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ABSTRACT: The vastness of materials space, particularly that
which is concerned with metal−organic frameworks (MOFs),
creates the critical problem of performing efficient identification of
promising materials for specific applications. Although high-
throughput computational approaches, including the use of
machine learning, have been useful in rapid screening and rational
design of MOFs, they tend to neglect descriptors related to their
synthesis. One way to improve the efficiency of MOF discovery is
to data-mine published MOF papers to extract the materials
informatics knowledge contained within journal articles. Here, by
adapting the chemistry-aware natural language processing tool,
ChemDataExtractor (CDE), we generated an open-source database
of MOFs focused on their synthetic properties: the DigiMOF
database. Using the CDE web scraping package alongside the Cambridge Structural Database (CSD) MOF subset, we automatically
downloaded 43,281 unique MOF journal articles, extracted 15,501 unique MOF materials, and text-mined over 52,680 associated
properties including the synthesis method, solvent, organic linker, metal precursor, and topology. Additionally, we developed an
alternative data extraction technique to obtain and transform the chemical names assigned to each CSD entry in order to determine
linker types for each structure in the CSD MOF subset. This data enabled us to match MOFs to a list of known linkers provided by
Tokyo Chemical Industry UK Ltd. (TCI) and analyze the cost of these important chemicals. This centralized, structured database
reveals the MOF synthetic data embedded within thousands of MOF publications and contains further topology, metal type,
accessible surface area, largest cavity diameter, pore limiting diameter, open metal sites, and density calculations for all 3D MOFs in
the CSD MOF subset. The DigiMOF database and associated software are publicly available for other researchers to rapidly search
for MOFs with specific properties, conduct further analysis of alternative MOF production pathways, and create additional parsers to
search for additional desirable properties.

1. INTRODUCTION

Metal−organic frameworks (MOFs) are a class of crystalline
materials consisting of a lattice of metal ions co-ordinately
bonded by organic linkers. MOFs are well known for their high
surface areas and exceptionally tunable properties, which
enable their potential application in areas including gas
storage,1−6 sensing,7−10 separations,11−15 drug delivery,16−18

and catalysis.19−23 Since the first MOFs were synthesized in
the 1990s, thousands of MOFs have been produced at a
laboratory scale. As of 2023, more than 100,000 MOF
structures have been reported in the Cambridge Structural
Database (CSD).24,25 The sheer volume of distinct real MOF
materials poses significant challenges for screening and
isolating the best candidates for a given application: a typical
problem of finding a needle in a haystack. To some extent, this
has been counteracted by the use of high-throughput
computational screening and machine learning (ML) for the
elucidation of structure−property relationships, in particular

for gas adsorption and separation properties of MOFs.26−32

Given that these screening methods tend to neglect synthesis
data, the identification of economical and sustainable synthesis
routes has remained largely a manual process, and clearly,
relying on experimental trial-and-error and serendipity to
develop MOFs is costly, slow, and unreliable. While ML has so
far been successfully applied to MOF synthesis using failed
experimental data,33 to address these challenges, we propose
the use of high-throughput text mining to collect MOF
synthesis data in a single resource and to aid the design and
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discovery of more practical MOFs by valorizing their synthesis
information.

Most chemistry literature is published as unstructured text,
which makes manual database creation cumbersome, time-
consuming, and error prone. To address this problem, Swain
and Cole developed ChemDataExtractor (CDE) to automate
the extraction of chemical data from research articles and
patents via text mining.34 To date, CDE has been deployed to
automatically assemble databases of magnetic materials,35,36

battery materials,37 UV/vis absorption spectra,38 hydrogen
storage and synthesis applications,39 and nanomaterial syn-
thesis.40−42 While CDE has been used to text mine both
organic and inorganic chemistry literatures, it has yet to be
applied to MOFs, possibly due to challenges presented by the
diverse nature of their building blocks and complex synthesis
techniques. To the best of our knowledge, Park et al.’s text
mining software was the first work which enlisted text mining
to scrape MOF-related data such as pore volume and surface
area.43 More recently, Luo et al.44 developed an automatic data
mining tool using the CoRE MOF database,45 alongside the
web-scraping tool Puppeteer (https://pptr.dev) to text mine
6099 journal articles. These were then analyzed using
ChemicalTagger software46 to extract metal sources, linker(s),
solvent(s), additives, synthesis time, and temperature. A
further recent submission from Park et al. data mined 46,701
MOFs to extract synthesis information from 28,565 papers
using a joint ML/rule-based algorithm.47

The CSD MOF subset contains comprehensive structural
information about MOFs; however, the data related to their
synthesis is scarce and inconsistent. Here, we text-mined the
CSD MOF subset and developed rule-based MOF compound
name and property parsers within CDE to automatically
generate a database of MOF synthesis data, i.e., the DigiMOF
database, to facilitate digital transformation of MOFs’ synthesis
protocols. We envisage that DigiMOF will allow next-
generation high-throughput screening and ML approaches to
take more circumspective consideration of the synthesis
information. These new features will allow MOF scientists to
rapidly search for MOFs associated with specific precursors,

topologies, organic linkers, and synthesis routes, offering a
platform which facilitates screening and identification of
sustainable and scalable materials. For each MOF compound,
its corresponding DOI is also included in the database so users
can access the publication where it was first reported. We
highly encourage users of DigiMOF to build upon this
foundational work and integrate additional MOF property
extraction capabilities into the adapted CDE to expand or
tailor the database according to their own research require-
ments.

