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Abstract

Instabilities driven by some combination of rotation, velocity shear, and magnetic field in a stratified fluid under
gravity play an important role in many astrophysical settings. Of particular note are the centrifugal instability, the
magnetorotational instability, and magnetic buoyancy instability. Here, we consider a Cartesian model of an
equatorial region incorporating all the physical ingredients necessary to study their competition. We investigate the
linear instability to interchange (“axisymmetric”) modes of an inviscid, perfectly conducting, isothermal gas,
including the effects of rotation, velocity shear, and poloidal and toroidal magnetic fields. The stability problem can
be reduced to a second-order boundary value problem, with the growth rate as the eigenvalue. We can make
analytic progress through consideration of the physically relevant regime in which the transverse horizontal
wavenumber k? 1. Via a perturbation analysis, with 1/k as the small parameter, we can derive the growth rate and
the spatial dependence of the eigenfunctions: the unstable modes are strongly localized in the vertical direction,
being either wall modes (localized near a boundary of the domain) or body modes (localized in the interior). We
describe the conditions under which the joint action of the separate instability mechanisms leads to enhancement or
suppression of the instability. Our analytical results are supplemented by numerical solutions of the stability
problem. The most unstable mode found analytically is typically in excellent agreement with that found
numerically through consideration of a wide range of wavenumbers. Finally, we discuss how our results relate to
the solar tachocline.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Solar magnetic fields (1503);
Perturbation methods (1215)

1. Introduction

Differential rotation, magnetic fields, and convective strati-
fication—stable or unstable—are crucial ingredients in deter-
mining the dynamics of all astrophysical bodies. Understanding
the instabilities that may arise from these various elements is
thus an important goal in astrophysical fluid dynamics. In its
simplest form, in which the effects of magnetic field,
stratification, and diffusion are all neglected, a differential
rotation profile is unstable if, somewhere, the angular
momentum decreases with cylindrical radius, a result that
dates back to Rayleigh (1917). The criterion for this centrifugal
instability (CI) is modified by the incorporation of magnetic
fields and convective stratification, as shown by Acheson
(1978). Of great astrophysical interest is that a weak magnetic
field can destabilize a flow that is stable by the Rayleigh
criterion (i.e., a flow with angular momentum everywhere
decreasing outwards). This instability, now known as the
magnetorotational instability (MRI), was first investigated by
Velikhov (1959), Chandrasekhar (1960) and later by Acheson
(1978). However, its tremendous astrophysical significance, as
an instability mechanism capable of destabilizing Keplerian
flows, as occur in accretion disks, was not recognised until the
work of Balbus & Hawley (1991). Subsequent to this
extremely important realization, there has been a huge amount
of research into the MRI: in the linear and nonlinear regimes,

computationally and experimentally, and with a variety of
magnetic field configurations (see, e.g., Hawley et al. 1995;
Balbus & Hawley 1998; Goodman & Ji 2002; Balbus 2003;
Hollerbach & Rüdiger 2005; Ogilvie 2007; Fromang et al.
2013).
A horizontal magnetic field that varies with depth can also

act as the agent for destabilizing a convectively stable
atmosphere through the mechanism known as magnetic
buoyancy instability (MBI). MBI was first analyzed, via the
energy principle and in a general setting, by Newcomb (1961);
it was first investigated in an astrophysical context by Parker
(1966), who proposed MBI as the mechanism for the clumping
of the interstellar medium. Subsequently, MBI has been
invoked as the dominant mechanism underlying the escape of
magnetic field from the solar tachocline, as reviewed by
Hughes (2007), and can also be an important player in the
dynamics of accretion disks (e.g., Foglizzo & Tagger 1994).
Theoretical developments of MBI have been undertaken both
in the linear regime (e.g., Gilman 1970; Acheson 1978, 1979;
Hughes 1985) and through numerical simulations of the onlinear
development of the instability (e.g., Cattaneo & Hughes 1988;
Matthews et al. 1995; Kim et al. 1998; Fan 2001; Kersalé et al.
2007; Hughes & Brummell 2021).
Although studies of CI, MRI, or MBI most often treat the

instability mechanisms in isolation, astrophysical bodies, in
general, possess regions of differentially rotating, convectively
stratified, magnetized fluid; the solar tachocline, for example, is
clearly a magnetized region of strong differential rotation. It is
thus important to consider the competition between these
various instabilities. Our aim therefore in this paper is to
consider a framework in which we can analyze this
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competition. We consider a local Cartesian model, similar to
that of the shearing box approximation, involving all the
necessary factors for development of CI or MRI, and MBI. The
domain is a local representation of the equatorial region, with
the rotation axis perpendicular to gravity. As a basic state, we
include the effect of velocity shear—a horizontal (“toroidal”)
flow, perpendicular to rotation and dependent on height—a
constant “poloidal” magnetic field (parallel to the rotation axis)
and a toroidal field of strength decreasing with height. We
perform a linear stability analysis, making the simplifying
assumption that all perturbation quantities are “axisymmetric.”
The key feature is applying a Rayleigh–Schrödinger perturba-
tion analysis in the limit of short-horizontal-wavelength
perturbations, where “short” is in comparison with the vertical
variation of basic-state quantities such as density or pressure.
The short-horizontal-wavelength assumption has the conse-
quence that the perturbations become highly localized
vertically. Thus, through a boundary and/or internal layer
analysis, following the approach adopted in Mizerski et al.
(2013), Bowker (2016), and Gradzki & Mizerski (2018), we are
able to determine a height-dependent growth rate function σ(z)
and hence determine the location of the localization of the
eigenfunctions. As explained in Bowker (2016), the presence
of strong shear is a complicating feature of the analysis: in
particular, the relation between the particular growth rate value
σ(z0) at a selected height z0 and the height at which the
eigenmode associated with this eigenvalue is localized
becomes highly nonobvious. We are able to compare our
asymptotic solutions with solutions of the full system obtained
numerically. Our work should be regarded as being comple-
mentary to earlier studies by Acheson (1978) and Gilman
(2018a, 2018b), both of whom also explored systems in which
CI, azimuthal MRI, and MBI could occur. Acheson (1978)
performed a local linear stability analysis, in cylindrical
geometry, of a quite general system involving basic-state
functions that depend on both radius r and axial direction z,
making analytic progress with this complicated system through
the consideration of specific asymptotic parameter regimes.
Gilman (2018a, 2018b) also performed a local stability
analysis, in spherical geometry, of basic states with only
toroidal flows and toroidal magnetic fields, focusing particu-
larly on profiles appropriate to the solar tachocline. He found
that for solar-type differential rotation, at low latitudes, the
azimuthal wavenumber m of the most unstable perturbations in
the absence of poloidal magnetic field is a function of latitude
and the strength of the toroidal field; however, for toroidal
fields as strong as ∼20 kG, the MBI instability became
dominant, with the most unstable mode being that with
m= 0—see Figure 6 in Gilman (2018b). In contrast to
Acheson (1978) and Gilman (2018a, 2018b), our basic-state
magnetic field has a (uniform) poloidal component, which is
necessary for bringing the axisymmetric MRI into play. In this
sense, although we are neglecting nonaxisymmetric perturba-
tions, thus removing the azimuthal MRI, we can study the
coupling between the axisymmetric MRI (i.e., its standard
version, triggered by poloidal field) and the MBI, which to our
knowledge has not hitherto been investigated, either numeri-
cally or analytically.

The paper is organized as follows. The mathematical
formulation of the problem is contained in Section 2.
Sections 3 and 4 contain, respectively, the main results of the
leading and first-order asymptotic analyses for the growth rate

σ; the details of the calculations can be found in Appendix C
(leading order) and Appendix D (higher order). Section 5
presents the numerical solutions of the full linear stability
equations for some selected representative parameter values,
and makes a comparison with those obtained via the short-
horizontal-wavelength perturbation approach. In Section 6, we
summarize and discuss the results.

2. Mathematical Formulation

Following Gilman (1970) and Mizerski et al. (2013), we
consider a plane layer, of thickness d, of compressible, inviscid,
isothermal, and electrically perfectly conducting fluid,
described by the perfect gas equation of state. The geometry
of the system corresponds to that of the local shearing box
approximation, often applied locally to natural systems such as
accretion discs, or stellar and planetary interiors at the equator
(e.g., Hawley et al. 1995). We adopt a Cartesian coordinate
system in which the x-axis points east (the “toroidal” direction),
the y-axis north, and the z-axis radially (in the direction
opposite to gravity). We assume the presence of a constant
acceleration of effective gravity g= (0, 0, −g), and constant
rotation Ω= (0, Ω, 0). The basic state is characterized by a
depth-dependent toroidal shear flow u0(z)= (u0(z), 0, 0) and a
magnetic field with depth-dependent, toroidal component and
constant poloidal component, B0(z)= (a0(z), b0, 0) (see
Figure 1). Such a physical setting is constructed in order to
accommodate three types of linear instability—MBI, MRI, and
CI—and to study the interactions and competition
between them.
The system of equations for the velocity u, the magnetic field

B, density ρ, and pressure p, consists of the Navier–Stokes
(momentum) equation, the mass conservation (continuity)
equation, the magnetic induction equation (supplemented by
the solenoidal condition on the magnetic field), and the equation
of state of an ideal gas. For the purpose of nondimensionaliza-
tion, we adopt the layer thickness d and the freefall time d g
for the units of length and time respectively. For the units of
velocity in the y- and z-directions, we choose the freefall velocity

gd ; however, for the x-component, we adopt a typical
magnitude of the shear flow Us. We denote the scales of
pressure, density, and magnetic field by ps, ρs, Bs respectively,
where ps and ρs are taken as the values of pressure and density at
the top of the layer. In dimensionless form, the governing

Figure 1. Configuration of the basic state, with depth-dependent horizontal
shear flow u0(z), depth-dependent toroidal field a0(z), constant poloidal field b0,
rotation Ω and gravity g.
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equations may be expressed as
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where μ0 is the vacuum permeability, R is the gas constant, and
Ts is the constant temperature of the system. The parameter Λ
and the product a represent the nondimensional squared
Alfvén speed and squared isothermal speed of sound
respectively, scaled with the square of the freefall speed; W
is the nondimensional rotation rate, and the plasma β denotes
the ratio of the gas pressure to twice the magnetic pressure,
b m= p Bs s0

2. Owing to the choice of a different scaling for the
velocity in the x-direction, the dimensionless velocity in
Equations (1)–(3) has the form = + +u e e eu v wu x y z , where

=
U

gd
7u

s ( )

is the ratio of a typical shear flow speed to the freefall speed.
Positive (negative) values of u correspond to eastward
(westward) flows.

To determine the basic state, the linear stability of which we
shall investigate, we consider a layer of fluid in equilibrium, in
the region 0� z� 1, with a shear flow u0(z) and horizontal
magnetic field B0(z), as described above. The basic-state
density ρ0(z) and pressure p0(z) are then determined by the
equations

r+ L = -WD p z a z u z f z2 , 8u0 0
2

0 0( ) ( )( ) ( ) ( ) ( ) ( )/  

ar=p z z , 90 0( ) ( ) ( )

where D denotes d/dz, together with ρ0(1)= 1 (recall, ρs was
chosen as the density value at the top of the fluid layer). In
addition, in order to identify clearly the effect of buoyancy, we
introduce the parameter f, which takes the value 1 if the
buoyancy force is present in the momentum equation, and 0 if
it is not.

At this stage, we also define the following functions of the
basic-state variables:
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where F(z) is related to the speed of isothermal magnetosonic
waves, and where -H zu

1( ), r
-H z1( ), and -H zB

1( ) are the depth-
dependent inverse scale heights of shear flow, density, and

magnetic field respectively. We also note that the basic-state
equations (8)–(9) imply the following relation:
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In order to simplify what is quite a complicated problem, we
assume, as did Mizerski et al. (2013), Gradzki & Mizerski
(2018), that the perturbations to the basic state take the form of
interchange (“axisymmetric”) modes, i.e., all perturbation
quantities are invariant in the x-direction (parallel to the
direction of the basic-state toroidal magnetic field and the basic
shear flow). Owing to the homogeneity of the system in the y-
direction, a simple Fourier-mode type dependence is assumed,
with the wavenumber denoted by k and the growth rate by σ.
We thus express perturbations to the velocity, magnetic field,
pressure, and density as
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On introducing perturbations of the form (12) into
Equations (1)–(5) and neglecting nonlinear terms, we obtain
the following system of linear equations:
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Equations (13a–i) can be manipulated to yield a single second-
order ordinary differential equation for the z-dependent
amplitude of the vertical velocity perturbation ~w z( ), with the
growth rate σ determined as the eigenvalue of the problem. We
may express this differential equation in the general form

+ + =~ ~ ~~ ~~
W z D w z W z Dw z W z w z 0,
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where the coefficients
~
W z0 ( ),~W z1( ), and ~W z2 ( ) depend on the

basic-state functions and their derivatives, the horizontal
wavenumber k, the growth rate σ, and the various dimension-
less constants of the system. The top and bottom boundaries are
assumed impermeable, which implies the boundary conditions

= =~w z0 on 0, 1. 15( )

Equation (14) with boundary conditions (15) constitutes a
second-order boundary value problem, with the growth rate σ
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appearing as the eigenvalue. The coefficients of Equation (14)
are, though, very complicated and hence, in general,
Equation (14) requires a numerical solution. However, under
certain assumptions, it is possible to make analytic progress
through an asymptotic Rayleigh–Schrödinger perturbation
approach. Such an approach is described by Griffiths (2008;
for inertial instabilities), Mizerski et al. (2013; for nondiffusive
MBI), and Gradzki & Mizerski (2018; for diffusive MBI).

