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A B S T R A C T 

Recent studies on the planet-dominated regime of Type II migration showed that, contrary to the conventional wisdom, massive 

planets can migrate outwards. Using ‘fixed-planet’ simulations, these studies found a correlation between the sign of the torques 

acting on the planet and the parameter K 
′ 

(which describes the depth of the gap carved by the planet in the disc). We perform 

‘liv e-planet’ simulations e xploring a range of K 
′ 

and disc mass values to test and extend these results. The excitation of planet 

eccentricity in live-planet simulations breaks the direct dependence of migration rate (rate of change of semimajor axis) on the 

torques imposed, an effect that ‘fixed-planet’ simulations cannot treat. By disentangling the contribution to the torque due to 

the semimajor axis evolution from that due to the eccentricity evolution, we reco v er the relation between the magnitude and 

sign of migration and K 
′ 

and argue that this relation may be better expressed in terms of the related gap depth parameter K . 

We present a toy model in which the sign of planetary migration changes at a limiting value of K , through which we explore 

planets’ migration in viscously evolving discs. The existence of the torque reversal shapes the planetary system’s architecture 

by accumulating planets either at the stalling radius or in a band around it (defined by the interplay between the planet migration 

and the disc evolution). In either case, planets pile up in the area 1–10 au, disfa v ouring hot Jupiter formation through Type II 

migration in the planet-dominated regime. 

Key words: accretion, accretion discs – hydrodynamics – planet–disc interactions – protoplanetary discs. 

1  I N T RO D U C T I O N  

Planets form from protoplanetary disc material and continue to 

interact with this material by exchanging orbital energy and angular 

momentum via tidal torques. This interaction shapes both planetary 

orbital architecture and disc structure. Planet–disc interactions have 

been studied o v er man y decades, long before the detection of 

the first exoplanet by Mayor & Queloz ( 1995 ): see for example 

Lin & Papaloizou ( 1979 ) and Goldreich & Tremaine ( 1979 , 1980 ). 

Recent re vie ws of the topic include Papaloizou & Terquem ( 2006 ), 

Kley & Nelson ( 2012 ), Baruteau et al. ( 2014 ), Papaloizou ( 2021 ), 

Paardekooper et al. ( 2022 ). 

Once a planet has formed in a protoplanetary disc, depending on 

its mass it might be able to open a gap in the disc surface density, or 

it may remain embedded in the disc. On this basis, planet migration 

can be classified (e.g. Artymowicz 1993 ; Ward 1998 ; Kley & Nelson 

2012 ) as Type I migration (Ida & Lin 2008 ; Bitsch et al. 2013 ), for 

light planets that migrate embedded in the disc; or Type II migration, 

for massive planets that open a gap in the disc. In this paper, we are 

interested in Type II migration (e.g. Lin, Papaloizou & Kley 1993 ; 

Syer & Clarke 1995 ; Ivano v, P apaloizou & Polnarev 1999 ), which 

⋆ E-mail: ces204@cam.ac.uk 

can be further split into two regimes, defined through the local disc 

to planet mass ratio 

B 0 = 
4 π� 0 r 

2 

m p 
. (1) 

The ‘disc-dominated’ regime is defined as the regime where the local 

disc mass is higher than the planet mass; while the ‘planet-dominated’ 

re gime, conv ersely, requires the planet to be more massive than the 

local disc. 

The classical theory of the disc-dominated regime assumes that 

the planet is locked in the disc gap, with no possible flux of 

material crossing its orbit, and it migrates following the disc viscous 

evolution (e.g. Lin & Papaloizou 1979 ). In recent years, this simple 

picture has been questioned by hydrodynamics simulations’ results; 

for example, Duffell et al. ( 2014 ) and D ̈urmann & Kley ( 2015 ) 

suggested that planet migration is unlocked from the disc viscous 

evolution and the planet can migrate faster than the disc material; 

other works (e.g. Lubow & D’Angelo 2006 ) modelled the gas flow 

through the planetary gap. A number of recent studies investigated 

the problem (e.g. Kanagawa, Tanaka & Szuszkiewicz 2018 ; Robert 

et al. 2018 ; Scardoni et al. 2020 ; Lega et al. 2021 ), and Scardoni 

et al. ( 2020 ) proposed that the hydrodynamic simulations mostly 

undergo a transient phase and o v er longer viscous time-scales the 
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planet migration conforms to the usual Type II picture; ho we ver, no 

definitive conclusion has been reached yet. 

Strongly related to the migration problem is the study of the 

gap’s properties, since most of the angular momentum is exchanged 

between the planet and the disc in proximity of the gap edges (Gol- 

dreich & Tremaine 1979 , 1980 ); some important works analysing the 

gap shape and width are for example those by Crida, Morbidelli & 

Masset ( 2006 ), who provided an analytical formula linking the gap’s 

and the planet–disc system properties; Fung, Shi & Chiang ( 2014 ), 

who analysed the expected density in the gap; and by Fung & Chiang 

( 2016 ), who demonstrated that in 3D simulations, massive planets 

carve gaps whose properties are consistent with those produced in 

2D simulations. 

Regardless of the details of migration velocity in this regime, Type 

II migration is often suggested as an explanation for the existence 

of massive exoplanets characterized by small semimajor axes (the 

so-called hot Jupiters). Moreo v er, Type II migration in the planet- 

dominated regime – the main focus of this paper – might help in 

explaining the population of Jupiter-like planets located at larger 

radii. Indeed, in the latter regime, the planet’s inertia is supposed to 

have a crucial impact on migration, slowing it down significantly. 

The very first papers exploring this problem (Syer & Clarke 1995 ; 

Ivanov et al. 1999 ) studied the problem in 1D under the assumption 

that no material can cross the planet’s location. Since the planet 

migrates more slowly than the local viscous velocity and the material 

cannot cross the gap, the fate of the inner disc is to disappear, as it 

is rapidly accreted by the central star. For the same reason, the gas 

located in the outer disc tends to accumulate at the outer gap edge. 

As the surface density of the gas at the outer gap edge increases, 

the torque pushing the planet inwards is enhanced, until reaching an 

equilibrium, where the planet mo v es at a rate matching the inward 

motion of the density maximum. 

More recent studies have analysed the planet-dominated regime 

in different conditions, finding that in some circumstances the planet 

migration is not only slowed down, but even reversed. Crida & 

Morbidelli ( 2007 ), for example, studied the problem in the presence 

of a gap with a non-negligible amount of material. Adding the 

corotational torque in their computations, they found that it can have 

a significant influence on planet migration: if the Reynolds number 

is low enough the planet migrates outwards instead of inwards 

towards the star. Under the assumption that the planet migration 

is locked to the viscous evolution, another situation for potential 

outward migration is the case that the planet is initially located in the 

disc area which is viscously expanding (Veras & Armitage 2004 ). 

Hallam & Paardekooper ( 2018 ) instead showed that, under certain 

circumstances, the illumination of the outer gap edge by the central 

star’s radiation can lower the torque e x erted by the outer disc on the 

planet; they thus suggested that this is a possible mechanism to slow 

down or even reverse massive planet migration. 

Further investigation on the planet migration direction has been re- 

cently conducted by Dempsey, Lee & Lithwick ( 2020 ) and Dempsey, 

Mu ̃ noz & Lithwick ( 2021 ), who used a set of 2D systems in the 

planet-dominated regime, in a stable steady state condition. To study 

planet migration they model the situation where the planet’s orbital 

parameters (semimajor axis and eccentricity) are not allowed to 

evolv e; the y then calculate planet migration from the torques acting 

on the fixed planet. Since the planet cannot react to the disc either 

in a p or in e p , the migration rate for given system parameters is just 

proportional to the disc mass; migration is parametrized in terms 

of �T / ( Ṁ l p ), where � T is the torque acting on the planet, Ṁ is 

the steady state accretion rate, l p is the specific angular momentum 

of the planet. Through their study, they found that for typical disc 

parameters, Jupiter-like (or lighter) planets migrate inwards, while 

super-Jupiter planets migrate outwards; interestingly, the sign of the 

torque (and thus direction of migration) seems to be related to the gap 

parameter K 
′ = q 2 /( αh 3 ) (which controls the g ap depth; Kanag awa 

et al. 2016 ), where q = m p / M ∗ is the planet to star mass ratio, α is 

the Shakura & Sunyaev 1973 viscosity parameter, and h = H / r is 

the disc aspect ratio. The parameter K 
′ 

is a variant of the gap depth 

parameter K = q 2 /( αh 5 ), which can be defined from the study of 

the torques’ balance (see for example Fung et al. 2014 ; Kanagawa 

et al. 2015 , 2018 ). Being proportional to the planet’s gravitational 

torque ( ∝ q 2 / h 3 ) and inversely proportional to the disc’s viscous 

torque ( ∝ ν ∝ αh 2 ), it can be interpreted as a measure of the relative 

strength of the torques. 