2. PROPERTY IDENTIFICATION AND PARSING

The principal challenge in developing text mining parsers is to
identify key MOF properties for data extraction. Initially, we
conducted an extensive review of the existing literature to
select properties that are most indicative of MOF scalability
and ease of synthesis. Given the widespread interest in MOF
chemistry, it is somewhat surprising that only a few MOF
technoeconomic assessments (TEA), with a focus on
production, have been carried out. For example, DeSantis et
al.48 demonstrated that switching from traditional solvothermal
synthesis techniques to more novel, less solvent-intensive
pathways such as aqueous or mechanochemical routes could
reduce MOF production costs by 34−83%. Increasing the
MOF yield by a factor of 30% had a negligible impact on
production costs in comparison to using a less solvent-
intensive pathway. In another study, Luo et al.49 compared
traditional solvothermal synthesis with an aqueous pathway to
produce UiO-66-NH2 and found that omitting solvents from
the synthesis of this MOF resulted in an 84% reduction in
production cost. The key properties that influenced the
production cost were solvents, organic linkers, and inorganic
MOF precursors.

Following these findings, we focused on constructing parsers
to extract information on four key MOF synthesis properties:
solvents, inorganic and organic precursors, and synthesis
methods. We also constructed a parser to extract MOF
topologies, as the description of topology aids mechanical
stability predictions, critical for the pelletization and industrial

Figure 1. Flow diagram to visualize the integration of CDE into a data-driven MOF synthesis plan: from article retrieval to text mining,
computational screening, and materials discovery.
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application of MOFs.50 Finally, integration with the CSD
Python API also allowed information such as the tested
temperature, article DOI, and publication year to be merged
with the parser-extracted records. The CSD Python API was
also used to extract the chemical names that corresponded to
each MOF refcode in the 3D MOF subset for linker matching.

3. METHODS: AUTOMATIC GENERATION OF THE
DIGIMOF DATABASE

The key motivation for adapting the CDE tool to text mine MOF
literature was to better integrate MOF synthesis protocols, TEA
considerations, and computational screening approaches into a tight
feedback loop to enable more efficient MOF materials development.
Figure 1 demonstrates how the DigiMOF database and the adapted
CDE parsers can be integrated into a data-driven pipeline for MOF
design and discovery.

We also developed a MOF-specific approach in conjunction with
the CDE web scraper: DOIs associated with the CSD MOF subset
were extracted using the CSD API and used to automatically
download the associated articles in HTML format using the CDE web
scraping script for the corresponding journal. After download, text-
mined MOF synthesis data was automatically extracted from each
HTML file and stored in our database in JSON format. This data can
then be used for further TEA studies and integrated with other
physicochemical properties obtained from either simulations or
experiments to generate rich data sets for further processing.

Note that a user can create new and personalized databases for text
mining by modifying the provided CDE web scraping script to obtain
any collection of online files saved into HTML format, i.e., patents,
webpages, and journal articles, from other sources.
3.1. Natural Language Processing. To identify specific MOF

properties using CDE-based classes and variables, we created
customized parsers which use part-of-speech (POS) taggers and
chemical entity recognizers. These parsers contain specific regular
expressions for the identification of MOF compound names. The
natural language processing (NLP) pipeline in CDE first identifies a
sentence, which is then tokenized into individual words and
punctuation known as tokens.34 These tokens are marked up by
POS tagging to reflect their syntactical functions, such as a noun, a
verb, a chemical mention, and an adjective.34 Entity recognition of the
chemical species allows relationships to be extracted and merged with
their corresponding compounds by interdependency resolution.34

Our rule-based parsers used Python regular expressions as well as
CDE parsing elements and were tailored to extract specific properties.
We generated parsing rules to identify MOF names, synthesis
methods, inorganic precursors, linker names, and MOF topology
abbreviations, as well as created exclusion lists to exclude words which

were frequently misidentified as these variables. The use of regular
expressions and parsing elements, as shown in Table S1, was crucial to
improving performance.

The process of building and refining the parsers is shown in Figure
2 following a similar process used by Huang and Cole.51 First, basic
parser functionality was achieved on individual sentences by
successfully extracting the MOF compound name and corresponding
property. The parsers were then tested on a series of sets containing
10 random papers and continuously refined until they achieved a
precision above 80% on one test set. The last step of the process was
evaluating parser performance on a final set of 50 randomly selected
papers from the CSD.
3.2. Technical Validation. This text mining software was

evaluated for reproducibility on a randomly selected array of “unseen”
text, distinct from the training set used to refine the NLP parsers, to
ensure the parser performance achieved on a limited training set can
be consistently replicated for high-throughput application. The three
performance metrics used in evaluation are precision, recall, and F-
score, which can be calculated using eqs 1−3, respectively. True
positives (TP) correspond to data extracted and identified correctly.
False positives (FP) correspond to data which are incorrectly
identified as a match. False negatives (FN) are relevant data which
should be extracted but have not been identified.

Precision
TP

TP FP
=

+ (1)

Recall
TP

TP FN
=

+ (2)

F score 2
Precision Recall

Precision Recall
= ×

×

+ (3)

Precision is the fraction of correctly extracted data, recall is the
fraction of available data extracted, and F-score represents the
harmonic mean of recall and precision. For the estimation of precision
and recall, 50 MOF articles were randomly selected as the test set
from a collection of over 700 articles retrieved by the web scraper
from the CSD: the selected articles can be found in the Supporting
Information. For each extracted record, a value of 1 was assigned if
both the MOF compound name and the corresponding property (e.g.,
synthesis method, linker, etc.) were correctly matched, or a value of 0
if the compound name or the property were incorrectly matched. The
number of total relationships was manually extracted from the same
50 journal articles and compared with the records in the auto-
generated database to calculate recall and precision.

