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Abstract

Palaeo-ice sheets leave behind a rich database regarding their past behaviour,

recorded in the landscape in the form of glacial geomorphology. The most numerous

landform created by these ice sheets are subglacial lineations, which generate

snapshots of the direction of ice flow at fixed (yet typically unknown) points in time.

Despite their relative density within the landform record, the information provided

by subglacial lineations is currently underutilised in tests of numerical ice sheet

models. To some extent, this is a consequence of ongoing debate regarding lineation

formation, but predominantly, it reflects the lack of rigorous model-data comparison

techniques that would enable lineation information to be properly integrated. Here,

we present the Likelihood of Accordant Lineations Analysis (LALA) tool. LALA pro-

vides a statistically rigorous measure of the log-likelihood of a supplied ice sheet sim-

ulation through comparison of simulation output with both the location and direction

of observed lineations. Given an ensemble of ice sheet simulations, LALA provides a

formal, and statistically underpinned, quantitative assessment of each simulation’s

quality-of-fit to mapped lineations. This enables a comparison of each simulation’s

relative plausibility, including identification of the most likely ice sheet simulations

amongst the ensemble. This is achieved by modelling lineation formation as a marked

Poisson point process and comparison of observed to modelled flow directions using

the von Mises distribution. LALA is flexible—users can adapt parameters to account

for differing assumptions regarding lineation formation, and for variations in the level

of precision required for differing model-data comparison experiments. We provide

guidelines and rationale for assigning parameter values, including an assessment of

the variability between users when mapping lineations. Finally, we demonstrate the

utility of LALA through application to an ensemble of simulations of the last British-

Irish Ice Sheet. This comparison highlights the benefits of LALA over previous tools

and demonstrates some of the considerations of experimental design required when

identifying the fit between ice sheet model simulations and the landform record.
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1 | INTRODUCTION

The information left behind by palaeo-ice sheets provides a long-term

record of ice sheet behaviour (Clark et al., 2018), which, if unlocked,

has great potential to be used to improve the predictive ice sheet

models essential to forecasting the fate of ice sheets in our warming

world (e.g., Edwards et al., 2021; Goelzer et al., 2013; Lipscomb et al.,

2021; Nowicki et al., 2020), and our reconstructions of past ice sheets

(e.g., Andrews, 1982; Stokes et al., 2015). Quantitative comparisons

between numerical model simulations and palaeo-ice sheet evidence

are becoming more commonplace (e.g., Ely et al., 2021; Gandy et al.,

2019, 2021; Tarasov et al., 2012), replacing qualitative descriptions of

fit to evidence (e.g., Boulton & Hagdorn, 2006; Siegert et al., 2001).

This shift is prompted by a need to quantify the degree-of-fit between

models and evidence to assess output uncertainty and is facilitated by

an increase in computing power enabling sufficient resolution within

simulations for comparison to take place. However, the use of quanti-

tative model-data comparison tools in palaeo-ice sheet modelling

experiments are far from routine. This is at least partially a conse-

quence of the underdevelopment of model-data comparison tools.

The most abundant landform evidence left behind by palaeo-ice

sheets are subglacial lineations (henceforth lineations). Often thought

of as the separate categories of drumlins (e.g., Menzies, 1984), crag

and tails (e.g., Dowdeswell et al., 2016), and mega-scale glacial linea-

tions (MSGL) (Clark, 1993), lineations can be broadly defined as

streamlined hills, formed at the ice–bed interface. Lineations are typi-

cally on the order of 100–1000 m in length, though they can reach

several kilometres in the case of MSGL (Spagnolo et al., 2014). The

origin of subglacial lineations, especially drumlins, has garnered much

scientific debate and is an active field of research (see, e.g., Ely et al.,

2022). However, general agreement can be found amongst geomor-

phologists on two factors: (i) Lineations are streamlined in the direc-

tion of ice flow, and thus represent former ice flow direction at a

point in time during the lifecycle of an ice sheet; and (ii) lineations

form under warm-based conditions, conducive to the transport of

subglacial material. Two further observations help glacial geomorphol-

ogists reconstruct the past behaviour of ice sheets. First, lineations

typically occur in fields of regular arrangement with similar orientation

and morphology (Clark et al., 2018), although isolated examples do

also exist (Evans et al., 2015). As such, lineations can be grouped into

flowsets, larger regions of a palaeo-ice sheet bed thought to represent

an ice sheet flow event (Clark, 1997). Second, sets of lineations can

be observed to cross-cut each other, with younger forms sup-

erimposed upon those formed during older flow events (Clark, 1993).

Such cross-cutting relationships enable a sequence of ice flow orien-

tations to be deciphered. On this basis, the interpretation of lineations

has provided much insight into the operation of palaeo-ice sheets

(e.g., Dyke, 2008; Greenwood & Clark, 2009a; Hughes et al., 2014;

Stokes et al.2009).

Despite being a pervasive and information-rich source of data on

palaeo-ice sheet behaviour, lineations are underutilised in palaeo-ice

sheet modelling experiments. To date, we are not aware of any statis-

tically rigorous approach for incorporating observed lineations into

model-data comparisons. A first attempt at building a tool for compar-

ing simulated ice flow directions and those derived from observations

of lineations has however been developed by Li et al. (2007). The

Automated Flow Direction Analysis (AFDA) tool provides a measure

of the degree-of-fit between simulated and observed flow directions

throughout the duration of an ice sheet simulation (Li et al., 2007).

Two metrics are calculated from gridded datasets of simulated and

observed flow directions. The resultant mean difference aims to pro-

vide a measure of the overall directional offset between simulation

and data, whilst residual variance is used as a measure of the level of

agreement between the shape of the two flows. Ely et al. (2021) sub-

sequently developed a workflow for assessing whether cross-cutting

relationships were replicated, whereby model-data agreement was

declared if a simulation was able to replicate flow directions in the

correct sequence.

Despite its existence, uptake of AFDA has been low. As of

February 2023, a Google Scholar search indicated that Li et al. (2007)

had been actively used in six studies that use the tool within ice sheet

model experiments. This may reflect the tool being ahead of its time—

ice sheet simulations have only recently been able to simulate the

detailed flow fields recorded in lineations and written in the now

largely defunct, GIS-based language. It may also be due to certain

weaknesses of AFDA, which we aim to address in this work. The lack

of a comprehensive and formal statistical underpinning to AFDA

makes decisions about the degree-of-fit between an ice sheet simula-

tion and observed lineation data highly subjective—the declaration of

a model-data match requires user-defined thresholds in resultant

mean difference and residual variance (Ely et al., 2021). This hinders

comparison between simulations. Furthermore, there is a growing

realisation within ice sheet modelling that emulators, statistical surro-

gates of numerical models, may be useful for cutting computational

cost and exploring unsampled parameter space (e.g., Edwards et al.,

2021; Tarasov et al., 2012). It may be desirable in the future to emu-

late the output of a model-data comparison tool, to identify the

parameter-space most likely to replicate flow directions recorded in

lineations. The binary fit/no-fit metric of AFDA is unsuitable for emu-

lation which requires a more refined, continuous, and rigorous mea-

sure of fit.

In this paper, we present a new, statistically rigorous, tool for

comparison of ice sheet simulations with observed flowsets. Our Like-

lihood of Accordant Lineations Analysis (LALA) tool provides a quanti-

tative, and continuous, measure of the likelihood of the lineations

given an ice sheet simulation. LALA has a formal, and robust, method-

ological underpinning. We develop a probabilistic model linking an ice

sheet simulation to the creation of lineations using a marked Poisson

point process (Kingman, 1993). In addition to comparing observed

flow direction with the ice sheet simulation, LALA also incorporates

the number and locations of the observed flowsets. In doing so, key

information regarding both the presence and absence of lineation evi-

dence in certain locations is incorporated into the model-data compar-

ison. The LALA tool is designed to provide an objective assessment of

model-data fit yet is also highly adaptable to allow incorporation of

expert knowledge regarding lineation formation.

Our paper is laid out as follows. In Section 3, we provide an intui-

tive explanation of the underpinning probabilistic model that we use

to link an ice sheet simulation to observed flowsets. This probabilistic

model is constructed from three simple assumptions. We also

describe how our LALA tool follows directly from these initial assump-

tions. After this key mathematical framework is demonstrated, a

worked toy example is presented in Section 3 to highlight the premise

behind the tool in a less-mathematically taxing manner. A critical
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parameter when considering the model-data comparison is the uncer-

tainty in the ice flow orientation derived from interpreting lineations.

