
This is a repository copy of An Online Model-Free Adaptive Tracking Controller for Cable-
Driven Medical Continuum Manipulators.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/201214/

Version: Accepted Version

Article:

Hao, J, Zhang, K, Zhang, Z orcid.org/0000-0003-0204-3867 et al. (2 more authors) (2023) 
An Online Model-Free Adaptive Tracking Controller for Cable-Driven Medical Continuum 
Manipulators. IEEE Transactions on Medical Robotics and Bionics, 5 (3). pp. 623-635. 
ISSN 2576-3202 

https://doi.org/10.1109/tmrb.2023.3291024

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 

 

 Abstract—Continuum manipulators have demonstrated 

promising potential for flexible access and complicated operation 

and thus have been emerging and introduced in robot-assisted 

flexible endoscopy. However, due to their inherent structural 

compliance and strong nonlinearities, developing an accurate and 

robust control framework remains challenging. This paper 

proposes a model-free control method based on the Model-Free 

Adaptive Control (MFAC) algorithm to accomplish the trajectory 

tracking for two kinds of continuum manipulators by solely 

utilizing the robotic system's real-time input/output data. The 

presented controller discretizes and dynamically linearizes the 

motion process of the continuum actuator to obtain a dynamic 

linearization data (DLD) model. This DLD model can be derived 

from a pseudo-partial derivative (PPD) matrix updated based on 

the I/O measurement data for the iterative operation. The stability 

of the presented MFAC controller can be mathematically 

guaranteed in theory to provide generality, and the control 

framework demonstrates a low computational cost and real-time 

control capability. The superior performance of the presented 

controller is firstly validated in MATLAB simulations and then 

compared with the other two controllers. Through experimental 

validation on two kinds of continuum manipulators, the model-

free control framework shows high tracking accuracy and good 

robustness against the system uncertainty and external 

disturbances, as well as high transferability. 

Index Terms—Continuum robots; model-free control; flexible 

endoscopy; minimally invasive surgery 

Ⅰ. INTRODUCTION 

Robotic-assisted flexible endoscopy that combines advanced 

robotic technology and endoscopic techniques has been 

increasingly introduced and accepted for both diagnostic and 

therapeutic functions and aims to realize the no-visible-scar 

surgical procedure [1], [2]. These relevant robotic systems 
demonstrate the potential and reliability in performing flexible 

internal inspection and complicated operations through natural 

orifices instead of noticeable skin incisions from keyhole 

surgery and open surgery [3]–[5]. Thus, these emerging 

techniques can reduce incisions and infection, intraoperative 

bleeding and pain, and recovery time for patients, lower fatigue 

and turnout for surgeons, and improve surgical outcomes and 

patient safety [6]–[8]. The cable-driven continuum 

manipulators have exhibited great potential and promising 

applicability for these robotic systems (e.g. EndoMaster System 
designed by Nanyang Technological University [9], K-Flex 
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developed by KAIST [10], and Ion system developed by 

Intuitive [11]) due to their outstanding structural compliance, 

environmental adaptability, and flexible access capability in 

narrow cavities and tortuous anatomic pathways [12], [13]. 
However, these continuum manipulators commonly experience 

large and nonlinear deformation, complex friction, and 

significant hysteresis behaviors [14], [15]. The deformation is 

complicated for accurate prediction and control when the 

unknown external loadings or the curved environmental path is 

posed [16]. As a result, achieving the precise motion control of 

the continuum manipulators remains challenging. To improve 
control accuracy and stability, two typical frameworks that 

include model-based and model-free methods are generally 

proposed to control continuum robots [17], [18].  
As for the model-based methods, both kinematics and 

dynamics models of continuum manipulators have been widely 

investigated. The constant curvature assumption is a frequently 
applied kinematic modeling method for continuum robots [19], 

[20]. Based on this theory, Li et al. developed a position 

feedback controller incorporated with a quadratic programming 

algorithm for a continuum robot and realized a smooth tracking 

path with a maximum error of less than 3 mm [21]. However, 
the computational costs of the Jacobian matrix are typically 

significant. Qi et al. proposed a fuzzy controller to perform the 

trajectory tracking of the distal tip position of an orthogonal 

planar spring-based continuum manipulator [22]. However, it is 
difficult to find a balance between the calculation costs and 

control accuracy to determine the number of fuzzy rules. Other 
approaches focus on the dynamic modeling of continuum 

manipulators based on the elastic beam theory and Cosserat-rod 

theory [23]–[25]. Till et al. employed a numerical framework 

for solving Cosserat rod-based dynamic models of different soft 

and continuum robots [26]. However, there typically exist large 

elastic deformation, strong nonlinearities for frictions and 

hysteresis, and unknown payloads for continuum robots. These 
make it challenging for this method to determine the accurate 

models for continuum robots. In conclusion, it is difficult to 

accurately identify the model parameters of model-based 

methods, and the complicated and changeable external 

environment typically leads to significant model inaccuracy and 

even failure. Therefore, the model-based method is unsuitable  
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for real-time control of continuum robots that dynamically 

interact with human tissues during surgery. 
Without utilizing a specific model, model-free control 

algorithms based on offline learning or online state estimation 

are increasingly tempted and investigated to compensate for the 

uncertainties and nonlinearities of continuum manipulators. As 
for the method based on offline learning, Giorelli et al. utilized 

a feedforward neural network to solve the inverse statics of 

nonconstant curvature soft manipulators placed in water and 

obtained the mapping from the distal tip position to the cable 

tensions [27]. However, this method is only suitable in free 
space without loading and cannot be applied when existing 

friction and gravity. George et al. investigated a closed-loop 

kinematic controller based on machine learning and realized the 

end-effector position control of the cable-driven 6-DOF 

manipulator in the unstructured environment [28]. However, 
this method does not consider the dynamics of the continuum 

manipulator and increases the energy consumption in the 

control process. The offline learning methods need to re-collect 

data for training when the mechanical structure of continuum 

manipulators changes; thus, such methods suffer from poor 

transferability and lack of generality. Yip et al. presented a 

model-free closed-loop controller based on empirical 

estimation of the real-time Jacobian matrix of continuum 

manipulators for usage in constrained environments [29]. 
However, the usage of optimal algorithms results in high 

computational costs. Li et al. developed a model-free method 

based on an adaptive Kalman filter and performed the trajectory 

tracking of the continuum robot distal tip only based on the I/O 

measurement data [30]. However, this method is only suitable 
for quasi-static processes with relatively low speed and cannot 

be applied to the continuum manipulator’s dynamic control.  
To address the abovementioned issues, an online MFAC-

based controller is proposed for the trajectory tracking control 

of continuum manipulators with stochastic external 

disturbances. The presented MFAC-based scheme is a data-

driven and anti-disturbance control framework. The presented 

controller discretizes and dynamically linearizes the motion 

process of the continuum actuator to obtain a DLD model with 
a PPD matrix. By solely utilizing the robotic system's real-time 

I/O measurement data, the PPD matrix of the controller could 

be estimated online in every control loop by the modified 

projection algorithm. Compared with the offline learning 

methods, it does not require any data collection or training 

process. Besides, benefiting from the low computational cost, 
the proposed method could be simply and easily implemented 

for real-time applications. Moreover, the convergence and 
stability of the framework could be guaranteed, which is a 

highlighted feature compared with most model-free control 

approaches. Simulation and experimental results have shown 
that the proposed controller could achieve high tracking 

accuracy, strong robustness, and fast response toward the 

variable external disturbance. Meanwhile, the proposed 
controller has high transferability and can be utilized on the 

continuum manipulators of different designs. 

