.
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Figure S4. Identification of an atypical PCNA-binding motif in ERCC6L2 protein. Related to Figure 4.

(A) Schematic representation of different ERCC6L2 fragments used in co-localisation studies. (B) Colocalisation of the C-terminal
ERCC6L27°11247 fragment with endogenous PCNA. (C) Interaction of the C-terminal ERCC6L2 fragments with endogenous PCNA. 293T cells
were transiently transfected with the indicated Twin-Strep constructs and subjected to immunoprecipitation on StrepTactin beads.
Immunocomplexes were eluted with biotin and immunoblotted with the indicated antibodies. (D) Isothermal titration calorimetry
measurement with the ERCC6L2 aPIP-box peptide. Shown are thermograms and the binding isotherms from the integrated thermogram fits,
with the one-site model (as analysed by MicroCal PEAQ-ITC Analysis Software). (E) Comparison of the C-terminal ERCC6L27°11247 wild type
and mutant fragments’ ability to form foci, and to co-localise with PCNA. N(cells)>200. (F) Expression of the wild type and mutant
YFP-ERCC6L27°1247 constructs in U20S cells stained against endogenous PCNA. Magnified images of selected foci (in frames) are shown
below. Quantification of colocalisation is shown in Figure 4H. (G) Colocalisation of wild type YFP-ERCC6L2, ATPase dead ERCC6L2 K165R and
ERCC6L2 aPIP* mutant (Q798A, C804A, F806A) with PCNA. N(cells)>1700. (H) Colocalisation of wild type YFP-ERCC6L2, ATPase dead ERCC6L2
K165R and ERCC6L2 aPIP* mutant (Q798A, C804A, F806A) with ) with EdU. Transfected cells were incubated with 10 mM EdU for 20 min prior
fixation and EdU staining. N(cells)>850. (I) Stereo view of the ERCC6L2 aPIP-box peptide electron density map. 2Fo—Fc density map is
contoured at 1.0 o and coloured grey. ERCC6L2 aPIP-box peptide is shown as green and PCNA as white sticks. E, G and H: Statistics calculated
by t-Test assuming unequal variances; ****P < 0.0001. B, F: Scale bar: 5 um.
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Figure S5. ERCC6L2 deficiency causes sensitivity to genotoxic stress. Related to Figure 5.

(A) Clonogenic survival of control and ERCC6L27" U20S cells exposed to etoposide and phleomycin. Error bars represent standard errors
from 3 independent experiments. (B) ERCC6L2 is recruited to sites of DNA damage through its C-terminal domain. U20S cells were
transfected with YFP-ERCC6L2 constructs and monitored by live cell imaging following laser induced DNA damage. Scale bar: 5 um. (C)
Quantification of ssDNA accumulation in control and ERCC6L27- U20S cells. Cells were irradiated with 10 Gy and allowed to recover for 6 h.
PRPA staining was used as a surrogate marker for ssDNA. (D) Kinetics of the ssDNA accumulation in control and ERCC6L27- U20S cells. Cells
were treated with 50 pug/ml phleomycin for 1 h, and allowed to recover in normal media for the indicated length of time. (E) Downregulation
of BRCA2 or RAD51 exacerbates pRPA accumulation in and ERCC6L27" cells. Cells were transfected with the indicated siRNAs and treated
with 500nM etoposide for 6h. (F) Validation of siRNA against CTC1 and C200rf196. Cells were transfected with the siRNAs on 2 consecutive
days and collected 48 hours after first transfection. Expression was quantified by gPCR from triplicates. Bars represent means with standard
deviations. (G) Validation of the indicated siRNAs by Western blot. For BRCA1, RIF1, REV7, 53BP1, BLM and CtIP, cells were transfected as in
F, and endogenous proteins were detected by specific antibodies. For STN1, PtIP and FAM35A, cells were transfected with the indicated
FLAG- or YFP- constructs 6 hours after first siRNA transfection, and collected 24 hours after second siRNA transfection. Expression was
detected by anti-FLAG or anti-GFP antibodies, as indicated. (H) Quantification of nhascent DNA degradation calculated from the ratio of CldU
and IdU labelled tracks. Following sequential incubation with CldU and IdU analogues, cells were inbubated with 3 mM hydroxyurea for 4 h
to induce nascent DNA degradation. N(tracks)>700. C-E: Statistics calculated by t-Test assuming unequal variances; *P < 0.05, **P < 0.01,
***p <0.001, ****P <0.0001, NS not significant. C-E. N(images)>250, N(cells)>30,000.