Section 3 presents results from an experiment designed to quantify

this uncertainty. Finally, in Section 3, we demonstrate the utility of

the tool by applying it to a small ensemble of simulations of the last

British-Irish Ice Sheet (BIIS).

2 | CONSTRUCTION OF THE LALA TOOL

Our tool, LALA, is provided as a Python script (v3.0+) along with a

tutorial that works through synthetic examples of observed lineation

locations and directions, and ice sheet model output (see Appendix A

and Data Availability Statement). It is built to handle netCDF files

(a common format for ice sheet model output) of ice sheet model sim-

ulations and observations of lineation formation. An overview of the

statistical underpinning of LALA is provided below, with a fuller

description provided in Appendix A. In brief, LALA considers that line-

ations formed under specific subglacial conditions, and aligned with

the ice-flow direction at the time of their formation. The likelihood

that the observed lineations were formed by a prescribed ice sheet

simulation is calculated, providing an assessment of that specific simu-

lation’s quality-of-fit. Typically, we expect our model will be used to

compare different simulations within a large ensemble, perhaps rep-

resenting a range of hypothetical forcings and ice-sheet parameter

selections, to identify those simulations that are most likely and hence

narrow down the plausible range of forcings and parameters. The out-

put from LALA can however also be considered on a per-flowset

basis, as demonstrated later (Section 3). The relative timings of linea-

tions can be inferred from the observational record and are a valuable

addition to learning about the timings of past flow directions of

palaeo-ice sheets. Accounting for these so-called cross-cuttings is cur-

rently beyond the scope of LALA, but would be an interesting exten-

sion to explore. In this paper, we only consider a point in the centre of

each flowset, which may not represent flow across complex flowsets

with curving directions. Equally, users of LALA could score each model

cell a flowset covers and check for coherent temporal matches.

2.1 | Scoring concept—A simple probabilistic

model for flowset formation likelihood

LALA is built upon a rigorous statistical foundation: A simple probabi-

listic model, based upon three initial assumptions regarding the forma-

tion of lineations, that provides a link between an ice sheet and its

resultant lineations. Having constructed this probabilistic model, the

LALA tool and the score for any ice sheet simulation follows directly.

We suppose that we have observations of lineations, gridded to the

scale of the ice sheet model output we wish to compare, which corre-

spond to n flowsets across our overall study region X , a complete or

partial palaeo-ice sheet bed. These flowsets are observed at locations

x1,…,xn and are accompanied by estimates of their inferred directions

θ1 ,…,θn. Given these observed flowsets, providing paired ðxi,θiÞ
n
i¼1

information, we aim to score any hypothetical/simulated ice sheet M

to assess its level of agreement with the observations. This score is

obtained by evaluating the log-likelihood of the ice sheet under con-

sideration, lðMjðxi,θiÞ
n
i¼1Þ.

We will denote an ice sheet at time t and location x as Mðx,tÞ.

This Mðx,tÞ might consist of many variables, for example, ice

thickness, basal and englacial velocity (speed and direction), thermal

regime, and mass-balance. Given an ice sheet Mðx,tÞ, over locations

x�X and times t� T , we assume flowsets are created according to

the following three basic principles:

1. Ice cover is required for lineation formation. At any time t when a

location x is covered by ice, there is a small probability that linea-

tions could form in that location. This probability of forming linea-

tions may depend upon the location, the time, and the properties

of the ice sheet at that time. We denote the probability of lineation

formation at location x and time t as λðx,t,Mðx,tÞÞ. This will criti-

cally depend upon the properties of the ice sheet under consider-

ation and the location x.

2. The formation of lineations are completely independent from one

another in both space and time (conditional on the value of λ). This

assumption likely holds at the scale of an ice sheet that we are

concerned with here, though we note that at the scale of neigh-

bouring lineations, interactions between lineations may occur (Ely

et al., 2018).

3. Lineations align with ice flow direction. Intuitively, the lineations

will align (at least approximately) with the ice flow at the point

they are formed. However, from lineation morphology alone, it

can be difficult to ascertain the upstream and downstream ends

of a lineation (Spagnolo et al., 2010, 2011), especially in regions

that experienced a complex ice flow history. Thus, we allow for

orientations to be exactly opposite of those prescribed by the

user (i.e., the lineations could record ice flow in the exact opposite

direction). This assumption could be relaxed in future versions of

LALA, to account for regions where ice flow direction is well

known.

Under these initial assumptions, the flowsets form what is known

as a marked, inhomogeneous, Poisson point process

(Kingman, 1993)—with the mark being the direction of the flowsets. A

Poisson point process is used to model points, considered to be inde-

pendent, randomly over a set space with a specified rate. A marked

Poisson point process is the same idea, with the added benefit of

adding additional information to each point, in this case: direction.

Here, lineations and associated orientations are the points, and the

model domain is the space we are considering. The associated rate

that is attached to this Poisson process is calculated from the

expected number of lineations in the domain over time divided by the

number of time-integrated plausible areas for lineation formation, and

the inhomogeneous property allows for the rate to vary with respect

to space and time.

Given our set of n observed flowsets at locations x1,…,xn and

with estimated paired directions θ1,…,θn, we can use this Poisson

point process model to calculate the log-likelihood of any particular

ice sheet. This log-likelihood is the score of our LALA tool. Those ice

sheets with greater log-likelihoods are more likely than those ice

sheets with lower log-likelihoods in the sense that they make the

observed lineations (in terms of both location and direction) more

probable. The full details on constructing the log-likelihood can be

found in the Appendix but we provide an intuitive explanation of the

main elements below.
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We restrict our study region to those areas which have been

assessed for lineations (i.e., we are aware whether the location has, or

does not have, lineations). Those regions that have not been mapped

(and hence where the existence, or absence, of lineations is unknown

at an ice sheet model resolution) should not be included in our tool or

form part of the study area X . When scoring an ice sheet against the

flowsets, the value of the ice sheet in this unmapped area should also

be discarded.

2.2 | Overview of scoring direction and location

The rate of lineation formation λðx,t,Mðx,tÞÞ can, in principle, depend

upon multiple variables: The location, the time, and the properties of

the ice sheet and properties of the sediment. However, for initial

implementation of our tool and to simplify the intuitive explanation

below, we will reduce the dependence on these other variables so

that λðx,t,Mðx,tÞÞ has two states: (i) Potential for lineation formation

and (ii) impossible for lineation formation. We set λðx,t,Mðx,tÞÞ¼0

when the location x is not grounded ice, the ice thickness is less than

10m, or the speed of the ice sheet flow is below 10ms�1. At such

times or locations, lineation formation is considered impossible. We

focus on these simplistic rules here; however, these assumptions can

be updated to account for other information considered by the user

to be important for lineation formation if available from the ice sheet

simulation. Otherwise, when the ice sheet has lineation formation

potential we will choose a constant λðx,t,Mðx,tÞÞ¼ λ. This assumes

that where and when lineation formation can occur, it will do so at a

similar rate across the ice sheet bed. Practically, this means each time

step will have a map of where lineations can and cannot form,

according to the above criteria. Where formation is possible, we

assign a rate λ and where formation is impossible assign a rate 0. The

more flexible version (with a general λ) is described in Appendix A.

2.2.1 | Number and locations of flowsets

The first two of our assumptions (ice cover and the complete indepen-

dence of lineation forming events) imply that for any ice sheet M, the

number and locations of the flowsets follow an inhomogeneous

Poisson point process (Kingman, 1993). We can calculate the likeli-

hood of not only observing n flowsets but also that they fall in the

locations x1 ,…,xn where they have been observed:

LðMjx1,…,xnÞ/
Y

n

i¼1

ΛMðxiÞ

" #

e
�

ð

X

ΛMðxÞdx

: ð1Þ

Here, in our simplified two-state λ case, the term ΛMðxiÞ reduces

to λTMðxiÞ, where TMðxiÞ is the total length of time that location xi has

the potential to form flowsets, that is, is suitably covered by the ice

sheet M. The term
Ð

XΛMðxiÞdx¼ΛMðX ,TÞ integrates these individual

values over the whole study area and effectively calculates the total

“time � area” when the ice sheet M has the potential to form

lineations.

Note that under our model, the number of flowsets for a particu-

lar ice sheet M follows a Poisson distribution with mean
Ð

XΛMðxiÞdx.

Given the same lineation formation rate λ, larger ice sheets (covering

greater areas where lineation formation is possible) will be expected

to create more lineations than smaller ice sheets. Additionally, the

inclusion of the term ΛMðxiÞ¼ λTMðxiÞ in Equation (1) highlights that

we are more likely to see lineation formation in locations where the

ice sheet has remained for longer. This will be reflected in the scores

that we give to different ice sheet simulations. Solely in terms of scor-

ing the location of the lineations, we will tend to give greater scores

to those models where the ice sheet is concentrated on the lineation

locations; and penalises simulations that extend beyond the assumed

glaciated area through time ðΛMðX ,TÞÞ, as defined by the user.

