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Recent work has confirmed that radially-polarised optical modes, specifically those endowed with
helical wave fronts can now be routinely generated in the laboratory. Here we show that such a
paraxial mode carries only an axial total optical angular momentum (AM) J̄z = ℓL0 where ℓ is
the winding number and L0 is a constant. This mode, however, is shown to have zero spin angular
momentum (SAM), so it is endowed only with orbital angular momentum (OAM) and no SAM. The
helicity is found to be proportional to ℓ, hence this kind of mode displays chirality. When applied
to a Laguerre-Gaussian (LG) mode our treatment leads to a total helicity equal to (ℓ/|ℓ|)Q, where
Q is the action constant. The factor (ℓ/|ℓ|) = ±1, depends on the sign, not the magnitude of ℓ and
so the result holds for any radially-polarised LG mode however large the magnitude of its winding
number ℓ is. The magnitude of the action constant Q and hence the helicity are diminished for all
such LG modes of large beam waist w0.

INTRODUCTION

A great deal of work has already been carried out on
twisted light and on exploring its interaction with mat-
ter [1–6], including atoms and molecules [7]. Cylindrical
twisted light modes come in a variety of forms, depend-
ing on how they are generated, but all the familiar forms
are commonly characterised by the ubiquitous azimuthal
phase factor eiℓϕ in the generic amplitude function, which
we denote by F . Here ℓ is the winding number and ϕ
is the azimuthal angle in cylindrical polar coordinates.
Wave polarisation is an additional, equally significant,
ingredient adding another layer of complexity to twisted
light. Familiar wave polarisation types include linear, cir-
cular and elliptical, together with superpositions of those
when dealing with interfering modes. Other forms of po-
larisation are generally referred to as vector modes [8]
and include, in particular, the radial and azimuthal po-
larisations and superpositions. Here we are concerned
with radially-polarised modes which, since their genera-
tion in laser oscillations [9, 10], have been of consider-
able interest and, especially so, more recently in the con-
text of twisted light [11]. A prominent characteristic of
radially-polarised light is that its beams focus into very
small waists compared with uniformly-polarised modes
[12–15]. It is well-known, however, that pure radially-
polarised optical vortex modes have no phase dependence
and so they do not have the usual helical wavefronts
which are characteristic of optical vortex modes. Recent
research, however, has succeeded in endowing the usual
none-rotating radially-polarised modes with phase prop-
erties eiℓΦ, rendering them like other vortex modes. It
is this type of radially-polarised modes we are concerned
with in this paper.

However, as far as we know, the optical properties of
such radially-polarised twisted light have not yet been
explored. In particular, there is need to determine the
energy-momentum, spin angular momentum, total an-
gular momentum and the helicity and chirality of such
modes. The purpose of this article is to set out the for-
malism needed to determine these properties. We focus
on the paraxial regime and aim to evaluate the properties
to leading order. The main ingredients of the formalism
emphasise the need to ensure that the electromagnetic
fields include the longitudinal components for both the
electric and magnetic fields and that Maxwell’s equations
are satisfied. This means that once the magnetic field for-
mat is determined, the electric field follows by application
of Maxwell’s curl equation and vice versa the magnetic
field follows from the electric field by application of the
second curl equation.
We aim to deal with monochromatic paraxial radially-

polarised vortex modes, mainly without specifying the
kind of vortex mode and consider the cycle-averaged
properties. These are the spin angular momentum, the
orbital angular momentum and the helicity and chirality.
We aim to show how the general results for an arbitrary
optical vortex lead to well-defined properties when the
type of vortex mode is specified and we evaluate the prop-
erties for the special case of a Laguerre-Gaussian optical
vortex mode.
We find that, typically any radially-polarised paraxial

