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Abstract—This paper proposes a scheme for multiple un-
manned aerial vehicles (UAVs) to track multiple targets in
challenging 3-D environments while avoiding obstacle collisions.
The scheme relies on Received-Signal-Strength-Indicator (RSSI)
measurements to estimate and track target positions and uses a
Q-Learning (QL) algorithm to enhance the intelligence of UAVs
for autonomous navigation and obstacle avoidance. Considering
the limitation of UAVs in their power and computing capacity, a
global reward function is used to determine the optimal actions
for the joint control of energy consumption, computation time,
and tracking accuracy. Extensive simulations demonstrate the
effectiveness of the proposed scheme, achieving accurate and
efficient target tracking with low energy consumption.

Index Terms—Multi-target tracking, UAV, Q-Learning, Edge
Computing.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have become a promis-

ing platform due to their mobility, flexible deployment, and

low cost [1]. They can cover areas of varying heights and

locations, making them ideal for target tracking. In challenging

scenarios where ground service agents are unavailable, UAVs

can play a crucial role by precisely tracking targets. They

offer a greater likelihood of Line-of-Sight (LoS) links than

ground Base Stations (BSs) due to their high altitude. They

can provide a speedy, dependable, and cost-efficient means

of network access to areas that are inadequately served by

terrestrial networks [2].

However, limited communication range, battery capacity,

and computing capacity are the main challenges in UAVs. To

deal with these challenges, a swarm of autonomous UAVs can

be effective. A swarm of UAVs can be used to ensure effective

communication coverage in the long term. The utilization of

Edge Computing (EC) is also a promising solution to tackle

the challenges faced by UAVs [3]. For example, by leveraging

the computational capacity of the edge, compute-intensive

operations of UAVs can be offloaded to Edge Nodes (ENs) and

as a result, enhance both computing quality and the lifetime

of the UAVs network [4], [5]. As shown in [6], UAV-enabled

EC has been conceptualized as a viable option to enhance the

target tracking process.

In recent years, UAV-aided target detection and tracking has

been studied [7], [8]. In [9], a Deep Q-Network (DQN) was

constructed, with a finite action space, to deal with the limited

field of view (FOV) of the camera equipped on the UAV,

where a reward function was designed to take into account

whether a target is within the FOV. In [10], authors introduced

a motion planning algorithm based on the unscented Kalman

filter (UKF) for UAVs to estimate the state of the target.

The motion planner determines the UAV trajectory, which

includes acceleration and turn rate. In [11], a reinforcement

learning (RL) technique is used to train a swarm of UAVs

to determine the optimal routes that maximize the probability

of observing the targets. Existing works on target tracking

employed different technologies and methods. However, it is

still a open research problem. According to [8], mobile target

tracking is a challenging problem due to the uncontrollable

motion of the target, making the task even more complicated.

In this work, we focus on addressing the challenge of

controlling multiple UAVs to track multiple targets, with

the constraints of communication and computing resources

of UAVs. To this end, we present a new approach where

RSSI is used, due to its low cost and power consumption,

hardware simplicity, and the ability to use simple receivers

[12]. More specifically, a Q-learning-based algorithm for UAV

control action selection is proposed, along with a novel reward

function that encourages UAVs to learn an optimal policy for

improved tracking with maximum expected cumulative reward

while considering accuracy, latency, and energy consumption.

The key contributions of the paper are as follows:

1- We present a scheme using the QL algorithm that controls

multiple UAVs in 3-D environments to achieve optimal

tracking of multiple targets.

2- We develop an efficiency-maximizing reward function

that accounts for joint optimization of accuracy, delay,

energy consumption, and obstacle avoidance.

The paper is organized as follows. Section II provides the

system model. Section III describes the proposed scheme in

detail. Next, in Section IV, we analyze the proposed scheme

through simulations. Finally, in Section V, we draw concluding
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remarks.