2.2.2 | Flowset orientation

In addition to considering the fit to the locations of the observed line-

ations, we also seek to assess the fit between the orientations of

those lineations and the simulated ice sheet. Suppose that there is a

flowset which forms at location xi and time t ?i . We assume that the

orientation of the resultant flowset aligns with the direction of ice

flow in the location at the point of formation. Specifically, we model

the observed orientations θi according to a von Mises distribution

(von Mises, 1981) centred around μðxi,t
?

i Þ, the ice flow direction at

the (unknown) time of formation for flowset i. This von Mises distribu-

tion provides a distribution for angles that is an approximate analogue

of the normal distribution. Due to the morphology of lineations, we

account for inferred observed directions occurring in the reported

direction or the exact opposite direction. This leads to us modelling

the observed direction θi as

fMðθijμðxi,t
?

i Þ,κÞ¼
1

2
fvonMðθijμðxi,t

?

i Þ,κÞþ
1

2
fvonMðθiþπjμðxi ,t

?

i Þ,κÞ,

ð2Þ

where

fvonMðθijμðxi ,t
?

i Þ,κÞ¼
expðκcosðθi�μðxi ,t

?

i ÞÞÞ

2πI0ðκÞ

is a von Mises distribution. Here, κ is a measure of concentration

(i.e., how close the directions of the lineations lie to the underlying ice

sheet flow) and we have measured angles in radians (where 360� is 2π

radians). Examples of the von Mises probability density function for

different values of κ are shown in Figure 1. Large values of κ mean

that the lineations created during formation will lie tightly around the

direction of ice flow, while smaller values of κ permit greater variabil-

ity in the direction of the lineations. We discuss the selection of κ in

Section 3.

In reality, we do not know the precise time t ?i at which the linea-

tions were formed in location xi, only that it must have occurred at

one of the times when the ice sheet had lineation formation potential.

To assess the overall directional fit, we must therefore average over

all these times when lineations could be formed. Precise details are

given in Appendix A, but, in our simplified two-state case for λ, the

likelihood of a particular ice sheet model M in terms of the agreement

between the observed direction of lineation i and the ice sheet is

therefore:
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LðMjθiÞ ¼ fðθijxi,M¼MÞ

¼
1

TMðxiÞ

ð

Time where xi could form lineations

fMðθijμðxi ,tÞ,κÞdt:

Here, μðx;tÞ is the orientation of ice flow in model M in location x at

time t and fMðθi;μ,κÞ is the mixture of the von Mises and flipped von

Mises with location μ and concentration κ as described in Equation (2).

We combine these directional components, multiplying the likelihood

for each individual flowset, over all the n flowsets within LALA.

Intuitively, this directional likelihood component to LALA will pro-

vide greater scores to those ice sheets where, when lineation forma-

tion is possible at location xi , the ice sheet flow aligns precisely with

the observed direction of the lineations. Low scores will be obtained

for those ice sheets that, when lineation formation is possible, have

flow directions that lie at odds with the observed direction of the

flowsets.

2.2.3 | Final ice sheet log-likelihood lðMjfxi,θig
n
i¼1Þ

To calculate the log-likelihood of any hypothetical ice sheet M given

the number, locations, and directions of the flowsets observed in the

study region X , we combine the components described above and

take logs. In the case of our simplified two-state lineation formation

model, and excluding the possibility that a lineation may have formed

outside the period of study, the final log-likelihood for a simulation M

becomes

lðMjfxi,θig
n
i¼1Þ¼

X

n

i¼1

log

ð

Timewhere xi could form lineations

fMðθijμðxi ,tÞ,κÞdt

� �

" #

�

ð

X

ΛMðxÞdx:

ð3Þ

The first component of this log-likelihood (within the square

brackets of Equation 3), relating to the fit of the simulated ice flow

direction compared to the flowset orientation, can be used as an intui-

tive indicator for which flowsets are contributing the most to the final

score. We can use this as a way to judge the flowsets, which fit well

to a simulation and which do not. This idea is explored further in

Section 3.

2.2.4 | Accounting for lineations that occurred

outside the simulation period

We anticipate that LALA may be used for a wide range of model-

data comparison experiments, with different time periods and areas.

As such, some study areas may contain glacial lineations that were

formed outside of the time period being simulated by the ice sheet

model (e.g., during a prior glacial or later/earlier during the same gla-

ciation). Additionally, it is possible that lineations may have formed

as a result of processes that are poorly represented in the ice sheet

model, or there may be insufficiently high temporal resolution of

the simulation output to capture all lineation forming events—that

is, lineation formation occurred between simulation time steps.

Without additional interpretation of the evidence, we cannot rule

out such possibilities. This possibility is accounted for in LALA by

assigning a small, but statistically relevant, probability that any

observed lineation may be unrelated to the ice sheet simulation we

wish to test.

We can incorporate all of the above possibilities into our log-

likelihood tool by adding an additional component to our Poisson

point process. This additional component assumes that, at some time

before the ice sheet simulation we wish to test starts, any location x

may have already had a lineation forming event. If such a prestudy

event has occurred, then we presume that the resultant lineation may

be aligned in any direction uniformly. Users are able to specify the

probability, p, that any given lineation relates to such a pre-study ice

sheet (i.e., it is unrelated to the simulation period we are testing). To

account for this in the scoring, we extend our Poisson process model

to incorporate a prestudy pseudo-time period during which we

assume a different rate of lineation-forming λ ? (chosen adaptively

according to our selected probability p). Lineations created in this

pseudo-time pre-study period are modelled to align uniformly in any

direction. Further details are given in Appendix A and an explanation

of how to find the appropriate value λ ? is given below.

2.3 | Parameter selection

The use of LALA requires several tool parameters to be determined.

Our tool allows users to select suitable values based upon their expert

knowledge. However, we also propose automated choices as follows:

λðx,t,Mðx,tÞÞ is the rate of lineation formation during the study

period. The choice of λðx,t,Mðx,tÞÞ is critical to LALA’s final log-

likelihood. In the absence of detailed expert information, we suggest

the two-state approach described above whereby we assume linea-

tion formation is impossible (i.e., λðx,t,Mðx,tÞÞ¼0) if the location x is

not grounded; if the ice sheet does not cover location x at time t; or if

the ice sheet has a flow speed below 10ms�1 or a thickness of less

than 10m. Otherwise, we assume lineation formation is possible and

λðx,t,Mðx,tÞÞ¼ λ. The conditions for the inability of lineation

F I GU R E 1 The probability density function of three various von

Mises distributions with the same mean, 0, and three different shape

parameter values, κ. As κ increases, then the distribution becomes

more concentrated around its mean. Here, angles are shown in

degrees (360� is 2π radians).
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formation are at the discretion of the user; however, the stated condi-

tions are used in this study.

In such a two-state model, we are however still required to select

an appropriate value for λ during times of potential lineation forma-

tion. We propose a sensible selection obtained by calculating, for an

initial ice sheet simulation M† that approximately accords with other

palaeo-information such as ice extent or volume, the expected num-

ber of flowsets EM† ½N� according to our Poisson process model. This

expected number will depend upon λ. We then select λ̂ so that EM† ½N�

equals n, the number of flowsets actually observed in our region of

study. This plausible value λ̂ is then fixed and applied for the scoring

of all ice sheets simulations under consideration by the tool.

λ ? ðxÞ is the rate of lineation formation outside the study period.

We also consider in a similar way a rate for lineation formation occur-

ring before the study period. We create a grid matching the simulation

domain area that indicates areas where conditions were conducive to

lineation formation. For example, users may want to consider limiting

to areas of the palaeo-ice sheet bed where there is adequate sediment

available for lineation formation. Furthermore, regions of the simula-

tion domain that cover the deep ocean cannot host lineations as an

ice sheet is unable to ground there. To rule out these areas where lin-

eation formation is impossible, we set λ ? ðxÞ¼0 where formation is

impossible and λ ? ðxÞ¼ λ ? elsewhere. This rate also depends on the

user-defined probability p.