In our analytical study, we assume that all the basic-state
functions and their derivatives, the growth rate σ, and the
dimensionless parameters are of order unity in terms of any
asymptotic parameters in the theory. As argued first by Gilman
(1970), the growth rate of the MBI, in the absence of diffusion,
increases with increasing transverse wavenumber k, tending to
some finite value as k→+∞ . Thus, the limit of k→+∞ is
the first asymptotic limit assumed here. Furthermore, in some
natural systems, such as, for example, the solar tachocline, the
poloidal magnetic field is expected to be relatively weak in
comparison with the toroidal component. It thus turns out to be
instructive to assume a second asymptotic limit of b0→ 0.

In general, one must construct double asymptotic expansions
in the two small parameters: the inverse wavenumber k−1 and
the weak poloidal magnetic field b0. However, since we are
interested in investigating interactions between MBI, MRI, and
CI, we assume that ~ -k b0

1, which not only simplifies the
asymptotic analysis to one small parameter but also ensures
that the contributions to the growth rate of perturbations from
all three instability types are of comparable order of magnitude.
In other words, it is only for a weak field b0 that the three
instability mechanisms are captured at leading order; this
assumption is also consistent with the linear MRI analysis
presented by Balbus & Hawley (1991). Further justification for
this assumption is given in Appendix B. To summarize, we
shall show that the assumptions

 +¥  ~ -k b k b, 0, 160 0
1 ( )

allow the presence of all possible types of instability at the
leading order of the asymptotic approach, thus providing the
opportunity to study their mutual interactions and competition.
The relation ~ -k b0

1 establishes the horizontal spatial scale of
the interchange perturbations given by (12) by relating it to the
weak magnitude of the constant poloidal magnetic field b0.

3. Leading Order Asymptotic Analysis

The full details of the leading order asymptotic analysis are
presented in Appendix C; here we provide the most important
results, together with an explanation of the method adopted.
The first stage of the analysis leads to the conclusion that all
possible eigenvalues σ of the system of equations (13a–i) have
their leading (zeroth) order asymptotic approximations, namely
σ0, in the image of the z-dependent function called the growth
rate function, denoted as σ(z). This function is given implicitly
by the leading order solution of the quartic equation =

~
W z 00 ( ) ,

where
~
W z0 ( ) is the coefficient of ~w in Equation (14), defined by

Equations (A1c) and (A2c). Hence, the leading order values σ0
of all the growth rates are determined by the growth rate
function σ(z) evaluated at initially unknown points z0, called
the evaluation points. That is, for one particular eigenmode, we
have σ0= σ(z0), for some z0ä [0, 1]. With every eigenvalue σ,
there is an associated eigenmode ~w z( ), which is a solution of

Equation (14). Based on the form of Equation (14), we can
anticipate boundary layer-type, highly localized solutions (see
Mizerski et al. 2013; Gradzki & Mizerski 2018). However, the
precise spatial structure of the eigenmodes can be determined
only by considering first-order corrections to the growth rate σ;
hence, solving for the mode structure is postponed until
Section 4.
Determining the set of allowed evaluation points z0 is

tantamount to finding the leading order spectrum of the linear
differential operator given by the system of Equations (13a–i).
Our Rayleigh–Schrödinger perturbation analysis shows that
there are two distinct types of eigenmode. First, the eigenmodes
may be associated with the evaluation points z0 lying on the
boundaries of the domain, that is z0= 0, or z0= 1; we refer to
these boundary layer-type solutions as wall modes. Second,
eigenmodes with an internal layer type may exist for evaluation
points z0 lying strictly in the domain 0< z0< 1; we refer to
these solutions as body modes. However, the detailed
characteristics of all these eigenmodes, as well as the
determination of the evaluation points of the body modes, are
obtained by consideration of the next-order corrections to the
growth rate σ (see Section 4 and Appendix D).
In addition to eigenmodes with a highly localized structure,

there may also exist WKB modes, with oscillations throughout
the bulk of the layer, on intervals determined by the evaluation
points z0 and the form of the growth rate function σ(z).
However, as shown by Mizerski et al. (2013) for the pure MBI,
the WKB solutions are always less unstable, characterized by
lower values of s0( )R than the boundary layer modes.
Numerical simulations confirm that this remains the case for
the more complicated setup considered here. Therefore, in any
temporal linear evolution, the most unstable boundary layer
mode (be it a wall mode or a body mode) will ultimately
dominate.
From the governing ordinary differential equation (14), the

leading order contribution to the growth rate σ0 associated with
the evaluation point z0 is a solution of the quartic equation (see
Equation (C6))

s s s+ + + =A z A z A z A z 0, 174 0 0
4

2 0 0
2

1 0 0 0 0( ) ( ) ( ) ( ) ( )

where the coefficients Ai, given by (A3a–d), are functions of the
basic-state variables, the set of parameters (6), and positive
integer powers of the product kb0. In particular, under the
assumptions (16), σ0 does not depend separately on k or b0. The
value of b0 establishes the order of magnitude for the
wavenumber k of the eigenmodes; a similar idea arose in the
treatment of magnetic diffusivity by Gradzki & Mizerski (2018).
In general, for a given value of z0, the four solutions σ0 of

Equation (17) are complex. If there exists at least one solution
with s > 00( )R , the associated eigenmode ~w z( ) is unstable. In
general, any instability involves coupling between the three
types of instabilities: MRI, MBI, and CI. Although there are
closed algebraic formulae for the solutions of any quartic
equation, they are somewhat unwieldy. Therefore, it is not
possible to give a general simple formula for σ0 and hence a
general stability criterion. However, for a fixed value of the
evaluation point z0, the algebraic Equation (17) can be solved
numerically in a straightforward manner for any specific values
of the system parameters (6). Furthermore, for some important
cases, Equation (17) reduces to a biquadratic, with relatively
simple analytic solutions. This happens for any “subcase” of
the full system, defined by neglect of one or more of the
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following factors: rotationΩ, shear flow u0(z), toroidal
field a0(z), or poloidal field b0. For each of these subcases, we
need consider only an individual instability mechanism or a
coupling of at most two. An analysis of the various subcases
allows us to investigate the constituent parts of the instability of
the complete system, and to make comparison with earlier
studies. In the following subsections, we present the analytical
approach to these subcases, which prepares the ground for the
detailed analysis of the full system.

3.1. Centrifugal Instability

If we neglect the effect of the magnetic field, namely we set
a0(z)= 0, and b0= 0 in the system of Equations (13a–i), and
hence also in Equation (17), we obtain a purely hydrodynamic
system, with the only possibility of instability being centrifu-
gal. In this case, the growth rate at leading order, σ0, which we
denote by σCI, is given by the simple expression

s k= -z z , 18CI
2

0
2

0( ) ( ) ( )

where

k = - -W Wz Du z 19u
2

0( )( ) ( ( )) ( )  

is the square of the depth-dependent nondimensional local form
of the epicyclic frequency κ, which is the frequency of
oscillations of a radially displaced fluid parcel in a differentially
rotating system (see Balbus & Hawley 1991).

It can be seen that in the absence of a basic-state shear flow
u0(z), κ2> 0, and so the system supports only waves with
rotational frequency >W 0 . However, in the presence of a
shear flow, instability will ensue if k <z 02

0( ) at some level z0
in the fluid layer; equivalently

- > WDu z zfor some . 20u 0 0 0( ( )) ( ) 

Inequality (20) is a local equivalent of the well-known
Rayleigh criterion for a differentially rotating fluid; namely
that, for a given radial profile of the angular velocity Ω(R), a
necessary condition for instability is that the fluid specific
angular momentum R2Ω(R) must decrease with increasing
distance R from the rotation axis, i.e., W <d R R dR 02 2( ( )) .
This inequality may be rewritten as 2Ω(2Ω+ RdΩ/dR)< 0,
where the left-hand side of this inequality is the standard
definition of the epicyclic frequency for a differentially rotating
fluid. It agrees with our local model, in which the rotation
parameter W and the shear flow gradient Duu 0 correspond to
the quantities 2Ω(R) and RdΩ(R)/dR respectively. For the
particular case when the basic flow u0(z) is a linear function of z
with negative gradient (i.e., the epicyclic frequency κ is
constant), our model reduces to a standard shearing box
approximation. However, our asymptotic analysis is valid for
an arbitrary shear flow profile u0(z). It follows that, for the full
system governed by Equations (13a–i), we can expect that a
threshold value of the flow gradient, at which the squared
epicyclic frequency κ2(z) first becomes negative somewhere in
the layer, will play an important role in the dynamics.

3.2. Magnetorotational Instability

For the less restrictive system in which the poloidal
component is retained, but the basic-state toroidal magnetic
field is still neglected (i.e., we set a0(z)= 0, and b0≠ 0 in

Equations (13a–i)), besides the CI, we may also expect the
occurrence of the axisymmetric MRI. In general, the MRI
occurs when, in a rotating magnetized fluid, the angular
velocity decreases with radius. However, we demonstrate in
Appendix C that, under the assumption of weak poloidal field
(b0→ 0), the MRI instability is apparent at leading order only
for high wavenumbers satisfying ~ -k b0

1. The other regimes,
namely -k b1 0

1  and -k b 10
1  , lead to the pure CI

(if κ2(z0)< 0) and stability (at least at leading order),
respectively. This is a well-known result for weak magnetic
fields (e.g., Balbus & Hawley 1991).
By the use of Equation (17), for the case at hand, the leading

order contribution to the growth rate σ0≡ σMRI takes the
following form (see Expression (B5)):
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An important difference from the pure CI case, with growth
rate given by Equation (18), is that now, at leading order, the
growth rate depends on the wavenumber k. Thus, the
corresponding growth rate function is dependent on both
height and wavenumber, σ(z, k), which makes the identification
of the most unstable mode somewhat more complicated. It is
instructive to consider separately the cases of κ2(z0)< 0, for
which case the CI is present in the absence of magnetic field,
and κ2(z0)> 0, for which it is not.
If κ2(z0)< 0, there is instability provided that

r
k<

L
< -W

k b

z
z0 , 22

2
0
2

0 0

2 2
0( )

( ) ( )

thus showing that the CI is eventually stabilized by a
sufficiently large value of kb0. If

k+ >W z 0, 232 2
0( ) ( )

then the CI is initially destabilized by the inclusion of a very
weak magnetic field, before eventually being stabilized as the
field strength (or, to be more precise, the product kb0) is
increased. If, on the other hand, Inequality (23) is not satisfied,
then increasing the magnetic field strength b0 is monotonically
stabilizing.
It is when κ2(z0)> 0, and hence when the flow is stable to CI

in the absence of b0, that the influence of the magnetic field
becomes particularly significant. In this case, from Expressions
(19) and (21), the criterion for instability—to an axisymmetric
MRI—takes the following form:

k
r

- = - >
LW Wz Du z

k b

z
, 24u

2 2
0 0 0

2
0
2

0 0
( ) ( ( ))

( )
( )

/
  

which is a local form of the standard criterion for the MRI,
mr- W >Rd R dR k b2 2

0
2

0( ) ( ) (see Balbus & Hawley 1991).
Hence, in our system, the rotation rate or the negative shear
flow gradient must be sufficiently strong in order to destabilize
the flow. On the other hand, without rotation ( k= =W 0 ),
Expression (21) simply reduces to the dispersion relation for
Alfvén waves, whereas with rotation but no shear
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( k=  = >WDu 0 00
2 2 ), such waves are coupled with

inertial waves. In both cases, the system is always stable, i.e.,
s 0MRI

2  .
From Expression (21), it is straightforward to show that the

wavenumber of the mode of maximum growth rate, for fixed
b0, is given by

r k
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L

-
- W
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k k b
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with associated maximum growth rate given by
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As noted by Balbus & Hawley (1991), although the
wavenumber of the mode of maximum growth rate, given by
Expression (25), depends on b0, the maximum growth rate
itself, given by Equation (26), does not. It is also worth noting
that Expressions (25) and (26) are in accord with those for an
isothermal, incompressible Keplerian disk, for which the
preferred mode is given by r= LWk b 15 64MRI

2
0
2

0
2 , with

maximum growth rate given by s = W3 8MRI  .
Expression (25) in fact defines a range of wavenumbers for

all possible evaluation points z0ä [0, 1], with corresponding
growth rates σMRI given by (26). In particular, for the simplest
form of the basic shear flow u0(z), namely a linear shear (where
the epicyclic frequency κ is constant), all modes with
wavenumbers k ä kMRI(z0) have the same growth rate at
leading order, namely σMRI(kMRI); the difference appears only
in the higher-order analysis, which is described in Section 4 for
the general case. Thus, for a linear shear, we expect a plateau in
the dispersion relation σ(k) in the range between the minimum
and maximum values of kMRI. For a basic-state shear flow with
a nonlinear dependence on z, the dispersion relation is more
complicated, and depends on the form of the depth-dependent
epicyclic frequency κ(z).