Figure S6.
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Figure S6. ERCC6L2 deficiency causes nuclear abnormalities. Related to Figure 6.

(A) Quantification of micronuclei induced by phleomycin, VE-821, or a combination of phleomycin and VE-821. Cells were grown in the
absence or presence of damaging agents for 2 days. CENPC and 53BP1 were used as centromeric and DSB markers, respectively. N(images)
>140, N(cells)>50,000. (B) Quantification of micronuclei subtypes in control and ERCC6L27- U20S cells, as indicated. 53BP1 or YH2AX were
used as DSB markers; CENP-C was used as a centromere marker; Telomeric repeat-binding factor 2-interacting protein 1 (RAP1) was used
as a telomere marker. N(images)>400, N(cells)>30,000. (C) Quantification of UFBs induced by genotoxic agents, as indicated. Conditions
were as in A. N(total anaphase cells)>260. Bars represent means with standard deviations. (D) Quantification of lagging chromosomes
induced by genotoxic agents, as indicated. Conditions were as in A. N(total anaphase cells)>260. Bars represent means with standard
deviations. (E) Quantification of chromosome bridges induced by genotoxic agents, as indicated. Conditions were as in A. N(total anaphase
cells)>260. Bars represent means with standard deviations. A-E: Statistics calculated by t-Test assuming unequal variances; *P < 0.05,

**p <0.01, ***P <0.001, ****P < 0.0001, NS not significant.



Figure S7.
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Figure S7. ERCC6L2 functions at centromeres independently of DNA damage. Related to Figure 6.

(A) CENP-B intensities are not affected by DNA damage. CENP-B intensities were measured in untreated cells, and cells exposed to genotoxic
stress. Where indicated, cells were exposed to 25 ug/ml phleomycin for 1 h and allowed to recover for 5 h, or they were treated with 500
nM etoposide for 6 h. Different subpopulations were identified as in Figure S2A. N(cells)>30,000. (B) Quantification of micronuclei in cells
transfected with the indicated siRNA. Cells were transfected with siRNA on two consecutive days, and either incubated in normal media, or
exposed to 25 pg/ml phleomycin for another 24 h before fixation and staining. N(images)>180, N(cells)>20,000. (C) Quantification of
centromere positive micronuclei in cells treated as in B. N(images)>180, N(cells)>20,000. (D) Colocalisation of YFP-ERCC6L2 wilt type, ATPase
dead K165 ERCC6L2 and aPIP* mutant (Q798A, C804A, F806A) with pRPA. Transfected cells were treated with 20 ug/ml phleomycin for 1 h
and allowed to recover for additional 5 h before fixation and staining. N(cells)>2100. A-D: Statistics calculated by t-Test assuming unequal
variances; *P < 0.05, **P < 0.01, ***P <0.001, ****P <0.0001, NS not significant.
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Figure S8. ERCC6L27 cells show signs of altered chromatin structure. Related to Figure 6.

(A) QIBC assays measuring H3K27me3, H3K27me2, H3K27ac intensities in control and ERCC6L27 U20S cells. Subpopulations of cells are
identified using cyclin A and DAPI intensities. Individual cells were coloured according to the relative H3K27me3, H3K27me2, H3K27ac
intensities, as indicated. N(images)>180, N(cells)>35,000. (B) Box and whisker plots measuring average intensities of H3K27me3,
H3K27me2, H3K27ac intensities in control and ERCC6L27- U20S cells. N(images)>180, N(cells)>35,000. (C) Representative images used for
guantifications in A. Cells were stained against H3K27me3, H3K27me2, and H3K27ac, as indicated. Shown are expressions of proteins
within outlined nuclei, with zoomed images of cells in coloured frames displaying different levels of intensities. Scale bar: 10 um.B: Statistics
calculated by t-Test assuming unequal variances; ****P < 0.0001.
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Figure S9. Comparisons of HP1o. and H1 in control and ERCC6L27 cells. Related to Figure 6.