κ is the concentration of the observed lineations around the ice

sheet flow direction during lineation formation. As shown in Figure 1,

the value of κ changes the shape of the von Mises distribution,

demanding a higher level of directional accordance if κ is large. The

appropriate value of κ, a measure of the acceptable direction for an

ice sheet simulation, is dependent upon two components. The first

component relates to the variation in observer measurement of the

true lineation direction—which any mapper introduces a level of indi-

vidual measurement error. The second pertains to the uncertainty

regarding the relationship between the true (mean) direction of a

flowset and that of the numerically modelled ice flow of simulation M

within the grid cell. This second component itself consists of two

parts—which we are gridding (summarising) multiple lineations orien-

tations into a single flowset at the scale of an ice sheet grid and that

the numerical ice sheet model output is somewhat coarse and may

not represent localised variation in ice flow direction within a grid cell

(within any grid cell, the direction of ice flow at a more localised scale

may vary from the overall flow direction within the cell). We consider

these two components and practical means for choosing a value of κ

in Section 3.

p is the probability that an observed lineation relates to a period

of time outside the simulation period. The user is able to specify the

value of p as they see fit; however, the default for LALA is to select

p¼0:01 (i.e., out of 100 observed flowsets, we might expect 1 to

have formed outside of the realm of the studied time period).

Note that all of the parameters above are dimensionless. When

using this tool, the values of κ and p can be changed according how-

ever the user wants to use the tool. The values of λðx,t,Mðx,tÞÞ and

λ ? ðxÞ can also be changed. For λðx,t,Mðx,tÞÞ especially, the conditions

under which the user believes lineations are able to form can be

altered. If the assumptions include the same properties as we look at

here, that is, thickness, velocity, and grounded ice, but different values

are wanted, there is a predefined function that can easily change the

values. If extra conditions are to be included, the easiest method is to

create a binary map with the area at each time step that meets the

user’s extended conditions and use this in place of the area calculated

in the LALA tool.

3 | TOY EXAMPLE

To demonstrate the principles of LALA, we here present a toy exam-

ple. We consider a simulation, say M, with a 5 grid cells by 5 grid cells,

one flowset and three time steps. In Figure 2, we show the grid cells

at each of the three time steps that could feasibly form a flowset, fol-

lowing the conditions we have previously set out regarding grounded

ice, minimum velocity, and thickness. The location of the flowset is

indicated in Figure 2 by a cross. Figure 3 indicates the difference in

simulated flow direction and the observed direction inferred from the

geomorphological evidence. The observed direction for flow, assumed

to be parallel to past flow direction is taken to be 45�. While the

directions are shown in degrees for this illustrative example, calcula-

tions in LALA (and all of the equations presented in this paper) are

actually conducted in radians (Section 3). LALA will perform this trans-

formation from degrees to radians for the user if the input variable for

radians is set to False. For this example, we use κ¼5.

First, we need to calculate values of λ and λ ? , the rate of lineation

formation during the study and in our prestudy, respectively, using a

simulation within the ensemble. This simulation, say M† , can be identi-

fied through comparison to other metrics, such as ice extent (see

Section 3). We assume that in the prestudy any grid cell could have

formed a flowset, and so AðXÞ¼25. We use a value of AM† ðX ,TÞ¼42

for the time-integrated plausible area for lineation formation for the

simulation M†. The value for AM† ðX ,TÞ has been chosen arbitrarily for

F I GU R E 2 Three simulated time steps created to illustrate the use of plausible areas for lineation formation. The grid represents a 5�5

domain and each box is coloured either blue or pink dependent on whether the location is deemed to be plausible or implausible, respectively, for

the formation of lineations. The location of the flowset to be scored is marked with a black cross.
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the toy example. A more formal method for choosing AM† ðX ,TÞ is dis-

cussed in Section 3. The values of λ and λ ? are the same for each

model simulation in the ensemble, using the fixed model simulation

M†. Under our Poisson process model, the number of flowsets we

would expect to see with simulation M† over our three time step

study period, combined with the prestudy, is 1 as there is one flowset

under consideration. In total therefore, with simulation M† we would

have expected

EM† ½N� ¼42λþ25λ ? ¼1, ð4Þ

where EM† ½N� is the expected number of flowsets formed for simula-

tion M†.

If we take p¼0:01, we think there is a 1% probability that a

flowset has formed outside the realm of the study. This leads to the

relationship

EM† ½Npre� ¼ pEM† ½Nð0,T�þNpre� ¼ pEM† ½N�, ð5Þ

where Npre is the number of flowsets formed in the pre-study, Nð0,T� is

the number of flowsets formed in the study time frame and N is the

total number of flowsets. The expected number of flowsets formed in

the pre-study is pEM† ½N� ¼25λ ? . Hence, we can calculate

λ ? ¼
pEM† ½N�

AðXÞ
¼
0:01�1

25
¼0:0004: ð6Þ

Using Equation (4) and substituting the value for λ ? , we find

λ¼
EM† ½N��AðXÞλ ?

AM† ðX ,TÞ
¼
1�ð25�0:0004Þ

42
¼0:0236: ð7Þ

These values of λ and λ ? are fixed for the scoring of the other

simulations from the same study. Now we can calculate the log-

likelihood for the location and number of lineations component, using

AMðX ,TÞ¼35 calculated from our toy example simulation, M,

ΛðX ,ð0,T�ÞþΛ
? ðXÞÞ¼AMðX ,TÞλþAðXÞλ ? ¼0:8359: ð8Þ

From Figure 2, we can see that flowset formation is only plausible

at t¼2 and t¼3. We now calculate the likelihood that the simulation

at these two time steps could have formed the flowset, based on the

direction of ice flow compared with the lineation direction. We indi-

cate the true location of the observed flowset as x1, the

corresponding orientation of the flowset as θ1 and the simulated flow

direction at location x1 and time step t ? as μðx1,t
? Þ. At time step

2, we find

fMðθ1jμðx1 ,2ÞÞ¼
1

2
ðfvonMðθ¼45�jμ¼135�,κ¼5Þ

þ fvonMðθ¼45þ180�jμ¼135� ,κ¼5ÞÞ¼0:0058

and at time step 3,

fMðθ1jμðx1,3ÞÞ¼
1

2
ðfvonMðθ¼45�jμ¼45�,κ¼5Þ

þ fvonMðθ¼45þ180�jμ¼45�,κ¼5ÞÞ¼0:4336:

Intuitively, this highlights that the ice flow of simulation M at time t¼

3 better aligns with the flowset than the ice flow at time t¼2. These

values at the two time steps are then summed and multiplied by the

rate of formation. The term λ ?

2π
to account for unrelated flowsets is

also added, to calculate the directional component for the likelihood

(see Appendix A for more details).

νðθ1jx1,MÞ¼ λ fMðθ1jμðx1,2ÞÞþ fMðθ1jμðx1 ,3ÞÞð Þþ
λ ?

2π
¼0:0104:

This component can be used in isolation to compare which flowsets

contribute the most to the final score and so can indicate which

flowsets agree with the simulation the best.

The final log-likelihood for this model simulation is then the dif-

ference between the directional and locational components. Note that

we need to take the logarithm of the directional component, but the

location component is already in the correct form.

lðMjx1 ,θig
n
i¼1Þ¼ logðνðθ1jx1,MÞÞ�ðΛðX ,ð0,T�ÞþΛ

? ðXÞÞ¼�5:40:

ð9Þ

Alone, a single value calculated from (9) is of limited use. But,

through multiple comparisons to simulations, the log-likelihood calcu-

lated by LALA can be used to compare ensemble members. Those

F I GU R E 3 Three time steps showing the difference between the simulated ice flow direction and the inferred lineation direction created to

illustrate how LALA scores an ice sheet simulation. The observed flowset is represented by the blue boxes with the black arrows showing the

orientation given at the middle of the flowset. The simulated flow direction is indicated by the grey lines. The difference between the observed

and modelled flow direction is indicated for each time step.
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simulations with greater log-likelihoods would be considered more

likely to have generated the observed lineations, while those with

lower log-likelihoods are less likely.

4 | PRACTICAL APPLICATION AND

CONSIDERATIONS WHEN USING LALA

Here, we briefly describe a workflow for using LALA. The initial inten-

tion and subsequent design of LALA was for comparing multiple ice

sheet simulations, to identify fit to the geomorphological record.

However, we anticipate that LALA could also be used to analyse

which flowsets fit the best within a single model run, or the timing of

best-fit between a simulation and a model. The code for LALA is avail-

able from https://github.com/rosiearcher/LALA-Tool. A synthetic

example is included with the code.

4.1 | Data preparation

Observed data of the flow direction of the former ice sheet in ques-

tion must be collated. Lineation mapping across the study area should

be grouped into flowsets (Clark, 1999): Groups of lineations thought

to form at similar times due to their proximity, similar morphology,

and orientation (Greenwood & Clark, 2009a; Hughes et al., 2014).