 
Fig. 1. a) The detailed design of the prototyped continuum robot; b) The DC motors connected with the linear modules; c) The notched continuum manipulator; d) 

The traditional spacing disk type manipulator.  
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Ⅱ. MATERIALS AND METHODS 

A.  Mechanical Design of the Continuum Robot  

 
The overview of the prototyped continuum robot has been 

illustrated in Fig. 1a), consisting of an actuation unit, a quick-

change interface, and two kinds of continuum manipulators. 
The actuation unit is constructed with five DC motors (Maxon, 
DC16, Switzerland) mounted on five linear modules (Fig. 1b)). 
Four of them are utilized to drive cables to transmit 

displacement and force for continuum manipulator actuation. 
The remaining one provides the translational movement of the 

whole actuation module. Each linear stage consists of two side 

guide rails and a central lead screw arranged in parallel to 

maintain structural stability and reduce motion errors. The 
motors are equipped with encoders to record the cable 

displacement information. The quick-change interface is 

designed to support connecting different continuum 

manipulators with the actuation unit, improving the platform's 
versatility. Two kinds of 2-DOF medical continuum 

manipulators in terms of the notched continuum type (Fig. 1c)) 

and the traditional spacing disk type (Fig. 1d)) are designed and 

fabricated for experimental validation of the proposed approach. 

B.  Constant-Curvature-Based Kinematic Modeling 

The constant-curvature approximation has been commonly 

applied to derive the kinematic model of various continuum 

manipulators. It forms an analytical closed-form relationship 

between the proximal actuation inputs and the distal tip position 

output and benefits the real-time control due to its 

simplification. According to this approximation, the elastic 

bending of a cable-driven continuum manipulator can be 

described by two mappings, as shown in Fig. 2a). The first 
mapping utilizes the variable of cable lengths  𝒖𝒖 =

[𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4]𝑇𝑇, i.e., from the actuator space to describe constant-
curvature arcs in the configuration space. Such information will 
be further mapped and derived to the distal tip position 

information 𝒑𝒑 = [𝑥𝑥,𝑦𝑦, 𝑧𝑧]𝑇𝑇  in the task space. These two 
mappings are described by manipulator-specific kinematics 𝑔𝑔:𝑢𝑢 ↦ 𝑞𝑞, and manipulator-independent kinematics ℎ:𝒒𝒒 ↦ 𝒑𝒑, 

respectively. Hence, the complete kinematic mapping that 

computes the distal tip position depending on the cable lengths 

can be given by 𝑓𝑓 = ℎ(𝑔𝑔(⋅)). 
All the coordination frames concerning a single-section 

continuum manipulator (Fig. 2b)) are described below, which 

are the base coordinate frame 𝑂𝑂𝑏𝑏{𝑥𝑥𝑏𝑏𝑦𝑦𝑏𝑏𝑧𝑧𝑏𝑏}  and the distal tip 

coordinate frame 𝑂𝑂𝑒𝑒{𝑥𝑥𝑒𝑒𝑦𝑦𝑒𝑒𝑧𝑧𝑒𝑒} , respectively. As a result, the 

position vector of the distal tip point expressed in the base 

coordinate frame can be obtained. 

                       𝒑𝒑 = �𝑥𝑥𝑦𝑦𝑧𝑧� = ⎣⎢⎢⎢
⎡𝑠𝑠𝜃𝜃 cos𝜑𝜑(1 − cos𝜃𝜃)𝑠𝑠𝜃𝜃 sin𝜑𝜑(1 − cos𝜃𝜃)𝑠𝑠 sin𝜃𝜃𝜃𝜃 ⎦⎥⎥⎥

⎤
                            (1) 

Equation (1) could be utilized to solve the position of the 

distal tip with respect to the arc parameters. These arc 
parameters could be controlled by tuning the lengths of the 

cables. Therefore, it is necessary to derive the mapping 

relationship from the proximal actuation inputs (cable lengths) 

to the arc parameters as below. 

                                   𝑠𝑠(𝒖𝒖) =
𝑙𝑙1 + 𝑙𝑙2 + 𝑙𝑙3 + 𝑙𝑙4

4
                           (2) 

      𝜃𝜃(𝒖𝒖) =
(𝑙𝑙1 − 3𝑙𝑙2 + 𝑙𝑙3 + 𝑙𝑙4)�(𝑙𝑙4 − 𝑙𝑙2)2 + (𝑙𝑙3 − 𝑙𝑙1)2

4𝑟𝑟(𝑙𝑙4 − 𝑙𝑙2)
    (3) 

                                 𝜑𝜑(𝒖𝒖) = arctan �𝑙𝑙3 − 𝑙𝑙1𝑙𝑙2 − 𝑙𝑙4�                             (4) 

For the actuator space, the kinematic control could be 

approximated by enforcing equal and opposite cable 

displacement of the antagonistic pairs [(𝑙𝑙1, 𝑙𝑙3), (𝑙𝑙2, 𝑙𝑙4)]. This 
approximation assumes inextensible cables and an 

incompressible continuum body after the initial tensioning. As 
a result, the vector of 𝒖𝒖 could be simplified as [𝑙𝑙1, 𝑙𝑙2]𝑇𝑇 . For the 

task space, the vector of p ([𝑥𝑥,𝑦𝑦, 𝑧𝑧]𝑇𝑇 ) in (1) could also be 

simplified as [𝑥𝑥, 𝑦𝑦]𝑇𝑇, because the value of 𝑧𝑧 can be computed 

from the values of 𝑥𝑥 and 𝑦𝑦. Hereby, the closed-form forward 

kinematics is derived for the designed cable-driven continuum 

manipulators. 
A Jacobian matrix 𝑱𝑱(𝒖𝒖)  is a multi-dimensional form of 

partial derivatives with respect to time for the forward 

kinematics (5), which reveals the velocity-level relationship (6) 

below.   
                                      𝒑𝒑 = 𝑓𝑓(𝒖𝒖) = ℎ�𝑔𝑔(𝒖𝒖)�                             (5) 