In practice, there is often a trade-off between the precision and
recall of a text mining algorithm. The development and
implementation of rule-based parsers prioritize high precision,

Figure 2. Iterative flow chart depicting the process through which the parsers were refined before database application.

Chemistry of Materials pubs.acs.org/cm Article

https://doi.org/10.1021/acs.chemmater.3c00788
Chem. Mater. 2023, 35, 4510−4524

4512

https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00788/suppl_file/cm3c00788_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00788/suppl_file/cm3c00788_si_003.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c00788/suppl_file/cm3c00788_si_003.pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.3c00788?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.3c00788?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.3c00788?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.3c00788?fig=fig2&ref=pdf
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.3c00788?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


which reduces the overall recall as the parser is less capable of
extracting values from many variations in sentence structure. More
lenient parsing rules increase the overall number of records extracted
and therefore improve recall, but they also show a reduction in
specificity, which reduces precision. Generally, high precision should
be given precedence over recall; low recall is acceptable provided that
a large enough data set is used to compensate for a lower proportion
of the available data being extracted. Examples of the compound
records from this work and previous projects using CDE are shown in
Table S2. We found it extremely challenging to accommodate the
considerable diversity of sentence structures observed in MOF
literature without compromising the precision of the parsers. When
maximizing precision, extracting common and unambiguous senten-
ces observed in MOF literature was prioritized, although it was
expected that lower recall would be obtained compared to previous
iterations of CDE. Figure S1 summarizes the overall performance of
our parsers compared to previous CDE projects and the MOF text
mining tool from Park et al.43 The overall precision for our parsers
was 77%, which we deemed satisfactory, as values approaching 80%
are generally considered sufficient for data-driven materials discovery
via current text mining techniques.51 A breakdown of individual parser
results for the synthesis route, topology, linkers, and metal precursors
can be found in Table S3.
3.3. Parser Training. During parser training, precision was

substantially improved by employing exclusion lists to filter out
frequently observed misidentifications. The addition of common
abbreviations, names, and exclusion list items for metal precursors,
linkers, MOFs, and topologies to the regular expressions helped to
improve both precision and recall. As MOF terminology and literature
are dynamic and rapidly evolving, it is crucial that continued
adaptations be made to this tool to improve its performance. With this
idea in mind, we have made the software open source with the aim of
using open collaboration to add abbreviations or names to the
exclusion lists and compound regular expressions, which will allow the
tool to evolve and improve over time.

Figure 3 shows the process for the selection of regular expressions
that can be incorporated into CDE. Here, we demonstrate how
regular expressions (regex) may be developed iteratively to achieve
more TPs and eliminate FPs and negatives. Table S4 contains
examples of simplified regex used in the creation of the DigiMOF
database. The actual regex which have been integrated into the MOF
version of CDE are available on the associated GitHub (https://
github.com/peymanzmoghadam/DigiMOF-database-master-main.
git) in the chemical entity mention (CEM) and precursor parser files.

It is often preferable to use multiple regular expressions to
accommodate different formats of the same variable. Attempting to
accommodate too many types of matches into a single expression can

increase the number of FPs, as demonstrated by expression number 4
in Table S4 which is the lenient regular expression for common linker
abbreviations. To accommodate a wider variety of sentence structures
to help recognize MOF names, an exclusion list was integrated into
the regular expression rules to exclude FPs, as with expression 9 in
Table S4. Regular expressions within the context of exclusion listing
are further detailed in the Supporting Information in Table S5.
3.4. Obtaining Metal, Topology, and Linker Data. After

parsing was complete, to obtain further, more detailed information
surrounding the metal elements contained with each MOF, we used a
high-throughput approach that involved obtaining the relevant
crystallographic information files (CIFs) for use in the MOFid
software suite.52 Each CIF was entered into the program where it was
then deconstructed, and the metals present in the MOF were
extracted. For topological representations of these structures, we used
the Julia-based CrystalNets53 program to automatically assign network
topologies to all CIFs. This enabled the comparison of algorithmically
assigned values from these software packages with the text-mined data
for verification purposes.

Obtaining linker information proved to be more challenging. We
created “rules” in the CSD Python API to extract linker names which
enabled the simplification of CSD’s long text-based chemical names
into distinct repeating units. For example, the chemical name for
SAHYIK within the CSD is “catena-(tris(μ4-1,4-Benzenedicarboxylato)-
(μ4-oxo)-tetra-zinc octakis(dimethylformamide) chlorobenzene clath-
rate)”. These names were initially treated by extracting the metal
names, in this case zinc, and adding them to the list of metals for each
structure. Then, the remaining text is split based upon the names
which succeed μ, indicating that there are repeating units; the
remaining non-chemical items such as “catena-” and “tris” are also
discarded here. These repeating units are then transformed to match
the chemical names found in the list provided by TCI Chemicals54 for
common MOF linkers. For this first entry, e.g., “1,4-benzenedicarbox-
ylato” is modified to “1,4-benzenedicarboxylate”, which can also be
represented by its alias terephthalic acid and is then matched to the
TCI Chemicals list. The second μ corresponds to the string “oxo”,
which is discarded as it refers to the repeating oxygen molecules in the
zinc oxide node. Anything that succeeds the metal in the chemical
name and is separated by a space is removed and retained for further
processing as possible solvents used in the synthesis. Figure 4 shows
the outcome of this process for the 30 most frequently extracted
records taken from a list of 149 unique chemical names and matched
after both a manual and an automatic transformation process were
performed. The matching list, which includes linker synonyms and
chemical prices, can be found in the Supporting Information
TCI_Chemicals (XLS) document.