II. SYSTEM MODEL

In this section, we discuss the target and UAV trajectory

models along with the channel model between UAVs and the

target, for the scenario shown in Fig. 1, which includes the

targets, ENs, and UAVs equipped with RSS sensors.

A. Target Trajectory Model

In the system, there are M targets that have mobility

on the ground. Each target has a start point (xs
m, ysm) and

endpoint (xe
m, yem), where m = 1, · · · ,M . Each target

chooses a path between these two points for its movement

by considering obstacle avoidance. The initial location of

m-th Radio Frequency (RF) target is fixed at postarm =
[xtar

m (0) = xs
m, ytarm (0) = ysm] and the time-varying location

of target is denoted as postarm (t) = [xtar
m (t), ytarm (t)] at time

t. Here, the target movement velocity is defined as vtarm (t) =
[

vtarx,m(t), vtary,m(t)
]

.

B. UAV Trajectory Model

In this system, there exists N UAVs in which each

UAV flies at different altitudes. We assume that the ini-

tial location of the UAV at time t = 0 is posuavn (0) =
[xuav

n (0), yuavn (0), zuavn (0)], where n = 1, · · · , N . The time-

varying location of the n-th UAV at time t is denoted as

posuavn (t) = [xuav
n (t), yuavn (t), zuavn (t)] and flight velocity of

UAV is defined as vuavn (t) =
[

vuavx,n (t), vuavy,n (t), vuavz,n (t)
]

. Let

posuavn (t) be the coordinate of the n-th UAV at time t. Hence,

the sequence of points Ln = {posuavn (0), · · · , posuavn (Tn)}
can be used to express the trajectory of the n-th UAV where

Tn is the total time that n-th UAV flies during its trajectory,

which depends on the trajectory length and velocity of the

UAV, and can be obtained as follows [7]:

Tn =

T−1
∑

t=0

∥posuavn (t+ 1)− posuavn (t)∥

vuavn (t+ 1)
(1)

C. Channel Model

The received power captured by the RSS sensor mounted

on the n-th UAV at time t can be mathematically expressed

as [13]:

rssiuavn (t) = PTX − PLn(t)− ρn, (2)

here, PTX represents the constant transmit power of the RF

target, while PLn(t) denotes the path loss between the n-th

UAV and the target at time t. ρn is an exponential random

variable with a unit mean incorporating the effect of Rayleigh

fading. The RSS measurements in each UAV can be denoted

by RSSIn = [rssiuavn (0), · · · , rssiuavn (Tn)].

III. DESIGN OF MULTI-TARGET TRACKING BY

MULTI-UAV BASED ON Q-LEARNING AND

MULTILATERATION

In this section, we outline our scheme for the multi-target

tracking problem. In this work, Q-learning, normalization, and

multilateration form the core of our scheme.

A. Q-Learning

The Q-learning algorithm is a value-based Reinforcement

Learning (RL) technique that is specifically designed for

deterministic policies. In RL algorithms, the primary goal is to

identify the optimal policy π∗ that maximizes the cumulative

reward over the long term. During each time slot, the QL

algorithm determines an action to be performed by the UAV.

Upon taking an action a, the UAV receives a reward r (s, a)
and transitions to a new state s′. Following each decision, the

Q-value of the state-action pair is updated as:

Q (s, a)← (1− α)Q (s, a) + α

[

r (s, a) + γ max
a′∈A

Q (s′, a′)

]

(3)

where γ ∈ (0, 1] is a discount factor that determines the impor-

tance of future rewards, and α is the learning rate that controls

the extent to which new information overrides old information.

The optimal policy can be learned through interactions with

the environment and recording the corresponding experiences

(s, a, r, s′).