                                      �̇�𝒑 =
𝜕𝜕𝑓𝑓𝜕𝜕𝒖𝒖 �̇�𝒖 =

𝜕𝜕ℎ𝜕𝜕𝑔𝑔 𝜕𝜕𝑔𝑔𝜕𝜕𝒖𝒖 �̇�𝒖                             (6) 

                                            𝑱𝑱(𝒖𝒖) =
𝜕𝜕ℎ𝜕𝜕𝑔𝑔 𝜕𝜕𝑔𝑔𝜕𝜕𝒖𝒖                                    (7) 

 
Fig. 2. a) Kinematic mapping relationship of a continuum manipulator based 
on the constant-curvature assumption; b) The configuration variables and 

different coordinate frames of the 2-DOF continuum manipulator bending in 

the 3D space.  
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                                  �Δ𝑥𝑥Δ𝑦𝑦� = 𝑱𝑱(𝒖𝒖) �Δ𝑙𝑙1Δ𝑙𝑙2�                                 (8) 

where 𝑱𝑱(𝒖𝒖) denotes a time-varying 2×2 matrix whose elements 

are nonlinear functions of the instant actuator states expressed 

by 𝒖𝒖 . The mapping relationship 𝐽𝐽(𝒖𝒖)  represents a highly 

nonlinear and time-varying function that contains uncertainties 

caused by actuator hysteresis, frictions, and external loadings 

during practical applications. However, the Jacobian matrix 
based on the kinematic model cannot take the above 

uncertainties into account. Thus, it is difficult to be precisely 

obtained in either analytical or numerical ways.  

 

C.  The MFAC-Based Control Framework 

This section presents an online model-free adaptive 

controller that utilizes the MFAC-based algorithm to address 

the inaccuracy and instability associated with the above model-

based approach and overcome the uncertainties and 

nonlinearities of continuum manipulators. The framework of 

the presented MFAC controller has been illustrated in Fig. 3. 
The control algorithm needs to discretize and dynamically 

linearize the motion process of the continuum actuator with 

unknown and nonlinear factors and finally obtain the DLD 
model as below: 

                               ∆𝒑𝒑(𝑘𝑘 + 1) = 𝜙𝜙(𝑘𝑘)∆𝒖𝒖(𝑘𝑘)                     (9) 

where ∆𝑝𝑝 represents the change of the distal tip position of the 

continuum manipulator, ∆𝑢𝑢 denotes the change of the cables, 𝜙𝜙(𝑘𝑘) is the PPD matrix. The PPD matrix is updated based on 

the I/O measurement data of the continuum manipulator 

moving process. In each control loop, the updated PPD matrix 

is substituted into the control law to complete the motion 

control of the continuum manipulator. 
The DLD model can effectively simplify the nonlinear model, 

and reduce the difficulty of control, so as to improve the real-

time performance of online control. The time-varying PPD 

could be updated merely using the I/O measurement data of the 

controlled continuum manipulator, which help the controller 

adapt to different motion states and the design of continuum 

manipulators. 
1) Kinematics discretization and linearization to the DLD 

model 

For applying the MFAC-based control scheme, the 

continuum manipulator's continuous-time kinematics model 

will be first transformed into a DLD model. In this process, the 

kinematics of the continuum manipulator could be regarded as 

a multiple-input and multiple-output (MIMO) nonlinear 
discrete-time system [31], as expressed below. 𝒑𝒑(𝑘𝑘 + 1) = ℱ �𝒑𝒑(𝑘𝑘), … ,𝒑𝒑�𝑘𝑘 − 𝑛𝑛𝑝𝑝�,𝒖𝒖(𝑘𝑘), … ,𝒖𝒖(𝑘𝑘 − 𝑛𝑛𝑢𝑢)� (10) 

where 𝒑𝒑(𝑘𝑘) ∈ 𝑅𝑅2 and 𝒖𝒖(𝑘𝑘) ∈ 𝑅𝑅2 represent the system outputs 

(distal tip position values) and the control inputs (cable lengths), 

respectively. 𝑛𝑛𝑝𝑝 and 𝑛𝑛𝑢𝑢  are the unknown orders, and ℱ ( ⋅ ) 
denotes an unknown nonlinear function.  

According to the kinematic model of the continuum 

manipulator presented in the last section, the partial derivatives 

of ℱ(⋅) in function (10) with respect to the control inputs 𝒖𝒖(𝑘𝑘) 

are continuous. Furthermore, the single-section continuum 

manipulator satisfies the generalized Lipschitz condition, 

because the distal tip position change rates (output) cannot go 

to infinity if the change of the cable lengths (input) is at a finite 

altitude. This condition limits the rates of changes in the system 

outputs driven by the changes in the control inputs. Therefore, 

for each fixed 𝑘𝑘 and ‖𝒖𝒖(𝑘𝑘)‖ ≠ 0, there exists ‖∆𝒑𝒑(𝑘𝑘 + 1)‖ ≤𝑏𝑏‖∆𝒖𝒖(𝑘𝑘)‖.  
Based on these two conditions, for each fixed 𝑘𝑘, there exists 

a time-varying PPD matrix 𝝓𝝓(𝑘𝑘), such that nonlinear function 

(10) could be transformed into the proposed equivalent DLD 

model (9), where 𝝓𝝓(𝑘𝑘) = �𝜙𝜙11(𝑘𝑘) 𝜙𝜙12(𝑘𝑘)𝜙𝜙21(𝑘𝑘) 𝜙𝜙22(𝑘𝑘)
�

 

,‖𝝓𝝓(𝑘𝑘)‖ ≤ 𝑏𝑏 

and 𝑏𝑏 is a positive constant [31]. The PPD matrix's existence 
has already been validated and guaranteed by rigorous 

mathematical analysis based on the differential mean value 

theorem [31]. This equivalent DLD model is derived only based 
on the I/O measurement data during the continuum manipulator 

movement, and no dynamic model is needed. It can be 

preliminarily expanded as below. 

