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Abstract— System identification (SysID) is the art and science 

of dealing with dynamic data modelling problems from systems 

science perspectives. It has been an active field and is still very 

active today, due to its wide range of applications, especially its 

basic principles of finding transparent, interpretable and 

parsimonious models for different purposes. The past decades 

have witnessed the explosive growth in machine learning (ML) 

and its applications in all areas of science and engineering. 

Meanwhile, there has been an increasing demand for the 

development of transparent, explainable and/or interpretable ML 

models.  This paper proposes a new framework for developing 

System Identification-informed Transparent and Explainable 

MAchine Learning (SITEMAL) models. A case study, involving a 

real power consumption dataset, is presented to demonstrate the 

application of the proposed modelling framework and its 

performance for power consumption forecasting.          

Keywords—system identification, machine learning, transparent 

model, explainable model, power consumption. 

I. INTRODUCTION 

System identification (SysID) is the art and science of 
dealing with data modelling problems from systems science 
perspectives, as stated in the pioneering paper [1]: 
“identification is the determination, on the basis of input and 
output, of a system within a specified class of systems, to which 
the system under test is equivalent.”  There has been much 
overlap and interplay between SysID and machine learning 
(ML) during their entire evolution, from the beginning until 
now. Both of them have their own main specific focuses. SysID 
pays more attention to best model identification, or more 
specifically, best model structure detection, which are usually 
transparent and parsimonious so as to facilitate late-stage 
analysis, explanation, interpretation or other purposes. Machine 
learning is more concerned with achieving best prediction 
performances than with model explanation and interpretation. 
Most ML models, especially deep learning (DL) models, are 
black-box, which may produce good predictions but lack 
interpretability [2]-[5].         

In system identification, it is usually assumed that a priori 
knowledge about the system’s inherent structure is not available. 
For a given system, if the number of observations or 
measurements of the input and output signals is sufficiently 
large and the data are sufficiently informative (e.g., the input 
data are rich enough, or ideally persistently exciting), then most 
of the state-of-the-art system identification methods (see e.g. 
[6]-[8]) can provide good models for the system.  

Machine learning has a broad spectrum, involving a large 
group of computational methods and algorithms for building 
models for solving a variety of tasks, which can be roughly 
categorized into two main streams: classification and regression. 
Most tasks, where ML is commonly used, only involve static 
data; some others involve data from dynamical systems but the 
central objectives are to make predictions, with little attention 
being paid to model transparency, explanation and/or 
interpretation. In comparison with ML, SysID covers a 
relatively narrower spectrum of model types, which are built 
based on data from dynamical systems and usually used for a 
variety of purposes including control [9]-[11], system  analysis 
[12][13], interpretation and simulations [14]-[18], and 
prediction or forecasting as well [19][20]. It is worth mentioning 
that there has been continuing interplay or synergy between 
SysID and ML over the past years. For example, in [21]-[23], 
ML models were used for system identification but the main 
focus was on forecasting. In [24]-[26], deep neural networks 
were used as a tool for nonlinear system identification, and in 
[27][28], the link, interplay and synergy between SysID and ML 
were investigated.           

This paper is mainly concerned with modelling and analysis 
of multi-input systems, aiming to develop a new framework for 
building System Identification-informed Transparent and 
Explainable MAchine Learning (SITEMAL) models. The main 
contributions of the paper include the proposal of a SITEMAL 
framework, and the identification of sparse and transparent 
predictive models which are useful when interpretation and/or 
explanation becomes necessary or highly desirable.    
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II. A BRIEF OVERVIEW OF SYSTEM IDENTIFICATION AND 

MACHINE LEARNING  

This section presents a brief overview of SysID and ML, and 
the focus will be on modelling methods for multi-input systems.  

A. System Identification 

Mathematical models play central roles in almost all areas of 
science and engineering. For many complex systems, especially 
complex nonlinear dynamical systems, it is almost impossible to 
establish accurate mathematical models using first-principle 
modelling approaches. Data-based or data-driven modelling 
methods, can therefore provide a highly effective and attractive 
alternative for obtaining system models. For dynamical systems, 
the technique that is used to derive models from measured input 
and output signals is called system identification [6]-[8], where 
it is usually assumed that a priori knowledge about the system’s 
inherent structure is not available. As an example, consider the 
case of multiple-input, single-output (MISO) systems, with an 
assumption that the system true model structures are not known, 
but the system input and output signals are available. A simple 
illustration graph is shown in Fig. 1.     