twisted optical mode is endowed with a total angular mo-
mentum (AM) which is only ℓ quantised where ℓ is the
winding number and it always has zero spin angular mo-
mentum (SAM), so it just carries orbital angular momen-
tum (OAM) and no SAM. The optical helicity is shown
to be proportional to ℓ, confirming that radially-polarised
modes display chirality as it changes sign with the sign
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of the winding number ℓ. This is a manifestation of geo-
metrical chirality arising from the geometrical structure
of the beam [16]. Our general results are then applied to
the case of a Laguerre-Gaussian (LG) mode and we find
that the total helicity is equal to (ℓ/|ℓ|)Q, where Q is
the action constant, while the factor (ℓ/|ℓ|) = ±1 is the
Hopf index of the radially-polarise LG mode. We show
that this result is applicable to any radially-polarised LG
mode however large the magnitude of its winding num-
ber ℓ is. We also find that the helicity is diminished for
all such LG modes of large beam waist w0.

RADIALLY-POLARISED VORTEX FIELDS

Radially-polarised optical vortex modes are routinely
producible using commercially available devices in the
form of polarisation converters[17]; [18]. Such modes,
typically of the Laguerre-Gaussian type, have also been
created in the laboratory [19–21]. These reports indicate
that such modes are endowed with the phase function
eiℓϕ, with the magnitude of the winding number as large
as |ℓ| up to 200 [22]. One of the methods for generation
of a rotating radially-polarised mode involves passing a
linearly polarised optical vortex mode through a polari-
sation converter, which changes the polarisation from x̂

to a radial polarisation ρ̂. The radially-polarised mode
emerging from the polarisation converter keeps its vortex
amplitude function U of the linearly polarised mode inci-
dent on the converter but it acquires the polarisation ρ̂.
Another method involves creating the radially-polarised
mode first then passing this mode through a spiral phase
plate with a step that adds an integral number ℓ of 2π
per turn. This method too keeps the radial polarization
and adds an azimuthal phase.

In cylindrical coordinates the electric and magnetic
fields of a radially-polarised paraxial twisted light mode
created as described above are derivable from a vector
potential in the form

A(ρ, ϕ, z) = ρ̂Fℓ,p(ρ, ϕ)e
ikzz (1)

where carets denote unit vectors, kz is the axial wavevec-
tor with the light travelling along the +z axis and Fℓ,p

is the mode function which includes both the amplitude
and phase functions in terms of the plane-polar coordi-
nates (ρ, ϕ). The mode is labelled by the indices ℓ and p,
with ℓ the winding number and p could be an azimuthal
number, as in the case of Laguerre-Gaussian (LG) optical
vortex modes, or could be redundant, as in the case of op-
tical Bessel modes, but the treatment is not restricted to
LG or Bessel modes and is applicable in general for other
radially-polarised paraxial optical vortex modes. In what
follows, it is convenient to refer to ρ̂Fℓ,p as just ρ̂F and
only revert to including the subscript ℓ, p when the need
arises.

Using the standard form of the curl of a vector in
cylindrical coordinates we obtain for the magnetic field
B(ρ, ϕ, z) = ∇ × A(ρ, ϕ, z). With the vector potential
as defined for the radially-polarised mode in Eq.(1) we
obtain the paraxial magnetic field to leading order

B(ρ, ϕ, z) = ikzφ̂Feikzz − ẑ
1

ρ

∂F
∂ϕ

eikzz (2)

The electric field follows from the magnetic field using
Maxwell’s equation

∇×B =
1

c2
∂E

∂t
(3)

We obtain, to the same leading order as for the magnetic
field

E(ρ, ϕ, z) = ickzρ̂Feikzz − ẑc
1

ρ

∂(ρF)

∂ρ
eikzz (4)

The general paraxial radially-polarised vector modes we
are concerned with here have the following mode function

Fℓ,p(ρ, ϕ, z) = F̃ℓ,p(ρ)e
iℓΦeikzz (5)

where we have separated the phase dependence, so now
F̃ℓ,p is a radial amplitude function (as it depends on only
the radial coordinate ρ). The phase function eiℓΦ con-
tains the usual azimuthal dependence as well as the Gouy
and curvature phase functions. We have

Φ = ℓϕ+ΘGouy +Θcurv, (6)

Since we are dealing with optical vortex modes the index
ℓ is the familiar winding number, while m could be a
radial number as for Laguerre-Gaussian modes in which
case we have for the Gouy and curvature phase functions

ΘGouy = −(2p+|l|+1) tan−1(z/zR); Θcurv =
kzρ

2z

2(z2 + z2R)
.