                              �∆𝑥𝑥∆𝑦𝑦�=�𝜙𝜙11(𝑘𝑘) 𝜙𝜙12(𝑘𝑘)𝜙𝜙21(𝑘𝑘) 𝜙𝜙22(𝑘𝑘)
� �∆𝑙𝑙1∆𝑙𝑙2� 

                             =�∆𝑙𝑙1𝜙𝜙11(𝑘𝑘) + ∆𝑙𝑙2𝜙𝜙12(𝑘𝑘)∆𝑙𝑙1𝜙𝜙21(𝑘𝑘) + ∆𝑙𝑙2𝜙𝜙22(𝑘𝑘)
�               (11) 

As shown in Fig. 2b), a pair of antagonistic cables 𝑙𝑙1and 𝑙𝑙3 

mainly controls the movement in the 𝑥𝑥 direction and has 

negligible influence in the 𝑦𝑦  direction. This works the same 
for  𝑙𝑙2  and 𝑙𝑙4 . Therefore, ∆𝑙𝑙1  and ∆𝑙𝑙2  can generate critical 

influences on ∆𝑥𝑥 and ∆𝑦𝑦, respectively. As a result, 𝝓𝝓(𝑘𝑘) is a 

diagonally dominant matrix and meets the following constraints, 

i.e., �𝜙𝜙𝑖𝑖𝑖𝑖(𝑘𝑘)� ≤ 𝑏𝑏1, 𝑏𝑏2 ≤ |𝜙𝜙𝑖𝑖𝑖𝑖(𝑘𝑘)| ≤ 𝑎𝑎𝑏𝑏2, 𝑖𝑖 =1,2, 𝑗𝑗 =1,2, 𝑖𝑖 ≠ 𝑗𝑗, 𝑎𝑎 ≥ 1, 𝑏𝑏2 > 2𝑏𝑏1(2𝑎𝑎 + 1) [32].  
2) The control law of the MFAC-based control framework  

The detailed control law of the presented MFAC-based 

control framework is derived for the continuum manipulator to 

achieve trajectory tracking. The criterion function of control 

inputs has been designed as follows.  

 
Fig. 3. The framework of the proposed MFAC controller. 
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 𝐼𝐼�𝒖𝒖(𝑘𝑘)� = ∥∥𝒑𝒑𝑑𝑑(𝑘𝑘 + 1) − 𝒑𝒑𝑎𝑎(𝑘𝑘 + 1)∥∥2 + 𝜆𝜆 ∥ 𝒖𝒖(𝑘𝑘) − 𝒖𝒖(𝑘𝑘 − 1) ∥2 

(12) 

where 𝒑𝒑𝑑𝑑(𝑘𝑘 + 1) denotes the desired distal tip position and 𝜆𝜆 is 

a weighting constant. This criterion has been designed to ensure 

the minimum difference between the desired position 𝒑𝒑𝑑𝑑 of the 

controller and the actual position 𝒑𝒑𝑎𝑎 , and the minimum 

difference between the inputs at the two adjacent moments. 
Therefore, the control accuracy and smooth movement can be 

guaranteed.  
By substituting the DLD model (9) into the criterion function 

(12), the new function will be differentiated with respect to 𝒖𝒖(𝑘𝑘). Then setting it as zero, the MFAC control law can be 

derived as follows.  𝒖𝒖(𝑘𝑘) = 𝒖𝒖(𝑘𝑘 − 1) +
𝜌𝜌𝝓𝝓�𝑇𝑇(𝑘𝑘)�𝒑𝒑𝑑𝑑(𝑘𝑘 + 1) − 𝒑𝒑𝑎𝑎(𝑘𝑘)�𝜆𝜆+∥ 𝝓𝝓�(𝑘𝑘) ∥2        (13) 

where 𝜌𝜌 is a step-size constant, and it is introduced to make this 

control law more general. Another parameter 𝜆𝜆 has also been 

introduced to serve as a penalty factor for  ∥ ∆𝒖𝒖(𝑘𝑘) ∥  and a 

constraint to suppress 𝝓𝝓�(𝑘𝑘)  from changing frequently. The 

bounded-input bounded-output (BIBO) stability of the closed-

loop controller could be proved and guaranteed since the PPD 

matrix 𝝓𝝓(𝑘𝑘)  is a diagonally dominant matrix. The detailed 

derivation of the stability of the MFAC controller has been 
effectively analyzed based on the BIBO stability theory and the 
Gershgorin disc theorem [31]. Due to the lengthy derivation 

process, the corresponding contents have been added in the 

supporting document of part A in Appendix. The similar 
derivation process and relative conclusion have been previously 

performed and proved in [31], [32].  
3) Online estimation of the PPD matrix by the modified 

projection algorithm  

A time-varying algorithm, term as the modified projection 

algorithm, is utilized to realize an online estimation of the PPD 

matrix 𝝓𝝓(𝑘𝑘) [31]. A criterion function of the PPD estimation is 

given below.  
 𝛪𝛪�𝝓𝝓(𝑘𝑘)� 

= ‖∆𝒑𝒑(𝑘𝑘) − 𝝓𝝓(𝑘𝑘)∆𝒖𝒖(𝑘𝑘 − 1)‖2 + 𝜇𝜇�𝝓𝝓(𝑘𝑘) − 𝝓𝝓�(𝑘𝑘)�2    (14) 

where 𝜇𝜇 > 0 denotes a penalty factor on �∆𝝓𝝓�(𝑘𝑘)� and 𝝓𝝓�(𝑘𝑘) 

represents the estimation value of 𝝓𝝓(𝑘𝑘). 
The criterion function is designed to ensure the minimum 

difference between the distal tip position changes and the 

minimum variation of the PPD matrix at two adjacent moments. 
This targets to avoid the vibration caused by the continuum 

manipulator motion's acceleration mutation and improve the 

PPD estimation's stability. 
Substitute 𝝓𝝓(𝑘𝑘) = 𝝓𝝓�(𝑘𝑘 − 1) into the criterion function (14), 

then differentiate it with respect to 𝝓𝝓(𝑘𝑘) and consider it equal 

to zero. The PPD estimation could be obtained using the 

modified projection algorithm as below.  𝝓𝝓�(𝑘𝑘) = 𝝓𝝓�(𝑘𝑘 − 1) 

+
𝜂𝜂∆𝒖𝒖𝑇𝑇(𝑘𝑘 − 1) �∆𝒑𝒑(𝑘𝑘) − 𝝓𝝓�(𝑘𝑘 − 1)∆𝒖𝒖(𝑘𝑘 − 1)�𝜇𝜇+∥ ∆𝒖𝒖(𝑘𝑘 − 1) ∥2     (15) 

where 𝜂𝜂 represents a step-size constant, and the role of 𝜂𝜂 and 𝜇𝜇 

in (15) are similar to that of 𝜌𝜌 and 𝜆𝜆 in (13).  