Figure 3. Flow chart displaying possible outcomes when fed an input string for high-throughput MOF name parsing.
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3.5. Geometric Properties. By analyzing the text-mined data,

correlations between different MOF topologies and structural

properties were unveiled by determining a complete set of geometric

properties and investigating the patterns which emerged from known

and unknown relationships. The largest cavity diameter (LCD), pore

limiting diameter (PLD), accessible surface area (ASA), frameworks

density, the presence of open metal sites, and void fraction of all 3D

MOFs in the subset were calculated using Zeo++ software55 to

quantitatively characterize their structural properties. A probe radius

of 1.86 Å, corresponding to the kinetic radius of N2, was applied for

ASA calculations. The results of these calculations can be found in the

DigiMOF3DSubset (CSV) document of the Supporting Information.

4. RESULTS AND DISCUSSION

We note that for a MOF compound name and the
corresponding property relationship to be entered into the
DigiMOF database, both the MOF compound name and
property had to be recognized by the parsers. Overall, 15,501
MOF compound name and property relationships with over
52,680 associated properties were extracted from the CSD
MOF subset which contains 43,281 unique MOF publications
and over 100,000 MOFs. Table 1 displays the total number of
each type of synthesis property associated with MOFs, in
addition to the total number of unique properties of each type.

Figure 4. Collection of the top 30 organic linkers obtained via text-mining the CSD MOF subset chemical names. Hit counts (C) and CAS
numbers are included for each linker.
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The full list of MOF names and their relevant properties can be
found in the Supporting Information.

The DigiMOF database contains a MOF compound name
and corresponding topology, organic linkers, metal precursors,
synthesis methods, or solvent for approximately 15% of
structures within the CSD MOF subset. One important factor
to consider is that not every publication discusses all of these
properties. If a compound is labeled as “1” or “2” without a
specifier such as “compound”, “complex”, or “MOF”, then the
parsers will not associate the label with anything and so cannot
extract a property relationship. We must also note that full
access to every article within the CSD was not possible, either
due to the location in which the article was published or that
the corresponding papers were written in languages other than
English. An extended discussion on how the parsers function is
located in the Database Overview and Performance section of
the Supporting Information. In the following sections, we
summarize our key findings after text mining the CSD MOF
subset.

To enrich the database of 10,696 3D structures extracted
with CDE, we also gathered additional information using
alternative computational methods as detailed in Section 3.4.
Table 2 shows a breakdown of the parameters we extracted and

calculated to supplement the text-mined data set. A total of
24,784 3D MOFs were admitted to the calculation stages,
where the constituent metal was identified for 23,832
structures, and either an RCSR or EPINET topology was
assigned for 13,816 3D structures.

Here, we note that despite obtaining 10,690 unique linker
names in the text mining stage for journal articles, once we take
the more uniform CSD chemical names and match
synonymous chemicals together, we collected information for
at least one linker type for 40% of materials that have suitable
chemical names for the matching process. The complete data

for linker names, metals, and topologies can be found in the
Supporting Information DigiMOF3D subset (CSV).

5. DATA ANALYSIS

5.1. Synthesis Methods. When analyzing the data for
synthesis methods, we first investigated how synthesis methods
have changed over time. A total of 9705 synthesis route
records were extracted from 43,281 papers. Figure 5 shows the
cumulative sum of records extracted for various types of
synthesis routes from 1995 to 2020. Solvothermal synthesis in
the context of MOFs generally refers to the use of one or more
organic solvents such as DMF and methanol at high
temperatures. Hydro(solvo)thermal synthesis generally refers
to reactions where water is employed as a part of a solvent
mixture. Hydrothermal synthesis refers to reactions where
water is the primary solvent and is itself a type of solvothermal
synthesis. A significant result was the extraction of more
hydrothermal (5,677) synthesis methods than solvothermal
(3,672). This is surprising as the most common laboratory-
scale MOF synthesis routes are solvothermal; however, many
papers do not explicitly name this as their synthesis route but
instead imply it by mentioning the use of solvents and high
temperatures in the Methods Section. These implicit synthesis
routes could be easily deduced by a reader but are challenging
to extract using rule-based NLP algorithms which are looking
for a specifier word such as “solvothermal”. Figure S7a also
shows that hydrothermal synthesis was the most common
alternative/low-solvent synthesis route extracted by the
parsers.