(7)
We focus on paraxial modes for which the Gouy and cur-
vature phases are negligible, or vanishing, as on the focal
plane z = 0 and for the case of large Rayleigh range zR
in which case we only have the phase angle ℓϕ in Eq.(6).
We shall first develop the analysis for a general F̃ , which
could be appropriate for any optical vortex.

CYCLE-AVERAGED OPTICAL PROPERTIES

The optical vortex mode properties of significance
which we shall be concerned with here are the three cycle-
averaged properties, namely the optical spin angular mo-
mentum (SAM) density s̄, the angular momentum (AM)
density j̄ and the helicity density η̄. These cycle-averaged
densities are generally defined as follows [1, 5, 23–27]

s̄ =
1

4ω
ℑ
{

[ϵ0E
∗ ×E] +

1

µ0

[B∗ ×B]

}

;

= s̄E + s̄B (SAM density) (8)



3

j̄ = r× π̄; (AM density) (9)

η̄(r) =
c

ω2
χ̄ = −ϵ0c

2ω
ℑ[E∗ ·B]

(Helicity/ Chirality density) (10)

where in the above π̄ = 1

c2 w̄ is the linear momentum den-
sity with w̄ = 1

2µ0

ℜ[E∗×B] the energy density. The sym-

bols ℜ[...] and ℑ[...] stand for real and imaginary parts of
[...] and the superscript * in E

∗ stands for the complex
conjugate of E. As stated above we deal in turn with
the evaluations of above densities specifically in relation
to the radially-polarised optical vortex modes. The final

tasks involve evaluating the total (integrated) properties,
namely total helicity, total SAM and total angular mo-
mentum with each evaluated as the space integral of the
density variations over the x-y plane.

Evaluation of SAM

We begin with the evaluation of the spin angular mo-
mentum density. We have for the electric field part s̄E

s̄E =
ϵ0
4ω

ℑ[E∗ ×E] (11)

Substituting for the electric fields , we have

s̄E =
ϵ0
4ω

ℑ
(

−ickzρ̂F∗e−ikzz − ẑc

{F∗

ρ
+

[

∂F
∂ρ

]∗}

e−ikzz

)

×
(

ickzρ̂Feikzz − ẑc

{F
ρ

+
∂F
∂ρ

}

eikzz

)

(12)

= −c2kϵ0
2ω

(

|F̃ |2
ρ

+ F̃∗F̃ ′

)

φ̂

= −c2kϵ0
2ω

(

|F̃ |2
ρ

+ F̃∗F̃ ′

)

(− sinϕx̂+ cosϕŷ) (13)

Thus we have found that the electric field part of the
SAM density of a radially-polarised optical vortex mode
is oriented azimuthally, so has both x− and y− compo-

nents which vary with ϕ.
Consider next the magnetic field contribution s̄B =
1

4ωµ0

ℑ[B∗ ×B]. We have

s̄B =
1

4µ0ω
ℑ
{(

−ikzφ̂F∗e−ikzz − ẑ
1

ρ

[

∂F
∂ϕ

]∗

e−ikzz

)

×
(

ikzφ̂Feikzz − ẑ
1

ρ

[

∂F
∂ϕ

]

eikzz

)}

= ℑ
(

ikz
4µ0ωρ

)[

F∗

(

∂F
∂ϕ

)

+ F
(

∂F
∂ϕ

)∗]

φ̂× ẑ = 0 (14)

The last equality follows once we evaluate the angular
derivatives. Thus the magnetic field contribution to the
SAM density is zero and we have only the electric field
contribution s̄E , given by Eq.(13).
The total (space-integrated) SAM vanishes identically

S̄ =

∫ 2π

0

dϕ

∫ ∞

0

ρ dρ [s̄E + s̄B ] = 0; (15)

where each of the x− and y− components of the SAM
density yields a zero result by virtue of the angular inte-
gration.