These interesting results, ho we ver, are limited by the assumption 

of a fixed planet. Albeit in a different migration regime ( B > 1, see 

equation 1 ), Scardoni et al. ( 2020 ) showed that when the planet is 

allowed to change its orbital parameters, the disc density readjusts 

to the presence of the moving planet, which modifies the disc-planet 

interaction. Although the two migration regimes cannot be directly 

compared, this work highlights the potential importance of including 

the evolution of the planet orbital parameters in the computation of 

disc-planet torques. The importance of the gap-adjustment due to 

planet migration in determining the evolution of the planet orbital 

parameters has recently also been underlined also by Lega et al. 

( 2021 ). Furthermore, in live planet simulations, the torque e x erted 

on the planet by the disc modifies both the semimajor axis and the 

eccentricity (e.g. Kley & Dirksen 2006 ; Duffell & Chiang 2015 ; 

Teyssandier & Ogilvie 2016 ; Rosotti et al. 2017 ; Ragusa et al. 2018 ), 

potentially producing a non-trivial relation between the torque and 

planet migration. 

Another fundamental aspect of planet–disc interaction is the long 

time-scale o v er which the disc re-adjusts itself to the presence of the 

planet; in fact, although the time-scale of tidal interaction is short, 

the disc structure change might happen o v er the significantly longer 

viscous time-scale (e.g. Lin & Papaloizou 1979 ; Ward 1998 ). The 

importance of considering the long-term evolution of planet–disc 

systems has been demonstrated by Ragusa et al. ( 2018 ), who showed 

that the long term evolution obtained from hydrodynamic simulations 

can differ from the trend at the first stages of evolution. Apart from 

their work – which was mainly focused on the eccentricity evolution 

– no long-term migration studies in the B < 1 re gime hav e been 

conducted with a ‘live’ (i.e. evolving) planet. 

In this paper, we present a suite of 2D simulations lasting � 300k 

orbits, for a variety of aspect ratios H / r , planet masses M p , and disc 

masses M disc . These simulations are intended to be complementary 

to those by Dempsey et al. ( 2021 ), and allow us to investigate both 

the importance or otherwise of employing a ‘live’ planet, as well 

as the role of different boundary conditions. Since these simulations 

are extremely expensive from the computational point of view, such 

simulations have never been performed before; consequently, this is 

a new area of exploration for the disc–planet interaction problem, 

and the present simulation set inevitably leaves some questions 

unanswered. Nev ertheless, the y pro vide an intriguing starting point 

for further exploration in the field. 

The paper is organized as follows: in Section 2 , we describe 

the long numerical simulations performed to study planet–disc 

interaction; Section 3 contains the description of the planets’ orbital 

parameters, and the analysis of the torques resulting from the disc 

to planet interaction; in Section 4 , we discuss the influence of 

boundary conditions on the obtained torques on the planet; a toy 

model exploring the secular evolution of planets is developed in 

Section 5 , and in Section 6 we discuss the implications of this 
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Table 1. Simulation parameters. The name of each simulation is chosen in the following way: ‘L’ or ‘M’ to indicate a light or 

massi ve disc, respecti vely; ‘m’ follo wed by a number to indicate the planet mass (measured in Jupiter masses); ‘h’ followed 

by a number to indicate the aspect ratio. 

Name B 0 m p ( m J ) h 0 r in r out α0 K ′ 0 K 0 N orbits 

L-m1-h036 0 .046 1 0 .036 0.2 15 0.001 21 1.65 × 10 4 6 × 10 5 

L-m3-h036 0 .046 3 0 .036 0.2 15 0.001 193 1.49 × 10 5 3 × 10 5 

L-m13-h036 0 .046 13 0 .036 0.2 15 0.001 3622 2.9 × 10 6 3 × 10 5 

L-m13-h06 0 .046 13 0 .06 0.2 15 0.001 782 2.17 × 10 5 3 × 10 5 

L-m13-h1 0 .046 13 0 .1 0.2 15 0.001 169 1.69 × 10 4 3 × 10 5 

L-m1-h06 0 .046 1 0 .06 0.2 15 0.001 5 1.29 × 10 3 6 × 10 5 

M-m1-h036 0 .15 1 0 .036 0.2 15 0.001 21 1.65 × 10 4 6 × 10 5 

M-m3-h036 0 .15 3 0 .036 0.2 15 0.001 193 1.49 × 10 5 6 × 10 5 

M-m13-h036 0 .15 13 0 .036 0.2 15 0.001 3622 2.9 × 10 6 3 × 10 5 

M-m13-h06 0 .15 13 0 .06 0.2 15 0.001 782 2.17 × 10 5 3 × 10 5 

M-m13-h1 0 .15 13 0 .1 0.2 15 0.001 169 1.69 × 10 4 3 × 10 5 

M-m1-h06 0 .15 1 0 .06 0.2 15 0.001 5 1.29 × 10 3 6 · 10 5 

model for planetary demographics; finally, in Section 7 we draw 

our conclusions. 

2  SIMULATIONS  

2.1 Simulation parameters 

We performed 12 2D hydrodynamical simulations of protoplanetary 

discs containing a massive planet with the grid code FARGO 3D 

(Ben ́ıtez-Llambay & Masset 2016 ), considering a cylindrical refer- 

ence frame ( r , ϕ) centred in the star. We adopt dimensionless units 

G = M ∗ = r 0 = 1, where G is the gravitational constant, M ∗ is the 

star mass, and r 0 is the planet’s initial location; the time unit is the 

inverse Keplerian frequency at r 0 , 	
−1 
k ; this means that the planet 

at its initial location r 0 requires t = 2 π to complete an orbit. Each 

simulation is run for 300k orbits or 600k, depending on the status of 

the steady state; the requirement is that Ṁ ( r) is within 10 per cent of 

Ṁ ( r in ) at least until r = 2.5 a p . 

The set-up for the simulations is defined in analogy with the 

simulations by Ragusa et al. ( 2018 ). 1 We consider logarithmically 

spaced N r = 430 cells in the radial direction, from r in = 0.2 to r out = 

15, and linearly spaced N ϕ = 580 cells in the azimuthal direction, 

extending from 0 to 2 π . We assume a locally isothermal equation of 

state set by equation ( 3 ), and we parametrize the viscosity by applying 

the α prescription by Shakura & Sunyaev ( 1973 ), ν = αc s H , with α

defined as a function of radius 

α = α0 r 
−0 . 63 ; (2) 

in all the simulations we fix α0 = 0.001. 

In our simulations, we consider a variety of disc aspect ratios and 

planet masses. Specifically, we consider flared discs, defining the 

aspect ratio as follows: 

h = H /r = h 0 r 
0 . 215 , (3) 

where h 0 is the aspect ratio at the initial planet location, for which we 

consider three different values ( h 0 = 0.036, 0.6, and 0.1). Regarding 

the planet mass, we explore three different values: m p = 1 m J , m p = 

3 m J , and m p = 13 m J . 

For each combination of parameters h 0 and m p , we perform two 

simulations, characterized by different values for the initial local 

1 In turn, their choice of parameters was based on the best fit for CI Tau disc 

by Rosotti et al. ( 2017 ). 

disc to planet mass ratio B 0 (see equation 1 ). The initial disc surface 

density at planet location � 0 is chosen to obtain the selected values 

for the initial value B 0 ; we thus hav e ‘massiv e’ disc simulations, 

with B 0 = 0.15, and ‘light’ disc simulations, with B 0 = 0.046. Note 

that in physical units, B 0 = 0.046 and B 0 = 0.15 for a Jovian 

mass planet at the radius of Jupiter corresponds to a local disc 

surface density of 1.3 and 4 . 2 g / cm 
2 , respectively. Apart from m p , 

h 0 , and � 0 , all the other parameters are kept fixed among all the 

simulations. Being interested in the planet-dominated regime of Type 

II migration, we only considered values B 0 < 1; for planet migration 

with high B values we refer to our previous study (Scardoni et al. 

2020 ), specifically focused on the disc-dominated regime of Type II 

migration. 

In addition to the simulations outlined in Table 1 , we performed 

two high resolution simulations as convergence test: we performed 

simulations L-m13-h036 and M-m13-h036 with ×2 and ×4 the 

standard resolution used in this paper, and verified that the obtained 

orbital parameters are the same as those obtained using the standard 

resolution. 

2.2 Initial and boundary conditions 

The initial density profile is defined as 

�( r) = � 0 r 
−0 . 3 × e ( −r/ 5 ) 1 . 7 . (4) 

The planet mass is gradually increased during the first 50 orbits of 

the simulation, while its orbital parameters are kept fixed; once the 

planet reaches its full mass, it is allowed to evolve (i.e. to migrate 

and develop eccentricity) under the action of torques arising from 

planet–disc interaction. 

We apply closed boundary conditions at the outer edge r out = 

15 by setting both the velocity and the gas density to zero at r out , 

i.e. no material is added to the simulation, in order to minimize the 

effect of the outer boundary condition. This generates a zero flux at 

r out , which physically corresponds to the case of a disc truncated by 

a wide binary. At the inner boundary, instead, we apply ‘viscous’ 

boundary conditions, i.e. we enforce the inner material velocity to 

match the viscous velocity (as in Scardoni et al. 2020 and Dempsey 

et al. 2020 , 2021 ). This choice ensures that the inner boundary has a 

net zero effect on the total angular momentum budget of the disc, i.e. 

the torque supplied exactly matches the rate of angular momentum 

advected by accretion through the inner boundary. 