As a specific example to illustrate the relationship between
the asymptotic results (valid for k? 1) and the numerical
results (which can be obtained for all k), we consider basic
states with a uniform linear shear flow; thus we set
u0(z)=− ζz, with ζ> 0 to allow for the possibility of CI and
MRI. Figure 2 shows selected positive branches of the real
parts of σ(k) for three cases, differing only in the value of ζ,
chosen to highlight the role of the CI and MRI: the state with
ζ= 2 is unstable to CI; that with ζ= 0.5 is stable to CI; and that
of ζ= 1 is marginally stable. The theoretical relationship (21) is
shown as solid lines, where the highest growth rate value σ0 is
determined over the range of wavenumber values k; there is
clearly a preferred wavenumber that maximizes the growth
rate. For comparison, the blue dashed line denotes the
wavenumber-independent growth rate for the nonmagnetic case
(b0= 0) with ζ= 2, where we can, at most, expect only CI, as
described in Section 3.1. The numerically determined eigen-
values σ (marked by circles on Figure 2) are obtained from the
full Equation (14) (with basic toroidal field a0(z) set to zero);
the numerical method of solution is described in detail in
Section 5. From Figure 2, we can see, as noted above, that a
weak constant poloidal magnetic field b0 can destabilize the
system with respect to the pure CI (ζ= 0.5, and ζ= 1.0 cases).
However, if the shear gradient ζ is increased, with all other
parameters fixed (which also implies enhancement of the
magnitude of the negative squared epicyclic frequency κ2), the
CI eventually become so vigorous that there is no noticeable
impact of the magnetic field on the growth rate σ. Nevertheless,
the field b0 establishes a range of wavenumbers k for
instability, given by Inequality (24), which is accurately
captured by the numerically determined solutions. Of particular
note in Figure 2 is the excellent agreement at large k between
the analytical expression for the growth rate σMRI, given by
Equation (21), and the value of σ determined numerically from
Equation (14). Indeed, although our asymptotic results are
obtained under the assumption ~ -k b 10

1  , the agreement
between analytical and numerical results is very good even for
k=O(10). Moreover, this agreement can be improved by
taking into account the next-order corrections to σ, as described
in Section 4.

3.3. MBI of a Toroidal Field, with Shear Flow and Rotation

The pure axisymmetric MBI, in the absence of poloidal field,
shear flow, and rotation, was studied in the limit of k→∞ by
Mizerski et al. (2013). Here, through similar methods, we
investigate the influence of shear flow and rotation on the
MBI of a toroidal field. From Equation (17), we can express
the leading order growth rate σ0, which we shall denote by
σMBIκ, as

s s s k= + -k z z . 27MBI
2

0 MBI
2

MBIC
2 2

0( ) ( ) ( )

In Equation (27), sMBI
2 is the growth rate at leading order of the

pure MBI (when k= =W 0 ) at a given evaluation point z0
(see Equation (35) in Mizerski et al. 2013), given by

s =
L

-r
- -z

a z f

F z
H z H z . 28BMBI

2
0

0
2

0

0

1
0

1
0( ) ( )

( )
( ) ( ) ( )⎡

⎣
⎤
⎦

Figure 2. Positive branches of the real parts of the growth rates s k( ( ))R as
functions of wavenumber k for a system that is unstable owing to the MRI or
CI. The basic state has a linear shear flow of the form u0(z) = − ζz, with
ζ = 0.5 (red), ζ = 1.0 (green), and ζ = 2.0 (blue). The values of the remaining
parameters are a0 = 0, b0 = 10−4, Λ = 0.2, = 1.0u , =W 1.0 , = 1.9 ,
α = 1.0, f = 1. Solid lines denote the leading order growth rate σ0; circles
denote the numerically determined eigenvalues σ. The blue dashed line
indicates the wavenumber-independent analytical value of σ0 for the pure CI
subcase (with b0 = 0).
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The expression for sMBIC
2 is analogous, but with gravity

replaced by the z-component of the Coriolis force:
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It can be seen from (28) that the pure MBI of an axisymmetric
(interchange) mode is driven by a decrease in height of B/ρ, a
result that may be recovered from a standard fluid parcel
argument (e.g., Acheson 1979). The influence of uniform
rotation is represented by a negative final term in (27), and
hence is such that it always suppresses the instability, in
accordance with previous studies (e.g., Gilman 1970; Ache-
son 1979). The influence of the shear flow u0(z0), on the other
hand, is more subtle, since it can either stabilize or destabilize
the system. First, the horizontal basic flow affects the effective
gravity through the Coriolis force (the Eötvös effect). Second,
the sign of the shear flow gradient (or the epicyclic frequency
squared, κ2) determines whether or not the shear will amplify
the MBI.

The growth rate in the form (27) may be regarded as a
coupling of the growth rates of the effective MBI (the first two
terms) and the CI. We observe that the CI can be amplified by a
sufficiently strong negative gradient of the toroidal magnetic
field. We note that in this case the Coriolis force acts as an
effective gravity (contributing to g). Through this effect, the
MBI is enhanced provided that the shear flow u0(z) is negative
(westward).

3.4. MBI with Poloidal Magnetic Field

As a final subcase, we consider the separate influence of the
constant weak poloidal field b0 on the MBI, in the absence of
both rotation ( =W 0 ) and shear flow (u0= 0). As for the MRI
subcase described in Section 3.2 and Appendix B, it can be
shown that under the assumptions of short perturbation
wavelengths (essential for the MBI) and weak field b0, there
are three possible regimes. The regime -k b1 0

1  yields the
pure MBI, as in Mizerski et al. (2013), while for -k b 10

1 
there is no instability at leading order. There is a leading order
influence of the poloidal magnetic field b0 on the growth rate
only for ~ -k b0

1. For this range of wavenumbers,
Equation (17) reduces to a quadratic in s0

2, with the greater
root taking the form
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where the functions f(z) and ψ(z) are defined as
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On using the basic-state Equation (11), with =W 0 , the
growth rate of the pure MBI (σMBI), defined by (28), may be

expressed in terms of the inverse scale height of the toroidal
magnetic field -H zB

1( ) as

s
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Moreover, it can be seen from Expression (30) that the growth
rate (at leading order) of the MBI becomes dependent on the
wavenumber k in the presence of a constant weak poloidal
magnetic field b0, or, in other words, that the growth rate
function is now depth and wavenumber dependent, i.e., σ= σ

(z, k). It can also be shown that sMBIP
2 is always real; hence, the

growth rate σMBIP can take either real or purely imaginary
values, just like σMBI.
Expression (30) yields a simple instability criterion, which

may be expressed as a condition on the inverse magnetic field
scale height at a point z0 somewhere in the fluid layer:

a
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With the aid of Equation (33), Criterion (34) can be rearranged
into the following form:
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or, equivalently,
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Thus, any system that is unstable at a point z0 with respect to
the pure MBI (σMBI> 0) will always be unstable (σMBIP> 0)
in the presence of a weak field b0 for some range of large
wavenumbers k, provided that the asymptotic assumption

~ -k b1 0
1 is also satisfied. An interesting consequence of

Criterion (36) is that it can be satisfied even for s < 0MBI
2 ,

provided that the condition <-H z 0B
1

0( ) is met. Thus, a
poloidal field b0 can destabilize an eigenmode associated with
the evaluation point z0 that is stable as a result of pure MBI.
Just as in the subcase of the pure MRI presented in

Section 3.2 (see also Appendix B), we can find the range of
wavenumbers k for the most unstable modes, since Expression
(30) for the growth rate σMBIP depends explicitly on k. It is
readily shown that the critical wavenumber k= kMBIP is
determined by a biquadratic equation. Since, without loss of
generality, we may concentrate on positive values of kMBIP, it
can be demonstrated that there can be at most one positive
solution kMBIP> 0, which exists if the following condition is
satisfied:

r
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for succintness, we have omitted the argument z0 in all z-
dependent functions, as we will also do in the subsequent
expressions in this section. The interpretation of (37) is that, if
the negative gradient of the toroidal magnetic field is too strong
or too weak (making sMBI

2 too large or “too negative”), the
growth rate σMBIP, if positive, reaches its maximum value
somewhere on the boundaries of the region defined by ~ -k b0

1
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and not in the form of a critical point kMBIP. However, if
Condition (37) is met, the growth rate sMBIP

2 attains its (always
positive) maximum given by the expression
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with the wavenumber given by
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Expression (39) determines the range of wavenumbers of the
most unstable modes k ä kMBIP(z0) for all evaluation points
z0ä [0, 1] at the leading order of the asymptotic analysis.

We may also investigate the condition for enhancement of
the MBI by inclusion of the field b0, for the most unstable
modes with growth rate σMBIP given by (38) and wavenumber
kMBIP given by (39), both calculated at the evaluation point
z0 that maximizes σMBIP. The sufficient condition for
σMBIP(kMBIP)> σMBI takes the following simple form:
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Therefore, if the pure MBI is not “too unstable” , the inclusion
of the poloidal field b0 can enhance the growth rate, provided
that Criterion (37) is also met.

Figure 3 shows selected positive branches of the real parts of
the “dispersion relations” σ(k) for three sets of values of the
system parameters. The theoretical relationship (solid lines)
follows from Expression (30), where the highest value of the

growth rate at leading order, σ0, is determined for each
wavenumber k. This allows for identification of the range of
wavenumbers of the most unstable modes. The dashed lines in
Figure 3 mark the wavenumber-independent σ0 for the case of
pure MBI with b0= 0, given by Expression (28). The
numerical eigenvalues σ (marked by circles) are obtained from
the full Equation (14) in the absence of both rotation and a
basic shear flow ( = =W u z 00 ( ) ), and for a linear basic
toroidal magnetic field of the form a0(z)= 1+ λ(1− z), solved
by the method described in Section 5.
From Figure 3, we can see that, in accordance with our

theory, a weak constant poloidal magnetic field b0 establishes a
finite wavenumber range of the most unstable modes with
~ -k b0

1, suppressing the shorter perturbations to a zero growth
rate. For a sufficiently strong gradient of the toroidal magnetic
field (represented by the λ= 1.35, and λ= 1.95 cases), with all
other parameters fixed, the highest σ value achieved is very
well approximated by the analytical growth rate at leading
order, σ0, from both (30) and (38). This growth rate is also
almost equal to the eigenvalue σ of the most unstable modes for
the case of pure MBI with b0= 0, when the finite wavenumber
k of the most unstable modes cannot be established (the pure
MBI growth rate is maximized when k→∞). On the other
hand, when the toroidal field gradient λ is relatively weak (as
shown by the case of λ= 0.45), so that the pure MBI is not
excited, under Condition (40), the presence of the poloidal field
b0 can destabilize the system; the growth rate of the most
unstable mode is then very well approximated by (30) and (38).
This is a somewhat surprising effect, since in our setup the
poloidal field b0, in the absence of a toroidal field a0(z), is not a
source of any type of instability in a nonrotating system. It is
the joint action of b0 and the weak toroidal field gradient that
leads to destabilization.

3.5. Viewing the Full System through the Subcases

It is of interest to consider the role of the various subcases for
different basic states, to determine which subcase, if any,
dominates, together with the relationship between the full
system and the various subcases. In this section, to address
these points, we consider, as an illustrative example, two
families of basic states, and within each, we explore the
dependence on the basic-state shear flow u0(z). We consider the
two sets of parameter values:

a
l
= = L =
= = =W

1.9, 1.0, 0.2,
1.35, 1.0, 1.0, 41u ( )


 

and

a
l
= = L =
= = =W

1.9, 1.0, 0.2,
1.95, 1.0, 0.4, 42u ( )


 

where the parameter λ is the constant gradient of the basic-state
toroidal magnetic field, a0(z)= 1+ λ(1− z). The basic-state
shear flow is also taken to be linear with a negative gradient,
which is necessary in order to excite the MRI and CI
instabilities; thus u0(z)=− ζz. The parameters (41) describe
what we shall term as the weak-MBI case, since, for these
parameter values, in the absence of the shear flow u0(z), the
MBI is entirely suppressed by rotation, regardless of the
presence of the poloidal field b0. We shall refer to the case
described by parameters (42), in which the MBI is not

Figure 3. Positive branches of the real parts of the growth rates s k( ( ))R as
functions of the wavenumber k, for a system that is unstable to MBI in the
presence of a weak constant poloidal field b0, and in the absence of both
rotation and a basic shear flow ( = =W u z 00 ( ) ). The basic-state toroidal
magnetic field takes the form a0(z) = 1 + λ(1 − z), for λ = 0.45 (red),
λ = 1.35 (green), and λ = 1.95 (blue). The values of the remaining parameters
are b0 = 10−4, Λ = 0.2, = 1.0u , = 1.9 , α = 1.0, f = 1. Solid lines denote
the leading order growth rate σ0; circles denote the numerically determined
eigenvalues σ. The dashed lines indicate the wavenumber-independent
analytical value of σ0 for the pure MBI subcase with b0 = 0.
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suppressed by rotation in the absence of a shear flow u0(z), as
the strong-MBI case.