Evaluation of angular momentum

Next we evaluate the cycle-averaged angular momen-
tum density of the radially-polarised vortex which is
given by

j̄ = r× π̄ =
1

2c2µ0

[r× (ℜ[E∗ ×B)] (16)

Consider the cross product in Eq.(16) which we evaluate
as follows
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E
∗ ×B =

(

−ickzρ̂F∗e−ikzz − ẑc

{F∗

ρ
+

[

∂F
∂ρ

]∗}

e−ikzz

)

×
(

ikzφ̂Feikzz − eikzzẑ
∂F
ρ∂ϕ

)

= ickz

(

|F̃ |2
ρ

+ F̃F̃ ′

)

ρ̂+

{

ℓckz
|F̃ |2
ρ

}

φ̂+ k2zc|F̃ |2ẑ (17)

Therefore on taking the real part, we have

ℜ[E∗ ×B] = kzcℓ
|F̃ |2
ρ

φ̂+ k2zc|F̃ |2ẑ (18)

The angular momentum density follows

j̄ =
1

2c2µ0

r×ℜ[E∗ ×B]

=

(

kz
2cµ0

)

{ρρ̂} ×
{

ℓ
|F̃ |2
ρ

φ̂+ kz|F̃ |2ẑ
}

=

(

kz
2cµ0

)

{

ℓ|F̃ |2ẑ − kz|F̃ |2ρφ̂
}

(19)

Since we have φ̂ = −x̂ sinϕ+ŷ cosϕ the angular momen-
tum density vector has all three Cartesian components.
However, the transverse (x− and y−) components are
ϕ− dependent and, as we point out shortly, will result in
zero on angular integration.
Once again we consider the total angular momentum

as the space integral of the angular momentum density.

J̄ =

∫ 2π

0

dϕ

∫ ∞

0

ρ dρ j̄ (20)

The x− and y− components give zero each due to van-
ishing angular integration. We are left only with the
z-component, so we have

J̄ = ẑℓ

(

kzπ

cµ0

)

IP (21)

where the integral IP is related to the applied power P of
the mode, evaluated as the space integral over the beam
cross-section of the z-component of the Poynting vector.
We have

P =
1

2µ0

∫ 2π

0

dϕ

∫ ∞

0

|(E∗ ×B)z|ρdρ (22)

with

(E∗ ×B)z = ck2z |F̃ |2 (23)

We can then write for IP

IP =

∫ ∞

0

|F̃ |2ρ dρ (24)

Thus we obtain for the power P

P =

(

πck2z
µ0

)

IP (25)

Substituting for IP , we have for the total angular mo-
mentum per unit length

J̄ = ℓL0ẑ (26)

where L0 has the dimensions of angular momentum per
unit length and is given by

L0 =

( P
kzc2

)

(27)

Thus we find that J̄ is axial and proportional to ℓ
which confirms that the angular momentum carried by
the radially-polarised LG mode is purely an orbital an-
gular momentum. Note that we have determined the
angular momentum without specifying the type of mode.
The result is therefore general and it agrees with the re-
sult for linearly-polarised Laguerre-Gaussian light [28].
There is no contribution to be associated with spin an-
gular momentum, which we have already confirmed to be
zero.