In practice, the simulations are run for a small fraction of the 

viscous time-scale at the outer edge so that the form of the outer 
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Figure 1. Semimajor axis as a function of the evolutionary time for light disc simulations (left-hand panel) and massive disc simulations (right-hand panel). 

The different colours correspond to different simulations, as indicated in the plot legend (see Table 1 for the simulations’ name definition). 

boundary should not be critical to the calculations. On the contrary, 

boundary effects can disturb the inner disc and thus the region 

around the planet on much shorter time-scales, due to spurious wave 

propagation. We therefore employ the wave damping method by de 

Val-Borro et al. ( 2006 ) for the radial velocity at the inner boundary. 

This means that o v er the damping time-scale ( τ = 	k /30), we damp 

v r to the azimuthal average of the initial (viscous) velocity 〈 v r ,0 〉 in 
the region from r in to r = 0.3. 

We also perform an additional simulation characterized by the 

same parameters as simulation L-m13-h036, except for the inner 

radius and damping zone, which are taken to be half of the default 

values; thus, we take r in = 0.1, and the damping zone extends in this 

case up to r = 0.15. This is to ensure that in the cases where the 

planet develops high eccentricity (and thus gets close to the inner 

boundary), the material in the damping zone does not affect the 

migration owing to numerical modification to the physical torque 

e x erted on the planet. 

3  RESULTS  

3.1 Orbital parameters 

In Fig. 1 , we show for the light disc simulations (left-hand panel) and 

the massive disc simulations (right-hand panel) the evolution of the 

semimajor axes as a function of evolutionary time, i.e. the physical 

time rescaled to the viscous time-scale at the initial planet position 

t ν = 
2 

3 

r 2 

ν
, (5) 

and we indicate with t ν,0 the viscous time-scale e v aluated at the 

initial planet location. For reference, the initial viscous time-scales 

in our simulations are: t ν,0 ∼ 9 × 10 5 yr for h = 0.036, t ν,0 ∼ 3 

× 10 5 yr for h = 0.06, t ν,0 ∼ 10 5 yr for h = 0.1. After an initial 

adjustment (lasting t � t ν,0 ), we can notice a variety of behaviours: 

inward migration (e.g. L-m1-h06, M-m1-h06), outward migration 

(e.g. L-m13-h036, M-m3-h036), or even stalling (e.g. L-m13-h1, M- 

m13-h06). This interesting behaviour can be related to the value of 

the gap-opening parameter K 
′ = q 2 /( αh 3 ) (where q = m p / M ∗), whose 

analysis is deepened in Section 3.2 . 

Fig. 2 , instead, illustrates the planet eccentricity evolution. This 

plot shows a variety of behaviours, with some simulations (especially 

at higher planet masses) exhibiting significant eccentricity growth. 

It is also worth noticing that, in many cases, the planet eccentricity 

presents oscillations (as already observed, for example, by Duffell & 

Chiang (as already observ ed, for e xample, by Duffell & Chiang 2015 ; 

Rosotti et al. 2017 ; Thun, Kley & Picogna 2017 ; Ragusa et al. 2018 ). 

These oscillations are due to the disc eccentricity vector evolving as a 

superposition of two rigidly precessing normal modes (Teyssandier & 

Ogilvie 2016 , 2017 ; Ragusa et al. 2018 ; Teyssandier & Lai 2019 ). 

3.2 Torques 

3.2.1 Dependence on initial disc mass 

In this section, we analyse the torque acting on the planet as a function 

of the following parameter (Kanagawa et al. 2015 ) 

K 
′ = 

q 2 

αh 3 
, (6) 

which is a modification of the gap-opening parameter K = q 2 /( αh 5 ), 

i.e. a measure of the strength of the planet’s gravitational torque 

( ∝ q 2 / h 3 ) compared to the disc’s viscous torque ( ∝ ν ∝ αh 2 ). 

The parameter K 
′ 
has been empirically studied by Kanagawa et al. 

( 2016 , 2018 ) and Dempsey et al. ( 2020 , 2021 ), who noticed that 

K 
′ 

correlates with the gap width and depth (with the gap becoming 

wider and deeper for higher K 
′ 

values). Systems characterized by 

the same K 
′ 
also appear to show similar torque density profiles; thus 

Dempsey et al. ( 2020 , 2021 ) examined a number of fixed-planet 2 

simulations characterized by dif ferent K 
′ 

v alues, and suggested that 

K 
′ 
is a good ‘ordering parameter’ for planet migration. According to 

their analysis, in fact, planets in systems characterized by K 
′ 
� 20 

migrate outward, whereas systems with K 
′ 
� 20 present inward planet 

migration. Since their finding relies on simulations characterized by 

an evolving disc and fixed planets, our goal is to test whether the 

torque imposed on a fixed planet on a circular orbit is the same that 

applies in the case of a ‘live’ planet that can respond to the torque 

during the evolution by changing its orbital elements. 

For this purpose, we follow the approach of Dempsey et al. ( 2021 ), 

and plot the total torque on the planet normalized to Ṁ l p (see their 

2 In fixed-planet simulations, the torque on the planet is computed as 

integration of the torque arising from the disc, from which planet migration 

is deduced; none the less, the planet orbital parameters are kept fixed at their 

initial values (i.e. a p = 1, e p = 0). 
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Figure 2. Eccentricity as a function of the evolutionary time for light disc simulations (left-hand panel) and massive disc simulations (right-hand panel). The 

different colours correspond to different simulations, as indicated in the plot legend (see Table 1 for the simulations’ name definition). 

Figure 3. Torque acting on the planet normalized for the VSS accretion rate times the local specific angular momentum as a function of q (left-hand panel) and 

parameter K 
′ = q 2 /( αh 3 ) (right-hand panel). The squares indicate the torque acting computed as variation rate of the planet’s angular momentum obtained from 

the simulations; the different colours correspond to different simulations, as indicated in the legend. 

fig. 2). Note that for our convention of signs we have Ṁ < 0 for 

inward migration; to a v oid confusion we therefore plot �T / | Ṁ l p | 
whose sign only depends on the sign of the torque e x erted by the 

disc on the planet (positive for outward migration and ne gativ e for 

inward migration). 

The presence of a live planet enables us to compute the torque 

acting on the planet directly as the planet’s angular momentum 

variation rate 

�T = 
d J p 

d t 
= J p 

(

1 

2 a 
× ȧ −

e 

1 − e 2 
× ė 

)

, (7) 

being J p = m p 

√ 

GM ∗a p (1 − e 2 p ) . Thus, we compute � T time- 

av eraged o v er 30 000 planet orbits, 3 taken in the last stages of the 

simulation, when the inner disc has reached a steady state and the 

planet migration has stabilized. The results are shown in Fig. 3 , from 

which we can notice that the general trend of positive torques for 

high K 
′ 
, and ne gativ e torques for low K 

′ 
is confirmed, albeit with a 

3 30 000 orbits was chosen as being several times the time-scale for periodic 

exchange of eccentricity between the planet and the disc, this being modulated 

on the beat period between the precession of the aligned and anti-aligned 

eccentric modes of the disc. 

suggestion of some decline in the torque at values of K 
′ 
> 20–200. 

Note, ho we ver, that the suite of simulations performed so far does 

not explore the K 
′ 
values extensively enough to confirm that K 

′ = 20 

is the point of zero torque, and further simulations are needed for a 

precise characterization of the � T –K 
′ 
relation. 

We further notice an applicability limitation in the results obtained 

from fixed planet simulations by Dempsey et al. ( 2020 , 2021 ). Those 

simulations do not conserve the total angular momentum of the 

system, because they do not allow the planet to evolve its orbital pa- 

rameters. Although this approach is completely adequate to represent 

the limiting behaviour in the case that B 0 → 0 (for which the planet 

is not expected to modify its orbital parameters noticeably o v er the 

disc lifetime), it cannot necessarily be used for B 0 	= 0 studies, where 

the planet might change its orbital parameters o v er the simulation 

time-scale, and in the process affects the interaction with the disc. 

This limitation becomes evident when we compare our results for 

dif ferent B 0 v alues (i.e. ‘light disc’ versus ‘massi ve disc’), where 

we notice that the normalized torque properties change for different 

B 0 values in some cases. In the approach adopted by Dempsey et al. 

( 2021 ), by contrast, both the torque and the accretion rate are assumed 

to vary linearly with B 0 and hence their ratio is independent of B 0 ; 

therefore, in Dempsey et al. ( 2020 , 2021 ) simulations the torque 

applied to the planet is, by construction, proportional to the disc mass. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
4
/4

/5
4
7
8
/6

6
1
2
7
3
9
 b

y
 U

n
iv

e
rs

ity
 o

f L
e
e
d
s
 u

s
e
r o

n
 3

0
 J

u
n
e
 2

0
2
3



Inward and outward migration 5483 

MNRAS 514, 5478–5492 (2022) 

Figure 4. Azimuthal averaged density profiles � / � 0 (colour map) as a function of the radius ( x -axis) and time normalized to the viscous time-scale at the initial 

planet location ( y -axis). The magenta line shows the time evolution of the planet’s semimajor axis; the white lines show the time evolution of a p (1 ± e p ). The 

left-hand panel refers to simulation L-m13-h036; the right-hand panel refers to simulation M-m13-h036. 