Figure 4 (for the weak-MBI case) and Figure 5 (for the
strong-MBI case) present theoretical (high wavenumber) values
of σ0 (the leading order growth rate) and numerical values of σ
(the full growth rate) for the most unstable modes, as a function
of the basic shear flow gradient ζ. The results for the various
subcases are shown, together with those for the full system.
Numerical results are obtained from solving the full
Equation (14) for a wide range of wavenumbers k; details of
how the numerical results are obtained are contained in
Section 5. In this subsection, for the numerical results, we
follow our theoretical assumption and take b0= 1/k. It is,
though, worth noting that from the results of Section 5, in
which we fix the value of b0, our assumption here on b0 is not
particularly restrictive. It can be seen that there is excellent
agreement between the analytical and numerical results.

Considering first the weak-MBI case, for sufficiently large
shear gradients (ζ 3), the dynamics is dominated by the CI.
However, for weaker shear, it can be seen that different
instability types require different minimum values of ζ to enter
the dynamics. The pure CI is destabilized for ζ> 1.0. However,
with rotation present, a slightly lower value (ζ≈ 0.91) initiates
the MBI, owing to the influence of the Coriolis force on the
effective gravity. A significantly weaker threshold value
(ζ> 0.11) is needed for emergence of the MRI, which turns
out to be the most unstable subcase among the instabilities
considered individually. Finally, the full system—including
rotation, shear flow, and magnetic field (both poloidal and
toroidal)—is destabilized by the weakest shear threshold
(ζ> 0.044). From Figure 4, it can be seen that, for a given
value of the shear gradient ζ, the growth rate for the full case
exceeds that of any of the subcases. This may be interpreted as
the full system experiencing reinforcement from the component
instability mechanisms. By contrast, Figure 4 also shows three
shear-independent cases: the pure MBI, the MBI under the sole
influence of the poloidal field b0, and the MBI under the sole
influence of rotation Ω. It can be seen that the MBI in the
absence of shear flow is entirely suppressed by rotation and
significantly weakened by the poloidal field. With an increasing

shear flow gradient ζ, the instabilities in all the other subcases
eventually become more unstable than any shear-independent
case, owing to the presence of MRI and CI.
We now turn to the second set of parameter values given in

(42), which describes the strong-MBI case. Figure 5 shows σ0,
calculated theoretically, and σ, calculated numerically from
Equation (14), for the most unstable modes as a function of the
shear flow gradient ζ; the upper plot covers the range 0< ζ< 8,
and the lower plot shows the range 0< ζ< 1 in more detail. As
for the weak-MBI case, the dynamics for sufficiently strong
shear gradients (here ζ 8.0) is eventually dominated by the CI
for all subcases. However, for weaker shear, we again see that
the different instability types require different minimum
threshold values of ζ to enter the dynamics. Similarly to the
weak-MBI case, here it is also the pure CI for which the shear
gradient threshold is highest (ζ> 0.4). A slightly lower value
of ζ (ζ> 0.28) is sufficient to excite the MRI. However, the
system is now unstable even in the absence of a shear flow
(ζ= 0) because of the relatively strong toroidal magnetic field
gradient λ. It is also of note that, for any value of the shear
gradient ζ> 0.1, the greatest value of σ0 is observed for the
subcase combining only the MBI and CI. Thus, for the strong-

Figure 4. Positive branches of the real parts of the leading order growth rates of
the most unstable modes of the full system and the various subcases, as a
function of the basic shear flow gradient ζ for the weak-MBI case, defined by
(41). The poloidal magnetic field has magnitude b0 = 1/k. Analytic results (a)
are represented by solid lines, numerical results (n) by circles. Dashed lines
denote the shear-independent cases explained in the legend.

Figure 5. Positive branches of the real parts of the leading order growth rates of
the most unstable modes of the full system and the various subcases, as a
function of the basic shear flow gradient ζ ä [0.0, 8.0] (upper plot) and
ζ ä [0.0, 1.0] (lower plot) for the strong-MBI case, defined by (42). The
poloidal magnetic field has magnitude b0 = 1/k. Analytic results (a) are
represented by solid lines, numerical results (n) by circles. Dashed lines denote
the shear-independent cases explained in the legend.
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MBI case, the introduction of a constant weak poloidal
magnetic field b0 acts to stabilize the system (provided that
the shear is not too weak). It can also be seen from Figure 5
that, on increasing the shear flow gradient ζ, all the shear-
dependent subcases eventually become more unstable than any
of the shear-independent subcases, owing to the marked
amplification of the MRI and CI with increasing ζ.

4. Next-order Asymptotic Analysis

The next-order analysis allows us to determine the potential
evaluation points z0 for the most unstable eigenmode ~w z( ) of
Equation (14), as well as the leading order asymptotic
approximation of such a solution, denoted by ~w z0 ( ). As
explained in Appendix C, the solution at zeroth order (the main
flow, hereinafter MF) is simply w= 0. The perturbation
method reveals the strongly localized perturbations to this
trivial solution. They can be classified into two categories: wall
modes and body modes. Wall modes take the form of boundary
layer solutions in which the evaluation points z0 lie on the
boundaries of the domain; on one side, they satisfy the
impermeability condition (15), and on the other, they match
smoothly to the zero MF solution. Body modes, on the other
hand, are internal layer-type solutions in which z0( )R lies
strictly inside the domain and that decay on both sides to zero.
We now discuss the results for these two types of modes, with
further details provided in Appendix D.

4.1. Wall Modes

Wall modes are solutions ~w z( ) of Equation (14) in the form
of a boundary layer in the vicinity of the boundaries of the
domain, either z0= 0 or z0= 1, with the thickness of the
boundary layer decreasing with increasing wavenumber k. This
boundary layer thickness, denoted by δ1, scales with the value
of k and by the relation (16) also with the value of the weak
constant poloidal magnetic field b0:

d ~ ~-k b . 431
2 3

0
2 3 ( )

It follows that the relation (43) establishes the vertical and
horizontal spatial scales of the variations of interchange wall
modes.

The leading order asymptotic approximation of the most
unstable wall mode, which satisfies the impermeability
condition =w z 00

~( ) , takes the form of an Airy function of
the first kind (see formula (D10)):

c~ = + - S~ ~w z w z k z zAi , 44z0 1
2 3

0
1 3( ) ( ) ( ) ( )⎡

⎣
⎤
⎦

where χ1≈− 2.338 is the first zero of the Airy function, and
where the complex numberSz

 is defined by (D4). Hence, ~w z0 ( )
is a complex function with the real and imaginary parts
oscillating under the envelope of the function modulus ~w z0∣ ( )∣.
Selected plots of the wall modes are presented in Section 5.

It should be noted that in the subcases of the full problem
related to the pure MBI or pure MRI, described in Section 3,
the wall modes are approximated by the Airy function in a form
similar to (44). However, in all these simpler unstable cases, the
growth rate function σ(z) is a purely real positive function (at
least on a part of the domain), and hence the growth rates σ are
real numbers, and also the eigenmodes ~w z( ) are purely real
functions. For this reason, there could be at most one wall
mode (when the growth rate function σ(z) is maximized at the

boundary of the domain) or none (when σ(z) is maximized
strictly inside the layer). In the full system, however, the
situation is different: owing to the complex form of
Equation (17), the wall modes given by (44) always exist at
both edges of the domain, provided that they are unstable,
namely s s= >z 00 0( ( ))R at the evaluation points z0= 0 or
z0= 1. In addition, these complex solutions exhibit very strong
oscillations in the real and imaginary parts, but still have a
smooth Airy-type envelope ~w z0∣ ( )∣. Finally, for the wall mode
(44), the asymptotic approximation of the growth rate σ,
including the first-order correction (D9), takes the form

s s c= - S S +s
- - -k o k , 45z0 1

1 2 3 2 3 2 3 ( )| | ( ) ( )/ / /

where Ss is defined by (D4), and where ~-k b2 3
0
2 3

from (43).

4.2. Body Modes

For the pure MBI or pure MRI, described in Section 3, σ is
real, and the body modes are the solutions ~w z( ) of
Equation (14) in the form of an internal layer confined strictly
inside the domain in the vicinity of the evaluation point z0, with
0< z0< 1. Outside this layer, the body mode decays
exponentially to match the zero MF solution. The evaluation
point z0 for the most unstable body mode is defined by the
location where the growth rate function s z( ) has its global
maximum inside the domain. More details of the analysis of the
pure MBI case can be found in Mizerski et al. (2013).
However, for the full problem, the situation is more

complicated, as described in detail in Appendix D. The leading
order expression for the growth rate, σ0, is now complex, and
the evaluation point z0 is initially unknown. In other words, the
growth rate function s z( ), given implicitly by the equation
W0(z, σ)= 0, where W0 is defined by (A2c), is complex. It can
then be shown—see Appendix D—that the condition for the
existence of body modes is that the derivative of the growth
rate function with respect to z has to vanish at the point z0. This
leads to a system of two algebraic equations for the unknown
pair (z0, σ0), i.e.,

s s= =
¶
¶ s s=

W z
z

W z0 , , 0 , . 46
z z

0 0 0 0
, ,0 0

( ) ( ) ( )
( ) ( )

The solution of the system (46) yields all allowed evaluation
points z0 for the body modes and the leading order form of their
growth rates σ0. However, it turns out that (except in special
cases) all z0 solutions are essentially complex, i.e., ¹z 00( )I .
Thus, significantly, z0( )R is not, in general, the point where the
function s z( ( ))R has its maximum. Instead, the evaluation
point z0 is a point where the complex-z derivative of the growth
rate function s z( ) is zero on the subdomain of the complex
plane < <z0 10( )R (Soward 1977; Soward & Jones 1983;
Yano 1992; Jones et al. 2000). The asymptotic solution of
Equation (14) is a complex-valued function ~w z0 ( ) of the real
variable z with the associated complex eigenvalue σ at leading
order equal to σ0. Furthermore, the modulus, as well as the real
and imaginary parts of the body modes ~w z0 ( ), is not, in general,
localized in the vicinity of the point z0( )R , but rather about
some other point < <z0 1max , which we term the localization
point. This fact has an important impact on the numerical
search for solutions. Finally, it should be mentioned that, for
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the pair (z0, σ0) satisfying Equations (46), the body mode does
not necessarily have to exist, since additionally it has to fulfill
the boundary conditions (15).

Next, the thickness of the internal layer-type body mode,
denoted as δ2, needs to be established in terms of scaling with
the value of k and, by the relation (16), also with the value of
the weak constant poloidal wavenumber b0. Similarly to
Mizerski et al. (2013), and as explained in Appendix D,

d ~ ~-k b . 472
1 2

0
1 2 ( )

The relation (47) determines the vertical and horizontal spatial
scales of variation of the interchange body modes.

The leading order asymptotic approximation of the most
unstable body mode has the form of a complex Gaussian
function (see Expression (D22)),

~ = - - ¡~ ~ ~
w z w z k z zexp

1

4
, 48z0 0

2 1 2
( ) ( ) ( ) ( )⎡

⎣
⎤
⎦

where ¡
~

z, which is complex, is defined by Equation (D17).
Hence, ~w z0 ( ) is a complex function with real and imaginary
parts oscillating under the envelope of the function modulus
~w z0∣ ( )∣. The modulus takes the shape of a Gaussian function of
a real variable on the domain [0, 1], localized near the
localization point zmax, which is determined by

= -
¡

¡

~

~z z z . 49
z

z

max 0 0

1 2

1 2

( )
( )( ) ( ) ( )R I
I

R

Expression (49) demonstrates clearly the difference between
the evaluation point z0 and the localization point zmax, i.e., the

presence of the nonzero imaginary parts of z0 and ¡
~

z (note that
in the subcases related to the pure MBI or pure MRI, z0 and ¡

~
z

are both real, in which case =z zmax 0).
The eigenmode approximation ~w z0 ( ) given by (48) has the

same structure as the body modes in the case of the pure MBI
(see Mizerski et al. 2013) as well as in the case of the MBI with
magnetic diffusion (see Gradzki & Mizerski 2018). In the latter
case, the weak magnetic diffusivity plays a similar role to that
of the weak poloidal field b0 in the current study, namely
establishing the horizontal and vertical length scales of
variation of the most unstable perturbation. Finally, for a body
mode given by (48), the asymptotic approximation of the
growth rate σ up to first order takes the form

s s= - ¡ ¡ +
~ ~

s
- - -k o k

1

2
, 50z0

1 1 2 1 1( ) ( )⎛
⎝

⎞
⎠

where ¡
~
s, which is complex, is defined by Equation (D19), and

k−1∼ b0 from the relation (47).