Currently, a single pixel located at the centre of each flowset should

be used. Expert interpretation is required for choosing this point for

complicated flowsets and special attention should be given to the rel-

ative size of the flowsets compared with the model resolution. The

flowset data should take the form of a netCDF grid, with the same

resolution and extent as the model simulation output. Each flowset

should be represented by one layer of the netCDF file, making the

data a three-dimensional array with the flowset number as a dimen-

sion. This makes the individual flowsets more accessible and removes

any overlapping lineation data (i.e., where lineations from two

flowsets occupy the same grid cell, perhaps cross-cutting). A netCDF

of the ice sheet simulation output is also required. This should contain

the following variables, with their standard names in PISM provided in

brackets: basal velocity magnitudes in the u and v directions (uvel and

vvel), ice thickness (thk), ice speed (velsurf_mag), and a mask of ice

extent (mask). Finally, users can specify a third input netCDF file,

which contains information pertaining to the regions where lineations

are likely to have formed. In the absence of this file, the whole domain

is presumed equally likely to have conditions conducive to lineation

formation in the prestudy.

4.2 | Code structure

LALA is written in Python (v3.0+) and requires the libraries numpy,

pandas, netCDF4, and scipy. The user defined parameters required as

inputs are shown in Table 1. As a first step, LALA reads the relevant

variables from the input netCDF files (Section 3) and converts them to

numpy arrays. Iterating through each time step of the ice sheet simu-

lation, LALA first calculates simulated flow direction. The tool reads in

the u and v velocity components from the model simulation, then cal-

culates the angle of the flow using standard trigonometry. To limit

calculations to all regions where lineation formation is deemed possi-

ble, LALA identifies the locations that exceed the input thickness and

velocity thresholds. These are defined by the user as minimum possi-

ble conditions for lineation formation (Table 1). The next step is to

integrate the area where lineation formation is possible through time

for the study area, as well as the area of possible lineation formation

for the pre-study. The possible formation area for an ensemble mem-

ber M† thought to have a plausible size based upon other metrics is

calculated and used to adaptively select values for λ and λ ? that will

then be applied for the whole ensemble. Next, for each model run,

LALA calculates the likelihood of the flowsets forming at each loca-

tion. For each flowset, times where formation is possible are found

and then scored across those time steps to form the directional likeli-

hood (Equation 2). The directional likelihoods are summed over time,

for the n flowsets. The final likelihood sums the natural logarithms of

each flowset score and sums, to give the log-likelihood, and then the

likelihood of locations is subtracted from this to give a score for the

simulation (Equation 3).

As output, LALA provides a .xlsx file with each model simulation

number and its associated final log-likelihood score.

5 | DEFINING THE TOLERANCE BETWEEN

MODELLED AND OBSERVED FLOW

DIRECTIONS

As demonstrated in the above sections, κ acts as a precision parame-

ter for comparing simulated and observed flow directions. Higher

values of κ will produce a lower tolerance for model-data mis-

alignment, and vice versa. There are two aspects of the model-data

comparison procedure that contribute to the value of κ that the user

should define when using LALA: (i) Observational variability in the

reported mean orientation of a flowset; and (ii) uncertainty in the rela-

tionship between the mean flowset orientation and the (typically

coarse) output of an ice sheet simulation (consisting of both the

uncertainty introduced when regridding lineation data to model reso-

lution, and the additional localised variability in the flow of an ice

T AB L E 1 Inputs that need to be provided by the user to score ice

sheet model simulations using LALA.

Parameter Description

Lineation file Path to a netCDF file containing information

on observed flow directions

Simulation file Path to a netCDF file of an ice sheet

simulation to be tested (must contain

variables listed in Section 3)

Lineation-conditions

file

Path to a netCDF file containing information

on whether an area is conducive to

lineation formation

κ Tolerance parameter when comparing

observed and simulated model

p Probability of lineations not relating to the

study area or period (Section 3)

Thickness condition Minimum simulated ice thickness under

which lineations could form

Velocity condition Minimum simulated ice speed under which

lineations could form

8 ARCHER ET AL.
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sheet within any grid cell around its overall, more coarsely modelled,

mean cell flow direction). We perform an experiment to provide

insight into these two components and help us determine suitable

values for κ.

5.1 | Intermapper comparison experiment

Observations of palaeo-ice flow direction derived from glacial linea-

tions are often mapped manually from digital elevation data

(e.g., Finlayson et al., 2014; James et al., 2019; Leger et al., 2020). One

form of observational uncertainty when considering palaeo-ice flow

direction is that which arises from human error; interpretation of the

landform record may vary from person to person. Here, we discuss an

experiment performed in collaboration with the geomorphological

mapping community to quantify this source of uncertainty (Section 3).

We then use the results from this experiment to examine the uncer-

tainty from regridding lineation data to the scale of an ice sheet model

(Section 3).

Across the deglaciated terrains of palaeo-ice sheets, digital eleva-

tion models (DEMs) are available at different resolutions. This obser-

vational uncertainty experiment investigates whether the resolution

affects the mapping variation. An important consideration for us, and

potentially future users of LALA where different resolutions of data

have been used for mapping, is whether areas mapped with different

resolutions of data require different values of κ to account for the var-

ious uncertainties. To define intermapper uncertainty, we invited

expert mappers to map the same areas. For the purposes of this

experiment, experts were defined as those who had conducted and

published glacial geomorphological mapping in the past, or PhD

students currently conducting mapping projects. We wished to inves-

tigate whether the resolution lineations are mapped at affects the

variation (and hence might also require different values of κ for

model-data comparison). Our experiment is designed for the common

resolutions of DEMs (2m and 30m) available for the Eurasian ice

sheets, which we aim to study in future work. Data from two areas of

Finland were used, both at 2-m resolutions, and one area of Russia at

the lower resolution of 30m. The location of these areas are shown in

Figure 4. The areas were each split into nine equally sized 5�5 km2

boxes. A selection of lineations were starred in each area to indicate

to mappers the selected lineations to map (Figure 5). A summary of

the data used, the resolutions, and the number of lineations

highlighted are given in Table 2. The participants were asked to draw

one crestline for each lineation in the suspected orientation of flow

and summary lines for each of the nine boxes that indicated their

overall opinion of the ice flow in the specified region. An example of

the summary lines of flow direction for one grid cell is shown in

Figure 6. We received data from 24 participants.

5.2 | Uncertainty from mapping interpretation

We analysed the variability in the reported ice flow direction between

the different participants, and for each mapping resolution, across the

boxes. We assumed that the summary directions reported by each

user within a box followed a von Mises distribution, with each box

having a potentially different mean direction μi but with the same

concentration parameter κ1 shared across all boxes of the same reso-

lution. Using Markov Chain Monte Carlo, we estimated both the mean

directions μi and shared κ1 to represent the intermapper variability in

F I GU R E 4 Overview of areas used in the lineation mapping experiment.
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assessing flowset direction for a particular resolution. Further details

on this method can be found in the Appendix. We refer to this

experiment as the Multiple Means experiment. For the Multiple

Means experiment, we first considered the two high resolution (2m)

mapping results separately, later treating them as a single population,

which allowed us to get a single value of κ1 representing this resolu-

tion. Results are shown in Table 3. The concentration (denoting the

level of mapping precision) for the lower resolution data was signifi-

cantly higher than for mapping conducted at a high resolution. This

suggests that at a lower resolution, there was a very high level of

directional agreement between participants. Several possibilities exist

to explain this. This may be a consequence of the nature of the two

different study areas (i.e., we happened to choose a much simpler set-

ting for the 30-m test area). Alternatively, the high resolution data

F I GU R E 5 Maps of the three areas given to the observational error experiment participants. The black points show the location of the

lineations participants were asked to map. The 3�3 grid shows the sections where summary lines were requested. (a) Area 1 located in northern

Finland. (b) Area 2 located in central Finland. (c) Area 3 in western Russia.

T AB L E 2 Data used in the observational error experiment.

Area Horizontal Number of

number Country DEM name resolution (m) lineations

1 Finland National Land Survey of Finland DEM 2 90

2 Finland National Land Survey of Finland DEM 2 59

3 Russia Copernicus DEM GLO-30 30 59

10 ARCHER ET AL.
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may reveal more detail, representing a more complex landform record

that is harder to interpret precisely. Overall however, the values of κ1

are very high for both resolutions, suggesting that for the areas this

experiment was conducted over, the reported summary directions

were highly reproducible across mappers and that intermapper vari-

ability is not a significant source of uncertainty for model-data

comparison.