Given that the motion of the continuum manipulator can 

experience sudden changes, a reset algorithm is presented and 

applied to improve the stability of the time-varying trajectory 

tracking process and suppress the vibration of the continuum 

manipulator. The reset algorithm of 𝝓𝝓�(𝑘𝑘) is defined as follows. 𝜙𝜙�𝑖𝑖𝑖𝑖(𝑘𝑘) = 𝜙𝜙�𝑖𝑖𝑖𝑖(1), if �𝜙𝜙�𝑖𝑖𝑖𝑖(𝑘𝑘)� < 𝑏𝑏2 or �𝜙𝜙�𝑖𝑖𝑖𝑖(𝑘𝑘)� > 𝛼𝛼𝑏𝑏2
     or ‖∆𝒖𝒖(𝑘𝑘 − 1)‖ < 𝑒𝑒𝑟𝑟𝑟𝑟  or  �𝝓𝝓�  (𝑘𝑘)� < 𝑒𝑒𝑟𝑟𝑟𝑟 𝜙𝜙�𝑖𝑖𝑖𝑖(𝑘𝑘) = 𝜙𝜙�𝑖𝑖𝑖𝑖(1), if �𝜙𝜙�𝑖𝑖𝑖𝑖(𝑘𝑘)� > 𝑏𝑏1  or ‖∆𝒖𝒖(𝑘𝑘 − 1)‖ < 𝑒𝑒𝑟𝑟𝑟𝑟  

      or �𝝓𝝓�  (𝑘𝑘)� < 𝑒𝑒𝑟𝑟𝑟𝑟 ，𝑖𝑖 ≠ 𝑗𝑗                      

(16) 

where 𝜙𝜙�𝑖𝑖𝑖𝑖(0)  represents the initial value of 𝜙𝜙�𝑖𝑖𝑖𝑖(𝑘𝑘) , 𝑖𝑖 =1,2, 𝑗𝑗 =1,2. 𝑒𝑒𝑟𝑟𝑟𝑟 denotes the minimum limit of a matrix norm. When 
significant disturbances and uncertainties occur or there exist 

distortions in the sensor signals, the above-presented reset 

algorithm can rapidly rest the PPD matrix and eliminate the 

impacts on the controller made by the previous motion states, 

as well as improve the robustness of the PPD estimation.  
The detailed parameter initialization is presented below. For 

the setting of 𝝓𝝓�(0) , it should be noted that the control 

performance of the MFAC controller is sensitive to the value of 𝝓𝝓�(0) , especially the sign of each element. Therefore, a 
straightforward setting method for 𝝓𝝓(𝑘𝑘) based on physical 

interpretation is proposed. From the DLD model (9), 𝝓𝝓(𝑘𝑘) 

describes a direct mapping from the variation of cable 

lengths ∆𝒖𝒖(𝑘𝑘) to the variation of the distal tip position ∆𝑝𝑝(𝑘𝑘 +

1), which are in the same direction. In other words, 𝑢𝑢 has a 

positive effect on 𝑝𝑝 . Thus, 𝝓𝝓�(0)  could be set as a positive 

diagonal matrix. The setting of 𝑎𝑎 , 𝑏𝑏1  and 𝑏𝑏2  determines the 

range of PPD estimation, and they are also essential to the 

performance of PPD estimation. It is evident that the decrease 
in the range of PPD estimation, especially 𝜙𝜙�𝑖𝑖𝑖𝑖(𝑘𝑘), will improve 

the robustness and adaptation of the algorithm for sudden 

changes in the system. However, if the range of 𝜙𝜙�𝑖𝑖𝑖𝑖(𝑘𝑘) is 

selected to be small, then the number of reset times of 𝝓𝝓�(𝑘𝑘) 

will increase significantly, deteriorating the tracking 

performances. As a result, there exist trade-offs among different 

design considerations. Meanwhile, to maintain the stability of 
the MFAC controller, the 𝑒𝑒𝑟𝑟𝑟𝑟 is added to the reset algorithm as 

a novel constraint to reset the PPD matrix when it changes too 

much caused by variable and unknown external loadings. The 

constraint on the sign of PPD matrix parameters is also deleted 

from the traditional reset algorithm [31], which is more suitable 

for the highly nonlinear continuum robot system (Fig. A1 of 

part B in Appendix). The PPD matrix should not be reset 

frequently due to the normal parameter sign changes. Moreover, 
the step-size constant 𝜌𝜌, 𝜂𝜂  and penalty factor 𝜆𝜆, 𝜇𝜇  in the 

controller also need to be adjusted manually before the 

controller is applied.  
It can be seen that the change of the PPD matrix parameters 

can be inherited by subsequent control loops and combined with 

the reset algorithm (16) to make the parameter estimation 

algorithm have a more vital ability to track time-varying 

parameters. The continuum robot's motion state changes 
dramatically at the initial interference stage. The reset algorithm 
can reset the PPD matrix, eliminate influences from the  
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previous motion states on the controller, and quickly adapt to 

the changed motion state. When the interference persists, the 
change of PPD matrix parameters will be retained in the 

subsequent control loops, making it return to the target path 

quickly. Meanwhile, the PPD matrix changed by the persistent 
disturbances can suppress the influence of these disturbances 

on the subsequent trajectory tracking. These advantages bring 

the controller high precision, strong robustness, and fast 

response to nonlinear and random disturbances. Moreover, the 
controller is constructed by solely utilizing the online I/O 

measurement data of the continuum manipulator and has no 

relation with any explicit model dynamics and structural 

information of the system. Therefore, the proposed MFAC 
control scheme is a typical model-free control framework, 

which gives this controller better transfer ability in controlling 

continuum manipulators with different configurations. 

D.  Simulations for Different Controllers on Trajectory 

Tracking of Three Predefined Paths  

This section implements simulations of the proposed MFAC 

controller in MATLAB R2019a to investigate its feasibility and 

control performances. To compare with the proposed approach, 
two other typical position controllers for the continuum robots 

have also been conducted.  
1) Model-based open-loop controller 

The model-based open-loop controller (MBO) is established 

based on the constant-curvature kinematic model proposed in 

Section II.B. Since the model information of the continuum 
robot is already known, its Jacobian 𝑱𝑱†can be directly calculated. 
Therefore, the tracking control could be solved as below: �̇�𝒖(𝑘𝑘) = 𝑱𝑱†(𝑘𝑘) �̇�𝒑𝑑𝑑(𝑘𝑘)                          (17) 

where 𝒑𝒑𝑑𝑑 denotes the desired path. 