5. Numerical Solutions of the Full System

The linear stability to interchange modes of the system under
consideration is governed, in general, by the second-order
ordinary differential equation (14) for ~w z( ), the amplitude of
the vertical velocity perturbation; the growth rate σ is
determined as the eigenvalue. In Sections 3 and 4, we
considered the high-wavenumber limit (k? 1), thereby allow-
ing analytical progress in determining both the growth rate and
spatial structure of the unstable modes. Here, we present
numerical solutions of Equation (14), with boundary conditions

(15), and compare these with the corresponding analytical
expressions from Sections 3 and 4.
In Section 3.5, we presented numerical results for subcases

of the full system, with at least one of the main physical
ingredients neglected. In this section, we utilize the same two
representative sets of parameter values: Set (41), which we
refer to as the weak-MBI case, and Set (42), which we refer to
as the strong-MBI case. However, contrary to the approach of
Section 3.5, here we present the results for certain fixed values
of the shear gradient ζ, so as to focus on verification of the
analytical results from Section 4, together with identification of
the most unstable mode. In this section, we treat the poloidal
magnetic field b0 as a constant, although we consider different
values of b0. Recall that in the theoretical analysis of Sections 3
and 4, we adopted the ordering b0∼ 1/k; it is therefore
important to examine the validity of this assumption by
investigating cases in which b0 is fixed, and we explore,
numerically, a wide range of wavenumbers k. To solve
Equation (14) numerically, we utilize the MATLAB bvp4c
function for the solution of boundary value problems. The
solver employs a finite difference routine that implements the
three-stage, fourth-order Lobatto IIIa implicit method (for
details, see Shampine & Kierzenka 2001). Since we are
considering interchange solutions, with transverse wavenumber
k, we seek to maximize the eigenvalue σ over all positive k, for
a chosen basic state and a fixed set of nondimensional
parameters of the system, in particular the weak constant
poloidal magnetic field b0.
In Section 5.1, for the weak-MBI case, and Section 5.2, for

the strong-MBI case, we present a comparison of the analytical
and numerical results. We consider three representative values
of the negative shear flow gradient, leading to three distinct
cases: CI-stable (with κ2> 0), CI-neutral (κ2= 0), and CI-
unstable (κ2< 0). Initially, we focus on one selected value for
the magnitude of the weak poloidal field, namely
b0= 10−4; under assumption (16), we thus anticipate the
wavenumbers of the most unstable modes of O 104( ). For this
value of b0, we show the analytically and numerically obtained
dispersion relations σ(k) for the three cases of κ2> 0, κ2= 0,
and κ2< 0. We then present each of the three cases separately,
together with the dispersion relations for all the subcases
described in Section 3. This makes it possible to observe which
of the physical ingredients has a stabilizing or destabilizing
effect on the flow and how they affect the full system. We then
focus on the most interesting situation (κ2= 0), in which only
the MBI and MRI compete at leading order. For the most
unstable modes, we show the eigenmode solutions of
Equation (14) and the scaling relation k(b0) for a wide range
of poloidal field strengths, with b0 ranging from 10−1 to 10−10.

5.1. Weak-MBI Case

The weak-MBI case is defined by the physical parameters
(41), namely

a
l
= = L =
= = =W

1.9, 1.0, 0.2,
1.35, 1.0, 1.0, 51u ( )


 

together with a linear basic-state toroidal magnetic field a0(z)=
1+ λ(1− z), a basic-state shear flow u0(z)=− ζz (ζ> 0), and
the strength b0 of the uniform poloidal field. As noted earlier,
for such a setup in the absence of any shear flow (ζ= 0), the
MBI is completely suppressed by rotation, regardless of the
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presence of the poloidal field. Hence, we can expect that, in this
case, the major role is played by the MRI (for moderate values
of ζ) or the CI (for sufficiently strong ζ). We may then ask how
the MRI and CI are affected by the presence of the toroidal
magnetic field a0(z).

Figure 6 shows the growth rates—calculated both analytically
and numerically—as a function of wavenumber for a uniform
poloidal magnetic field b0= 10−4, and for three values of ζ
(leading to the three cases in κ2). In all cases, the dispersion
relation has a clear global maximum around k≈ 104; importantly,
the preferred wavenumber, calculated numerically without any
prior assumption, is in line with our assumed theoretical scaling
~ -k b0

1. The influence of the basic shear flow gradient ζ is also
clearly visible. Greater values of ζ make the instability more
vigorous since the shear amplifies both the MRI and CI (see
Expressions (18) and (26)). Increasing ζ also enhances the
instability on wavelengths longer than that of the most unstable
mode, reflecting the fact that, for sufficiently large shear, the
system is dominated by the CI, the growth rate of which is
independent of wavenumber at leading order.

Figure 7 shows separately the growth rates as functions of k
for the three cases of Figure 6, together with the relevant
subcases. For the subcases with no poloidal field (namely MBI,
CI, and MBI+CI), the growth rate at leading order σ0 is
independent of wavenumber. We can see that the full weak-
MBI case is always more unstable than the relevant subcases
(i.e., those including the basic shear flow and rotation). Thus,
incorporation of the basic-state toroidal field a0(z) into the
system enhances the instability from the MRI+CI subcase,
regardless of whether or not the system is stable with respect to
the CI. This is not an obvious result, especially in the CI-stable
case (Figure 7(a)), in which the rotation is strong enough to
suppress the pure MBI completely, but the vertical Coriolis
force is too weak to destabilize the toroidal magnetic field a0(z)
itself (see Expression (27)). Furthermore, incorporation of the
toroidal field modifies the shape of the function s k( ( ))R ,
making its global maximum more prominent. On the other
hand, with increasing shear flow gradient ζ, the nature of the
instability of the full system becomes similar to the MRI+CI
subcase, with the growth rate σ0 tending to the value of the CI,
MRI+CI, and MBI+CI subcases. As the shear increases, κ2

decreases (becoming more negative; see Expressions (21) and
(27)), and hence, the purely hydrodynamic effect of rotation
dominates over all magnetic factors.
Finally, we focus on the situation with κ2= 0 (ζ= 1.0),

where, at leading order of the full weak-MBI case, only the

Figure 6. s k( ( ))R as a function of k for the weak-MBI case, with b0 = 10−4.
Solid lines and circles respectively denote the analytically and numerically
determined values of σ: ζ = 0.5 (cyan, κ2 > 0); ζ = 1.0 (magenta, κ2 = 0);
ζ = 2.0 (black, κ2 < 0).

Figure 7. s k( ( ))R as a function of k: a comparison between the full weak-MBI
case (red) and its subcases (green and blue), with constant poloidal magnetic
field b0 = 10−4: (a) ζ = 0.5, κ2 > 0; (b) ζ = 1.0, κ2 = 0; (c) ζ = 2.0, κ2 < 0.
Analytically and numerically determined growth rates σ are denoted by solid
lines and circles respectively. The blue and green solid lines and circles
correspond respectively to the MBI+b0 and MRI+CI subcases. The horizontal
lines indicate the k → ∞ limit of the following subcases: pure MBI (blue
dashed line), MBI+CI (blue dotted line) and pure CI (green dashed line).
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MBI and MRI come into play. For b0= 10−4, the dispersion
relation is presented in Figure 7(b). A more detailed study,
covering a wide range of values of b0, reveals that the most
unstable mode ~w z( ) is always a wall mode localized near the
top of the layer. Hence, it can be approximated by a complex
Airy function of the first kind, given by (44), with z0= 1.
Figure 8 shows the real parts of the eigenfunctions ~w z( ) for
four different values of the poloidal magnetic field strength:
b0= 10−1, 10−2, 10−3, and 10−4. Since our theoretical results
are obtained under the asymptotic assumptions of short-
wavelength modes (k? 1) and a weak magnetic field
(b0= 1, with b0∼ 1/k), it is clear that the agreement between
the theoretical and numerical results must increase with
decreasing b0. As can be seen from Figure 8, for b0= 10−1

(for which the preferred wavenumber is k= 14), the agreement
is relatively poor, whereas for b0= 10−2 (k= 115), the location
of the maximum of the eigenfunction (although not its entire
spatial extent) is well captured by the asymptotic approach. For
b0= 10−3 (k= 1100) and even weaker poloidal fields, the
analytic and numerical results are indistinguishable. With
decreasing b0 (and hence increasing wavenumber k), the
eigenmodes become more and more localized near the upper
boundary of the layer, in agreement with the results of Mizerski
et al. (2013) and Gradzki & Mizerski (2018) for the case of the
pure MBI.

The agreement between the analytic and numerical results
validates not only the asymptotic assumptions of k? 1 and
b0= 1 but also, significantly, the assumed scaling ~ -k b0

1 for
the wavenumber of the most unstable mode. Figure 9 plots the
wavenumber of the most unstable mode versus b0 for the range
10−10< b0< 10−1. The red solid line shows the preferred
wavenumber obtained analytically, by maximizing Expressions
(45) and (50) with respect to the wavenumber k, having
identified the localization point z0 and determined the
preference between wall and body modes for each k. The
slope of the red line is very close to –1; more precisely the red
line can be described by the fit = -k C b bw 0 0

1( ) , where the
coefficient =C b b1.24w 0 0

0.008( ) . Note that the scaling holds
over a wide range of b0; from relatively long “short waves,”
with k∼ 10 (and relatively strong “weak poloidal field”

b0∼ 0.1), to very high values of k (and accordingly weak
b0)—modes that would probably no longer be physically
significant, owing to diffusion. Thus the scaling ~ -k b0

1 for
the wavenumber of the most unstable mode is satisfied for the
entire physically significant range of values of the weak
constant field b0 (see Figures 2(b), 4(b), and 6(b) in Gradzki &
Mizerski 2018, for a similar relationship between k and
diffusivities).

5.2. Strong-MBI Case

We now turn to the strong-MBI case, defined by parameter
set (42), namely

a
l
= = L =
= = =W

1.9, 1.0, 0.2,
1.95, 1.0, 0.4, 52u ( )


 

together with a linear basic-state toroidal magnetic field a0(z)=
1+ λ(1− z), a basic-state shear flow u0(z)=− ζz (ζ> 0), and
the value of the weak uniform poloidal magnetic field b0. For
such a setup, and in contrast to the weak-MBI case, the MBI is
not suppressed by rotation, regardless of the presence of the
poloidal field b0 or the shear flow u0(z). Hence, in this case, we
can expect a coupling between the MBI and MRI (for relatively
moderate values of ζ) and between the MBI and CI (for
sufficiently large ζ).
Figure 10 shows the growth rates, obtained analytically and

numerically, as a function of wavenumber, for a uniform
poloidal magnetic field b0= 10−4 and for three values of ζ
(leading again to the three cases in κ2). In all the cases, the
dispersion relation σ(k) has a distinct global maximum for
k∼ 104, and hence in line with our assumed theoretical
asymptotic scaling ~ -k b0

1. Again, greater values of ζ enhance
the instability through amplification of the MRI and the CI (see
Expressions (18) and (26)), but also indirectly by amplification
of the MBI (Expression (27)). As the shear is increased, the
mode of maximum growth rate assumes a smaller wavenum-
ber, which is accompanied by a broadening of the maximum.
For sufficiently large shear (strongly negative κ2), the system is
dominated by the CI (which is dispersionless at leading order).
Figure 11 shows separately the growth rates versus k for the

three cases of Figure 10, together with the relevant subcases.
For all the subcases with no poloidal magnetic field (i.e., MBI,

Figure 8. Real parts of the analytic (dashed lines) and numerical (solid lines)
solutions for the most unstable eigenmodes ~w z( ( ))R for b0 = 10−1 (k = 14;
magenta), b0 = 10−2 (k = 115; green), b0 = 10−3 (k = 1100; blue), b0 = 10−4

(k = 10890; red). The plots correspond to the full weak-MBI case that is
neutrally stable with respect to the pure CI (κ2 = 0). For b0 � 10−3, the
analytical and numerical results are indistinguishable.