Evaluation of helicity and chirality

In optical physics, the properties of helicity and chiral-
ity are such that two optical modes which differ only in
the sign of the winding number ℓ are distinguishable. In
that case, one beam is a phase-inverted mirror image of
the other beam. Such kind of optical mode is then said to
exhibit chirality which has been a subject of considerable
investigation [27, 29–34]. More recent investigations have
spurred interest in chirality which include the references
[16, 23, 35–39].
The cycle averages of helicity density η̄ and chirality

density χ̄ are proportional to each other, as in Eq.(10).
It is for this reason that only the helicity is discussed. In
general when a light field is shown to possess helicity, it
also has a corresponding chirality and we say the light is
chiral, which here means if there is a change in the sign
of the winding number the signs of both the helicity and
the chirality change.
In their recent work, Nechayev et al [16] suggested

that there exist two kinds of chirality. The first is non-
geometrical which includes optical chirality due to ellip-
tical polarisation and the second, which is termed the
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Kelvin chirality, depends on the geometrical structure
of the mode. This work followed the experiment by
Wozniak et al [38] in which linearly-polarised Laguerre-
Gaussian modes were shown to display chirality. Here we
seek to evaluate the chirality density and its space inte-
gral and aim to find out whether the chirality of radially-
polarised optical modes can be classed as Kelvin chirality,

or is it the usual optical non-geometrical chirality.
We begin by considering helicity, rather than chirality,

as the two differ by a proportionality factor [40]. The
cycle-averaged helicity density of the radially-polarised
mode is as defined generally in Eq.(10). Substituting
for the fields using Eqs.(2) and (4), we have for the dot
product

[E∗ ·B] =

{

−ickzρ̂F∗e−ikzz − ẑc
1

ρ

(

∂(ρF)

∂ρ

)∗

e−ikzz

}

·
{

ikzφ̂Feikzz − ẑ
1

ρ

∂F
∂ϕ

eikzz

}

= c
1

ρ2

(

∂(ρF)

∂ρ

)∗(
∂F
∂ϕ

)

=
icℓ

ρ2

(

∂(ρF̃)

∂ρ

)∗

F̃ = iℓc

[

1

ρ
F̃∗

′F̃ +
1

ρ2
|F̃ |2

]

(28)

where F̃ ′ = dF̃/dρ. Noting that F̃ is real, we have for the
helicity density of the radially-polarised general vortex
mode

η̄(r) = −ℓ
ϵ0c

2

2ω

[

1

ρ
F̃∗

′F̃ +
1

ρ2
|F̃ |2

]

(29)

This result is applicable to any paraxial radially-polarised
optical vortex and, if required for a particular case, all we
need then is to specify the amplitude function F̃ . Note
that the helicity density is proportional to ℓ and so in
addition to changing with the magnitude of ℓ, it also
changes with the sign of ℓ, hence exhibiting the chirality
feature that is common to all optical vortex modes.

Integrated Helicity

The total integral of the helicity density over the x− y
plane is

C̄ℓ,p = −ℓ
πϵ0c

2

ω

∫ ∞

0

ρdρ

[

1

ρ
F̃ ′

ℓ,pF̃ℓ,p +
1

ρ2
|F̃ℓ,p|2

]

= I1 + I2 (30)

We now show that I1 is identically zero for all F̃ . We
have

I1 = −ℓ
ϵ0πc

2

2ω

∫ ∞

0

(

d

dρ
F̃2

)

dρ

= −ℓ
ϵ0πc

2

2ω

[

F̃2(ρ)
]∞

0

= 0 (31)

since the F̃(0) = 0 = F̃(∞). We are thus left with the
second term so that for any F̃ the helicity per unit length
is given by

C̄ℓ,p = I2 = −ℓ
πϵ0c

2

ω

∫ ∞

0

ρdρ

[

1

ρ2
|F̃ℓ,p|2

]

(32)

This is the general expression for the total helicity per
unit length of a mode of any paraxial twisted light
mode that is radially-polarised. Although we are able
to make definitive statements about the total SAM and
total angular momentum for all forms of F character-
ising radially-polarised twisted light, we are not able to
proceed further to evaluate the total helicity in Eq.(32)
without specific knowledge about the form of F̃ . In the
next section we focus on the form of F̃ appropriate for
a Laguerre-Gaussian optical vortex and aim to evaluate
the helicity density given by Eq.(29) and the total helicity
given by Eq.(32).

APPLICATIONS TO LAGUERRE-GAUSSIAN

MODES

A paraxial Laguerre-Gaussian mode of winding num-
ber ℓ, radial number p and waist w0 has an amplitude
function given by

F̃ℓ,p(ρ) = E0
√

p!