We also note that the majority of synthesis route records are
from articles published in the last 10 years; this reflects the
rapidly increasing interest and investment in MOF compounds
and in alternatives to the solvothermal synthesis method. In
fact, 6033 (62.2%) of the total synthesis route records may be
classified as alternatives to solvothermal synthesis, which
reflects greater interest in developing alternative synthesis
routes, particularly when considering that high solvent-use is
inhibiting MOF scalability. Rapid increases can be observed for
more novel synthesis routes, with an overwhelming majority of
solvent-free synthesis papers published after 2010 (76%
microwave-assisted, 95% sonochemical, 86% mechanochem-
ical, and 88% liquid-assisted grinding). There is also likely to
be some cross-over between these methods, as liquid-assisted
grinding and sonochemical methods are themselves subsets of
mechanochemical methods and may be used in various
combinations for MOF synthesis. This trend of utilizing
greener synthesis methods is also reflected in innovative MOF
commercialization efforts such as the ton-scale water-based
processes that BASF has developed56 and the mechanochem-
ical process from MOF Technologies.57

The DigiMOF database allows users to search for potentially
scalable MOFs via the synthesis method to discover MOFs
that can be more easily synthesized and tested with the
equipment and resources available to them. In the future, an
alternative web search query method of database assembly
could be used in place of the CSD reference code method to
assemble a corpus using queries such as “solvent-free MOF
synthesis” or “mechanochemical MOF synthesis”, expanding
the database to include more MOFs that can be produced
using alternative synthesis methods and novel synthesis
techniques for MOFs already logged in the database with
more conventional synthesis routes. The synthesis method
parser should be continually updated to allow it to parse novel

Table 1. Total Number of Extracted Properties and the
Number of Unique Properties for Each MOF Property in
the DigiMOF Database

property
total

extracted
total unique properties

extracted

MOF compound names 15,501

synthesis route 9705 8

Solvents 1211 81

Topologies 6680 154

Linkers 24,116 10,690

metals including ions 10,968 1803

metals excluding ions and element
names

5163 1476

Table 2. Total Number of Extracted Properties and Number
of Unique Properties for Structures in the 3D MOF Subset

property total extracted total unique properties extracted

MOF compound names 24,784

Topologies 13,816 460

Linkers 15,901 129

elemental metals 23,832 716

LCD and PLD 22,104

Density 24,587

open metal sites 763

geometric properties >6474
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synthesis methods and procedures, as and when they become
more prominent in MOF literature and may be extended to
parse for post-synthetic methods such as linker substitution.
5.2. Topology. Topological characterization of MOFs is

important as it can constrain key structural properties such as
pore shape, size, and chemistry, and it is directly related to
mechanical stability.50 Figure 6a. shows the distribution of
topologies identified in the CSD MOF subset: we extracted
112 unique topologies across a total of 6680 results. The most
frequently occurring topology was pcu with 946 hits, followed

by sql and dia with 822 and 482 counts, respectively. In some
publications, the parsers picked up variations of certain
topologies, e.g., sql, 44-sql, (4,4)-sql, and (44)-sql as separate
entries. From the top ten topologies shown in Figure 6a, sql,
hcb, and kgd are 2-periodic, and the remaining seven exhibit 3-
periodic frameworks. The Supporting Information provides a
full list of MOF names and topologies identified. We also
performed topological characterization of the 3D MOF subset
using CrystalNets53 and achieved a return of 55.8% across 460
unique topologies. We note here that the CrystalNets

Figure 5. (a) Cumulative sum of the two main MOF synthesis methods from 1995 to 2020. (b) Cumulative sum of alternative and emerging
synthesis methods showing periods where these techniques were first introduced for MOF synthesis.

Figure 6. Histograms of topological types extracted from the CSD MOF subset using (a) ChemDataExtractor (CDE) (b) CrystalNets in 3D
structures. (c) Top five most common 3D topologies: pcu, dia, pts, rtl, and cds.
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calculations allowed for the extraction of topological types that
matched the EPINET58 database, whereas our text-mining
approach was specifically developed to seek out RCSR59-type
topologies. Figure 6b shows the occurrence of the top ten
topological nets with pcu as the most frequently occurring
topology, followed solely by 3D representations in dia, pts, rtl,
and cds rounding out the top five. Figure 6c shows examples of
commonly occurring 3D underlying nets. An additional
outcome of this study was that 2375 structures in the 3D
MOF subset were built from two or more interpenetrating
nets. We anticipate that this topological characterization of
MOFs will also guide future efforts to identify mechanically
stable MOFs.

We used the topological data to investigate the topology−

structure relationships for certain geometric properties. Figure
7 shows the different regions that are occupied by a selection
of five topological types. For some representations, there does
not appear to be any restriction on the types of pores that can
be formed with a wide variety of void fractions seen for pcu
and dia. Both representations span a range of void fractions
between 0 and 0.85 across and the LCD range of 3.7−15 Å.
On the contrary, there are some slightly more distinct linear
patterns between the LCD and the void fraction for other
representations, which are particularly noticeable for stp and
rob. The former shows a distinct linear pattern within the
region of 5 to 10 Å and 0.2 to 0.35 void fraction and displays a
similar linearity into the 15 to 20 Å range.
5.3. Solvent. Dimethylformamide (DMF) is the most

frequently extracted solvent, representing 469 of the 1211
extracted solvents. Water is the second most frequently
extracted solvent with 186 counts for which 127 were paired
with hydrothermal synthesis routes. The remainder of the
water solvent records were merged with solvothermal or
hydro(solvo)thermal synthesis routes, which could reflect the
common use of solvent mixtures containing multiple reagents
such as DMF, water, and ethanol. The parser does not have the

capability to extract lists or mixtures of solvents unless they
appear consecutively in a string without whitespace, e.g.,
“DMF/H2O”. The additional top hits for solvent extraction
can be seen in Figure S7c.