Our simulations demonstrate instead that although the assumption 

of torques independent of the disc mass is adequate for low mass 

planets, it breaks down in the case of high K 
′ 
( > 10 3 ). 

We find that the normalized torque values are indeed approxi- 

mately independent of B 0 in the case of the Jovian mass planet 

(see Fig. 3 ) but that for higher values of planet mass (and K 
′ 
) the 

normalized torque values become increasingly divergent between the 

‘light’ and ‘massive’ simulations. This is particularly marked in the 

case of the simulation with the largest K 
′ 
value (the 13 m J planet with 

the lowest disc aspect ratio). These results can be readily understood 

from Fig. 2 where it can be seen that the planet develops significant 

eccentricity during the course of the simulation. As discussed by 

Ragusa et al. ( 2018 ) and Teyssandier & Lai ( 2019 ), the eccentricity 

evolution of the planet depends on the interplay between eccentric 

modes of the disc whose structure depends on the disc to planet 

mass ratio. Thus, we see in Fig. 2 that not only do the simulation 

with largest K 
′ 

develop large eccentricities but that the eccentricity 

evolution is markedly different in the ‘light’ and ‘massive’ cases. 

It is therefore unsurprising that the torques on the planet evolve 

differently; indeed, in the light case, the eccentricity grows to the 

point where although the semimajor axis increases, the torque on 

the planet is actually ne gativ e (Fig. 3 ), a result that is reconciled by 

the large planetary eccentricity in this case. We could thus consider 

simulation L-m13-h036 as an ‘outlier’ in Figs 3 and 7 because it is 

the extreme case where the torque mainly affects e p rather than a p . 

The dif ferent e volutionary histories of the disc structure in the 

light and massive 13 m j case are illustrated in Fig. 4 (in the left-hand 

and right-hand panel, respectively). The strong growth of planetary 

eccentricity in the light case is associated with the system settling 

into a single eigenmode of the system, i.e. the slow mode in which 

the apsidal precession of the disc and planet are aligned. In the 

massiv e case, conv ersely, the system e xists in a state of superposition 

of aligned and anti-aligned modes (see Ragusa et al. 2018 , for 

more discussion on the two modes), resulting in the modulation 

of planetary eccentricity and disc structure evident in Figs 2 and 4 . 4 

4 In the light disc case with 13 m j planet, the planet achieves such a high 

eccentricity that the pericentre distance is only ∼2.5 times the inner disc 

edge, r in . In order to check that the location of the inner boundary is not 

dri ving the e v olution in this case, we ha ve re-run the light disc case with r in 

We therefore conclude that the results based on non-migrating 

planet simulations presented by Dempsey et al. ( 2020 , 2021 ) are 

a good approximation for light planets; none the less a more 

complex model, accounting for the planet’s eccentricity growth and 

its dependence on disc mass, is needed when higher mass planets are 

considered. 

Finally we emphasize that Fig. 3 is constructed after significant 

evolution of the disc profiles (i.e. after 6 × 10 5 planetary orbits in the 

case of the massive and light simulations with 1 m j planet, and in the 

massive disc simulation with 3 m j planet; and after 3 × 10 5 planetary 

orbits in the remaining simulations) and use values of the torque and 

accretion averaged over the preceding 3 × 10 4 orbits. The result that 

the simulations with higher K 
′ 
values generally result in normalized 

torque values that are ∼0.5 is all the more remarkable given the 

substantial variety in the surface density evolution that occurs in 

the various simulations. This is illustrated in Fig. 5 which shows 

snapshots of the surface density profiles (as a function of radius 

normalized to the current semimajor axis of the planet) in each of 

the simulations at the time that the normalized torques shown in 

Fig. 3 are e v aluated. In each case, the solid and dashed versions of 

the curves relate to corresponding pairs of simulations with different 

values of B 0 . The density is normalized to the initial surface density 

at the location of the planet in the unperturbed disc and therefore the 

relative surface density in each simulation pair can be obtained by 

scaling with the rele v ant v alues of B 0 for the light and massi ve disc 

simulations. 

Fig. 5 demonstrates that it is only in the case of the simulation 

pair (L-m1-h06 and M-m1-h06) with lowest K 
′ 

(i.e. narrowest gap) 

that the surface density profiles are simply scaled versions of each 

other. This can be traced to the fact that the planetary eccentricity 

is not excited in this case (see Fig. 2 ) as can be expected in 

the case of a narrow gap where corotation torques dominate o v er 

Lindblad resonances (Goldreich & Tremaine 1979 , 1980 ). At the 

other extreme, the simulations where the planetary eccentricity is 

most excited (i.e. the m13-h036 and m13-h1 pairs) show that the inner 

edge of the planet carved cavity is close to the 3:1 inner eccentric 

reduced by a factor 2–0.1. We show in Appendix A that the evolution of the 

planetary orbital elements is unaffected by the reduction in r in . 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
4
/4

/5
4
7
8
/6

6
1
2
7
3
9
 b

y
 U

n
iv

e
rs

ity
 o

f L
e
e
d
s
 u

s
e
r o

n
 3

0
 J

u
n
e
 2

0
2
3



5484 C. E. Scardoni et al. 

MNRAS 514, 5478–5492 (2022) 

Figure 5. Azimuthal averaged density profiles � / � 0 (colour map) at the end 

of the simulation time, plotted as a function of the radius normalized to the 

planet location (both the density profile and the planet location are taken at the 

final snapshot of each simulation). Each colour refer to a different simulation, 

as indicated in the legend; the light and massive disc simulation with the same 

planet mass and disc aspect ratio are shown with the same colour with solid 

and dashed lines, respectively. 

Lindblad resonance which is associated with strong driving of orbital 

eccentricity (Lin et al. 1993 ; Goldreich & Sari 2003 ). 

We note that, in contrast to the simulations of Dempsey et al. 

( 2020 , 2021 ), we do not drive the accretion rate at a prescribed rate 

in these simulations; the accretion rate at the inner edge (which is 

applied to the calculation of the normalized torque in Fig. 3 ) evolves 

rapidly during the first viscous time-scale at the planetary radius, 

thereafter setting up a quasi-steady state within a few times the 

planetary radius (e.g. see Fig. 10 ). Thereafter, the magnitude of the 

accretion rate declines on the viscous time-scale at the half mass 

radius of the disc, as expected. It is this slow decline in the accretion 

rate in the inner disc (and the associated normalization of the surface 

density) that drives the levelling off in the evolution of the semimajor 

axis seen in Fig. 1 . In Section 5 , we will explore toy models which 

use the normalized torque values extracted from our simulations to 

calculate the secular evolution of planets in an evolving disc. 

3.2.2 Torque components 

So far, we have e v aluated the total torque on the planet, including 

contributions from both rate of change of semimajor axis and rate of 

change of eccentricity, as in equation ( 7 ). In Fig. 6 , we plot instead 

the torque component associated with the rate of change of only the 

Figure 6. Torques associated with the rate of change of semimajor axis 

normalized for the VSS accretion rate times the local specific angular 

momentum as a function of parameter K 
′ = q 2 /( αh 3 ). The different colours 

correspond to different simulations, as indicated in the legend. 

semimajor axis against the parameter K 
′ 

�T ∗ = 
m p 

2 
×

√ 

GM ∗

a p 
(1 − e 2 p ) × ȧ p . (8) 

We notice that in this case there is little difference between the 

torques associated with ȧ p for the light and massive disc simulations 

with 13 m j and h = 0.036. This suggests that the differences 

in total torque between these two simulations do not result from 

interactions that transfer significant orbital energy to the planet, 

but are instead associated with interactions that primarily affect the 

planetary eccentricity. 

We furthermore notice that at large K 
′ 
(or K , see the next section), 

the normalized � T 
∗ is almost constant with K 

′ 
(or K ), whereas � T 

seems to decrease. This behaviour suggests that as the planet mass 

increases, the resonances that excite/damp the planet’s eccentricity 

are strengthened/weakened; while the resonances responsible for 

migration seem less affected. 

This result has interesting implications on the rate of energy 

transfer to the planet. Given that in this case the variation of 

normalized � T 
∗ between simulations is much less than if the total 

normalized torque is considered, even the L-m13-h036 simulation 

(where the total normalized torque is large and ne gativ e: see Fig. 2 ) 

has a positive normalized � T 
∗ value whose magnitude ( ∼0.5) is 

similar to that in lower mass planets. This implies that the spread 

in normalized � T values for the most massive planets is driven by 

differences in eccentricity evolution which are not associated with 

significant contributions to the transfer of energy between disc and 

planet. Given that 

E p = −
GM ∗m p 

2 a p 
, (9) 

the rate of change of planetary orbital energy is given by 

Ė p = 
GM ∗m p 

2 a 2 p 

ȧ p . (10) 

Combining equation ( 10 ) and the torque associated with the semi- 

major axis variation | � T 
∗| (equation 8 ), we deduce that 

Ė p = 

(

�T ∗

Ṁ l p 

)

×
(

GM ∗

a p 

)

× Ṁ . (11) 
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Figure 7. Left-hand panel: torque acting on the planet normalized for the VSS accretion rate times the local specific angular momentum as a function of K . 