 

 

 

Fig. 1. A multiple-input, single-output system. 

Such a system can usually be represented by a Nonlinear 
Lagged Inputs and Outputs (NLIO) model [9]-[13] as follows: 
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where 𝑢𝑢1(𝑘𝑘), 𝑢𝑢2(𝑘𝑘),…, 𝑢𝑢𝑣𝑣(𝑘𝑘) are v input sequences, 𝑦𝑦(𝑘𝑘) is 

the system output sequence, and 𝑒𝑒(𝑘𝑘) is noise sequence; 𝑛𝑛𝑦𝑦, 𝑛𝑛𝑢𝑢 

and  𝑛𝑛𝑒𝑒  are the associated maximum time lags; τ is the time 
delay between the response and the model input variables, and 

usually τ = 0 or τ = 1; 𝑓𝑓(∙) is some unknown function that needs 
to be built from available training data. Model (1) is a special 
case of the well-known Nonlinear AutoRegressive Moving 
Average with eXogenous inputs (NARMAX) model 
[7][29][30]. 

In many applications, only a small number of important 
model terms are needed for characterizing the system 
behaviours. An efficient model structure detection method is 
highly needed to select the most significant model terms. One of 
the most efficient and commonly used algorithms for model 
term selection is orthogonal least squares (OLS) [31] and its 
variants, such as forward regression with orthogonal least 
squares (FROLS)[7]. A detailed description and pseudo-code of 
the OLS algorithm can be found in [32] and [33]. Models 
produced by these algorithms are usually transparent, 
interpretable, parsimonious and simulatable (TIPS) [14]-[16].   

The following well-known single-input, single-output 
(SISO) AutoReressive with eXogenous (ARX) model is a 
special case of the NARL model:  
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B. Machine Learning 

Machine learning, as a main branch of artificial intelligence 
(AI), aims to enable computers to learn from data, and gradually 
improve the leaning ability and power with time, without 
needing to be explicitly programmed. ML algorithms are able to 
find patterns (e.g., inherent dynamics, features, anomalies, links 
and relationships between different variables) in training data 
and learn from data, and gradually are able to make predictions 
or even decisions by machines themselves.  

Fig.2(a) shows the structure of an artificial neural network 
(ANN) machine learning model for a system with 10 inputs and 
1 output.  The structure of the ANN model is assumed to be 
known here, but in practice the following information is not 
known:  what happens within the three hidden layers, how the 
input variables interplay or interact with each and how the output 
is related to these input variables. So, unlike in SysID, where 
models are usually transparent, most ML models, especially 
ANN (including deep neural network) models, are opaque. That 
is why ANN is usually referred to as a black-box modelling 
approach, as shown in Fig.2(b), where the relationships between 
the inputs and output are not explicitly known. 

 
 

 

 

 

 

 

 

Fig. 2. A neural network model for a 10 inputs, 1 output system. 

 

C. A Simple Comparison Between System Identification and 

Machine Learning 

A basic comparison between SysID and ML is presented in 
Table 1. 

TABLE I.  SIMPLE COMPARISON BETWEEN SYSID AND ML  

Features SysID ML 

Model transparency Yes (generally) No (generally) 

Model interpretability Yes (generally) No (generally) 

Does it need large data? No Yes (generally) 

Does it work for small data? Yes No (generally) 

Nonlinear presentation ability It depends Very strong 

Generalization ablity Good It depends 

For regression problems? Yes Yes 

For images (e.g. classification)? No Yes 
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III. THE PROPOSED SITEMAL FRAMEWORK 

For linear modelling problems, there exist mature methods 
and algorithms [6], so this section focuses on nonlinear system 
modelling using both nonlinear SysID methods and ML 
techniques. 