The presence of organic solvents such as DMF, DMA,
ethanol, and acetonitrile demonstrates that despite increased
research into alternative synthetic pathways, many existing
synthetic procedures are still reliant on organic solvents and
failure to eliminate large volumes of such solvents in MOF
synthesis is one of the largest barriers to MOF commercializa-
tion. It should be noted that while the CSD includes solvent
information, most of these records are missing from the
database. These parsers offer the ability to search for MOF
synthesis routes associated with a given solvent, thereby
allowing researchers to limit screening to hydrothermal
synthesis or to solvothermal synthesis techniques with cheaper,
less toxic, or more readily recoverable solvents.
5.4. Organic Linkers. Histograms in Figure S7d show that

carboxylate-type linkers were the most frequently extracted
type of organic linkers, with over 432 associated records.
Specific carboxylate linkers, e.g., benzene dicarboxylate acid
(BDC), were not extracted more frequently because these
linkers are more generically referred to as carboxylate or
dicarboxylate without specification of the exact structure.
Other challenges with NLP parsing of MOF linkers in the
literature were inconsistencies in linker abbreviations and
naming conventions. For example, “bpy” and “bipy” are used to
denote specific bipyridine-type linkers such as 2,2-bipyridine
and 4,4-bipyridine.60,61 While researchers may be referring to
specific linkers when using these abbreviations, these labels are
not consistently used to refer to any one distinct structure.
Records for “bpy” and “bipy” were merged as “bipy” to denote
generic bipyridine-type linkers. Following data transformation
where instances of “4,4-bipyridine”, “4,4-bipy”, and “4,4-bpy”
were merged as “4,4-bipy”; 273 records were associated with
“4,4-bipy” and 267 with “bipy” representing the 2nd and 3rd

Figure 7. Comparison of different topologies in the structure space for LCD as a function of void fraction for ∼2200 porous MOFs. There are 241
structures with pcu topology (green); 170 dia (purple), 41 stp (red), 33 rob (yellow), and 32 fsc (orange) structures. All other structures are
shown in pale blue.
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most extracted linkers, respectively. Similar transformations
were conducted for 2,2-byripidine linkers with 109 records.
Carboxylate (H3BTC, BDC, carboxylate, dicarboxylate) and
pyridyl-type linkers (4,4-bipy, 2,2-bipy, bipy, bpe, and bpp)
were the most dominant linker types extracted by the parsers.
Other notable linkers included imidazole-type bridging ligands
such as “bimb” (phenylenebis(methylene)bis(1H-imidazole)).
“H2L” was the 4th most extracted linker with 251 associated
records. This does not refer to a specific chemical structure;
instead, it is a generic label used within the MOF literature to
refer to a number of organic linkers.62 This means that the
linker chemical formulae may be explicitly named in one part
of the text and then simply be referred to as “L”, posing
considerable challenges for NLP parsing. In some instances,
researchers do not elaborate on the chemical formula of the
linker within any part of the text and use a generic L-type
notation or refer to the general structure (e.g., carboxylate).
The usage of generic labels and general compound class names
may reflect increased trends toward more complex and
functionalized linkers in MOF synthesis, which may make
consistent identification and naming of these structures more
challenging.63 The chemical diversity of MOF linkers is an
important factor, particularly when considering the application
of ML on these data sets.64

To combat this ambiguity, we developed a new approach to
text extracting MOF linker names using the chemical names
found in the CSD, as these are available for over 99% of all
deposited structures. The result of this text mining required
some manual intervention as CSD chemicals can have different
naming protocols; for example, one might find 1,3,5-
benzenetricarboxylate or the synonymous benzene-1,3,5-
tricarboxylate both used within this data set. There are in
fact tens of examples of similar synonymous chemical names

being used across the 149 linker names we used as our match
list. Overall, this new method had a significantly higher
accuracy given the strict designations for similar linker
molecules. For example, the distinction between 4,4′-
bipyridine and 2,2′-bipyridine, when compared to the CDE
text mining results, avoids the need to note “generic
bipyridine-type linkers” and enables deeper analysis of similarly
named but chirally different molecules. Figure 8a shows the
frequency at which a linker type was reported for structures
that contained reference to only a single linker but also had a
non-zero cavity diameter. This data was then used to separate
linkers depending on their length, which was determined by
the number of consecutive blocks, e.g., number of benzene or
pyridyl rings, into categories of 1 or 2+ blocks. The difference
between the linker length and their respective MOF LCD
ranges is shown in Figure 8b. We note here that the longer 2+
block linkers have a larger LCD range from 1.3 to 12.3 Å,
whereas shorter one-block linkers span a slightly smaller range
of LCD values from just above 0 to 8.5 Å. Interestingly, despite
the mean LCD following the pattern of increasing with linker
length, there are several one-length linker structures that far
exceed the average LCD of MOFs built with two or greater
length linkers. Once the linkers had been categorized with
respect to their length, it was possible to investigate the pore
morphology, as shown in Figure 8c, a box and whisker plot of
linker length against the LCD/PLD ratio. The results here
suggest that shorter linkers with one block can generate
structures with a wide range of LCD/PLD ratios, whereas
longer linkers containing 2+ blocks generate structures on
lower ranges of LCD/PLD ratios of <2.5: a finding which is
dominantly due to larger PLD values in these structures.
5.5. Metal Precursor. The choice of metal precursors is