B. Normalization

Normalization is a process of converting different ranges of

values into a common scale, which is important for comparing

variables with different units or scales. To this end, Min-Max

normalization is a common technique in statistics and machine

learning. Min-Max normalization can be expressed as:

value∗ =
value−minvalues

maxvalues −minvalues

(4)

where value∗ is the normalized value, value is the original

value, minvalues is the minimum value of the data, and

maxvalues is the maximum value of the data. After normaliz-

ing the values, weights w are assigned to each value, and the

overall score is calculated by taking the weighted sum of the

normalized value as follows:

score = w1 ∗ value
∗
1 +w2 ∗ value

∗
2 + · · ·+wn ∗ value

∗
n (5)
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C. Multilateration

Multilateration is the process of determining the unknown

position coordinates of a point of interest. In target tracking,

using multilateration method for locating the m-th target with

position postarm , the distance from rm,n to n-th UAV with

position posuavn is given as

rm,n =

√

(xtar
m − xuav

n )
2
+ (ytarm − yuavn )

2
(6)

D. Multi Target Tracking Using a Swarm of UAVs

In this work, a swarm of UAVs was considered to track each

target. Once the position of the detected target is estimated,

the edge node (EN) selects a swarm of nearby UAVs to

track the target. These UAVs form a cluster consisting of

a Cluster Head (CH) and other UAVs that are directly and

wirelessly connected to the CH. Since each UAV is limited

by its battery capacity, the EN selects a UAV with the highest

battery capacity as the CH. It is worth noting that the number

of UAVs in each cluster should be at least two.

Since the Q-learning algorithm utilized in UAVs is a state-

action algorithm, we considered some allowable control ac-

tions for UAVs that can be taken at each state. In this work,

the number of actions is equal to 8 (see Fig. 2). These actions

denote the flight direction along the x, y, and z-axis. UAVs

determine the flight direction by choosing one action from

discrete action space AS = {a1, a2, · · · , a8}. We assumed

that UAVs have only horizontal movement, hence, the UAV

dynamics are formulated as follows:

posuavn (t) = posuavn (t− 1) +





d ∗ cos(θi)
d ∗ sin(θi)
zuavn (t− 1)



 (7)

where d is the velocity of the target at time t, θi = i ∗ 2π
|AS|

for i ∈ [1, 8].
The Q-learning algorithm considers three parameters,

namely accuracy, delay, and energy, to optimize the target

tracking performance of UAVs. To account for these param-

eters, we designed a reward function that aims to minimize

energy and delay while maximizing accuracy. Thus, the reward

function can be expressed as follows:

reward = w1 ∗ (1− E∗) + w2 ∗ (1−D∗) + w3 ∗A
∗ (8)

The weights assigned to energy, delay, and accuracy are

denoted by w1, w2, and w3, respectively. The normalized value

of consumed energy, delay, and accuracy is represented by E∗,

D∗, and A∗, respectively.

In this work, the energy consumption of UAVs is deter-

mined by the energy used for computation, communication,

and flight, whereas the delay is depending on computation,

propagation, and transmission delay. To compute accuracy,

the distance between UAV and the target is considered. These

parameters are measured and then normalized as they belong

to different ranges of values and units. Additionally, since ac-

curacy is considered more important than energy consumption

and delay, we assigned it a higher weight. Specifically, we set

w1 = 1

4
, w2 = 1

4
, and w3 = 1

2
.

Each UAV selects the optimal state among 8 possible states

(i.e. the directions it flies towards) by performing the Q-

learning algorithm and utilizing the reward function. Then,

UAV measures the RSSI from the power level of a received

signal of the target m. The RSSI rssiuavn (t) measured by UAV

n as well as current position posuavn (t) of UAV available in

the cluster will be sent to the CH. Next, CH executes the

Multilateration function and estimates the position of the target

m. Finally, CH sends the estimated position to all UAVs in the

cluster. Once UAVs receive the position of the target, UAVs

run the Q-learning algorithm for selecting the next state. This

process will be repeated until the target (e.g. m) reaches the

endpoint (e.g. (xe
m, yem)). Fig. 3 represents the process of target

position estimation as well as target tracking by our scheme.