Right-hand panel: torques associated with the rate of change of semimajor axis normalized for the VSS accretion rate times the local specific angular momentum 

as a function of K . The different colours correspond to different simulations, as indicated in the legend. 

Since from our simulations the normalized � T 
∗ is roughly constant 

(right-hand panel in Fig. 7 ), equation ( 11 ) implies that the energy 

transfer to the planet at a given location depends only on the accretion 

rate through the disc and is independent of planet mass. 

Moreo v er, we note that the migration rate, ȧ p , scales with Ṁ /m p 

and, for simulations with the same value of B 0 and t ν , should be 

independent of planet mass. This can be seen from the asymptotic 

gradients of the migration tracks shown in Fig. 1 . 

The analysis of the torque components allowed us to attribute the 

deviation of the torques � T from the constant value at high K (or K 
′ 
) 

to the planet eccentricity excitation, and we noticed that the effect 

becomes more and more important as K ( K 
′ 
) increases. We plan to 

further explore the behaviour at high K (or K 
′ 
) in future works. 

3.2.3 Choice of ordering parameter 

The torque analysis conducted so far is following Dempsey et al. 

( 2020 , 2021 ) in assuming that K 
′ 
is the appropriate ordering param- 

eter. In Fig. 7 , we instead plot the normalized torques as a function 

of 

K = 
q 2 

αh 5 
(12) 

for all our simulations, considering both the total torque (left-hand 

panel) and the torque associated with ̇a p (right-hand panel). While the 

number of simulations is too small to make a definitive judgement on 

the parameter that best captures the transition between narrow gaps 

with inward migration and broad gaps with outward migration, Fig. 7 

suggests that this transition occurs at K = 1.5 × 10 4 . We use this 

threshold in our ‘toy modelling’ presented in Section 5 . Remarkably, 

the normalized torque associated with ȧ assumes a constant value of 

∼0.5 for higher values of K . 

4  RO LE  O F  I N N E R  B O U N D  A R  Y  C O N D I T I O N S  

In this section, we discuss the role of boundary conditions in planet 

migration simulations. For this purpose, we performed a set of 

additional simulations, characterized by the same parameters as those 

presented abo v e, but with ‘open’ boundary conditions at the inner 

boundary. The open boundary conditions allow the material to leave 

the grid at the inner edge at its own radial velocity (numerically, we 

set both the velocity and the density in the inner ghost cell equal 

Figure 8. Viscous torque at different snapshots (showed in different colours, 

as indicated by the legend) for simulation M-m3-h036 with viscous boundary 

conditions. 

to the last active cell). As a consequence, at r in = 0.2, we have a 

zero torque boundary condition, as illustrated in Fig. 8 , where the 

viscous torque is shown as a function of r at different snapshots for 

simulation M-m3-h036 with open boundary conditions. 5 

From the physical point of view, the open boundary conditions 

produce a strong depletion of the inner disc; we can therefore 

apply them to study the physical case of a disc with a zero- 

torque inner cavity; for example, it may represent a case where 

the angular velocity is subject to a turning point (e.g. the classical 

boundary layer), or any case where material is remo v ed from the 

cavity without injecting angular momentum to exterior material (e.g. 

photoe v aporation or magnetospheric accretion). 

The different physical configuration naturally produces differ- 

ences in the migration properties that can be analysed in terms of 

�T in / | Ṁ l p | , where � T 
in is the torque imparted to the planet from 

the disc interior to the planet. In order to analyse the different torques 

acting on the planet in the two cases, we commence by noticing that 

5 In this section, we use simulation M-m3-h036 as an example to illustrate the 

viscous torque and the accretion rate profile through the disc. Note, ho we ver, 

that the same behaviour is shown by all the other simulations in our sample. 
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Figure 9. Torque acting on the planet normalized for the VSS accretion rate times the local specific angular momentum as a function of q (left-hand panel) and 

parameter K 
′ = q 2 /( αh 3 ) (right-hand panel). The diamonds indicate the results from the open boundary condition simulations; the squares illustrate the torque 

the results from the viscous boundary condition simulations; the stars show the prediction for the open boundary condition results, applying equation ( 16 ) to the 

results obtained from viscous boundary conditions. 

for both the boundary condition choices, the inner disc (from r in to a 

few r p ) reaches a viscous steady state after some t ν,0 (see Fig. 10 ). If 

we consider the area of the disc between r in and r p , the total angular 

momentum injected per unit time into this region is due to advection 

and viscous torques at r in and r p is: 

�T in = −Ṁ ( l p − l in ) + F ν( r in ) − F ν( r p ) 

∼ −Ṁ ( l p − l in ) + F ν( r in ) , (13) 

where the approximation is valid for planets massive enough to 

create a deep gap in the disc, so that �( r p ) ∼ 0, and thus F ν( r p ) = 

3 πν〈 �〉〈 l k 〉 ∼ 0. Since for open boundary conditions F ν( r in ) ∼ 0, 

the torque in this case is 

�T in open BC = −Ṁ ( l p − l in ); (14) 

whereas for viscous boundary conditions F ν( r in ) = −Ṁ l in , thus 

�T in viscous BC = −Ṁ l p . (15) 

We can therefore estimate the difference in torque imparted by the 

inner disc 

�T in open BC = �T in viscous BC + Ṁ l in , (16) 

where Ṁ < 0 (for our convention of signs), thus � T viscous BC > 

� T open BC . Since in both cases, the quasi-steady state of the inner 

disc requires that � T is balanced by the torque applied by the planet, 

it follows that the form of the inner boundary condition should alone 

determine the normalized torque of the inner disc on the planet. The 

o v erall physical consequence is that planets in discs with an inner 

cavity are expected to be less prone to outward migration than planets 

in discs where the angular momentum lost by advection is balanced 

by the viscous torque of inward lying material. 

Using equation ( 16 ), we can predict the open boundary conditions’ 

results from the values obtained for viscous boundary conditions (and 

vice versa). We illustrate the extent to which this simple prediction 

of how the inner boundary condition affects the planet migration 

through the plot in Fig. 9 . In that plot, we show the torque acting 

on the planet (computed as time deri v ati ve of the planet angular 

momentum) for both the viscous boundary conditions (squares) and 

the open boundary conditions (diamonds). The stars, instead, show 

the prediction for the open boundary conditions’ results, based on 

the viscous boundary conditions’ results, using equation ( 16 ), and 

Figure 10. Normalized accretion rate profiles time av eraged o v er different 

time intervals (in the legend, we indicate the initial and final orbit of the 

considered interval) for the massive disc simulation with m p = 3 m j , h = 

0.036 (M-m3-h036). The black dashed lines show the 10 per cent limits on 

the value of the normalized accretion rate, in order to consider the region in 

steady state. 

assuming that the inner boundary condition does not affect the torque 

on the planet from the outer disc. Each colour corresponds to a 

different simulation, which is indicated in the legend. 

Fig. 9 shows that for the 1 Jupiter mass simulations with h = 0.036, 

the difference in normalized torque is almost exactly that predicted 

by equation ( 16 ) (with r in = 0.2). Indeed, the outward migration 

is significantly slowed when a zero torque boundary condition is 

applied at r in = 0.2, because of the diminished torque delivered by 

the depleted inner disc. The prediction of equation ( 16 ) is appropriate 

as long as (a) the inner disc is in steady state interior to the planet (as 

assumed in the deri v ation of equation 16 ), and (b) the modification of 

the structure of the inner disc due to the changed boundary condition 

does not modify the torque e x erted by the outer disc. This explains 

the quantitative agreement between the predictions of equation ( 16 ) 

and the change in total torque experienced by the planet shown in 
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Fig. 9 for simulations characterized by low-mass planets, where both 

the conditions are satisfied. We have verified, through examination 

of radial profiles of accretion rate (see Fig. 10 ), that the condition 

(a) is satisfied in all simulations. We therefore attribute the fact 

that the quantitative agreement with equation ( 16 ) declines as the 

planet mass increases to the breakdown of assumption (b). This is 

particularly evident in the case of the light 13 m j simulation with h = 

0.036 where equation ( 16 ) fails to replicate the dependence of torque 

on boundary condition both in magnitude and in sign. It is notable 

that these parameters result in significant planetary eccentricity in 

the case of both boundary conditions but that the eccentricity growth 

is weaker in the case of the zero torque (cavity) boundary condition 

(compare Fig. 2 with fig. 6 of Ragusa et al. 2018 ). The modification 

of the outer disc structure in response to the different orbital evolution 

of the planet means that the difference in total torque is not simply 

related to the effect of the boundary condition on the inner disc alone. 

5  E X P L O R AT I O N  O F  SECULAR  E VO L U T I O N  

USING  A  TOY  M O D E L  

In this section, we define a toy model that provides a simplified 

prediction of massive planets’ migration, under the following key 

assumption: (i) �T / Ṁ l p is a function of K (equation 12 ); (ii) 

�T / Ṁ l p is independent of disc mass. 6 Since the disc is flared, we 

expect K ∝ h −5 to vary with radius as K ∝ r −5 f , where f is the flaring 

index; in this section we assume constant α, but if we allowed it to 

vary with radius, it would have given a further contribution to the 

dependence of K on r . 