also important for MOF synthesis; certain metal clusters such

Figure 8. (a) Histogram showing the most commonly occurring single linkers found in the 3D MOF subset for non-zero LCD values. (b) Box and
whisker plot of linker length versus the LCD/PLD ratio across a sample of ∼8000 MOFs. (c) Box and whisker plot of linker types against LCD for
a sample of linkers with one (orange) and two or more (blue) blocks.
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as metal oxides can provide cost-effective and flexible MOF
production routes as well as control over structural topology
and shape. Our parser extracted many metal precursors in the
form of a metal element, ion name, or symbol: this is shown in
Figure S7e. Zinc-based precursors were most frequently
extracted, with “Zn(NO3)2·6H2O” representing 365 of the
merged records. Zinc salts represented three of the most
extracted metal precursors, accounting for 36% of the 1481
records. This is unsurprising given the prevalence and
popularity of zinc-based MOFs; however, the absence of
zirconium salts from the top 10 metal precursors is unexpected.
One reason for the lack of zirconium salts is that papers discuss
zirconium precursors as “Zr”, as can be seen by 212 hits in the
database for “Zr”, shown in Figure S3. Additionally, compared
to zinc and copper-based MOFs, Zr-based MOFs were not
widely produced until after 2012.65 The second most
frequently extracted metal salt was “Cd(NO3)2·4H2O” with
177 merged records, followed by nitrate salts of Zn, Co, and
Cu. The ability to cross-reference MOF structures with their
metal precursors from proven synthesis procedures will allow
MOF scientists to rapidly screen structures for criteria such as
metal nodes or precursors associated with desirable properties,
greater material abundances, and lower costs. Searching by
metal precursors will also provide valuable insight into MOF
building blocks in cases where records include MOF names
which are not directly based on the MOF structure or formula.

Figure 9a shows the most frequently occurring single metal
types in the MOF subset as identified using MOFid.52 Figure
9b shows the relationship between metal types and the typical
LCD values expected for each MOF containing that metal. The
most common metal, Zn, contains over 1200 entries in the
database, for which 752 or 60% can be considered porous such
that they have an LCD which exceeds the probe diameter of
3.7 Å. For Co and Cd, this ratio decreases to 51 and 41%,
respectively. The lowest proportion of porous MOFs from the
metals can be found for structures containing Na, where only
34% of entries have LCDs greater than 3.7 Å. Na-containing
MOFs have the lowest mean LCD of all metals at 1.5 Å,
whereas Cu-MOFs have the highest at 4.6 Å, with the average
LCD across all metals sitting at 3.5 Å.

5.6. Temperature. The CSD database contains temper-
ature entries for almost all deposited structures when DOI
records were extracted from the CSD Python API, it was also
possible to extract corresponding temperature records without
error. The results of these extractions, which have been
rounded to the nearest whole degree Kelvin, can be seen in
Figure S7f�it is important to note that these values are not
the synthesis temperatures of the materials but are of the
variable-temperature crystallographic studies. These are the
temperatures used in post-synthesis investigations at which the
results of certain experimental procedures in each manuscript
have been reported, specific to each material. This data does
not guarantee the stability of MOFs at these temperatures.
Typically, an experimental structure is tested and reported at
or around room temperature, explaining the spike in records at
293 K. It is also common that a Cryostream or other device is
used to cool a sample for low-temperature crystallographic
testing. We would recommend the introduction of more useful
temperature data fields, such as activation temperature,
destabilization temperature, or solvent/synthesis/reaction
temperature, alongside the existing crystallographic study
temperatures.
5.7. Building Blocks and Topology. The underlying

networks of the extracted MOF structures can be investigated
using insight gained from the data presented in Figure S4.
There are 4972 linker hits for which there was a corresponding
topology and a further 1424 results for metal clusters. Taking
into consideration the top five most frequently parsed linkers
and metal precursors from Figure S7d,e respectively, we can
deduce the top five topologies for each MOF building block.
These results are represented in a clustered column graph,
Figure S4. Furthermore, additional data obtained via
CrystalNets53 has offered insight into the topological
configuration of 3D MOFs in the DigiMOF database, with a
return rate of ∼55%. A filter can be applied to this data set to
select all matched linker types for a given topology.

The top linker type extracted using CDE, [“carboxylate”]
corresponded to a total of 100 topologies, the most frequent
being sql (12), and pcu (12). These two topological types
emerged as the most frequent for almost all investigated linkers
and metal clusters, an unsurprising result considering the high

Figure 9. (a) Histogram of the most frequently occurring single metals found in the 3D MOF subset. (b) Comparison of the constituent metals
against the LCD of structures.
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frequency of these two representations across the whole study.
These are two of the simplest underlying structure
representations, which may explain their abundance; more
complex structures are less likely to have topology reports due
to potential errors, and additionally, it is common to report the
most simplified underlying net even where a more complex
representation exists. For the 3D data set, the highest linker
type [“oxalic acid”] corresponded to a total of 66 unique
topologies, with the most frequent being dia (84), followed by
pcu (50).

In 2014, a study by Cai et al. investigated the crystal
structures of derivatives of HKUST-1, which notes that for H-
BTC (the 5th most common linker type), the predicted
topological type is tbo; however, variations in the functional-
ization of this same linker can give rise to a preference for fmj
connectivity using the same building blocks.66

Perhaps more interesting than the results for linkers is that
of metal clusters; typically, linkers are connected only at each
edge, although in some less common cases (e.g., where linkers
consist of porphyrins and derivatives), there can be a higher
number of connections. Depending on the coordination of
certain metal clusters, it can be impossible to achieve some
topological types, making the choice of the metal cluster more
restrictive than the choice of the linker; a significant influence
on the potential underlying network of a crystal structure.
From these metal cluster results, we can deduce that transition-
metal nitrate structures form some of the simplest underlying
nets with sql, pcu, dia, and kgd being frequently reported in
synthesis papers. This variety of 2 and 3 dimensional, and 4-
connected, 6-connected, and 6 plus 3-connected clusters
suggests flexibility in the coordination number of these
transition-metal building blocks.