2) Model-based closed-loop controller   

To correct the accumulated errors, the model-based open-

loop controller (17) could be modified to form a model-based 

closed-loop controller (MBC) with distal position feedback. 
              �̇�𝒖(𝑘𝑘) = 𝑱𝑱†(𝑘𝑘) ��̇�𝒑𝑑𝑑(𝑘𝑘) + 𝐾𝐾𝑝𝑝�𝒑𝒑𝑑𝑑(𝑘𝑘) − 𝒑𝒑𝑎𝑎(𝑘𝑘)��      (18) 

where 𝒑𝒑𝑎𝑎 represents the actual feedback path, and 𝐾𝐾𝑝𝑝 denotes 

the proportional parameter of the controller. 
The accuracy and stability of these three controllers are 

investigated with three target paths of 2D rectangle and circle 

shapes and a 3D spiral shape. The direction of the Jacobian 
matrix and movement stay changed along these paths. Hence, it 
is an appropriate scenario to analyze the controller's 
performance, and the experimental configuration's simulation 
parameters are listed in Table I.  

 

 
The white noise with a signal-to-noise ratio of 60 dB is 

introduced as the robot's random error during simulations. 
Three proposed controllers were evaluated under the same 

experimental setup. The 𝐾𝐾𝑝𝑝 of the MBC controller is tuned as 

  
Fig. 4. The tracking performances and the tracking error variations for different position controllers on simulations. a)-b) The tracking performance and the 

tracking error variation on a rectangle path; c)-d) The tracking performance and the tracking error variation on a circle path; e)-f) The tracking performance 
and the tracking error variation on a spiral path. 

TABLE I 

 PARAMETERS OF THE SIMULATION CONFIGURATION 

Parameters Value 

Length of the continuum robot 200 mm 

Diameter of the continuum robot 20 mm 

Side length of rectangle path 60 mm 

Radius of the circular/spiral path 50 mm 

Pitch the spiral path 6 mm 

Total control intervals 1200 

TABLE Ⅱ  

PARAMETERS OF THE MFAC CONTROLLER IN SIMULATIONS 
Symbol Value Symbol Value 𝝓𝝓𝟎𝟎 �5 1

1 5
� 𝝁𝝁 0.34 𝝀𝝀 0.5 𝜼𝜼 0.5 𝝆𝝆 1   
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1.8, and the parameters of the MFAC controller are enumerated 

in Table Ⅱ. The tracking results for the target paths are 

illustrated in Fig. 4 and Table Ⅲ. The dynamic changes of the 

PPD matrix are shown in Fig. A1 of part B in Appendix. The 

trajectory tracking errors on these three paths of MBO are 

significantly higher than that of MBC and MFAC. Because it is 

an open-loop controller without the distal tip position feedback, 

errors could accumulate during the task execution. Thus, the 

premise of this controller is to work under ideal conditions 

without external interferences, making it challenging to be 

applied in practical applications. The closed-loop controller 

MBC tackles the error accumulation problem and greatly 

improves the control accuracy, as illustrated by the error values 

in Table Ⅲ. However, this method suffers from a large amount 
of calculation and produces noticeable variations on actual 

tracking paths (Fig. 4). Another significant problem these 

model-based controllers face is the non-negligible error caused 

by the deformation of continuum robots or the inaccuracy of 

model parameters. The proposed model-free MFAC controller 
is applied to solve the inaccurate modeling problem and further 

reduce the error, resulting in a more accurate and smoother 

tracking path. The overall mean errors of 0.20 mm (0.1% of its 

length) and maximum errors of 0.68 mm (0.34% of its length) 

are lower than that of MBC by 50% and 49%, respectively, 

demonstrating stability and high accuracy of the proposed 

controller. Under these circumstances, the superiorities of the 
MFAC controller are revealed and will be further demonstrated 

with experimental validation. 

 

Ⅲ. EXPERIMENTS AND RESULTS 

A.  Experiments Setup 

The experimental configuration of the robotic control system 

has been built to validate the proposed MFAC controller, as 

illustrated in Fig. 5. This control system mainly consists of a 

motion controller (GOOGOLTECH, GTS-800, China), five 

driving amplifiers (IMC, PENP, Germany), a 3D optical 

measurement unit (NDI Polaris, Ontario, Canada), and the 

proposed continuum robot and a host computer (Core i7 
processor @ 2.80 GHz, and 16-GB RAM). The motion 

controller sends commands to the amplifiers and drives DC 

motors to actuate the continuum robot. The 3D optical 

measurement unit measures the robot's distal tip position with 

the attached maker. The position data is sent to the host 
computer for position feedback with a sampling rate of 60 Hz 

through a USB cable.  

 

B.  The Trajectory Tracking of Three Predefined Paths in the 

Free Space  

 
To evaluate the effectiveness of the MFAC controller for 

trajectory tracking, three groups of experiments were conducted 

with the three presented target paths in free space. The 
experimental configuration parameters were the same as the 

simulation, as shown in Table I. The 𝐾𝐾𝑝𝑝  of the MBC controller 

was tuned as 0.4, and the parameters of the MFAC controller 
are enumerated in Table Ⅳ. The control frequency was set at 

about 20 Hz because data from different devices (such as 

amplifiers and the 3D optical measurement unit) needed to be 

synchronized to keep the controller stable. 

 
The tracking results for different target paths are illustrated 

in Fig. 6, and the quantitative tracking errors in terms of mean 

and maximum errors are listed in Table Ⅴ. MBO generated a  

TABLE Ⅲ 
 SIMULATION RESULTS OF DIFFERENT CONTROLLERS 

Path Method 

Mean 

Error 

(mm) 

Relative 

Mean 

Error 

Max 

Error 

(mm) 

Relative 

Max 

Error 

Rectangle  

MBO 3.52 1.76% 3.81 1.90% 

MBC 0.32 0.16% 1.12 0.56% 

MFAC 0.14 0.07% 0.44 0.22% 

Circle 

MBO 3.45 1.72% 3.86 1.93% 

MBC 0.45 0.22% 1.54 0.77% 

MFAC 0.21 0.10% 0.77 0.38% 

Spiral 

MBO 3.49 1.74% 3.89 1.94% 

MBC 0.42 0.21% 1.38 0.69% 

MFAC 0.26 0.13% 0.85 0.42% 

Mean of 

Three 

Paths 

MBO 3.49 1.74% 3.85 1.92% 

MBC 0.40 0.20% 1.35 0.68% 

MFAC 0.20 0.10% 0.69 0.34% 

Fig. 5. The experimental configuration for the investigation of the presented 
controllers.  