This figure also shows the process of data communication

between a UAV and a CH.

As mentioned above, each UAV is limited by its battery

capacity. The energy consumption of each UAV is affected

by several factors such as weight, aerodynamics, flight speed

and altitude, and environmental conditions. Computation, com-

munication, and task complexity also contribute to power

consumption. The UAV’s onboard computing system includes

a processor, memory, and other components that consume

energy. The processing load is primarily determined by the

task complexity, dataset size, and algorithm used. Communi-

cation between UAVs and ground stations requires the use of

communication systems, such as radios or transceivers, which

also consume energy. The energy consumption of the commu-

nication system depends on the amount of data transmitted or

received, the distance, and the quality of the communication

link. Higher data rates or longer distances typically require

higher transmit powers, leading to higher energy consumption.

To address this issue, we established two threshold values

for the battery power of UAVs. These thresholds are utilized

to monitor the state of the battery during the UAV’s flight.

By setting these threshold values, we can ensure that the

UAV operates within a predetermined energy budget, which

not only prolongs its flight time and range but also enhances

its reliability and lowers the likelihood of battery depletion

during a mission. Whenever the battery power of a UAV,

such as UAVn, falls below the first threshold value, it sends
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6- Send the output (𝐏𝐨𝐬𝐦𝐭𝐚𝐫) to 𝐔𝐀𝐕𝐧𝐏𝐨𝐬𝐦𝐭𝐚𝐫
6- Go to Step 1 7- Go to Step 1

Fig. 3. The process of data communication between UAV and CH.

UAV (𝐔𝐀𝐕𝐧) Cluster Head (𝐔𝐀𝐕𝐂𝐇)
1- If the power of battery < Thrsld_1

2- Send a warning message to EN

3- Turn off unnecessary functions

4- Send a request message to cluster head𝑷𝒐𝒔𝐧𝐮𝐚𝐯, 𝑹𝒆𝒒𝐧
5- Run the Multilateration function 

6- Send the output (𝐏𝐨𝐬𝐦𝐭𝐚𝐫) to 𝐔𝐀𝐕𝐧𝐏𝐨𝐬𝐦𝐭𝐚𝐫
6- If the power of battery < Thrsld_2

7- Send an error message to EN and cluster head

8- Run the Landing function

Fig. 4. The process of UAV battery power monitoring.

a warning message to the nearby EN to report its status. It

also stops measuring RSSI and sends a request message to

CH asking for the target’s position until its battery power is

sufficient for target tracking. Concurrently, the EN attempts

to find a replacement UAV to swap with UAVn. If UAVn’s

battery power falls below the second threshold value, it sends

an error message to the nearby EN and CH, and then initiates

the landing function. This process is illustrated in Fig. 4.

IV. NUMERICAL RESULTS

This section presents the numerical results of our scheme,

specifically tracking accuracy and energy consumption. MAT-

LAB was used as the simulation platform, and an obstacle-

filled environment was created using a matrix with cylinders

and cones representing the obstacles. The simulation involved

five UAVs tracking two targets in this environment. Here, the

tracking of target 1 is performed by three UAVs, namely

{UAV1, UAV2, UAV3}, while target 2 is tracked by two

UAVs, namely {UAV4, UAV5}. We also included three edge

nodes (ENs) in the simulation. Each UAV is capable of

communicating with an EN that is within its communication

range. In order to assess the effectiveness of our scheme, we

established three separate scenarios, outlined as follows:

• Cluster 1: In this scenario, three UAVs are organized into

a cluster, and a single UAV is designated as the cluster

head (CH). The two remaining UAVs communicate with

the CH and nearby EN and do not directly communicate

with each other.

• Cluster 2: In this scenario, two UAVs are grouped into

a cluster, and one UAV is elected as a cluster head (CH).