A. Nonlinear System Identification 

      For simplicity and convenience of description, we start with 
a simple special case of the NLIO model (1), where v, ny, nu, and 
τ are set to v=2, ny = nu =1, v=1 and τ = 0, therefore, model (1) 
reduces to 

( ) ( ( 1), ( ), ( 1)) ( )y k f y k u k u k e k= − − +                  (3) 

      In practical nonlinear SysID, the unknown function 𝑓𝑓(∙) can 
be approximated by using a set of basis functions. The most 
commonly used basis functions are polynomials [7]. To 
construct NLIO polynomial models, a dictionary consisting of a 
good number of candidate model terms is usually defined first. 
For example, for the above system (3), a dictionary of nonlinear 
degree 2 is as follows: 
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               (4) 

     The orthogonal least squares [28] and its variants (see e.g. 
[12][13][29][30]) can be used to determine which model terms 
are important and should be included in the model. The final 
identified model could be quite simple as follows: 

( ) 0.6 ( 1) 1.5 ( 1) 25 ( 1) ( 1)y k y k u k y k u k= − + − + − −       (5) 

Note that the nonlinear degree of the above model is ℓ =2, which 
is determined by the highest degree of all the model terms. 

B. System Identification-informed Machine Learning  

A multi-input nonlinear system identification task can be 
described as follows. There is a response variable y that is 
dependent on a set of explanatory variables 

1 2{ , ,..., }nx x x=x . 

A collection of observations of the input and output variables are 
available, which are denoted by { ( ), ( )}k y kx  (k =1, 2,…, N). 

The true dependent relationship between y and x is not known. 

The main task of SysID is to find a model ˆ ( )f=y x that 

approximates the input-output relationship as close as possible. 
Note that in many real applications, the value of the output y at 
time instant k depends on previous values of the input and output 
signals. For example, if a system can be well represented by 

model (3), then its output value y at instant k depends on u(k), 

u(k-1) and y(k-1). So, the set of x is composed of these lagged 

input and output variables, that is, x(k)={x1(k), x2(k), x3(k)} = 

{u(k), u(k-1), y(k-1)}. 

The basic idea of the proposed SITEMAL framework is to 
take advantage of the models produced by nonlinear system 
identification techniques, which have TIPS (transparent, 
interpretable, parsimonious and simulatable) properties [14]-
[16]. Some powerful nonlinear system identification 
methodologies, such as the NARMAX methodology [7], 

provide useful information on how many lagged variables are 
involved in the modelling procedure, which variables interplay 
or interact with others, which regressors (terms) are important, 
and so on. Such information is useful for building ML models.  

The implementation process of SITEMAL is as follows. 

1)  Building a NLIO model using NARMAX methods; 

2)  Building an ML model using the obtained NLIO model;   
3) The NLIO model can be used to explain which input 

variables are important and how these important input 
variables interactively and collectively determine the 
system response. In the meantime, the NLIO+ML model 
can be used to predict the system future behaviour.  

   
Note that in the above step 2), the ML model is built as 

follows. Let the NLIO model built in step 1) is ˆ ( )sf=y x , 

where xs is a subset of x, whose elements are those variables 
appearing in the NLIO model built in step 1). The error or 
residual of the model is: 

ˆ ( )sf= − = −r y y y x                                       (6) 

Theoretically, if the NLIO model is good enough to represent 

the input-output relationship of the system of interest, then r 

cannot be predicted using the predictors in xs; otherwise, 

another ML method can be used to predict the error r. In this 
way, features and patterns that are not captured by the NLIO 
model may be further exploited and revealed by the ML model.  

Let the ML model built in step 2) is ˆ ( )sg=r x , then 

ˆ ( )sgξ ξ= + = +r r x                                            (7) 

Combining (6) and (7), yields, 

( ) ( )s sf g ξ= + +y x x                                          (8) 

where ξ  is the new error when ( )sg x  is added to ( )sf x .  

IV. CASE STUDY ON POWER CONSUMPTION PREDICTION  

To evaluate the performance of the proposed approach, a 
case study is performed on a real power consumption dataset, 
measured at Tetouan, a city in northern Morocco.  