5.3 | Uncertainty between the direction of

localised lineations and overall grid cell flow direction

The second source of uncertainty we must consider for our LALA tool

is that which results from the comparison of flow directions inferred

at a lineation scale (generally 100s of m in scale) with those directions

provided by an ice sheet simulation that typically has a much coarser

output, representing mean ice flow direction at a several km scale. In

the case of the model simulations from the BRITICE-CHRONO project

(Clark et al., 2022). The simulations are transient and run from 31 to

15 ka, outputting every 100 years, with model domain covering Brit-

ain and Ireland. To assess the uncertainty in model-data comparison

this reduction introduces, we considered the variability of the individ-

ual lineations within a 5�5 km2 box around their overall mean direc-

tion. Boxes of this size were chosen to match the resolution of the

BRITICE-CHRONO ensemble.

We selected one mapper’s inferred directions for each of the

208 lineations and separated them into 27 groups based on the 5�5

km2 box that contained them (see Figure 5). We assumed each group/

box could have a different overall mean direction for the lineations,

corresponding to the box’s overall flow direction. The individual linea-

tions within any box were then modelled by a von Mises distribution,

with the appropriate box-dependent mean direction but the same

concentration κ2 for all boxes. MCMC was again performed estimat-

ing both the mean direction for each box and the value of κ2. The pos-

terior estimate for κ2, across all 27 boxes and 208 lineations, was

found to be approximately 92. This approach to estimating κ2

accounts for variability in flow direction within a grid box. For large

flowsets, perhaps recording highly variable flow directions, users may

wish to either decrease the value of κ2 to account for such complexity

or subset a flowset into multiple grid boxes.

5.4 | Combining the two components of

directional variability

To use LALA for comparison of observed flowset direction with the

output of numerical ice sheet models, we must combine the two com-

ponents of uncertainty (κ1 and κ2) described above into a single von

Mises concentation parameter κ (see Appendix B). Our experiment

above indicates that intermapper (observer) variability in the reported

F I GU R E 6 One of the nine boxes from area 2 where the mapping participants seemed to identify two overlapping directions. Left: Hillshade

of the area requested to be mapped, with the specific lineations to be mapped starred. Right: The summary lines from the 24 participants are

indicated in blue. The extreme angles are highlighted in purple to emphasise the difference between mappers. As the lines here indicate the

inferred summary orientation for each box, and not the specific marked lineations, the lines are placed centrally within the box.

T AB L E 3 Values obtained from MCMC analysis of reported summary directions of lineations across boxes within our intermapper

experiment. Results are presented separately for three different regions, two at a 2-m resolution and one at a 30-m resolution; as well as

combining the two 2-m resolution areas. Each box was permitted to have a different overall mean direction.

Area Resolution (m) Multiple means Multiple means combined

1 2 85 209.2

2 2 270

3 30 3000 N/A

ARCHER ET AL. 11
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flowset direction is very small (with extremely high values of κ2). Con-

sequently, the appropriate overall κ will be dominated by the variabil-

ity introduced due to the need to compare flow directions at a highly

localised lineation scale with the coarser output of an numerical ice

sheet model (which only has a resolution on a scale of several km).

We therefore select an overall value of κ¼90 for implemention of

LALA. This value will be used us to judge goodness-of-fit between an

observed flowset and the flow direction of an ice sheet simulation. In

a later version of LALA, we would however endeavour to vary κ spa-

tially, accounting for areas of complex ice flow that likely require a

lower concentration value.

5.5 | Other potential sources of uncertainty in

model-data comparison

The parameter κ captures the uncertainty in the directional compo-

nent of the likelihood calculated by LALA. However, in any model-

data comparison, there are additional sources of uncertainty, related

either to the numerical model utilised or the data itself (Ely et al.,

2019). Often, these sources of uncertainty are potentially more diffi-

cult to quantify. From a data perspective, an uncertainty remains

regarding the mechanics of lineation formation, which are still debated

(for a recent summary, see Ely et al., 2022). Though we suggest rea-

sonable conditions under which lineations are formed and preserved,

ultimately users of LALA may wish to alter these according to any fur-

ther insights gained in this field. Furthermore, through the parameter

p, LALA accounts for misclassification of lineations from outside of

the simulated time period. However, in an ideal situation, such

instances of misclassified lineations should be removed from the

dataset used to calculate the likelihood of ice sheet simulations.

Model-data comparisons, perhaps facilitated by LALA, may prove a

fruitful means for identifying any misfitting data and act as a basis for

reinterpreting the lineation record (see Section 3 for an example of

this). From a modelling perspective, no ice-flow simulation is a perfect

representation of reality. All numerical models abstract the physics of

ice flow into approximations, and thus contain structural uncertainty

related to the way this is implemented within the model. Thus, the

angles of ice flow produced by the model are not perfect representa-

tions of the actual ice flow direction. Quantifying the impact of differ-

ent approximations of ice flow upon the resulting modelled angle is a

large task and perhaps a fruitful avenue for future research. A further

uncertainty relates to the temporal resolution of the model output.

Again, this is considered by LALA in the parameter p, which considers

that lineation forming events could occur between modelled output

time steps. However, precisely how modelled angle changes over

temporal timescales is unknown, as are the precise timescales over

which lineations form. As we gain more insight into these additional

sources of uncertainty, future model-data comparison tools or adapta-

tions of LALA may wish to take these into consideration.

6 | APPLICATION TO THE BRITISH AND

IRISH ICE SHEET

To demonstrate the utility of LALA using real model simulations, we

here apply LALA to an ensemble of simulations of the British-Irish Ice

Sheet (BIIS), from the BRITICE-CHRONO project (Clark et al., 2022).

This 200-member ensemble was run at 5 km horizontal resolution

using the Parallel Ice Sheet Model (PISM) (Winkelmann et al., 2011)—

a hybrid shallow ice and shallow shelf approximation numerical ice

sheet model. The simulations are transient and run from 31 to 15 ka

with model domain covering Britain and Ireland (Clark et al., 2022).

The ensemble experiments varied ten parameters. Our aim here is not

to comment on the performance of a particular ice sheet simulation,

and its resulting parameter combination, but rather to demonstrate

the utility of LALA using a real example of ice flow simulations.

The BRITICE-CHRONO project (Clark et al., 2022) completed ice

sheet-wide mapping of glacial landforms of the BIIS (Clark et al.,

2018). From the lineation data, flowsets were constructed through

grouping lineations thought to indicate similar past flow directions

that occurred during the same period of time (Greenwood &

Clark, 2009a; Hughes et al., 2014). This flowset data was compiled in

GIS, and converted into a netCDF to be used within the LALA tool.

Only flowsets deemed to have formed in the same flow event,

referred to as isochronous flowsets, were tested. A total of

94 flowsets were used here, 37 of which were located in England,

Scotland and Wales (Hughes et al.2014), and 57 from Northern

Ireland and the Republic of Ireland (Greenwood & Clark, 2009a). As

the simulated ice sheets we are testing cover the entire late glacial,

the time period during which the mapped lineations are thought to

have formed, we use the default value of p¼0:01. Thus, in this appli-

cation of LALA, any observed flowset has a 99% probability that it

was formed during the simulated period.

To apply LALA, we must calculate appropriate values for the two

parameters which define the rate of lineation formation (Section 3).

For this example, we refer to these as λ ?

BCðxÞ, the rate of lineation for-

mation across the BIIS outside of the simulated period, and

λBCðx,t,Mðx,tÞÞ, the rate of lineation formation across the BIIS during

the study period. For λ ?

BCðxÞ, we supply LALA with a binary mask

defining regions where lineation formation is possible (assigned a

value of 1, which LALA later translates to λ ?

BC [Section 3]), and impos-

sible (assigned a value of 0). The latter ruled-out regions were defined

as those where we deemed there was insufficient sediment for linea-

tion formation, offshore regions as these were not covered by

Greenwood and Clark (2009a) and Hughes et al. (2014), and regions

beyond 50 km of the presumed limit of the BIIS (Clark et al.2022). This

provided us with a total number of grid cells where lineations might

occur AðXÞ¼7801. Using this, and the number of observed flowsets

(n¼94), we can then calculate λ ?

BC as

λ ?

BC ¼ p
n

AðXÞ
¼

94

100�7801
: ð10Þ

To estimate the parameter λBC , we need to determine AðX ,TÞ, the

time-integrated area which meets the lineation formation criteria we

previously formulated. One could envisage estimating AðX ,TÞ via a

number of means, dependent upon the user’s opinion regarding linea-

tion formation and the availability of information regarding the overall

extent and timing of glaciation across an area. For example, an empiri-

cal reconstruction could be used to inform about the time for which

each cell was covered by ice. However, such reconstructions often

lack information about the prevalence of other conditions thought to

be important for lineation formation, such as basal thermal regime.