Another UAV is able to communicate with CH and nearby

ENs.

• Non-Clustered: In this scenario, there is no clustering

of UAVs. Instead, three individual UAVs are assigned to

track a target and are able to communicate with each

other as well as nearby ENs.

The initial positions of each UAV and target were defined

as previously explained. Target 1 has a starting position of

postar1 (0) = [2, 1] meters, while target 2 has a starting position

of postar2 (0) = [1, 6] meters. Both targets have a designated

endpoint of [30, 15] meters. To move toward the endpoint

while avoiding obstacles, each target randomly selects a path

between its start point and the endpoint. Additionally, we have

defined the initial positions of five UAVs as posuav1 (0) =
[1, 2, 2.5], posuav2 (0) = [3, 4.5, 3], posuav3 (0) = [6, 1, 2],
posuav4 (0) = [4.5, 6, 3], and posuav5 (0) = [2, 10, 4] meters.

Each target is initially assigned a velocity, and their velocities

can vary from 1m/s to 5m/s during their movement along

the trajectory. The UAVs adjust their velocity during target

tracking based on the velocity of the target. Here, we assume

that each UAV will receive information about obstacles from

nearby ENs to avoid the collision. The information includes

the dimensions of the obstacles such as length, width, height,

diameter, and other relevant details.

The root means square error (RMSE) can be an effective

metric for assessing the accuracy of the scheme’s performance

[14]. To this end, we consider the actual position of the target

and the estimated position of the target by the UAVs. For

all positions that the target passed during its trajectory, we

measured the RMSE. We carried out this procedure for each

of the aforementioned scenarios individually. The RMSE was

computed using the following equation:

RMSE =

√

∑K

i=1
(xtar

i − x̂i
tar)2 + (ytari − ŷi

tar)2

K
(9)

where K is the number of positions that the target passed

during its trajectory, and [xtar
i , ytari ] and

[

x̂i
tar, ŷi

tar
]

rep-

resent the actual and estimated positions of the target at the

i-th position, respectively. Fig. 5 presents a comparison of

the RMSE for each scenario. It is observed that the accuracy

of the proposed scheme in scenario 1 is superior to those in

other scenarios. This can be attributed to the higher number

of UAVs present in scenario 1, as compared to scenario 2 in

cluster-based scenarios. In real-time applications like target-

tracking, both the computation and communication delay have

a significant impact on application performance accuracy.

The reduced number of connections and communications for

sending/receiving information between UAVs in scenario 1

compared to scenario 3 leads to higher accuracy in the former.

We conducted experiments to measure the total energy

consumption by each UAV during the target tracking process.



Fig. 5. Comparison of measured RMSE in each scenario

Fig. 6. Comparison of total energy consumption by each UAV in clustered
and non-clustered scenarios

The results, as shown in Fig. 6, indicate that the energy

consumed by UAVs in the cluster-based scenario is less than

that in the non-clustered scenario. This is due to the reduced

communication and computation requirements in the cluster-

based scenario.

V. CONCLUSION

In this study, a scheme based on RSSI has been proposed

for tracking multiple targets using multiple UAVs. The QL

algorithm and Multilateration are the core of the proposed

scheme. Due to the limitation of power capacity and the

computing capacity of UAVs and in addition, the importance

of delay in the target tracking, energy consumption, delay, and

accuracy have been considered as three main parameters in the

reward function of the QL algorithm. We have analyzed our

scheme in cluster-based and non-cluster-based scenarios. The

obtained results showed that our scheme based on clustering

has provided a more accurate and efficient target-tracking

solution with lower energy.