A. Data 

The energy distribution network at Tetouan is powered by 
three source stations. Data in three power consumption zones, 
namely, Zones 1, 2 and 3, were collected every 10 minutes, 
between 00.00.00, 01-01-2017 and 23.50.00, 30-12-2017. There 
are a total of 52416 observations. The dataset is a good 
comprehensive benchmark for analysing the power 
consumption patterns at Tetouan.  More details about the dataset 
can be found in [34]. As an illustration, the first 4464 values of 
the power consumption in Zone 1 (measure in January 2017) are 
shown in Fig. 3.  

The dataset involves a total of 8 variables as follows:  1) Five 
explanatory variables; 2) Three responses, corresponding to 
three power distribution networks for three consumption zones, 
Zones 1,2, and 3. These variables are shown in Table II. 



 

Fig. 3. Power consumption in Zone 1 of Tetouan city in Janury 2017. 

TABLE II.  EXPLANATORY AND RESPONSE VARIABLES INVOLVED IN THE 

POWER CONSUMPTION DATASET  

B. Models Obtained Through System Identification 

In the literature, the power consumption data described in the 
previous section have been analysed using different ML models, 
where it was assumed that the value of a response y at the present 
time instant k is only dependant on the values of the five 
predictors at the same instant, that is, x1(k), x2(k), …, x5(k). In 
this study, however, the data are analysed using dynamic models 
such as the NLIO model presented by (1), where the value of a 
response y at time instant k is assumed to be potentially 
dependent on the historical values of itself, as well as historical 
values of these explanatory variables.  

Some basic information about the modelling experiments are 
as follows: 

• The first 4464 samples of the power consumption in 
January 2017 are used for model identification, the 
remaining 47982 samples (February - December) are 
used for testing.    

• The behaviour of some explanatory variables may 
potentially affect the response variable (power 
consumption) in a long period (e.g. within 24 hours), so 

the maximum time lag was set to 6×24 = 144. 

• For 10 minutes ahead prediction, the time delay between 
inputs and outputs was set to τ = 1; for 60 minutes ahead 
prediction, the time delay was set to τ = 6; and for 120 
minutes ahead prediction, the time delay was set to τ = 
12. 

For each of the three response variables y1, y2, and y3, three 
separate models were built for 10 minutes, 60 minutes and 120 
minutes ahead predictions, respectively. So, a total of 9 models 
were obtained. Some information about the 9 models is given in 

Table III. The performances of these 9 models, measured by root 
mean square error (RMSE) and mean absolute error (MAE), are 
shown in Table IV.  It is worth stressing that no cross-product 
interaction (between variables) was identified to be significantly 
important by the system identification algorithms; this probably 
suggests that interplays or interactions between these candidate 
predictors may not play a strong role in predicting the power 
consumption.  

TABLE III.  NUMBER OF MODEL TERMS IN THE IDENFIED 9 MODLES 

Models 
Zone 1  

No of model 
terms 

Zone 2  
No of model 

terms 

Zone 3  
No of model 

terms 

10 minutes  

ahead prediction 
8 8 5 

60 minutes  

ahead prediction 
14 9 12 

120 minutes 
ahead prediction 

16 17 17 

TABLE IV.  MODEL PERFORMANCES OF THE 9 IDENTIFIED MODELS 

Taking the case of Zone 1 as an example, the three models, 
for 10, 60 and 120 minutes ahead predictions, are as follows: 
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5 42.1710 ( 48) 4.3478 ( 137)x k x k+ − + −                 (11) 

Note that the terms in the above models are arranged according 
to their importance for explaining the variation of the response. 
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Variables Description 

Temperature (x1) Weather temperature of Tetouan city (oC) 

Humidity (x2) Weather humidity of Tetouan city (g·m-3) 

Wind speed (x3) Wind speed of Tetouan city (unit: unclear) 

General diffuse flows (x4) See below 

Diffuse flows (x5) A catchall term to describe low-
temperature (< 0.2° to ~ 100°C) fluids 
(unit: unclear) 