12 ARCHER ET AL.
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Our approach here is to utilise an initial simulation, M†, that scored

well at matching the independent data of ice margin position (Li et al.,

2008) and geochronological constraints (Ely et al., 2019). M† is there-

fore of the approximate size and produced reasonable ice coverage

for the BIIS. For simulation M†, the total number of grid cells (area)

over time that meet the conditions for potential lineation formation

(e.g., thickness, velocity, and sediment availability) is

AM† ðX ,TÞ¼6094155. We can use this to select λBC for our ensemble

of simulations

λBC ¼ð1�pÞ
n

AM† ðX ,TÞ
¼

99

100
�

94

6094155
: ð11Þ

These two rates, λ ?

BCðxÞ and λBCðx,t,Mðx,tÞÞ, were then used in

LALA to calculate the log-likelihood of each simulation from the

ensemble. For the remaining input parameter, κ, we use the value

90, derived from our observational uncertainty experiment

(Section 3).

To assess the utility of LALA, we visually inspected how a range

of simulations compared with the reconstructed ice extents of Clark

et al. (2022), at the 1-ka temporal resolution at which the

reconstructed limits are provided. An example of this comparison, for

the simulations that had the highest and lowest log-likelihoods, is

shown in Figure 7. Note that for illustrative purposes in Figure 7, we

demonstrate this for a single time step, 21-ka BP, whereas our visual

assessment accounted for the time variance of the ice sheet geome-

try. Visual assessment of all 200 simulations within the ensemble

showed that the best-fitting simulation identified by LALA performed

reasonably well in comparison to Clark et al. (2022). Furthermore, the

worst simulation exceeds the maximum reconstruction almost all the

way around the extent, and is comparable in performance to other

poorly performing models identified through qualitative means. The

best performing simulation (Figure 7a) has an extent that matches the

reconstructed ice margin extent for the majority of its perimeter. In

comparison, the extent of the worst performing model (Figure 7b) is

consistently too large when compared to the empirical reconstruction.

This conformity between reconstructed and simulated ice sheet

geometry reflects how LALA produces a higher log-likelihood for sim-

ulations that produce lineation forming conditions (velocity, ice

thickness, and grounded extent) over the model domain, and penalises

simulations that spread over an extent which is too large. By way of

intuitively noting how well each simulation matches purely the flow

direction of flowsets, we also isolated only the component of the log-

likelihood related to direction and summed this on a per-simulation

basis (Section 3). The best fitting simulation (Figure 7a) also showed

the overall best directional score, and vice versa for the worst fitting

simulation. As LALA considers more than just flow direction alone, a

quantitative comparison between LALA and AFDA is not currently

possible. However, we note that higher-ranked simulations by LALA

were also those assessed to fit more flowsets by AFDA.

A further utility of LALA is to consider which flowsets are more

readily matched, and those which are less often matched. To do so,

we isolate only the component of the log-likelihood that relating to

flow direction (Equation 2). When scoring a whole model simulation,

LALA sums the values obtained by Equation (2) to calculate the final

log-likelihood. To give an indication of the best matched flowsets

across the ensemble, we instead keep the Equation (2) values sepa-

rate. Then, each flowset will have a value for each model simulation.

We summed these values from each of the simulation on a per-

flowset basis. The nature of this comparison may provoke iterative

conversations between those who collect and collate data, and the

numerical modeller: is the match, or lack of, a consequence of the

model, the nature of the of data, or some other factor? In Figure 8, we

show the most frequently matched flowsets, and those that were

matched least frequently. Although we do not revisit the evidence for

these flowsets here, there are some notable features of this map.

First, a number of the poorly fitted flowsets are narrow and small fea-

tures (e.g., FS58 in the Republic of Ireland, FS24 on the border

between Northern Ireland and the Republic of Ireland, and FS47 in

Northern Ireland). These flowsets were perhaps poorly chosen for

model-data comparison, as their narrow size may be below what is

feasibly resolved by the model. In western Scotland, FS24 is com-

posed of two distinct patches of lineations, which cross the fjord

topography. Perhaps these lineations have been incorrectly grouped

together, or the model is unable to recreate flow counter to the valley

topography. The reasons for the well matched flowsets may be highly

variable, as their character and distribution seem to lack geographic,

topographic, or geometric similarity (Figure 8). Perhaps these flowsets

F I GU R E 7 Modelled extents of the BIIS at 21 ka BP in two different simulations. The final log-likelihood score for each simulation is

indicated below. Note that this figure shows one time step, but the final scores are cumulative over all time steps. The lines denote the maximum

(red), optimum (yellow) and minimum (green) reconstructed extent of the BIIS from Clark et al. (2022). The faint white-line is the grounding line or

ice margin. (a) The best-fit simulation. Note how much of the perimeter of the ice sheet is close to the ‘optimum’ reconstruction. (b) The worst-

fitting simulation. Note how the ice sheet extent is too large compared to the empirical reconstruction.
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are looser constraints on ice sheet models, or the ensemble simulation

is particularly good at replicating these flow directions. Such possibili-

ties should be considered by future work.

7 | SUMMARY

Rigorous tools for comparing numerical simulations of palaeo-ice

sheet behaviour and available data constraints can greatly aid in

model improvement. Here, we present a new method for determining

the log-likelihood of an ice sheet simulation given a set of mapped

subglacial lineations. This tool, which we name the Likelihood of

Accordant Lineations Analysis (LALA) tool, considers both the orienta-

tion and spatial distribution of lineations across a palaeo-ice sheet

area. To achieve this, we used the statistical underpinning of consider-

ing lineation formation to be a marked, inhomogeneous, Poisson point

process. Unlike previous tools, LALA provides a continuous numerical

output, suited for emulating ensembles of simulations. The main pur-

pose of LALA is to provide a means for comparing ice sheet simula-

tions within an ensemble, assigning each simulation with a log-

likelihood, such that the best-fitting simulations can be identified. To

demonstrate the underpinning of LALA, we provide a toy example of

its application.

Several parameters are required as a user input to run LALA. As

LALA is designed to be adaptable, these can be changed by the user

depending upon assumptions of lineation formation and to adapt to

different experimental circumstances. Here, we provide a number of

reasonable starting points for assigning these parameters. This

includes an analysis of an experiment which quantified the observa-

tional error that arises from multiple expert mappers interpreting for-

mer ice flow directions from the landform record. We find this

uncertainty to be small, especially compared to the uncertainty that

arises from the differing resolutions of subglacial lineations (100s of

m) to the scale of an ice sheet model grid (several km), which we find

to be much larger. Finally, to demonstrate the utility of LALA, we

apply the tool to an ensemble of simulations of the British-Irish Ice

Sheet and observations of lineations from the literature. This applica-

tion highlights how LALA can be used to distinguish between simula-

tions within an ensemble, and in the future find more plausible

parameter spaces for ice sheet simulations.

F I G U R E 8 The highest scoring

flowsets across all model simulations are

indicated in blue. The lowest scoring

flowsets shown in yellow. The time-

integrated score for each simulation given

by LALA is below.
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APPENDIX A: LOG-LIKELIHOOD OF A POISSON POINT

PROCESS

Note that all angles θ described below are measured in radians rather

than degrees; 360� is equal to 2π radians.

An ice sheet point process

Assume that, for a given ice sheet Mðx,tÞ over a study period T ¼

ð0,T� and region X , lineation formation follows an inhomogeneous

Poisson point process with intensity function λM ¼ λðx,t,Mðx,tÞÞ. For

any subregion A and time interval ða,b�. The number flowsets formed

NðA,ða,b�Þ will follow a Poisson distribution with mean

ΛðA,ða,b�Þ ¼

ð

A

ðb

a

λðx,t,Mðx,tÞÞdtdx:

Conditional on lineation formation occurring at time t and loca-

tion x, a flowset will be created that has a direction related to the

basal flow direction of the ice sheet at point of creation. The flowsets

therefore constitute a marked Poisson point process, with the mark

being their direction. Specifically, we assume that ϕ, the direction of

the flowset, will be distributed (independently of other flowsets)

according to a von Mises distribution:

fvonMðϕjμðx,tÞ,κ1Þ¼
expðκ1 cosðϕ�μðx,tÞÞÞ

2πI0ðκ1Þ
:

Here κ1 denotes the concentration of the true flowset around the

ice flow direction.