(A) QIBC assays measuring HP1a. intensities in control and ERCC6L27" U20S cells. Subpopulations of cells are identified using cyclin A and DAPI
intensities. Individual cells were coloured according to the relative HP1a intensities, as indicated. N(images)>200, N(cells)>28,000. (B)Box and
whisker plots measuring average HP1a intensities in control and ERCC6L27" U20S cells. N(images)>200, N(cells)>28,000. (C) Representative
images used for quantifications in A. Cells were stained against HP1a.. Shown are expressions of HP1a within outlined nuclei, with zoomed
images of cells in coloured frames displaying different levels of intensities. (D) QIBC assays measuring H1 intensities in control and ERCC6L27"
U20S cells. Subpopulations of cells are identified using EdU and DAPI intensities. Individual cells were coloured according to the relative H1
intensities, as indicated. N(images)>200, N(cells)>33,000. (E) Box and whisker plots measuring average H1 intensities in control and ERCC6L27
U20S cells. N(images)>200, N(cells)>33,000. (F) Representative images used for quantifications in D. Cells were stained using Hlo/H5
antibody. Shown are expressions of H1 within outlined nuclei, with zoomed images of cells in coloured frames displaying different levels of
intensities. C, F: Scale bar: 10 um. E: Statistics calculated by t-Test assuming unequal variances; ****P < 0.0001.
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Figure S10. ERCC6L2 deficiency does not significantly affect some chromatin marks. Related to Figure 6.

(A) QIBC assays measuring H3K9me3, H3K9me2, H3K4me3 and H4K20me2 intensities in control and ERCC6L27 U20S cells. Subpopulations
of cells are identified using cyclin A and DAPI intensities. Individual cells were coloured according to the relative intensities, as indicated.
N(images)>180, N(cells)>30,000. (B) Box and whisker plots measuring average H3K9me3, H3K9me2, H3K4me3 and H4K20me?2 intensities in
control and ERCC6L27- U20S cells cells. N(images)>180, N(cells)>30,000. (C) Representative images used for quantifications in A. Cells were
stained against H3K9me3, H3K9me2, H3K4me3 and H4K20me2, as indicated. Shown are expressions of proteins within outlined nuclei, with
zoomed images of cells in coloured frames displaying different levels of intensities. Scale bar: 10 um.
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Figure S11. Comparisons of chromatin marks in control and ERCC6L2"" cells by Western blot. Related to Figure 6.

(A) Analysis of H3K27me3, H3K27me2 and H3K27me levels by western blot. Blot against histone H3 is used as a loading control. (B) Western
blot analysis of H1 levels in whole cell extracts and extracts derived from cells subjected to pre-extraction with 1 % Triton X in PBS. (C)
Western blot analysis of the indicated chromatin markers in control and ERCC6L27" U20S cells. (D) ERCC6L2 deficiency does not cause
downregulation of the Polycomb repressive complex 2 (PRC2), responsible for H3K27 methylation. Levels of the individual PRDC2 subunits
are detected by specific antibodies.
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Figure S12. DNA damage-induced changes in control and ERCC6L27" cells. Related to Figure 6.

(A) Box and whisker plots measuring average pRPA intensities in control and ERCC6L27 cells. Cells were either untreated, or exposed to
50 pg/ml phleomycin for 12 h, before fixation and staining. N(images)>180, N(cells)>28,000. (B) Representative images of phleomycin
treated cells used for quantifications in A. Shown are expressions of indicated proteins, with zoomed images of cells in coloured frames.
(C) Analysis of pRPA levels by western blot. Treatments were as in A. (D) Box and whisker plots measuring average pKAP1 intensities

in control and ERCC6L27" cells. Cells were either untreated, or exposed to 50 ug/ml phleomycin for 12 h, before fixation and staining.
N(images)>180, N(cells)>28,000. (E) Representative images of phleomycin treated cells used for quantifications in D. Shown are
expressions of indicated proteins, with zoomed images of cells in coloured frames. (F) Analysis of pKAP1 levels by western blot. Treatments
were as in D. (G) Box and whisker plots measuring KAP1 foci in control and ERCC6L27 cells. Cells were either untreated, or exposed to
50 pg/ml phleomycin for 12 h, before fixation and staining. N(images)>180, N(cells)>28,000. B, E, H: Scale bar: 10 um. A, D, G: Statistics
calculated by t-Test assuming unequal variances; ****P < 0.0001.
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Figure S13. Pathological ERCC6L2 variants display functional deficiencies. Related to Figures 1 and 5.

(A) Schematic representation of ERCC6L2 mutations associated with IBMFS. Missense and truncating mutations are indicated as red and
black dots, respectively. (B) Expression of the disease-associated YFP-ERCC6L2 variants in U20S cells stained against CENP-A. Magnified
images of selected foci (in frames) are shown below. (C) Recruitment of ERCC6L2 variants to sites of DNA damage. U20S cells were
transfected with YFP-ERCC6L2 constructs and damaged using laser microirradiation. To verify induction of DSBs, cells were immunostained

with the gH2AX antibody. B, C: Scale bar: 10 mm.
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