Zones 1,2,3 (y1, y2, y3) Power consumption (units: kW) in the 
three zones 

Models 
Zone 1  

RMSE and MAE 

Zone 2 

RMSE and MAE 

Zone 3 

RMSE and MAE 

Train Test Train Test Train Test 
10  

minutes 
ahead 

  360.97 
  253.26 

  462.31 
  304.74 

  268.98 
  183.45 

  311.04 
  216.33 

  230.15 
  166.18 

  301.85 
  197.76 

1 hour 
ahead 

2184.42 
1588.29 

2560.82 
1866.34 

1236.14 
 929.98 

1698.68 
1280.52 

1626.41 
1136.79 

2591.68 
2013.07 

2 hours 
ahead 

3610.84 
2752.94 

4496.40 
3259.81 

2067.42 
1659.11 

3291.41 
2527.90 

2661.52 
1970.96 

4696.88 
3655.37 



Also note that in comparison to other ML methods, these models 
show far better prediction performance. For example, for the 
case of 60 minutes ahead prediction, the values of RMSE and 
MAE are 2184.42 and 1588.29, respectively, which are far 
smaller than the results produced by RF (random forest) [34], 
where the values of RMSE and MAE were 21109.7 and 15442.0, 
respectively. It is worth mentioning that the results, 21109.7 and 
15442.0, produced by RF are the best ones among five ML 
methods including RF, DT (decision tree), SVR (support vector 
regression), FFNN (feed-forward neural network), and LR 
(linear regression) [34].     

A comparison between the 60 minute ahead predictions from 
model (10) and the true observations for Zone 1 are shown in 
Fig. 4, where for a clear visualization, only 4320 data points of 
period between 00.00.00, 01-12-2017 and 23.50.00, 30-12-2017, 
are shown. The scatter plot between the model predicted values 
and the measurements is shown in Fig. 5. 

Fig. 4. One hour ahead prediction of the power consumption in Zone 1 of 
Tetouan city December 2017. 

Fig. 5. One hour ahead prediction of the power consumption in Zone 1 of 
Tetouan city in December 2017. 

C. Potential Enhancement of Prediction with Deep Learning 

As discussed in Section IV-B, models obtained by using 
system identification techniques may not always be able to 
sufficiently capture the input-output relationships of the data. 
One way to know if the obtained models are good enough is to 

model the modelling error, i.e., r defined in (6), using another 
ML method.  In doing so, long-short term memory (LSTM) 
neural networks were used to model the errors of the nine 
identified models, and it tuned out that modelling the errors of 
these nine models using LSTM networks did not help improve 

their prediction performances. This may suggest that these nine 
models sufficiently capture the input-output relationships of the 
data, and their errors are unpredictable.  Therefore, the nine 
models can now be used to make predictions of power 
consumption of Tetouan city, as well as analysing how power 
consumption depends on the available influential predictors.  

Taking model (11) as an example, the prediction result given 
by LSTM for the error signal of model (11) is shown in Fig. 6, 
where it can be observed that the LSTM model just simply tracks 
the mean of the error signal, meaning that the error signal is 
unpredictable. 

Fig. 6. LSTM prediction result of the error signal of model (11), over the test 
data, 00.00.00, 01-01-2017 – 23.50.00, 30-12-2017. 

V. CONCLUSION 

A system identification-informed transparent and 
interpretable machine learning modelling framework, called 
SITEMAL, is proposed. The prediction results, in comparison 
to other ML methods, are far better and are really promising and 
encouraging. The excellent performances partly benefit from the 

use of some long-lagged explanatory variables such as x4(k-137) 
(general diffuse flows), which were detected by the nonlinear 
system identification algorithms (e.g., FROLS), suggesting that 
the behaviour of some explanatory variables may potentially 
affect the electric power consumption in a long period. In 
addition to transparency and interpretability, the framework has 
several other attractive advantages such as sparsity, parsimony, 
no requirement for a large training dataset, and working fast. In 
this study, LSTM was considered to explore the useful 
information from the modelling error signals of the models 
identified by means of system identification techniques. In 
future, we will try more state-of-the-art deep learning methods, 
especially those that are powerful in prediction but weak in 
explanation so that the ability of the proposed framework can be 
further enhanced.  
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