ACKNOWLEDGMENT

This research was sponsored by the US Army Research

Laboratory and the UK MOD University Defence Research

Collaboration (UDRC) in Signal Processing and was accom-

plished under Cooperative Agreement Number W911NF-20-

2-0225. The views and conclusions contained in this document

are those of the authors and should not be interpreted as repre-

senting the official policies, either expressed or implied, of the

Army Research Laboratory, the MOD, the U.S. Government,

or the U.K. Government. The U.S. Government and U.K. Gov-

ernment are authorized to reproduce and distribute reprints for

Government purposes notwithstanding any copyright notation

herein.

REFERENCES

[1] J. Wang, C. Jiang, Z. Han, Y. Ren, R. G. Maunder, and L. Hanzo,
“Taking drones to the next level: Cooperative distributed unmanned-
aerial-vehicular networks for small and mini drones,” Ieee vehIcular

technology magazIne, vol. 12, no. 3, pp. 73–82, 2017.
[2] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Unmanned aerial

vehicle with underlaid device-to-device communications: Performance
and tradeoffs,” IEEE Transactions on Wireless Communications, vol. 15,
no. 6, pp. 3949–3963, 2016.

[3] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE

communications surveys & tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[4] S. Goudarzi, M. H. Anisi, H. Ahmadi, and L. Musavian, “Dynamic
resource allocation model for distribution operations using sdn,” IEEE

Internet of Things Journal, vol. 8, no. 2, pp. 976–988, 2020.
[5] S. Goudarzi, S. A. Soleymani, W. Wang, and P. Xiao, “Uav-enabled

mobile edge computing for resource allocation using cooperative evolu-
tionary computation,” IEEE Transactions on Aerospace and Electronic

Systems, 2023.
[6] J. Wang, K. Liu, and J. Pan, “Online uav-mounted edge server dis-

patching for mobile-to-mobile edge computing,” IEEE Internet of Things

Journal, vol. 7, no. 2, pp. 1375–1386, 2019.
[7] Y.-J. Chen, D.-K. Chang, and C. Zhang, “Autonomous tracking using

a swarm of uavs: A constrained multi-agent reinforcement learning
approach,” IEEE Transactions on Vehicular Technology, vol. 69, no. 11,
pp. 13 702–13 717, 2020.

[8] X. Deng, J. Li, P. Guan, and L. Zhang, “Energy-efficient uav-aided target
tracking systems based on edge computing,” IEEE Internet of Things

Journal, vol. 9, no. 3, pp. 2207–2214, 2021.
[9] S. Bhagat and P. Sujit, “Uav target tracking in urban environments

using deep reinforcement learning,” in 2020 International Conference

on Unmanned Aircraft Systems (ICUAS). IEEE, 2020, pp. 694–701.
[10] L. Wang, Y. Li, H. Zhu, and L. Shen, “Target state estimation and

prediction based standoff tracking of ground moving target using a fixed-
wing uav,” in IEEE ICCA 2010. IEEE, 2010, pp. 273–278.

[11] T. Wang, R. Qin, Y. Chen, H. Snoussi, and C. Choi, “A reinforcement
learning approach for uav target searching and tracking,” Multimedia

Tools and Applications, vol. 78, pp. 4347–4364, 2019.
[12] Y. Li, F. Shu, B. Shi, X. Cheng, Y. Song, and J. Wang, “Enhanced

rss-based uav localization via trajectory and multi-base stations,” IEEE

Communications Letters, vol. 25, no. 6, pp. 1881–1885, 2021.
[13] F. Shang, W. Su, Q. Wang, H. Gao, and Q. Fu, “A location estimation

algorithm based on rssi vector similarity degree,” International Journal

of Distributed Sensor Networks, vol. 10, no. 8, p. 371350, 2014.
[14] S. Goudarzi, S. Ahmad Soleymani, M. H. Anisi, D. Ciuonzo, N. Kama,

S. Abdullah, M. Abdollahi Azgomi, Z. Chaczko, and A. Azmi, “Real-
time and intelligent flood forecasting using uav-assisted wireless sensor
network,” Computers, Materials and Continua, vol. 70, no. 1, pp. 715–
738, 2021.