Figure 9. Wavenumber k of the most unstable mode as a function of b0 for the
full weak-MBI case with κ2 = 0. The blue circles are calculated numerically
from the full system (14). The red solid line is obtained analytically from
Equations (45) and (50).
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CI, MBI+CI, and MBI+ W ), the leading order growth rate σ0
is independent of wavenumber. It can be seen that the full
strong-MBI case is always more unstable than the relevant
subcases; i.e., those including the effects of the basic-state
shear flow and rotation. Thus, the incorporation of a toroidal
magnetic field a0(z) enhances the instability from the MRI+CI
subcase (green solid line and circles) regardless of whether the
system is stable (κ2� 0) or not (κ2< 0) with respect to the CI
alone (green dashed line). The amplification is clearly stronger
than that in the weak-MBI case shown in Figure 7, since here
the MBI is more vigorous. On the other hand, for shear flow
gradient ζ= 1.0, the maximum growth rate σ of the full system,
corresponding to a fixed wavenumber k, is nearly the same as
the leading order value σ0 of the MBI+CI subcase (where
b0= 0; Figure 11(c)). This shows the domination of the MBI in
the strong-MBI case. For very strong shear gradients, i.e.,
ζ? 1, the system, as expected, eventually becomes dominated
by the CI-like instability.

Finally, we focus on the situation when κ2= 0 (i.e., ζ= 0.4),
in which, at leading order, the full strong-MBI case contains
interactions between only the MBI and MRI; the dispersion
relation for this case, for b0= 10−4, is presented in Figure 11(b).
A study covering a wide range of values of poloidal field
strength b0 reveals that the most unstable mode ~w z( ) is always a
wall mode localized near the bottom of the layer. It can thus be
approximated by a complex Airy function of the first kind, given
by Expression (44) for z0= 0; the eigenfunctions are plotted in
Figure 12, for b0= 10−1, 10−2, 10−3, and 10−4. As described
above for the weak-MBI case, the agreement between theoretical
and numerical results must increase with decreasing b0. For
b0= 10−1 (for which the wavenumber of the most unstable
mode is k= 8), the agreement is relatively poor; for b0= 10−2

(k= 59), the location of the maximum of the eigenmode is
correctly predicted by the analytical result (green dashed line);
for yet weaker poloidal fields (b0 10−3), the analytic and
numerical results over all z are indistinguishable. With decreas-
ing b0 (and hence increasing wavenumber k), the eigenmodes
become more and more localized near the upper boundary of the
layer, in agreement with the results of Mizerski et al. (2013) and
Gradzki & Mizerski (2018) for the case of the pure MBI.

Figure 13 shows that, as for the weak-MBI case, the scaling
~ -k b0

1 is again valid; in this case, the red line can be described
by » -k C b bs 0 0

1( ) , where the coefficient »C b b0.654s 0 0
0.019( ) .

Figure 10. s k( ( ))R as a function of k for the strong-MBI case, with
b0 = 10−4. Solid lines and circles respectively denote the analytically and
numerically determined values of σ: ζ = 0.1 (cyan, κ2 > 0); ζ = 0.4 (magenta,
κ2 = 0); ζ = 1.0 (black, κ2 < 0).

Figure 11. s k( ( ))R as a function of k: a comparison between the full strong-
MBI case (red) and its subcases (green and blue), with constant poloidal
magnetic field b0 = 10−4: (a) ζ = 0.1, κ2 > 0; (b) ζ = 0.4, κ2 = 0; (c) ζ = 1.0,
κ2 < 0. Analytically and numerically determined growth rates σ are denoted by
solid lines and circles respectively. The blue and green solid lines and circles
correspond respectively to the MBI+b0 and MRI+CI subcases. The horizontal
lines indicate the k → ∞ limit of the following subcases: pure MBI (blue
dashed line), MBI+ W (blue dotted-dashed line), MBI+CI (blue dotted line)
and pure CI (green dashed line).
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6. Discussion

We have investigated the linear stability of an isothermal,
electrically perfectly conducting, inviscid, perfect gas, with
respect to interchange (or axisymmetric) modes. The joint
action of gravity, background rotation, and velocity shear,
together with height-dependent toroidal and constant poloidal
components of the basic-state magnetic field, results in a
coupling—which could be either cooperative or competitive —
between centrifugal (CI), magnetorotational (MRI), and magn-
etic buoyancy (MBI) instabilities. Incorporating the poloidal
field is a novel aspect of our analysis compared to previous
studies, such as those of Acheson (1978) and Gilman
(2018a, 2018b). The linear perturbation equations may be
reduced to a second-order boundary value problem, in the form
of Equation (14) and boundary conditions (15), with the growth
rate appearing as the eigenvalue. Physically, the preferred
modes have a large transverse horizontal wavenumber k. We
are able to exploit the ordering k? 1 to tackle the problem

analytically via a Rayleigh–Schrödinger perturbation approach;
in order to bring the uniform constant poloidal magnetic field
into play, we furthermore assume that its magnitude

= -b O k0
1( ). To aid with the understanding of the full system,

which is quite complicated, we have also considered various
subcases, comprising either the individual components of CI,
MRI, and MBI or specific combinations of these. To
complement our analytical approach, we have also solved the
governing boundary value problem numerically, with no
a priori assumption on the magnitude of k or b0; agreement
between the analytical and numerical approaches is very good.
A consequence of the modes possessing a large horizontal

wavenumber k is that they are strongly localized in the vertical
direction. The leading order (in k−1) of the perturbation
analysis yields Equation (17), the “depth-dependent dispersion
relation,” which provides the leading order approximation to
the growth rates. Determining the form of the eigenfunctions
comes at the next order, through establishing the nature of their
localization; in simple subcases, the localization point z0 is real,
although, in general, it is complex. The localized solutions take
the form of either wall modes (described by Airy functions) or
body modes (described by parabolic cylinder functions). The
presence of the weak constant poloidal field b0 establishes a
finite wavenumber of the most unstable mode. This effect is
qualitatively similar to that caused by the presence of diffusion
in the system. We have established that the horizontal
wavenumber k of the most unstable mode scales with the
poloidal magnetic field b0 as ~ -k b0

1. Moreover, the vertical
scale of the most unstable mode (the thickness δ of the internal
and/or boundary layer) depends on the type of mode (i.e., on
its localization point): d ~ ~-k b2 3

0
2 3 for wall modes and

d ~ ~-k b1
1 2

0
1 2 for body modes.

The epicyclic frequency κ is a convenient indicator of the
presence of either the CI in the system (κ2< 0) or the
stabilizing nonmagnetic effect of rotation (κ2> 0). Increasing
the shear gradient preferentially amplifies modes with wave-
length longer than that of the most unstable mode, leading to a
flattening of the σ(k) curve, as shown in Figures 6 and 10. The
MRI is always present in the full system for any nonzero shear
flow no matter how weak, and it is in general amplified by the
toroidal magnetic field. The most general case, when all three
instability types interact (MBI+MRI+CI) seems to be always
more unstable than any subcase that involves the shear flow
and rotation: MBI+CI, MRI+CI, or pure CI. The pure MBI is
always stabilized by background rotation; however, in the
presence of a shear flow, the MBI can be amplified by the
Coriolis force (which contributes to the effective gravity)
through the coupling with the vigorous CI, if the shear flow
gradient is sufficiently strong. It is also of interest to note that,
for the case of MBI+b0, the poloidal field can, in certain situ
ations, amplify an existing MBI, or even destabilize a system
that is stable to MBI.
It is natural to ask how our findings relate to the Sun, and, in

particular, the solar tachocline—the thin region of velocity
shear (both radial and latitudinal) sandwiched between the
convective and radiative zones. In many models of the solar
dynamo, it is postulated that the toroidal magnetic field is
generated by the shearing motions within the tachocline. It is
generally assumed that MBI is the primary mechanism for the
release of magnetic field from the tachocline into the overlying
convection zone (see Hughes 2007). It is therefore of particular
interest to investigate what additional role may also be played

Figure 12. Real parts of the analytic (dashed lines) and numerical (solid lines)
solutions for the most unstable eigenmodes ~w z( ( ))R for b0 = 10−1 (k = 8;
magenta), b0 = 10−2 (k = 59; green), b0 = 10−3 (k = 510; blue), b0 = 10−4

(k = 4840; red). The plots correspond to the full strong-MBI case that is
neutrally stable with respect to the pure CI (κ2 = 0). For b0 � 10−3, the
analytical and numerical results are indistinguishable.

Figure 13.Wavenumber k of the most unstable mode as a function of b0 for the
full strong-MBI case with κ2 = 0. The blue circles are calculated numerically
from the full system (14). The red solid line is obtained analytically from
Equations (45) and (50).
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by CI or MRI. From the parameter values in Hughes et al.
(2007), we may estimate the rotation parameter to be

~W
-10 4 and the shear flow gradient to be ζ∼ 10−1

(calculated as ζ= dΔU/UsΔz, where d= 3.5× 104 km is the
thickness of the tachocline, Us= 1.4326 km s−1 is the velocity
scale, and ΔU/Δz=ΔU/(0.04× Re)= 4.14062× 10−6 s−1

is the mean shear rate). Hence, assuming a linear basic shear
flow u0(z)=− ζz, the squared epicyclic frequency given by
Expression (19) is negative and small in magnitude
(−κ2∼ 10−7). It follows therefore that any CI in the tachocline
will be weak (σCI∼ 10−4). If, as noted above, the MBI is the
primary instability mechanism operative in the tachocline, then,
at least in a qualitative sense, it is what we have called the
strong-MBI case that will be relevant in this context. A key
result of our analysis is that even a weak poloidal field can play
a major role in determining the scale of the instabilities.
However, the magnitude of the poloidal magnetic field in the
tachocline is highly uncertain. Estimates of the strength of the
poloidal field range from very weak values of -O 10 G4( )
(Gough 2007) to relatively strong values of O 10 G3( ) (e.g.,
Forgács-Dajka & Petrovay 2002). In dimensionless terms, this
considerable extent of possible poloidal field strengths
corresponds to the range 10−9< b0< 10−2. It follows there-
fore, from the scaling ~ -k b0

1, that the wide range of b0 would
establish a correspondingly wide range of transverse (y)
wavelengths of the most unstable modes: from the rather
unphysical 1 m through to 104 km, which is of the order of the
thickness of the tachocline. Although very small wavelengths
will be damped by diffusion (see, e.g., the estimates in Gradzki
& Mizerski 2018), the theoretical relationship between b0 and
the transverse scale of the instability could be a useful tool in
pinning down the strength of the poloidal field in the
tachocline. It is of interest to estimate the strength of the
poloidal field at which the length scale set by the poloidal field
is comparable with the length scale set by diffusive considera-
tions. Gradzki & Mizerski (2018) provide an estimate of the
most unstable wavelength in the solar tachocline, based on
diffusive considerations, of λ≈ 102 km. The corresponding
value of the wavenumber 2π× 10−5 m−1, with the use of the
relation kb0≈ 1 (dimensionally kb0= Bs/d, with Bs≈ 100 kG

being an estimate of the toroidal field strength in the
tachocline), would lead to the following estimate of the
magnitude of the poloidal field in the solar tachocline:
b0≈ 50 G.
The results described here suggest a number of possible

extensions of our model. Within linear theory, it would be
interesting (although decidedly nontrivial) to consider three-
dimensional (“undular”) disturbances, as did Mizerski et al.
(2013) for the pure MBI, as well as the effects of diffusion, as
did Gradzki & Mizerski (2018), also for the pure MBI. In a
complementary approach, it would be of interest to consider the
influence of a poloidal field in the spherical geometry model
studied by Gilman (2018a, 2018b). Of particular interest would
be to investigate the combined influence of the various
instabilities in the nonlinear regime. Cattaneo et al. (1990)
studied the nonlinear evolution of pure MBI of a basic-state
magnetic field with both toroidal and poloidal components, but
without the effects of rotation or velocity shear. Vasil &
Brummell (2008) and Silvers et al. (2009) considered the
nonlinear evolution of MBI arising from the shearing of a weak
vertical magnetic field by a horizontal velocity shear, but
without the effects of rotation or the horizontal poloidal
component of field. Brandenburg & Schmitt (1998), Wissink
et al. (2000), and Chatterjee et al. (2011) investigated the
nonlinear evolution of a purely toroidal magnetic field,
including the effects of rotation, with particular emphasis on
calculating the resulting mean-field α-effect. Putting all of the
ingredients together in a tractable computational model would
be an important next step toward fully understanding the
instabilities of the tachocline.
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Appendix A
The Coefficients of Equation (15)

The coefficients of the governing ordinary differential Equation (14) take the general form:

= - +~ - - -W z k W z k k b b k b; ; ; , A1a2
2

2
4 2

0
2

0
4 2

0
6( ) ( ) ( ) ( )

= - +~ - - -W z k W z k k b b; ; , A1b1
2

1
4 2

0
2

0
4( ) ( ) ( ) ( )

= +~ - -W z W z k k b k b kb b k b; ; ; ; ; , A1c0 0
2 4

0
6 2

0
4

0
3

0
2 1

0( ) ( ) ( ) ( )

where the functions W2(z), W1(z), and W0(z) are of order unity, and are given by

s r a s= L + L +W z k b z k b F z , A2a2
2

0
2 2

0
2

0
2 2( )( )( ) ( ) ( ) ( )

s a s r= L +W z k b F z D z , A2b1
2 2

0
2 2

0( ) ( ( )) ( ) ( )

s s s= + + +W z A z A z A z A z . A2c0 4
4

2
2

1 0( ) ( ) ( ) ( ) ( ) ( )

The functions Ai(z) are functions of the basic state that do not contain terms involving either k or b0 alone, only terms proportional to
~k b 1j j

0 for j= 1, 2, 4. Specifically,

r r ar= = L +A z F a , A3a4 0 0 0
2

0( ) ( ) ( )

ar r r= L + - L - - + +rW
- -
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0 0
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where all the basic-state functions and scale heights depend only on z. Using Expressions (19), (21), (28), and (33), the coefficients
A2 and A0 may be cast in the following form:

r
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Appendix B
The MRI in the Limit of a Weak Magnetic Field

In this appendix, we briefly demonstrate the relevance of assumption (16)—namely that ~ -k b1 0
1 —by considering a

simplified system in which the toroidal magnetic field is absent, i.e., a0(z)= 0; in such a system, only the MRI and CI can operate
(see Section 3.2). In this case, the coefficients (A1a–c) take the following form:

a a r s r s r= = - L - L - L - L -- -W z a k b b b k b k; 0 2 , B12 0
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The governing differential equation (14), with the coefficients defined as above, can then be considered under three asymptotic limits,
keeping in mind the assumption of a weak constant poloidal magnetic field b0→ 0. First, for long waves, with k→ 0, it can be seen
that the leading order forms of the coefficients (B1)–(B3) do not contain the magnetic field b0, and hence the MRI does not appear at
leading order. Second, for wavelengths of the order of the fluid layer thickness, namely k∼ 1, the situation is similar, but the pure CI
appears at leading order. Third, the MRI can appear at leading order only for short waves, with k→+∞.