We compute the planet migration time using the angular momen- 

tum definition M p l p = M p 

√ 
GM ∗r p 

7 

t mig = 
r p 

ṙ p 
= 

1 

2 
·
M p l p 

�T 
, (17) 

where t mig < 0 ( > 0) means inward (outward) migration. Using 

the definitions M d = 4 πr 2 � and Ṁ = 3 πν�, we can rewrite the 

migration time-scale as 

t mig = 
1 

2 
×

(

| Ṁ | l p 
�T 

)

×
(

M p 

M d 

)

×
(

M d 

| Ṁ | 

)

. (18) 

Noticing that M p / M d = 1/ B and M d / Ṁ = t ν , 8 this can be written as 

r p 

ṙ p 
= 

1 

2 
×

(

| Ṁ l p | 
�T 

)

×
(

t ν

B 

)

. (19) 

We now consider 3 different regimes: 

(i) classical Type ii migration with B ≫ 1, for which r p / ̇r p = 

−t ν , hence we deduce �T / Ṁ l p = −0 . 5 /B (see for example Lin & 

Papaloizou 1979 ; D’Angelo, Bate & Lubow 2005 ; Scardoni et al. 

2020 ); 

(ii) classical Type ii migration with B ≪ 1, for which r p / ̇r p = 

−tν/B, hence we deduce �T / Ṁ l p = −0 . 5 (see, for example Syer & 

Clarke 1995 ; Ivanov et al. 1999 ); 

(iii) migration at high K where �T / Ṁ l p ∼ 0 . 5 from our numerical 

results. 

6 As underlined in Section 3.2.1 , �T / Ṁ l p does not depend on the disc mass 

only when the planetary orbit maintains a low eccentricity; this is best satisfied 

for the 1m J case, which we therefore use in the toy model. 
7 Here we use r p instead of a p because we are assuming circular orbits. 
8 We define t ν = 4 r 2 /3 ν. 

We can combine the two limits (a) and (b) as �T / | Ṁ l p | = 

−0 . 5 / ( B + 1); then we put all of these considerations together to 

obtain 

r p 

ṙ p 
= 

{

−B+ 1 
B · t ν if K < K lim 

1 
B · t ν if K > K lim 

(20) 

where K lim is the limiting value which determines the transition from 

inw ard to outw ard migration. For the purpose of the toy model, we 

take K lim = 1.5 · 10 4 (as estimated from Fig. 7 ). 

Given all these considerations, we can define a function g ( K ) such 

that 9 

r p 

ṙ p 
= 

1 

g( K) 

B + 1 

B 
t ν . (21) 

We therefore need a function with the following properties: for high 

K and low B , g ( K ) ∼ 1, to obtain the lower case in equation ( 20 ); for 

low K , we want g ( K ) ∼ −1, to reco v er the classical prediction for 

Type II migration (upper case in equation 20 ). Note that in deriving 

the formula in equation ( 21 ) we have not considered the case with 

high K and high B , because for the typical disc parameters and 

plausible planet location, it is unlikely to obtain this combination; 

consequently, for high values of B we expect the planet to migrate 

inward following the ‘classical’ Type II migration rate (as analysed 

in Scardoni et al. 2020 ). We thus model the functional form of g ( K ) 

as 

g( K) = tanh 

(

K − K lim 

W 

)

, (22) 

where W controls the width of the transition in K o v er which g ( K ) 

changes sign. We then estimate the planet migration by solving the 

following equation: 

ṙ p = r p g( K) 
B 

B + 1 

1 

t ν
, (23) 

where we underline that all the quantities on the right hand side are 

functions of r p (and hence time). 

Since planets are expected to migrate inward (outward) for K 

values smaller (bigger) than K lim = 1.5 × 10 4 , and because K 

increases during inward migration and decreases during outward 

migration in the case of flaring discs ( f > 0 in equation 24 below), 

we expect them to al w ays migrate tow ards the location of the disc 

where K = K lim . We then call r lim the radius corresponding to K lim = 

1.5 × 10 4 that is therefore an ‘attractor’ for migrating planets 

r lim = 

(

q 2 

K lim α0 h 
5 
0 

)1 / ( a+ 5 f ) 

, (24) 

where α = α0 r 
a and h = h 0 r 

f . 

Note that in the toy model we do not include the effect of 

eccentricity growth, because we develop the toy model in the case of 

Jovian mass planets where eccentricity growth is very modest. We 

neither include the effect of the planet on the surface density profile, 

because by comparing the evolution of the disc with and without a 

Jupiter mass planet we found that the two systems behave similarly 

o v er the long time-scales. 

9 Note that we define g ( K ) in this way because we want it to be proportional 

to �T / | Ṁ l p | , which is the quantity that we have analysed in the previous 

sections. 
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Figure 11. Toy model for a planet of mass m p = 1 m j and a disc characterized 

by α = 0.001, h = 0.02 at 1 au and flaring index 0.25, producing a stalling 

radius located at 5 au. The different colours show the planet migration tracks 

for an initial planet location equal to 3 au (red lines), 5 au (cyan lines), and 

7 au (magenta lines). The different line styles refer to different choices of 

parameter W : W = 1 for the solid line; W = 1500 for the dashed line; W = 

3000 for the dotted line. At 5 au, the disc to planet mass ratio is B = 0.1, 

while the viscous time-scale is t ν (5 au ) = 1 . 6 Myr. 

5.1 Toy model in a non-evolving disc 

We first define a disc model characterized by α = 0.001 (constant 

throughout the disc), thus ν ∝ r 2 f + 1/2 ; and �( r ) = �( r 1 )( r / r 1 ) 
−1 , 

where r 1 is the value of 1 au in code units, and �( r 1 ) is chosen to 

have B 5au = 0 . 1 at 5 au, 10 corresponding to M disc ∼ 0 . 001 M ⊙ for a 

disc of 100 au. As the planet migrates (in either direction), the value 

of B varies as 11 

B( t) = B 5au ·
(

r p ( t) 

5 au 

)

. (25) 

To design a disc model with r lim = 5 au (i.e. the location of Jupiter), 

the disc aspect ratio at 1 au is taken equal to 0.02, while the flaring 

index is 0.25. 

We then insert a Jupiter mass planet and solve equation ( 23 ). 

In Fig. 11 , we illustrate the behaviour of r lim as an attractor, 

considering three different models: a planet initially located at 

r p ( t = 0) = 3 au < r lim , which then migrates outwards until stalling 

at 5 au (red lines); for r p ( t = 0) = 5 au = r lim the planet stalls at 

its initial location (cyan line); for r p ( t = 0) = 7 au > r lim , instead, 

the planet migrate inwards (magenta lines). The solid, dashed, and 

dotted lines refer to values of parameter W in equation ( 22 ) equal to 

1, 1500, and 3000, respectively. 

For the inward migrating planet (initially at 7 au), the time-scale 

required to reach the stalling radius in all cases is less than 10 Myr, 

which means that the planet can reach the stalling location during 

the disc lifetime. In the case of the planet initially located at 3 au, 

instead, the planet migrates to 4 au in 10 Myr, but requires ∼ 15 Myr 

to reach the stalling radius. We caution, ho we ver, that the time-scale 

on which the planet makes its final approach to the stalling radius is 

v ery sensitiv e to the choice of W in the function g ( K ); this underlines 

10 In the rest of the paper we will refer to the value of B at 5 au as B 5au ; while 

we will indicate as B the value at the planet location. 
11 Note that the dependence of B on r p depends on the chosen density profile: 

if � ∝ r −s , then B ∝ r 2 −s 
p . 

the importance of further simulations to explore the form of g ( K ). 

We furthermore notice that as the obtained migration time-scale is 

comparable to the disc lifetime, we would expect the disc density to 

evolve in time over the planet’s migration and model this possibility 

in the following section. 

5.2 Toy model in an evolving disc 

Since the planet migration time-scale expected from the toy model is 

comparable to the disc lifetime, we define a variant of the toy model 

to take into account of the density evolution during migration. 

For this purpose, while solving equation ( 23 ) we evolve the density 

profile at each time-step according to the self-similar solution by 

Lynden-Bell & Pringle ( 1974 ) 

�( R, t) = 
M disc , 0 

2 πR s , 0 
(2 − b) 

(

R 

R s , 0 

)−b 

τ−η

× exp 

[

−
( R/R s , 0 ) 

2 −b 

τ

]

, (26) 

where M disc,0 is the initial disc mass, defined by the choice of the 

density profile and the initial disc scale radius; R s,0 is the initial scale 

radius; b is a parameter of the model that is the power-law exponent 

for the radial variation of the viscosity that we fix to 1 for consistency 

with the previous section; η = (5/2 − b )/(2 − b ); τ is defined as τ = 1 

+ t / t ν , with t ν = R 
2 
s / [3(2 − b) 2 ν( R s )]. The surface density will thus 

evolve on the viscous time-scale of the instantaneous scale radius 

R s ( t) = R s , 0 

[

τ

2(2 − b) 

]
1 

2 −b 

. (27) 

We show in Fig. 12 the evolution tracks for a Jupiter mass planet 

initially located at 3 au (left-hand panel) and 7 au (right-hand panel), 

in a disc whose density is evolving as described abo v e. In both cases, 

we consider different models, characterized by a range of initial 

scale radii (50 au with the solid lines, 100 au with the dashed lines, 

and 200 au with the dotted lines), and a range of B 0 (from 0.09 

to 0.5, see the plot le gend). F or reference, the initial viscous time- 

scale at the planet location are t ν(3 au ) ∼ 1 Myr, and t ν(7 au ) ∼
2 . 5 Myr; while the viscous time-scales at the chosen scale-radii are 

t ν(50 au ) = 4 . 4 Myr, t ν(100 au ) = 8 . 9 Myr, t ν(200 au ) = 17 . 7 Myr. 