(p+ |ℓ|)!e
− ρ

2

w
2
0

(√
2ρ

w0

)|ℓ|

L|ℓ|
p

(

2ρ2

w2
0

)

(33)
where E0 is a normalisation factor and we have identified
m as the radial number p in LG modes. The factor E0 is
determined in terms of the applied power P of the mode
which we have already evaluated above in terms of the
integral IP . For a Laguerre-Gaussian mode the integral
in (24) is standard and gives

IP =

∫ ∞

0

|F̃ |2ρ dρ =
1

4
E2
0w

2
0 (34)
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and so we can now determine the overall factor E0 for the
Laguerre-Gaussian beam. We have

E2
0 =

4P
πϵ0c3k2zw

2
0

(35)

Consider first the variations of the helicity density for
representative modes, namely ℓ = 1, 2. The general
expression for the helicity density Eq.(29) is circularly-
symmetric as it is a function only of the radial coordinate
ρ. For a LG mode, we simply substitute for F̃ given by
Eq.(33) and we obtain the variation of the helicity den-
sity, as shown in Fig. 1 for ℓ = 1 and Fig. 2 for ℓ = 2.
The plots in each case show the contributions from the
first term, the second term and their sum. Confirmation
of the vanishing integral of the first term are shown in
Figs. 3 for ℓ = 1 and Fig.4 for ℓ = 2 where the areas un-
der the curves corresponding to the areas enclosed by the
integrands due to the first term are zero for both ℓ = 1
and ℓ = 2. We have confirmed that the variations shown
for the case ℓ = 2 define the trend for ℓ > 2

Note, in particular, that the variations of the helicity
density for the case ℓ = 1, shown in Fig. 1 differ signif-
icantly from those of ℓ ≥ 2 in Fig.2, primarily in that
the helicity density does not vanish at the core where
ρ = 0 for ℓ = 1, while it does vanish at ρ = 0 for ℓ ≥ 2.
This behaviour can be explained by inspecting the gen-
eral form of the helicity density Eq.(29). When applied to
the Laguerre-Gaussian F for ℓ = 1, we have from Eq.(33)

F̃ℓ=1 ∝ ρe−ρ2/w2

0L1
p

(

2ρ2

w2
0

)

(36)

Hence

|F̃ℓ=1|2 ∝ ρ2e−2ρ2/w2

0

[

L1
p

(

2ρ2

w2
0

)]2

(37)

Also, since F ′ does not vanish at ρ = 0 we can write

[F̃ ′F̃ ]ℓ=1 ∝ ρe−ρ2/w2

0L1
p

(

2ρ2

w2
0

)

F̃ ′
ℓ=1 (38)

When substituted in the helicity density expression
Eq.(29) we see that the 1/ρ in the first term cancels with
the factor ρ in the numerator. Similarly the factor 1/ρ2

in the second term cancels the factor ρ2 in the numerator
of the second term. The overall variation amounts to a
non zero value of the helicity at ρ = 0 only in the case
ℓ = 1. This variation contrasts with the case ℓ ≥ 2 in
which the numerators in the two terms have higher pow-
ers of ρ, always guaranteeing that the helicity density
vanishes at ρ = 0.

It is straightforward to proceed to evaluate the helic-
ity per unit length for F̃ corresponding to a Laguerre-
Gaussian mode. Using the integration variable x =

FIG. 1: Variation with the radial coordinate ρ (in units
of the beam waist w0) of the helicity density due to LG
modes for which (a) ℓ = 1. The dashed red curve shows
the contribution of the first term in Eq.(29) involving
the derivative F̃ ′. The blue dotted curve represents the
contribution of the second term and the solid black

curve is the sum. Note in particular that for ℓ = 1 the
helicity density does not vanish at the core ρ = 0

.