Having established that the relevant limits are b0→ 0 and k→+∞, we can now make the relation between k and b0 more precise.
To this end, in the next step of the leading order asymptotic analysis, we have to consider all possible cases that may arise from
balancing different terms in the coefficients (B1)–(B3), corresponding to different relations between the parameters k and b0. This is
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similar to the procedure conducted by Gradzki & Mizerski (2018), where, in a system unstable with respect to the MBI, the weak
magnetic and thermal diffusivity play a similar role to that played here by the weak magnetic field b0, namely in establishing the
wavelength of the most unstable perturbation. All three of the above orderings lead to a similar structure of the leading order equation
for ~w z0 ( ), with the term involving the highest order derivative multiplied by the small parameter k−2. This is similar to the form of the
corresponding equation in the pure MBI problem analyzed by Mizerski et al. (2013); consequently, the equations can be solved by
the same boundary layer approach. It is straightforward to show, by consideration of the leading order components of the coefficients
(B1)–(B3), that the regime -k b0

1 can excite only the localized CI modes, while the regime -b k0
1  leads to a trivial null solution.

Therefore, only the relation ~ -k b0
1 can lead to excitation of the MRI at leading order, possibly coupled to the CI.

Hence, under the ordering (16), the growth rate at leading order, σ0, can be obtained, as described in Section 3, from the equation
s = =

~
W z a, ; 0 00 0 0 0( ) , for a given evaluation point z0. From Expression (B3), this equation takes the following form:
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In Expression (21), we choose the solution s +0
2 , which is always greater than s -0

2 , and denote it by sMRI
2 .

Appendix C
Details of the Leading Order Asymptotic Analysis

Here we explore the details of the leading order asymptotic analysis of Equation (14), the general second-order ordinary
differential equation for the z-dependent amplitude of the vertical velocity perturbation ~w z( ), in which the growth rate σ is
determined as the eigenvalue of the problem. We utilize the asymptotic Rayleigh–Schrödinger approach (a type of boundary layer
method), described in detail in Griffiths (2008) and used in related problems by Mizerski et al. (2013), Bowker (2016), and Gradzki
& Mizerski (2018) (see also Bender & Orszag 1999).

First we consider the main flow (MF), namely the region outside the boundary layer, where the terms containing derivatives of
~w z( ) in Equation (14) are not large enough to enter the leading order balance. Under the ordering (16), namely k→+∞ and
~ -k b0

1, Equation (14) at leading order takes the form

= ~~
W z w z0 , C1MF0( ) ( ) ( )⎡⎣ ⎤⎦

where
~
W z0 ( ) is defined in Equation (A1c).

Since, in general, ¹
~
W z 00 ( ) on the domain, the only solution of Equation (C1) that satisfies at least one of the boundary conditions

(15) is the null solution =~w z 0MF ( ) . Thus, the eigenmodes of the full problem defined by Equation (14) must involve boundary (or
internal) layers, in which the derivatives of ~w z( ) are sufficiently large so as to bring the second-order derivative term into play,
despite its coefficient being -O k 2( ). We thus seek nonzero solutions localized around some initially unknown point of the domain z0
(0� z0� 1)—what we shall refer to as the evaluation point. We introduce the boundary and/or internal layer local variable
ξi= (z− z0)/δi, where δi is small—with its magnitude to be determined—and expand the growth rate as s s s d s d= + + +i i0 1 2

2 .
The solution ~w z( ) and all the z-dependent basic-state functions are also evaluated in the δi-vicinity of z0. The first step is to find the
leading order approximation of the growth rate, namely σ0, which is presented in this section. The second step (presented in
Appendix D) is to determine the higher-order correction for σ0, which allows us to determine the structure of the function ~w z0 ( ), the
leading order asymptotic approximation of the eigenmode.

Within the boundary and/or internal layer region, Equation (14) takes the form

x
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with transformed boundary conditions

x d x d= - = = - =~ ~w z w z1 0, C3i i i i0 0 0 0( )( ) ( ) ( )/ /
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where the functions ~
~ -W z k2

2( ) ( ) , ~
~ -W z k1

2( ) ( ) , and ~
~
W z 10 ( ) ( ) are defined by Expressions (A1a–c). In terms of the local

variable ξi, x~
W i0 ( ) may be expressed as the Taylor series
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with similar expansions for x~
W i1( ) and x~

W i2 ( ).
On defining the variable ξ0= (z− z0)/δ0, where δ0∼ k−1 denotes the thin extent of the boundary and/or internal layer,

Equation (C2) at leading order yields
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where W0(z0), W1(z0), and W2(z0)—without the tildes—denote the leading order forms at z0 of
~
W z0 0( ), ~W z1 0( ), and

~
W z2 0( )

respectively. There are no solutions of Equation (C5) that match smoothly to the MF (zero flow) solution, and so, on this very small
scale, we must require x =~w const.0 0( ) , with W0(z0)= 0. Thus, at this order, we can deduce the form of the equation governing the

leading order contribution to the growth rate. At the next order, which we discuss in Appendix D, we can establish the evaluation
point z0, which allows us to determine σ0, together with the next-order correction to the growth rate, σ1 or σ2, and also the form of the
eigenfunction.

Equation (A2c) yields a quartic equation for the leading order approximation of the growth rate σ0 in the form

s s s s= + + + =W z A z A z A z A z, 0, C60 0 0 4 0 0
4

2 0 0
2

1 0 0 0 0( ) ( ) ( ) ( ) ( ) ( )

where it should be noted that the coefficient A1, defined in Equation (A3c), is purely imaginary, and thus σ0 is, in general, complex,
even for real z0. In the following, it is helpful to treat W0 as a function of two variables: W0(z, σ). Hence, Equation (C6) expresses the
relationW0(z, σ)= 0 taken at an as-yet-undetermined point (z0, σ0). It is an algebraic equation for two unknowns: the evaluation point
z0 and the growth rate at leading order, σ0.

The equation W0(z, σ)= 0 can be considered as an implicit definition of a function σ(z)—the so-called “growth rate function”—
which can be interpreted as a “depth-dependent dispersion relation” (see Gilman 1970; Mizerski et al. 2013). It needs to be formally
established by the asymptotic analysis, and for every eigenmode ~w z( ) characterized by the evaluation point z0, that the associated
growth rate σ≈ σ(z0) is the eigenvalue of the problem. The leading order approximations σ0 of all possible eigenvalues are
considered as values of the growth rate function σ(z) evaluated at some (initially unknown, but determined by the analysis below)
evaluation points z0: σ0= σ(z0), where z0ä [0, 1].

Appendix D
Details of the Higher-order Asymptotic Analysis

There are two cases to consider within the next-order analysis: modes ~w z( ) localized near the domain boundaries, z0= 0 or z0= 1
(boundary layer-type solutions denoted as wall modes) and modes localized strictly inside the domain, 0< z0< 1 (internal layer-type
solutions denoted as body modes). To determine their structure, we must take into account higher-order terms in the asymptotic
expansion of the growth rate σ; thus, we write s s s d s d= + + +0 1 1 2 2

2 . In the case of the body modes, in order to determine both
z0 and σ0, we need one more equation in addition to Equation (C6). This is provided by the distinguished limit of Equation (C2) in
the next-order analysis, which requires conditions (46). This section shows that the wall mode case is related to the correction σ1, and
the body mode case is related to the correction σ2.

D.1. Wall Modes

Here we assume that the evaluation point z0 is on the boundary of the domain, either at z0= 0 or z0= 1. To find the structure of the
leading order approximation for the most unstable mode ~w z0 ( ) and the first-order correction to the growth rate σ1, we evaluate all the

z-dependent functions from Equation (C2) in the δ1-vicinity of z0, where d


0
k

1
0

⟶ is the boundary layer thickness, and where
σ= σ0+ σ1δ1. Thus, taking into account Equation (C6), obtained at the leading order of the analysis, namely W0(z0, σ0)= 0,
Equation (C2) in terms of the local variable ξ1= (z− z0)/δ1 takes the form
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where, here and below, the function W2(z, σ) and the derivatives of W0(z, σ) are taken at the point (z0, σ0) given by Equation (C6) for
an assumed value of z0= 0, or z0= 1.

The boundary conditions (C3) take the following form, depending on the chosen point of evaluation z0 (i.e., whether we consider
the top or bottom boundary layer mode):

x x d=  = = = =~ ~z w w0 0 1 0, D2a0 0 1 0 1 1( ) ( ) ( )

x d x=  = - = = =~ ~z w w1 1 0 0, D2b0 0 1 1 0 1( ) ( ) ( )

under the assumptions k→+∞, δ1→ 0, ~ -k b0
1.

The distinguished limit is obtained by taking δ1∼ k−2/3, which transforms Equation (D1) to the Airy equation. To that end, we
introduce a new variable s defined by
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The three different roots of S-
z

2 3 in Expression (D3) lead to three different forms of the new complex independent variable s.

Application of the transformation (D3) to Equation (D1) leads to the standard form of the Airy equation,
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The boundary conditions (D2a–b) are transformed to
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For either choice of z0, matching with the MF zero solution is achieved by

s d= S  S S ¥ s
d- 

w s 0. D7z z0 1 1
2 3 01~ ( ( ) ⟶ ) ( )/ /

In Expression (D7), the path in the complex plane along which the limit s→∞ is taken needs to be specified; it depends on the
assumed evaluation point z0, the values of the complex parameters Σσ and Σz, and on the choice of one of the three roots for the
term S-

z
2 3.

The general solution of Equation (D5) is expressed as = +~w s C s C sAi BiA B0 ( ) ( ) ( ), where CA and CB are complex constants, and
where Ai(s) and Bi(s), which are linearly independent special functions, are respectively Airy functions of the first and second kind
(Abramowitz & Stegun 1972; Bender & Orszag 1999). This general solution has to satisfy the boundary conditions (D6a) or (D6b),
depending on whether we consider the top or bottom boundary layer mode. In both cases (z0= 0 or z0= 1), the matching condition

(D7) restricts our choice of the Airy function and the root of the termS-
z

2 3 to those that exhibit exponential decay as ¥
d 

s
01⟶ . From

the asymptotic expansions of the Airy functions for large argument, it can be shown that only the function Ai(s) for p<sArg 3∣ ( )∣
can satisfy this condition. This determines the choice of the root of the termS-

z
2 3, and hence the path of the limit s→∞ . It follows

that the solution of Equation (D5) is reduced to =~w s sAi0 ( ) ( ), where, without loss of generality for this linear problem, we have set
CA= 1.