Unrelated flowsets poisson point process (to account for lineations

forming outside of the study region and time period)

To allow for the possibility that some of the observed flowsets for-

ming outside of the study we introduce an additional, independent,

Poisson point process over the same region X but over a (pseudo)-

time period ð�1,0� with intensity λ ? ðxÞ. Here the intensity depends

only upon the location x, typically, we would expect λ ? ðxÞ¼0 in

ocean locations, or where the topography is such that flowsets are

impossible. We assume that formation of lineations created from this

additional point process lead to flowsets that lie uniformly in any

direction, that is, the direction ϕ of any flowset created in this

pseudo-time period has probability density

foutðϕÞ¼
1

2π
:

This additional Poisson point process aims to represent the possi-

bility a flowset may have been created outside the realm of the study

(before the time t¼0 when our modelling starts). In any subregion A,

the number of (unrelated) flowsets also follows a Poisson distribution

with mean

Λ
? ðAÞ¼

ð

A

λ ? ðxÞdx:

Observational model

We assume that in our region under study X , we observe n flowsets

in locations x1,…,x1. Note that the region X includes only the areas

mapped for lineations (regions where the presence/absence of

lineations is unknown do not form part of X ). Each flowset has an

estimated direction θi based on mapping. We assume that the

observed θi can either relate to the underlying angle ϕi of the flowset,

or the opposite direction ϕiþπ. The scientist describing the flowset

may equally report the direction as being upstream or downstream

due to their morphology. We also assume that there is also
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some measurement uncertainty in the estimate θi so that the density

of θijϕi is

fðθijϕiÞ¼0:5fvonMðθijϕi ,κ2Þþ0:5fvonMðθijϕiþπ,κ2Þ:

Here, κ2 relates to the precision of the observed mapping

(i.e., how precise a user is at reporting the true lineation direction).

For simplicity in modelling, we combine the observational uncer-

tainty in lineation direction reported by the mapper, with the variabil-

ity around the ice flow direction at time of formation. When the

lineation is formed by an ice sheet M, a slight approximation leads to a

final observation model for θ of

fMðθijμðxi ,t
?

i ÞÞ¼0:5fvonMðθijμðxi,t
?

i Þ,κÞþ0:5fvonMðθijμðxi,t
?

i Þþπ,κÞ,

ð†Þ

where t ?i denotes the time of the formation that led to the flowset at

xi and κ is a concentration term combining both the observational and

regridding components of variability. When the lineation is formed

outside of the study, we still have foutðθÞ¼
1
2π
:

Log-likelihood of fxi,θig
n

i¼1

Due to their independence, we can combine the point process

for ice sheet M (over times T ¼ ð0,T�) and the outlier point

process (to represent potential earlier ice sheets) to obtain

another marked inhomogenous Poisson point process. For this

combined process, the likelihood of seeing the n flowsets in locations

xi ,…,xn is

fðxi,…,xnjMÞ/
Y

n

i¼1

ΛðxiÞþλ ? ðxiÞf ge�ðΛðX ,ð0,T�ÞþΛ
? ðXÞÞ,

where ΛðxiÞ¼
Ð T

0λðxi ,t,Mðxi,tÞÞdt. Conditional on the flowset loca-

tions, we can also calculate the likelihood of the observed directions

θi for i¼1,…,n. This is achieved by conditioning on t ?i the time of the

flowset formation at location xi. We find

fðt ?i jxi,MÞ¼

λðxi,t
?

i ,Mðxi,t
?

i ÞÞ

ΛðxiÞþλ ? ðxiÞ
fort ? � ð0,T�, i:e:;formed by an ice sheetM;

λ ? ðxiÞ

ΛðxiÞþλ ? ðxiÞ
fort ? � ð�1,0�, i:e:;unrelated to the study:

8

>

>

>

<

>

>

>

:

Conditional on the time t ?i that the flowset in location xi is

formed, the distribution of θi is known. Hence, we find the likelihood

of θijxi ,M to be

fðθijxi ,MÞ¼
1

ΛðxiÞþ λ ? ðxiÞ

ðT

0

fMðθijμðxi,t
?

i ÞÞλðxi ,t
?

i ,Mðxi,t
?

i ÞÞdtþ
λ ? ðxiÞ

2π

� �

,

where fMðθijμðxi,t
?

i ÞÞ is given in (A1). Putting together both the loca-

tion and direction information, we find that the final log-likelihood for

ice sheetM is

X

n

i¼1

logνðθijxi,MÞ

" #

� ðΛðX ,ð0,T�ÞþΛ
? ðXÞÞf g,

where

νðθijxi,MÞ¼

ðT

0

fMðθijμðxi,t
?

i ÞÞλðxi ,t
?

i ,Mðxi ,t
?

i ÞÞdtþ
λ ? ðxiÞ

2π
:

Discretisation

In practice, the ice sheet model simulation will consist of individual

time steps defined on a grid rather than over continuous time and

space. Hence when testing an ice sheet model simulation, the inte-

grals above (νðθijxi,MÞ, ΛðX ,ð0,T�Þ and Λ
? ðXÞ) will be replaced by dis-

crete sums (over the grid cells, time steps, or both).

Selecting probability an observed lineation is unrelated

We suggest that, rather than choose a value for λ ? directly, we

instead specify p, our prior probability that an observed flowset arises

from outside the study’s scope. The number of flowsets created by

the ice sheet Mðx,tÞ over the study period T and region X follows a

Poisson distribution with mean ΛðX ,ð0,T�Þ. The number of flowsets

created by our (pseudo-time) ice sheet to represent formation for rea-

sons not considered in the study has a Poisson distribution with mean

Λ
? ðXÞ. We can therefore obtain our chose value of p by setting

Λ
? ðXÞ¼

p

1�p
ΛðX ,ð0,T�Þ:

Typically, we choose λ ? ðxiÞ¼ λ ? for regions where lineations are

possible, and zero otherwise. Hence, Λ ? ðXÞ¼ λ ? AðXÞ where AðXÞ is

the area where lineations could form within the overall study region

X . Our default is to select p¼0:01.

Choosing λðxi ,t
?

i
,Mðxi,t

?

i
ÞÞ

In our use of LALA, we have selected λðxi,t
?

i ,Mðxi,t
?

i ÞÞ¼0 whenever

the location xi is not covered by grounded ice that is at least 10 m

thick and travelling at 10 ms�1 or higher. Effectively, it is not possible

for the ice sheet to form lineations. Otherwise, when the ice sheet

has the potential to form lineations at location x, we have chosen it to

be spatially and temporally uniform, that is, λðxi ,t
?

i ,Mðxi ,t
?

i ÞÞ¼ λ. If

we select such a uniform λ, then ΛðX ,ð0,T�Þ ¼ λAMðX ,TÞ where

AMðX ,TÞ effectively integrates (over time and space) the region when

the ice sheetM can form lineations,

AðX ,TÞ¼

ðð

Lineation formation possible with ice sheet M

dtdx:

The total expected number of flowsets (once we include the

pseudo-time sheet) is Nðλ,λ ? ,MÞ¼ λAMðX ,TÞþλ ? AðXÞ. To choose a

suitable λ we first select a value of p. This will reduce Nðλ,λ ? ,MÞ to a

dependence upon only λ. We calculate this expected value Nðλ,MÞ for

a single selected ice sheet M ? (ideally one which has been identified

as plausible based on other palaeo-data) and match this to n the

observed number of flowsets.

APPENDIX B: USING Markov chain Monte Carlo (MCMC) TO

ESTIMATE THE APPROPRIATE VON MISES κ PARAMETERS TO

DESCRIBE VARIATION IN FLOWSET DIRECTION

We used the MCMC to estimate a set of von Mises parameters that

adequately represents the flowset variation observed with our
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experimental mapping data in Section 3. These parameters are then

used as the default choice for LALA. A Markov Chain, a path which

moves through different states, was generated according to a

Metropolis-Hastings (MH) algorithm. The MH algorithm sampled a ran-

dom point from a proposed density function. The point is then either

accepted as the next state in the chain, or rejected, and a new sample

point is tested. This is repeated until the distribution of acceptable

points stabilises to form a posterior distribution. From this sampled pos-

terior distribution, metrics such as the mean and variance can be calcu-

lated. Several thousands of iterations are performed until the Markov

Chain reaches its stationary distribution. Examples of the Markov

chains used for our analysis of area 2 are shown below in Figure B1.

F I GU R E B 1 Sample chains from the MCMC for the 2 m resolution data in area 2. Left: Considers there to be one mean across all the boxes.

Right: Considers a separate mean for each box, but the same precision. The red line shows the mean that the posterior distribution tends towards.

18 ARCHER ET AL.
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