TABLE Ⅳ 

EXPERIMENTAL PARAMETERS OF THE MFAC CONTROLLER 

Symbol Value Symbol Value 𝝓𝝓𝟎𝟎 �5 1
1 5

� 𝝁𝝁 2.3 𝝀𝝀 0.6 𝜼𝜼 0.7 𝝆𝝆 0.4   

TABLE Ⅴ 
EXPERIMENTAL RESULTS OF DIFFERENT CONTROLLERS IN FREE SPACE 

Path Method 

Mean 

Error 

(mm) 

Relative 

Mean 

Error 

Max 

Error 

(mm) 

Relative 

Max 

Error 

Time 

Cost 

(s) 

Rectangle  

MBO 3.97 1.98% 8.18 4.09% - 

MBC 1.42 0.71% 3.39 1.70% 67 

MFAC 1.02 0.51% 2.38 1.19% 62 

Circle 

MBO 7.36 3.68% 9.40 4.70% - 

MBC 1.72 0.86% 3.86 1.93% 76 

MFAC 1.17 0.58% 2.75 1.38% 70 

Spiral 

MBO 9.46 4.73% 17.85 8.92% - 

MBC 4.23 2.12% 7.90 3.95% 178 

MFAC 3.28 1.64% 5.20 2.60% 162 

Mean of 

Three 

Paths 

MBO 6.93 3.46% 11.81 5.90% - 

MBC 2.46 1.23% 5.05 2.52% 107 

MFAC 1.82 0.91% 3.44 1.72% 98 
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large mean error of 6.93 mm for the three trajectory paths due 

to the open control strategy. MBC significantly reduced the 
error to 2.46 mm based on the distal end position feedback. 
Compared with these two controllers, the proposed MFAC 
controller can achieve smooth tracking results with lower errors. 
The corresponding mean error of 1.82 mm (0.91% of its length) 

and maximum errors of 3.44 mm (1.72% of its length) were 
lower than that of MBC by 26% and 32%, respectively. The 
MFAC controller still retains the high accuracy of the model-

free controller in actual experiments. Furthermore, the MFAC 
controller takes an average of 98 s in three trajectory tracking 

experiments and reduces the time cost by 8.4% compared with 
the traditional MBC controller (107 s). Such results indicate 

that the proposed MFAC controller has a lower computational 
cost. The tracking error of the spiral path was larger than that of 
the circular path. Because the spiral path requires completing 

three circles of circular motion in the same 1200 iterations 

(Table I), the number of iterations per circle was only one-third 

of that of the circular path. The fewer number of iterations 
increased the errors of these controllers. 

C.  The Trajectory Tracking under Variable Disturbances  

The trajectory tracking experiments with variable external 

disturbances/loading have been performed to further verify the 

robustness and response speed of the presented MFAC 
controller. The parameters of experiment configuration and 

controllers remain the same, as enumerated in Tables I and Ⅳ. 
The first two experiments (Exp. 1-2) changed the loading's 

weight and the location by successively adding two standard 

weights of 100 g and 50 g randomly at different locations along 

the vertical direction during the movement along the two target 

paths of the 2D rectangle and circle shapes (Fig. 7a)). The third 

experiment (Exp. 3) followed the 3D spiral path, loaded two 

weights of 100 g and 50 g, and unloaded the 100 g weight 

around each circular path apex. The fourth experiment (Exp. 4) 

generated disturbances along the radial direction using a pulley 

and repeated the steps of the third experiment but unloaded the 

50 g weight for easy operation (Fig. 7b)).  
The tracking results for three target paths are illustrated in 

Fig. 7 and Table Ⅵ. The results of the MBO controller are not 
shown in the figures because its corresponding errors are too 

large to display. The influences of variable loadings on tracking 

motions are pronounced. Thus, two indicators that include the 

deviation of motion tracking (DMT) of the continuum robot 
distal tip and the number of iterative steps (NIS) to compensate 
for these deviations have been defined, as labeled in Fig. 7g), to 

reflect the influences under variable loadings. They can indicate 

control accuracy, response speed, and robustness of the control 

algorithm.   
In the first three groups of experiments, the overall mean 

error (1.86 mm, 0.93% of its length) of the MFAC controller 
was 25% less than that of the MBC controller, as shown in 

Table Ⅵ. When the loading changed, the DMT values of the 

MFAC controller were obviously smaller than that of the MBC 

controller. The average number of the NIS required by the 
MFAC controller for 100 g and 50 g were 17 steps and 10 steps, 

respectively. They were 77% and 73% less than the MBC 

controller. These results demonstrated that the MFAC 
controller responds more quickly to variable loading. For the 

fourth group of experiments, it was challenging for the 

controller to track the spiral path and compensate for the 

variable loading, as indicated by the path profile in Fig. 7f). The 

MFAC controller achieved a more smooth and close path 

profile to the target path. Its mean error was 3.47 mm (1.74% 

of its length), which was 49% less than that of the MBC 
controller. In this case, the radial loading direction was 

constantly changing due to the used pulley, thus requiring the 

control algorithm to have a faster response speed and stronger 

 
Fig. 6. The tracking performances and the tracking error variations for different position controllers on experiments. a)-b) The tracking performance and the 
tracking error variation on a rectangle path; c)-d) The tracking performance and the tracking error variation on a circle path; e)-f) The tracking performance 

and the tracking error variation on a spiral path. 
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tracking ability. The MFAC controller still maintained 
excellent spiral trajectory tracking ability and compensation 

ability of continuously variable loadings. 

D.  The Transferability of the Proposed MFAC Controller on 

the other Continuum Manipulator  

The same experiments were carried out on the other designed 

continuum manipulator with a central bone and discrete spacing 

disks without tuning any controller parameters to further verify 

the proposed MFAC controller's transferability. This 

manipulator shares the same length and diameter with the 

notched one and possesses a lower stiffness, resulting in poorer 

dynamic performances. Therefore, it is expected that the three 
controllers could generate larger mean errors than the previous 

experiments on the notched manipulator.  
The tracking results for the three target paths in the free space 

are illustrated in Fig. 8 and Table Ⅶ. The MBO and MBC 

controllers produced larger errors than the previous 

experiments. Compared with these two controllers, the 

presented MFAC controller achieved smooth tracking results 

and the lowest mean error of 1.84 mm, which was almost the 

same as that of the notched continuum manipulator experiments. 
The experimental results of trajectory tracking under the 

variable disturbances have been displayed in Fig. 9 and Table 

Ⅷ. The tracking error values of the MBC and MFAC 

controller have been increased to different degrees due to the 

lower stiffness and poorer dynamics of this continuum 

manipulator. The overall mean error of Exp. 1-4 (2.35 mm, 1.18% 
of its length) of the MFAC controller was only 3.5% larger than 

that of the notched continuum manipulator. However, the MBC 
controller produced a significant decrease in tracking 

performance, and the overall mean error of Exp. 1-4 (5.21 mm,  

  
Fig. 7. a) The experimental configuration for Exp.1-3; b) The experimental configuration for Exp.4; c)-f) The tracking performances for different controllers on 

Exp.1-4. g)-j) The DMT and NIS of the Exp.1 Load-1, Exp.2 Load-1, Exp.3 Load-1, and Exp.1 Drop-3. 