FIG. 2: The case of LG mode with ℓ = 2. Variation
with the radial coordinate ρ (in units of the beam waist
w0) of the helicity density due to LG modes for which
(a) ℓ = 2. The dashed red curve shows the contribution
of the first term in Eq.(29) involving the derivative F̃ ′.
The blue dotted curve represents the contribution of the
second term and the solid black curve is the sum. Note
in particular that for ℓ = 2 the helicity density vanishes

at the core ρ = 0
.

2ρ2/w2
0 we have

C̄ℓ,p = −ℓ
πϵ0c

2

ω
E2
0

p!

2(p+ |ℓ|)!

∫ ∞

0

x|ℓ|−1e−x[L|ℓ|
p (x)]2dx

= −ℓ
πϵ0c

2

ω
E2
0

1

2|ℓ| (39)

The details of the evaluation of the integral in Eq.(39)
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FIG. 3: The case of LG mode with ℓ = 1. Variations of
the helicity density integrand terms in I1 and I2,

(defined in Eq.(30)) with the radial coordinate (in units
of w0). The area enclosed by each curve corresponds to
the contribution of the term to the total (integrated)
helicity. The area enclosed by the dashed red curve is

verified to be zero, consistent with Eq.(31).

FIG. 4: The case of LG mode with ℓ = 2. Variations of
the helicity density integrand terms in I1 and I2,

(defined in Eq.(30)) with the radial coordinate (in units
of w0). The area enclosed by each curve corresponds to
the contribution of the term to the total (integrated)
helicity. The area enclosed by the dashed red curve is

verified to be zero, consistent with Eq.(31).

are shown in Appendix A. We now have

C̄ℓ,p = −E2
0πϵ0c

2

2ω

ℓ

|ℓ|

= −
(

ℓ

|ℓ|

)( P
kzc2

){

2

k2zw
2
0

}

= ±L0

{

2

k2zw
2
0

}

(40)

where L0 is the constant angular momentum per unit
length as defined in Eq.(27) for a fixed power P and we
have substituted for E0 using Eq.(35). Note that this
result is independent of p and clearly depends only on
the sign (not the magnitude) of ℓ. We know that the
mode is not circularly polarised, but we have found that

the total helicity is similar to, but not the same as, that
of circular polarisation, characterised by the pre-factor
σ = ±1. It is easy to check that the helicity has the di-
mensions of angular momentum per unit length, but the
factor 1/k2zw

2
0 is small for w2

0 >> 1/k2z (which amounts
to w0 >> λ̄ where λ̄ = λ/2π is a reduced wavelength).
Thus the helicity is significant in the case of LG beams
only for small beam waits w0 and diminishes for progres-
sively larger w0.

COMMENTS AND CONCLUSIONS

Our primary aim in this paper involved the derivation
of the optical properties of paraxial radially-polarised
twisted light modes, namely the spin orbital angular mo-
mentum (SAM), the total angular momentum (which is
for mally the sum of spin and orbital angular momentum
for paraxial light), and their helicity and chirality. We
set out to keep the type of mode unspecified and arrived
at the results for the angular momentum and SAM, but
for the helicity we are able to arrive at general results
and applied them to the Laguerre-Gaussian modes as a
specific case. Our treatment is based on general expres-
sions describing the radially-polarised electric and mag-
netic fields which incorporate the longitudinal compo-
nent and which were subject to verification of Maxwell’s
consistency conditions, namely that the electric field in
Cartesian coordinates follows from a derived expression
of the magnetic field using the Maxwell curl equation,
also in Cartesian coordinates, and the magnetic field fol-
lows from the electric field using the other Maxwell curl
equation. The final Cartesian expressions are then pre-
sented in cylindrical polar coordinates. We have checked
that the formalism presented is verifiable to leading order
in the paraxial approximation.
We have found that in general, the radially-polarised