Since the density is reduced while the disc evolves, the migration 

time-scale becomes longer in both the cases when we consider an 

evolving disc (compare the red lines to Fig. 11 ). In fact, a decrease in 

the surface density causes the instantaneous value of the parameter 

B to decrease, making the migration time-scale longer. This means 

that models characterized by faster density evolution (i.e. those with 

lo wer R s,0 ) slo w do wn the migration more ef fecti vely than those 

characterized by slower density evolution; this behaviour can be 

easily seen in Fig. 12 by comparing the dotted, dashed, and solid 

lines with the same colour (i.e. with different R s,0 but same B 5au ). 

Even more important is the effect of considering dif ferent B 5au v al- 

ues, with the migration time-scale increasing while B 5au decreases. 

Furthermore we notice that in all the models the planet starting 

from 3 au is more affected by the surface density time evolution, 

because the value of B at its initial location is lower, thus it is 

more sensitive to further reductions in the local density value. In 

contrast, the planet starting from 7 au reaches the stalling radius 

before decreasing significantly the value of B , so that it can reach 

the stalling radius in � 10 Myr even in the model characterized by 

the lowest B 5au and the smallest R s,0 (see the red solid line in the 

right-hand panel). 

This result has interesting implication for the properties of a system 

characterized by outward migrating planets. From Fig. 12 , we can 
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Figure 12. Toy model for a Jupiter mass planet initially located at 3 au (left-hand panel) and 7 au (right-hand panel), and migrating in a disc evolving according 

to the Lynden-Bell & Pringle ( 1974 ) self-similar solution. The different colours and line styles refer to disc models characterized by a range of initial scale radii 

and B 5au , whose values are indicated in the legend. 

Figure 13. Disc temperature at 1 au as a function of the viscosity parameter 

α, required to have a Jupiter mass planet stalling at r 0 ; the magenta line 

correspond to r 0 = 3 au, the blue line correspond to r 0 = 5 au, the cyan line 

correspond to r 0 = 10 au. 

deduce that to have a Jupiter mass planet migrating to 5 au in our 

model, we need to take either B 5au � 0 . 4, or we can decrease it to 

B 5au � 0 . 2 if we take a disc with R s , 0 � 100 au. For lower B 5au 

v alues, e ven in the case of discs with large scale radii, the planet fails 

to migrate to the stalling radius in � 10 Myr; none the less, we still 

expect some outward migration for those planets, with a final radius 

which is determined by the disc lifetime rather than by the value of 

the stalling radius. 

5.3 Stalling radius and disc properties 

In this section, we focus on how the disc properties affect the location 

of the stalling radius. To investigate this problem, we consider a 

Jupiter mass planet, and we compute the disc’s properties required 

to have the planet stalling at a given radius r 0 . In the left-hand panel 

of Fig. 13 , we consider three different stalling radii – 3 au (magenta 

line), 5 au (blue line), 10 au (cyan line) – and for each we plot the disc 

temperature T at 1 au as a function of the α parameter. Focusing first 

on the blue line, we notice that for a Jupiter mass planet that stalls 5 

au the disc temperature at 1 au may vary from T � 10 K to T � 10 2 

K, when we choose values for the α parameter in the range α ∼ 10 −4 

to 10 −2 . 12 Since T � 10 to 10 2 K at 1 au is a sensible temperature 

range for protoplanetary discs, this model is in agreement with the 

findings by Fernandes et al. ( 2019 ) and Nielsen et al. ( 2019 ) who 

suggest that around solar-like stars there is a peak in the number of 

giant planets located at ∼5 au from the star. We further notice that 

for higher disc temperature the planet stalling radius decreases for 

fixed α because for a hotter disc, a larger region of the disc is in the 

low K (shallow gap) regime where inward migration is expected. 

If we consider more massive stars, the planet to star mass ratio 

decreases as q ∝ M 
−1 
∗ , whereas the disc aspect ratio h 0 ∝ 

√ 
T /M ∗, 

with T ∝ M 
ξ
∗ (the relation is sub-linear, and the exact value of ξ

depends on the assumed stellar mass-luminosity relation). Using 

these scale relations in equation ( 24 ), we find 

r lim ∝ M 

1 −5 ξ
2( a+ 5 f ) 
∗ , (28) 

therefore we expect the stalling radius value to increase (decrease) 

with increasing stellar mass for ξ < 1/5 ( ξ > 1/5). At fixed radius, 

the temperature approximately scales as T ∝ M 
0 . 15 
∗ (Sinclair et al. 

2020 ), we therefore expect that for the typical disc the location of the 

stalling radius increases for higher stellar mass; this is in agreement 

with the results from Nielsen et al. ( 2019 ) that higher mass stars 

should have the peak of the Jupiter mass planet distribution at higher 

radius with respect to solar mass stars. 

6  I MPLI CATI ONS  

Planetary population synthesis models for giant planets are widely 

based on the theory of Type II migration (Ida & Lin 2004 , 2008 ; 

Mordasini, Alibert & Benz 2009a ; Mordasini et al. 2009b ; Ida et al. 

12 Note that in our model we consider a constant α value, for which it is 

common to consider α ∼ 10 −4 to 10 −3 ; if we consider instead the fact that α

depends on the specific location in the disc, direct turbulence measurements 

(e.g. Carr, Tokunaga & Najita 2004 ) suggest that at sub-au radii α ∼ 10 −2 is 

more typical. 
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2018 ; Bitsch et al. 2019 ). In its classic form this involves inward 

migration on a viscous time-scale which decelerates at the point 

that the planet mass becomes comparable with the local disc mass. 

Ho we ver, since the viscous time-scale decreases with decreasing 

orbital radius, the net effect is that the planet arrives at the disc inner 

edge in a finite time (Syer & Clarke 1995 ; Ivanov et al. 1999 ). The 

continued inward driving by the disc is related to the assumption 

of zero flow past the planet so that material can al w ays accumulate 

exterior to the planetary orbit and drive continued inward migration. 

This paper has demonstrated that even in calculations where the 

planetary orbital elements are allowed to evolve, giant planets do not 

arrive at the disc inner edge in a finite time. This is because as the 

planet migrates in to regions of the disc where the local disc mass 

dominates the planet mass, the disc establishes a quasi-steady state 

flow past the planet (cf Dempsey et al. 2020 , 2021 ), preventing the 

ine xorable e xtraction of angular momentum of the planet by material 

accumulating outside the planetary orbit. Moreo v er, as previously 

analysed by Dempsey et al. ( 2020 , 2021 ) the sign of the torque 

depends on the quasi-steady state structure of the gas in the vicinity 

of the planet. A key point is that the disc interior to the planet is al w ays 

in a steady state and so, in order to ensure net zero accumulation of 

angular momentum in this region, must impart a spin-up torque to 

the planet of magnitude Ṁ l p . On the other hand, the disc outside 

the planet is never globally in a steady state and thus the angular 

momentum that it extracts from the planet is not constrained to be 

Ṁ l p , its magnitude depending on the structure of the gap exterior 

to the planet. Thus for wider gaps (due to either higher planet mass 

or lower disc aspect ratio h ), the spin-down torque on the planet 

is reduced as a result of the substantial clearing external to the 

planetary orbit: Fig. 5 demonstrates that the asymmetry between 

surface density interior and exterior to the planet becomes more 

pronounced for higher planet masses and colder (geometrically 

thinner) discs. We show that even in cases where the planet acquires a 

significant eccentricity as a result of interaction in the disc (i.e. those 

cases where the inner edge of the gap extends to close to the 3:1 

mean motion resonance), the evolution of the planetary semimajor 

axis is well described in terms of a simple switch at a value of K 

(equation 22 ) of around 1.5 × 10 4 (Fig. 7 ). 

We illustrate in Section 5 the implementation of some toy models 

that incorporate this evolutionary phenomenology. We examined the 

possibility that the location of zero torque might be imprinted on 

the architecture of planetary systems. As expected, the planetary 

evolutionary tracks demonstrate a convergence towards this attractor 

(Fig. 11 ), located at 5 au given the planet mass and normalization 

of the disc temperature profile (see Fig. 13 for the sensitivity of 

the attractor location to disc parameters for a Jovian mass planet). 

Ho we ver, the e volution may be too slo w for planets to necessarily 

get close to the attractor location. First of all, the attainment of high 

K values (associated with planet stalling) is fa v oured by relatively 

lo w alpha v alues where the viscous time-scale is relatively long. 