 TABLE Ⅵ 

EXPERIMENTAL RESULTS OF DIFFERENT CONTROLLERS UNDER VARIABLE DISTURBANCES ON EXP.1-4 

Method Path 
Mean Error 

(mm) 

Relative 

Mean 

Error 

Load-1 

DMT 

(mm) 

Load-2 

DMT 

(mm) 

Drop-3 

DMT 

(mm) 

Load-1 

NIS 

Load-2 

NIS 

Drop-3 

NIS 

MBC Exp.1 

Rectangle 

1.59 0.80% 19.48 2.57 

 

104 41 

 
MFAC 1.11 0.56% 11.17 1.91 27 13 

MBC Exp.2 

Circle 

1.71 0.86% 15.16 7.43 75 42 

MFAC 1.09 0.54% 12.73 5.42 11 8 

MBC Exp.3 

Spiral 

4.16 2.08% 17.67 6.25 11.18 42 27 50 

MFAC 3.39 1.70% 13.63 3.74 7.84 13 9 19 

MBC Exp.4 

Spiral 

6.79 3.40% 

 
MFAC 3.47 1.74% 

MBC Mean error  

of Exp.1-4 

3.56 1.78% 

MFAC 2.27 1.14% 
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2.60% of its length) was 46.3% larger than before. After 

replacing the continuum manipulator, for experiments in the 

free space and with variable disturbances, the error of the 

MFAC controller only increased slightly and basically 
remained stable, but the error of the MBC controller increased 

much more significantly. These results demonstrated that the 

MFAC controller has better transferability than the MBC 

controller. The MFAC controller can maintain strong 
robustness when the bending stiffness of the continuum 

manipulator decreases by 50%. 

E.  Discussion  

Although the simulations and experiments adopt the same 

desired paths, the errors of all experimental results are higher 

than those obtained by simulations. This happens because the 
continuum manipulators have uncertainties, such as 

manufacturing errors, friction, gravity, and vibration in motion, 

which are not considered in the simulated model. Meanwhile, 

the simulation cannot reflect the influence of different paths and 

continuum designs on the controller's precision.  
When disturbances exist in the continuum manipulator 

motion process, the MFAC controller shows high robustness 
and tracking performance and can quickly return to the target 

path, as indicated in Figs. 7, 9 and Tables Ⅵ, Ⅷ. The 
experiments of trajectory tracking under variable disturbances 

for two kinds of manipulators have demonstrated the 

advantages of the presented MFAC controller over the other 
controllers in terms of the mean error, DMT, and NIS. 
Especially when the disturbance is time-varying, the 

performance of the MFAC controller is significantly better than 

that of MBC. For the fourth experiment with variable radial 

loading, the presented MFAC controller well followed the 

spiral path with relatively small errors; however, the path 

generated by the MBF controller produced a significant 
deviation from the desired path with larger errors. Because the 

PPD matrix is updated through the I/O data, the matrix change 

can be reserved for subsequent control loops so that the MFAC 
controller can quickly adapt to the motion state when the 

disturbance persists. Moreover, the reset algorithm can 
recognize the sudden change of motion state, enhance the 

controller's stability, and help the controller achieve a fast 

response when the continuum manipulator is disturbed. In the 

experiments to verify the transferability of the different 

controllers, the continuum manipulator with smaller stiffness 

brings more errors to the model-based controllers. This is 

because the controllers based on the kinematic model cannot 

take the changes of the dynamic model into account. However, 

the MFAC controller only considers the relationship between 
the input and output of the system and can take into account the 

uncertainty and nonlinear factors in motion more 

comprehensively, which effectively enhances its transferability. 

  
Fig. 8. The tracking performances and the tracking error variations for different position controllers on experiments. a)-b) The tracking performance and the 
tracking error variation on a rectangle path; c)-d) The tracking performance and the tracking error variation on a circle path; e)-f) The tracking performance 
and the tracking error variation on a spiral path. 

TABLE Ⅶ 

EXPERIMENTAL RESULTS OF DIFFERENT CONTROLLERS IN FREE SPACE 

Path Method 

Mean 

Error 

(mm) 

Relative 

Mean 

Error 

Max 

Error 

(mm) 

Relative 

Max 

Error 

Rectangle 

MBO 4.12 2.06% 7.89 3.94% 

MBC 1.67 0.84% 4.37 2.18% 

MFAC 0.96 0.48% 2.73 1.36% 

Circle 

MBO 7.69 3.84% 11.06 5.53% 

MBC 2.02 1.01% 3.65 1.82% 

MFAC 1.21 0.60% 2.32 1.16% 

Spiral 

MBO 9.59 4.80% 15.72 7.86% 

MBC 4.52 2.26% 7.18 3.59% 

MFAC 3.36 1.68% 5.61 2.80% 

Mean of 

Three 

Paths 

MBO 7.13 3.56% 11.56 5.78% 

MBC 2.74 1.37% 5.06 2.53% 

MFAC 1.84 0.92% 3.55 1.78% 
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Ⅳ. CONCLUSION 

An online MFAC controller was proposed to realize 

continuum manipulators' precise and robust trajectory tracking 
control. Unlike the previous model-based methods that require 

an accurate mathematical model of the robotic system, the 

presented method employs the MFAC algorithm to estimate the 

real-time PPD matrix, overcoming the model complexities and 

uncertainty issues. The feasibility and superior performance of 

the presented control scheme were validated through both 

simulations and experiments. The experimental results show 

that the presented MFAC controller performs better under 

normal conditions and demonstrates excellent anti-disturbance 

ability and robustness against variable external loadings. 
Moreover, the MFAC controller shows excellent transferability 
in controlling different types of continuum manipulators. This 

current MFAC controller is mainly implemented based on 
kinematics, and it needs to be further improved by combining 

the dynamic model and multimodal sensing modalities to cope 

with high-speed variable disturbances. The dynamic model of 
the continuum manipulator can be derived based on Lagrange's 
equation and added to the online estimation algorithm of the 

PPD matrix. The fiber Bragg grating (FBG)-based sensing 

techniques [5], [33], [34] will be introduced into this control 

strategy to achieve shape and force feedback of the continuum 

manipulators. These sensing modalities can aid in parameter 
determination for the dynamics model. Furthermore, multi-

section continuum manipulators with more degrees of freedom 

will also be analyzed and controlled with the MFAC-based 

approach. 
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