The boundary conditions (D6a) or (D6b) determine the growth rate correction σ1, since, from

s= S S =s
-sAi 0, D8z1

2 3( ) ( )/

we have

s c c d= S S =
¶

¶
s

s

- - -k
W

W

W

W
, D9n z n

z
1

1 2 3 2 3
1

1 2

0

0

2

2 3

( ) ( )⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
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where d ~- -k 12 3
1

1 , and χn is the nth zero of the Airy function, Ai(χn)= 0. All the zeros of the Airy function of the first kind are
purely real negative numbers; therefore, for a chosen evaluation point z0= 0, or z0= 1, the complex growth rate of the eigenmode
~w s0 ( ) has the form σ= σ0+ σ1δ1+ o(δ1), where δ1∼ k−2/3, and where σ1 is given by Equation (D9).
Next, using Equation (D3), we can obtain the leading order approximation of the eigenmode ~w z( ) as a function of the original

variable z:

c= + -
¶~w z k z z

W

W
Ai . D10n

z
0

2 3
0

0

2

1 3

( ) ( ) ( )⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

It should be noted that the root of the term ¶ = SW Wz z0 2
1 3 1 3( ) in Expression (D10) is already selected by the MF matching

condition (D7), as described above. Moreover, utilizing the result (D9), we can simplify this matching condition to

c
d

= 
S

¥ 
d 

w s s 0, D11n
z

0

1 3

1

01~ ⟶ ( )⎜ ⎟
⎛

⎝

⎞

⎠

/

where the + sign corresponds to z0= 0, and the − sign corresponds to z0= 1. It can be clearly seen that, in general, there are three
paths for the limit s→∞ in the complex plane, and that these are half-lines starting from χn and extending to infinity. In the limit
δ1→ 0, the angle between each of the lines and the real axis is equal to SArg ;z

1 3( ) the smallest angle between two selected paths is

always equal to 2π/3. Since the condition p<sArg 3∣ ( )∣ has to be satisfied in order for the solutions to vanish at infinity, it follows
that, in general, there is only one allowed path for the limit s→∞ , with one corresponding root of S ;z

1 3 hence, the solution in the

form (D10) typically exists. There is only one exception: when the parameter Sz
1 3 has one purely real root—either negative when

z0= 0, or positive when z0= 1. In such a case, the boundary condition (D11) cannot be satisfied, and there is no solution to
Equation (D1) in the form (D10). The same situation was observed by Mizerski et al. (2013) for the case of the pure MBI when the
growth rate function σ(z) was either increasing at z0= 0, or decreasing at z0= 1, i.e., the solution did not exist at the boundary where
the growth rate function was not maximized. However, for the case at hand, the termSz

1 3 typically has three complex roots, and thus,

for a fixed n, there is a unique solution in the form of Equation (D10).
Finally, in order to obtain the most unstable wall mode for a given evaluation point z0, we take n= 1 in Expressions (D9) and

(D10), i.e., the first zero of the Airy function, χ1≈− 2.338. This justifies Expressions (44) and (45).

D.2. Body Modes

In this section, we assume that the evaluation point is inside the domain. As we will see, it turns out that z0 is complex; hence, to be
specific, we assume that < <z0 10( )R . However, at this stage, after the leading order growth rate analysis, we do not yet know
which values of z0 are permissible and will lead to solutions for the leading order asymptotic approximation ~w z0 ( ) of the eigenmodes
~w z( ). An Airy function solution, as constructed for wall modes in Appendix D.1, does not decay exponentially on both sides of z0. It
thus follows that we must consider the next-order terms in the asymptotic expansions of the eigenvalue σ and all z-dependent

functions. We therefore introduce a new boundary layer of thickness d


0
k

2
0

⟶ , and a new local variable ξ2= (z− z0)/δ2.
Equation (C2) becomes

x
x

d
d s x d s s s x x x

~
= ¶ + ¶ + ¶ + ¶ + ¶ + ¶ ~

s s s s
d w

d

k

W
W W W W W W w

1

2

1

2
, D12z z z

2
0 2

2
2

2
2
2

2
2 1 0 0 2

2
1
2 2

0 2 0 1 2 ,
2

0 2
2 2

0 0 2
( )

( ) ( ) ( )⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

where all the z-dependent functions are evaluated in the vicinity of an as-yet-undetermined evaluation point z0. The function W2 and
the derivatives of the function W0 are taken at (z0, σ0), and the growth rate at leading order σ0 is obtained from Equation (C6), once
the evaluation point 0< z0< 1 is determined at a further stage of the analysis described below. The boundary conditions (C3) for
Equation (D12) become

x d x d= - = = - =~ ~w z w z1 0, D130 2 0 2 0 2 0 2( ) ( )( ) ( )

where we recall the asymptotic assumptions k→+∞, b0→ 0 and ~ -k b0
1.

We seek a distinguished limit in Equation (D12) in which ∂zW0= 0, and σ1= 0, thus removing the first bracketed term on the
right-hand side. Equation (D12) then becomes

x
x

d s x x=
¶

+
¶sd w

d
k

W

W

W

W
w

2
. D14z

2
0 2

2
2

2
2
4

2
0

2

2
0

2
2
2

0 2

~
~( )

( ) ( )⎜ ⎟⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠

⎤

⎦
⎥
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Equation (C6), namely W0(z0, σ0)= 0, together with the condition ∂zW0= 0, now establishes the following system of two complex
algebraic equations for the growth rate σ0 and the evaluation point z0:

s s s= + + +A z A z A z A z0 , D15a4 0 0
4

2 0 0
2

1 0 0 0 0( ) ( ) ( ) ( ) ( )

s s s= + + += = = =DA DA DA DA0 , D15bz z z z z z z z4 0
4

2 0
2

1 0 00 0 0 0( ) ( ) ( ) ( )| | | | ( )

where the functions Ai(z) are defined in Equations (A3a–d). The system of Equations (D15a–b) has solutions in the form of complex
pairs (z0, σ0), with the evaluation points in the form = +z z zi0 0 0( ) ( )R I , where < <z0 10( )R . Equation (D14) must be solved for
δ2∼ k−1/2 and any pair (z0, σ0) satisfying the system of Equations (D15a–b). As in Mizerski et al. (2013), we seek to transform
Equation (D14) into the form of a parabolic cylinder equation. To this end, we introduce a new variable ς defined by

V x x= ¡ , D16z2
1 4

2( ) ( )
where

d d¡ =
¶

= ¡
~

k
W

W
k2 , say. D17z

z

z

z
2

2
4

2
0

2

2
2
4

0

( )⎜ ⎟
⎛

⎝

⎞

⎠

The four different roots of ¡z
1 4 in Expression (D16) lead to four different possible definitions of the new complex independent

variable ς. After application of the transformation of Equation (D16), Equation (D14) takes the standard form of the parabolic
cylinder equation (e.g., Abramowitz & Stegun 1972; Bender & Orszag 1999):

V
V

V n V= - -
~

~d w

d
w

1

4

1

2
, D18

2
0
2

2
0

( ) ( ) ( )⎡
⎣

⎤
⎦

where the parameter ν is defined as

n s= - - ¡ ¡s -1

2
, D19z

1 2
2 ( )
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d d¡ =
¶

= ¡
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s
s
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W
k , say. D19
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2
2
4 0

2

2
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4
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( )⎜ ⎟
⎛
⎝

⎞
⎠

The boundary conditions (D13) are now

V d= - ¡ ¥ 
d 

w z 0, D20az0 0
1 4

2
02~ ( )⟶ ( )//

V d= - ¡ ¥ 
d 

w z1 0, D20bz0 0
1 4

2
02~ ( )( ) ⟶ ( )//

and where we bear in mind that there are, in general, four possible paths in the complex plane for the limit ς→∞ . The paths depend
on the value of the complex evaluation point z0 as well as on the choice of the root of ¡z

1 4. Because we have two boundary

conditions and four possible roots, we must investigate four pairs of paths.
In the case of pure MBI considered by Mizerski et al. (2013), there always exist purely real roots of ¡z

1 4, and furthermore, z0 is a
purely real number; hence, the paths in (D20a–b) are simply the limits to real positive and negative infinity. However, for complex z0
and complex roots of ¡z

1 4, the pairs of paths for the limits (D20a–b) are two separate half-lines tending to infinity in directions
defined by - ¡zArg z0

1 4( ) and - ¡zArg 1 z0
1 4(( ) ) in the limit δ2→ 0. The angle between the two lines tends to

- - -z zArg Arg 10 0∣ ( ) ( )∣, which tends to π when z 00( )I and which tends to 0 when  ¥z0( )I . Hence, this angle can
take any value in the interval [0, π], and a pair of paths for the limits (D20a–b) can, in general, have any direction in the complex
plane, thus representing an important difference to the case of the pure MBI. Moreover, in the limit δ2→ 0, these four pairs of paths
are rotated (around the origin) relative to each other through multiples of the angle π/2, since they are associated with an arithmetic
root of the fourth degree. This is an important property in the context of seeking solutions V~w0 ( ) that satisfy the boundary conditions
(D20a–b).

Solutions of Equation (D18) are known as parabolic cylinder functions; they are denoted by Dν(± ς) and D−ν−1(± iς), where only
two of these functions are linearly independent. To obtain the solution that satisfies the boundary conditions (D20a–b), we first need
to find the regions in the complex plane where the parabolic cylinder functions decay to zero or diverge to infinity as ς→∞ . From
the asymptotic expansions of the parabolic cylinder functions in the limit ς→∞, it can be shown that
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1. V p V<  n
V¥

DArg 01

4
| ( ) | ( ) ⟶ and V ¥n

V
- -

¥
D i1( ) ⟶ for all values of ν;

2. p V p V< <  n
V¥

DArg 03

4

5

4
( ) ( ) ⟶ only for the values of ν such that 1/Γ(− ν)= 0; also V ¥n

V
- -

¥
D i1( ) ⟶ for all values

of ν;
3. Èp V p p V p< < < < Arg Arg1
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4

7

4( )( )( ) ( ) Vn
V

- -
¥

D i 01( ) ⟶ and V ¥n
V¥

D ( ) ⟶ for all values of ν.

It follows that the boundary conditions (D20a–b) impose the solution either in the form Dν(± ς) or D−ν−1(± iς), for pairs of paths
along which the limits ς→∞ are taken either within region 3 defined above (for the latter case of D−ν−1(± iς)) or in the sum of
regions 1 and 2 (for the former case of Dν(± ς)). In general, for any pair (z0, σ0) satisfying the system (D15a–b) we may have one or
more of the following situations:

(a) For at least one pair of paths, one of the paths lies in region 3 and the other lies in regions 1 or 2.
(b) There is a pair of paths with both paths lying in region 1 or both in region 3.
(c) There is one pair of paths with both paths lying in region 2.
(d) There are two pairs of paths with one path in region 1 and the other in region 2. These two pairs of paths are symmetrical about

the origin.

It is straightforward to see that for case (a) there are no solutions that satisfy both boundary conditions (D20a–b) for any root of
¡z

1 4. Cases (b) and (c) can occur simultaneously, as well as (b) and (d), owing to the (π/2)-shift between the roots. However, in
case (b), the relevant parabolic cylinder functions satisfy the boundary conditions for all values of the parameter ν, which means that
the correction σ2 related to ν through Equation (D19) cannot be determined; hence, also the form of the solution V~w0 ( ) cannot be
determined at this order. We can obtain the correction σ2 only for cases (c) or (d), namely when there exists at least one pair of paths
with at least one path in region 2; i.e., the region where some restriction on the parameter ν is imposed. For this case, we can write
down the solution in the form V V=~

nw D0 ( ) ( ). The condition 1/Γ(− ν)= 0 determines all possible values of the parameter ν, which
must be a nonnegative integer, ν= 0, 1, 2, 3, L . Hence, from Equation (D19), we obtain

s n n d= - - ¡ ¡ = - -
¶

¶
s

s

- - -k
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2
2 , D21z
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⎠

⎛
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⎛
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⎞
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where d ~- -k 11
2

2 . We note that, in Expression (D21), ϒz appears as a square root but not as a smaller power; hence, even in case (d),
the value of σ2 is determined uniquely, even though there are two distinct roots of ¡z

1 4 that lead to the solution. In case (c), only one

root of ¡z
1 4 is allowed.

In the case of ν= 0, 1, 2, 3, L , the parabolic cylinder function Dν(x) can be expressed in terms of the ν-degree modified Hermite
polynomial Heν(x) as = -n nD x x xexp 4 He ;2( ) ( ) ( ) the first few polynomials Heν(x) are He0(x)= 1, He1(x)= x, He2(x)= x2− 1,
He3(x)= x3− 3x (see Abramowitz & Stegun 1972; Bender & Orszag 1999). Thus, for any pair (z0, σ0) for which there exists a
solution (with a uniquely determined correction σ2) given by Equation (D21), the complex growth rate of the eigenmode ~w s( ) is
given by s s s d d= + + o0 2 2

2
2
2( ), where δ2∼ k−1/2. The leading order approximation of such an eigenmode, expressed as a function

of the original independent variable z, takes the form

~ = - -
¶

-
¶

nw z k z z
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W
k z z

W

W
exp

1

4
2 He 2 , D22z z
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/

/

/

where z0 is the complex evaluation point, with the real part satisfying < <z0 10( )R .
Finally, the most unstable body mode for a given evaluation point z0 is defined by ν= 0, i.e., the smallest possible value of the

parameter ν in Expressions (D21) and (D22). This justifies Expressions (48) and (50); the former, in particular, is relatively simple,
since He0(x)= 1. This allows us readily to determine the localization point zmax (different from the evaluation point z0) of the
Gaussian-shaped function modulus ~w z0∣ ( )∣ for ν= 0. The resulting expression for zmax is given by Equation (49).
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