twisted light modes exhibit only cycle-averaged trans-
verse SAM components, which arise entirely from the
electric field part, are ϕ-dependent, while the magnetic
field contribution to the SAM density is shown to be
identically zero. The space integral of the SAM density
leading to the total SAM is therefore zero. Thus we have
confirmed that in general such radially-polarised modes
have no SAM. Next we evaluated the angular momentum,
which, for paraxial modes, is always the sum of the spin
angular momentum and the orbital angular momentum
and we have found that the angular momentum density
is proportional to the winding number ℓ, indicating that
this contribution of the total angular momentum density
is purely orbital, but there are also transverse density
components which, like the SAM density case, depend
on ϕ and so lead to zero on spatial integration. The inte-
grated total angular momentum is also proportional to ℓ
and so purely orbital in origin. This result is consistent
with the SAM result which was evaluated independently,
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that the mode has no SAM.
The helicity density evaluations could also be car-

ried out for a general radially-polarised optical vortex
mode characterised by an unspecified F̃ with the den-
sity and the general results for the helicity density and
the total (integrated) helicity we arrived at are shown
in Eq.(29) for the helicity density and in Eq.(32) for the
integrated helicity. We proceeded to explore the helic-
ity density variations for the spacial cases of Laguerre-
Gaussian modes and pointed out the special behaviour
for ℓ = 1 in that the helicity density does not vanish at
ℓ = 1 at the core ρ = 0, while it does vanish for all ℓ ≥ 2.
We explained this behaviour by inspecting the ρ varia-
tions of the two terms in the helicity density, confirming
that for ℓ = 1 the helicity density has overall dependence
ρ0 and so the helicity density does not vanish at ρ = 0
for ℓ = 1.
Finally, we evaluated the total helicity of the radially-

polarised Laguerre-Gaussian optical vortex and found it
equal to (ℓ/|ℓ|)Q = NQ, where N = ±1 is interpreted
as a Hopf index and Q is the action constant. The ±1
is reminiscent of σ = ±1 for circular polarisation. This
result holds for any radially-polarised LG mode however
large the magnitude of its winding number ℓ is, but the
action constant Q and consequently the helicity are sig-
nificant only for small beam waist w0 and diminish for
all such LG modes of large w0. Since this type of helic-
ity (and chirality) originate from the spatial structure of
the radially-polarised mode, they can be categorised as
of the Kelvin type [16].
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APPENDIX A

We evaluate the integral in Eq.(39) which is

I =

∫ ∞

0

x|ℓ|−1e−x[L|ℓ|
p (x)]2dx (41)

Consider the evaluation of following derivative of the function x|ℓ|e−x[L
|ℓ|
p (x)]2 with respect to x

d

dx
{x|ℓ|e−x[L|ℓ|

p (x)]2} = |ℓ|x|ℓ|−1e−x[L|ℓ|
p (x)]2 − x|ℓ|e−x[L|ℓ|

p (x)]2 − 2x|ℓ|e−xL|ℓ|
p (x)L

|ℓ|+1

p−1 (x) (42)

So we may now write

I =

∫ ∞

0

x|ℓ|−1e−x[L|ℓ|
p (x)]2dx

=
1

|ℓ|

∫ ∞

0

(

d

dx
{x|ℓ|e−x[L|ℓ|

p (x)]2}+ x|ℓ|e−x[L|ℓ|
p (x)]2 + 2x|ℓ|e−xL|ℓ|

p (x)L
|ℓ|+1

p−1 (x)

)

dx

=
1

|ℓ|

(

[x|ℓ|e−x(L|ℓ|
p (x))2]∞0 +

∫ ∞

0

x|ℓ|e−x[L|ℓ|
p (x)]2dx+ 2

∫ ∞

0

x|ℓ|e−xL|ℓ|
p (x)L

|ℓ+1|
p−1 (x)dx

)

(43)

where we have integrated by parts in the derivative term.
The first term in the last equality is zero on applying the
integration limits, while the third term is the standard or-
thogonality integral of the associated Laguerre functions
and so vanishes as well. We are thus left with

I =
1

|ℓ|

∫ ∞

0

x|ℓ|e−x[L|ℓ|
p (x)]2dx =

1

|ℓ|
(p+ |ℓ|)!

p!
(44)
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