Further to this point, it is worth noting the influence of
temperature on the dimensionality of MOF structures.
Reaction temperature has been found to have a remarkable
influence on the formation and structure of MOFs, especially
toward the control of topology.67 Increasing the hydro/
solvothermal reaction temperature has the potential to increase
the coordination number of the central metal ion.68 Anderson
et al. suggested that a temperature-dependent quantity such as
free energy, which would have a notable influence toward the

topological selectivity of MOF synthesis, should be considered
in MOF synthetic accessibility predictions.69

5.8. Cost Analysis. As a result of improving the accuracy in
linker designation from Section 5.4, and from the use of a
matching list modified from the publicly available TCI
Chemical list, it was possible to add an approximate linker
cost analysis to our data set, given the availability of pricing
data for these chemicals.54 We took the TCI Chemicals list and
added several other commonly used organic materials,
followed by the inclusion of live online prices, these costs
are typically for quantities of 99%+ purity precursor chemicals.
Due to the inclusion of additional listings, it was necessary to
obtain some missing cost values from Sigma-Aldrich to get a
complete list of approximate linker “raw chemical” costs.70 The
available quantities varied between all linker types, and so the
prices in this list were determined by taking into consideration
all of the possible prices and finding the mean cost per gram.
Figure 10 shows the results of the linker cost analysis on some
of the most prevalent linkers detailed in Section 3.4. As the
structures obtained from the CSD MOF subset are
experimental, we expected to see most of the structures
containing lower cost linkers for the simple reason that they
would be more economical to produce. While the range of
linker costs across the chemical list spans £0.05 to £830 per
gram, out of the top 45 linkers, 40 of them had a cost per gram
under £10, as can be seen in Figure 10a. This sample of linkers
in the “low-cost” range spans a total of 6643 structures. Figure
10b also shows a total of 33 linkers that exceed a cost of £10
per gram, although they make up a much smaller proportion of
the total structures that have been identified as linkers in this
study.

The results of this cost analysis can be used to select specific
linker types for techno-economic assessment in conjunction
with limiting solvent quantities, finding optimal reaction
temperatures, selecting suitable catalysts, and selecting low-
cost metals. The cost per mole of each linker type can also be
found in the Supporting Information document, TCI_Chem-
icals (XLS).

Figure 10. Bar charts showing the cost per gram of organic linkers as determined by averaging the available quantities. A selection of the most
prevalent linker types was chosen from the DigiMOF database for (a) low-cost and (b) high-cost linkers. Prices obtained from TCI Chemicals.54
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6. CONCLUSIONS AND FUTURE DIRECTIONS

To the best of our knowledge, the DigiMOF database is the
first automatically generated database of MOF synthesis
properties using ChemDataExtractor to text-mine 43,281
MOF publications. After an iterative training process, the
parsers yielded an overall precision of 77% to extract 52,680
associated MOF synthesis properties. This initial text-mined
data was supplemented with additional data mined from the
CSD MOF subset, which enabled the identification of linker
types and their corresponding costs. DigiMOF will allow
researchers to search for key properties related to implement-
ing large-scale MOF production, e.g., synthesis routes and
solvents, organic linkers, metal precursors, structure topology,
constituent metals, and linker cost. We envisage DigiMOF as
an invaluable tool to both MOF scientists conducting high-
throughput computational screening and experimentalists
evaluating MOF properties empirically. The software and the
parsers developed here are open-source to allow researchers to
update our regular expressions as new compounds emerge,
ensuring these algorithms can continue to identify new MOF-
property relationships. With minimal additional effort,
researchers can employ the modified CDE scripts to generate
their own database; with more focused search queries to study
alternative MOF production pathways by making very basic
alterations to the parsers. The ability to cross-reference and
merge data using DOIs allows researchers to readily merge or
expand this database to include other properties, which pique
their interest.

DigiMOF is primarily focused on the production of MOF
compounds but also includes basic geometric properties to
offer an additional level of insight. Additional parsers can be
developed to extract properties related to scalability and
synthesis, such as the reaction temperature, space-time yield,
heat of adsorption, reaction time, and regeneration time�all
essential parameters for enhancing MOF synthesis pathways.
We also recommend that future MOF synthesis publications
contain specifically formatted tables of key information as an
appendix to the article, presented in a way that is friendly to
text mining algorithms to enable the scraping of data using a
high-throughput screening approach, improving both the
precision and recall of any chemical journal parser. By
improving the precision and recall of structure property
parsing beyond the levels we see today, there is the potential to
enable an accurate and reliable database of synthesis data to be
created in the public domain that can be continually and
accurately updated following new publications.

We envisage that this work will lay the foundation for
enabling digital manufacturing of MOFs and facilitate the
identification of commercially viable MOF production path-
ways. With over 15,000 unique MOF records, this data can be
used to further assess the viability of alternative MOF synthesis
routes and to drive further techno-economic assessment, life-
cycle assessment, and experimental validation work. DigiMOF
could therefore help to reduce the overdependence within the
MOF community on unsustainable synthesis routes, which
currently precludes the application of these structures in
decarbonization technologies that motivate many contempo-
rary MOF research proposals. With thousands of entries for
each parameter parsed in this study, DigiMOF augments MOF
scientists’ expertise, allowing them to design more efficient
MOF discovery pathways and advance the synthesis of these
fascinating materials.
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