Secondly, the speed of convergence upon the attractor location 

depends on the range of disc radii o v er which the torque magnitude 

undergoes a sign switch. Clearly, if this occurs relatively gradually, 

there will be a broad radial range where the torque values are low 

and therefore the evolution towards the attractor becomes very slow. 

Our present simulation set (right hand panel of Fig. 7 ) does not allow 

us to tightly constrain the behaviour near the point of zero torque. 

Finally, because the planet is not damming up the disc upstream of 

the planetary orbit, the disc’s effect on the planet is progressively 

weakening on a time-scale set by the viscous time-scale of the outer 

disc. Thus whether the planet can be driven to the attractor depends 

on the migration time-scale ( t ν0 /B) compared with the viscous time- 

scale of the outer disc: as illustrated in Fig. 12 , ef ficient dri ving of 

the planet to its attractor location during the observed lifetime of 

protoplanetary discs (e.g. Alcal ́a et al. 2014 ; Manara et al. 2016 ) is 

achieved for relatively high B values (corresponding to fast migration 

time-scale), and high R s,0 values (corresponding to slow viscous 

e volution). Gi ven these considerations, which depend on poorly 

constrained parameters such as the value of α and the form of the 

torque’s dependence on gap shape in the region close to the location 

of zero net torque, it would be premature to argue that this process 

should impose a strong signature by piling up planets at a specific 

orbital location. Nevertheless, it is expected that Jovian mass planets 

should accumulate in the 1–10 au range by this process. 

What is certainly clear, ho we ver, is that these results preclude the 

production of hot Jupiters by disc mediated migration, at least in 

a non-self-gravitating disc. 13 This is because it is implausible that 

the disc gas surface density in the inner disc would ever be high 

enough to maintain B > 1 (where roughly viscous time-scale inward 

migration is expected) right down to the inner edge of the disc. For 

example, for a Jupiter mass planet at 0.1 au, B = 1 corresponds 

to such a high surface density that the total disc mass would likely 

exceed a solar mass within a few au. If the candidate hot Jupiter in the 

Classical T Tauri star CI Tau (Johns-Krull et al. 2016 ) is confirmed 

(see counterarguments by Donati et al. 2020 ) it would then present a 

puzzle concerning how such a massive planet would have arrived in 

the innermost disc by an age of a few Myr. Rapid inward migration of 

giant planets during the earliest self-gravitating disc phase has been 

proposed by Baruteau, Meru & Paardekooper ( 2011 ) and Malik et al. 

( 2015 ), though more recent works suggest that even then it may not be 

possible to migrate into the innermost disc (Stamatellos & Inutsuka 

2018 ; Rowther & Meru 2020 ). 

It is also interesting to notice that the existence of planet traps 

have already been suggested in a series of papers by Hase ga wa & 

Pudritz ( 2013 , 2014 ), for lower mass planets (or planetary cores). 

They showed that low mass planets can be trapped at zero torque lo- 

cations, potentially produced at disc radii characterized by significant 

density/thermal gradients, such as dead zone boundaries and ice lines. 

We finally caution that this work relies on the assumption that only 

one planet is formed in the disc. In the case that multiple planets are 

formed, simulations including more migrating planets are needed. 

7  C O N C L U S I O N S  

In this work, we have presented a suite of long term (300–600k 

planet orbits), 2D hydrodynamical simulations to test and expand 

recent findings by Dempsey et al. ( 2020 , 2021 ) of an empirical 

correlation between the direction of planet migration and the value 

of the modified gap-opening parameter K 
′ 
. We extend the torque 

analysis to systems with finite disc mass by considering a live planet 

allowed to modify its orbital parameters. 

Our live planet simulations confirm that there is a switch between 

inw ard and outw ard migration that is associated with the creation 

of deep gaps in the disc. Gap depth is an increasing function of 

planet mass and a decreasing function of disc aspect ratio and 

can alternatively be parametrized by the quantities K 
′ = q 2 /( αh 3 ) 

(equation 6 ) and K = q 2 /( αh 5 ) (equation 12 ). Our simulations suggest 

13 Note that the contrary conclusion by Rosotti et al. ( 2017 ) was a result of 

these authors not adopting viscous boundary conditions so that the loss of the 

inner disc led to a net ne gativ e torque on the planet: the Rosotti et al. ( 2017 ) 

simulation corresponds to the diamond for the L-m13-h036 simulation in 

Fig. 9 . 
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that K may be the better ordering parameter for describing planetary 

migration (see right-hand panel of Fig. 6 ) and that the switch from 

inward to outward migration occurs at K lim = 1.5 × 10 4 . 

We further notice that, regardless the choice of the ordering 

parameter, as the planet mass increases some dependence on B 0 of the 

torques acting on the planet is revealed; this effect could not be seen 

in fixed planet simulations, where the normalized torque �T / | Ṁ l p | 
values are disc mass independent by construction. This means 

that if we consider low mass planets, the fixed-planet simulations 

by Dempsey et al. ( 2020 , 2021 ) are a good approximation of the 

planets’ migration; if we consider higher mass planets, the results 

are modified by the growth of the planet’s eccentricity in a way 

that depends on the disc mass (Ragusa et al. 2018 ; Teyssandier & 

Lai 2019 ). Nonetheless we showed that, by disentangling the 

contribution to the torque due to the semimajor axis variation from 

the contribution due to the eccentricity e volution, the massi ve planet 

migration is well described by the change of sign of the disentangled 

torque at K lim ∼ 1.5 × 10 4 . It is a general feature of protoplanetary 

discs with realistic heating that the aspect ratio of the disc increases 

with radius and thus that K is a decreasing function of radius. We 

thus predict inward (outward) migration for radii exterior (interior) 

to the location where K has its limiting value. 

We then model the migration behaviour of massive planets by 

describing the dependence of migration on the parameter K . We 

e v aluate this migration in the context of the secular evolution of a 

viscous disc. This model allows us to obtain the following results: 

(i) Since planets migrate inwards (outwards) for K < K lim ( K > 

K lim ), they tend to go towards the location in the disc where K = 

K lim . We thus propose the existence of a ‘stalling radius’ defined by 

the location where K = K lim (i.e. the location of zero torque on the 

planet). 

(ii) We study the dependence of the stalling radius on the disc 

parameters (temperature and α viscosity parameter), finding that 

typical disc parameters enable stalling radii in the range 3–10 au, 

in agreement with the peak in the Jupiter distribution at a few au 

(Fernandes et al. 2019 ; Nielsen et al. 2019 ). 

(iii) When we include the effect of disc density evolution in the 

model, the migration is slowed down, due to the density reduction 

with time (which reduces the parameter B ). As a consequence, the 

planet migration towards the stalling radius might be limited by the 

disc lifetime in rapidly evolving systems characterized by relatively 

low B 0 . 

The toy model suggests that while planets should migrate towards a 

stalling radius set by the planet mass and disc aspect ratio, whether or 

not they attain their stalling radii depends both on the initial location 

of the planet and the o v erall radial e xtent of the disc, since the latter 

determines the rate at which the disc surface density declines. Thus 

it is likely that this effect does not imprint a strong pile up of planets 

at their respective stalling radii but rather causes them to occupy a 

broad-band of radii in the range 3 −10 au. Future quantification of the 

torque dependence on K in the vicinity of K lim will help to constrain 

this further. In any case we do not expect planets to be able to move 

in from this band by disc mediated migration, thus posing a difficulty 

for hot Jupiter formation at early times. 
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APPENDI X  A :  TEST  I N N E R  B O U N D  A R  Y  

EFFECTS  

From Fig. 2 , we noticed that in simulation L-m13-h036 (i.e. the 

light disc case with 13 m j planet and h = 0.036), the planet grows 

significantly its eccentricity so that its pericentre distance is only 

∼2.5 times the inner disc edge. Since at the inner boundary, we are 

applying wave killing boundary conditions (see Section 2 ), we must 

ensure that at the in simulation L-m13-h036 the planet evolution 

is not affected by numerical effects due to its closeness to the inner 

boundary when it is at the pericentre. We thus present here the results 

from a simulation test, characterized by all the same characteristics 

as those of simulation L-m13-h036, apart from the inner radius and 

the damping region, which are both taken to be half of their original 

values: we take r in = 0.1, the damping is taken from r in to r = 0.15; 

we also increase the number of radial cells in order to obtain the 

same radial resolution as the original simulation run. 

In Fig. A1 , we show the semimajor axis (left-hand panel) and 

eccentricity (right-hand panel) as a function of orbit, for both the 

original L-m13-h036 run (magenta line) and the simulation test 

with r in = 0.1 (black dashed line). We notice that the semimajor 

and eccentricity evolution is essentially the same in both the runs, 

confirming that the planet evolution in simulation L-m13-h036 is not 

affected by boundary numerical effects. 

Figure A1. Semimajor axis (left-hand panel) and eccentricity (right-hand panel) evolution in the light disc case with 13 m j planet and h = 0.036. The magenta 

line shows the planet evolution in the original simulation run L-m13-h = 0.026, with r in = 0.2; the black dashed line shows the result from the simulation test, 

characterized by r in = 0.1. 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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