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1. Introduction

The symmetric group lies at the intersection of two great categorical theories. The
first is Khovanov-Lauda and Rouquier’s categorification of quantum groups and their
knot invariants [15,27]; this setting has provided powerful new graded presentations of
the symmetric group and its affine Hecke algebra [8]. The second is Elias—Williamson’s
diagrammatic categorification in terms of endomorphisms of Bott—Samelson bimodules;
it was in this setting that the counterexamples to Lusztig’s conjecture were first found
[28] and that the first general character formulas for decomposition numbers of symmetric
groups were discovered [26] (in characteristic p > h, the Coxeter number).

The purpose of this paper is to construct an explicit isomorphism between these two
diagrammatic worlds. This allows us to provide an elementary algebraic proof of [26,
Theorem 1.9] and to vastly generalise this theorem to the quiver Hecke (or KLR) algebras
H,; we hence settle Libedinsky-Plaza’s categorical blob conjecture [17]. Understanding
its simple modules is equivalent to understanding those of its cyclotomic quotients H
for 0 = (00,01,...,00_1) € Z*. We prove that HZ has graded decomposition numbers
d,u(t) equal to the p-Kazhdan-Lusztig polynomials of type

Apg X oo X Ahefl\ﬁhﬁ...ﬁzfl
provided that A and p have at most h,, columns in the mth component (where h,, <
Om+1 — 0m for 0 <m < ¢ —1and hyy < e+ o9 — op—1). We denote the set of such
C-multipartitions by %y (n) for h = (hg,...,he—1) € Zéo and refer to such an h € Z* as
being (o, )-admissible. This is the broadest possible generalisation, in the context of the
quiver Hecke algebra, of studying the category of tilting modules of the principal block
of the general linear group, GLj (k), in characteristic p > h.

Theorem A. Let 0 € Z* and e € Z~, and suppose that h € Zéo is (o, e)-admissible.
We have a canonical isomorphism of graded Z-algebras between certain subquotients of
the quiver Hecke algebra H? and Elias—Williamson’s diagrammatic category under which
the simple and standard modules labelled by ZPn(n) are preserved. The isomorphism is
defined in equation (5.4).

Perhaps most importantly, our isomorphism allows one to pass information back and
forth between these two diagrammatic categorifications for the first time. Combining
our result with [8] allows one to import Soergel calculus to calculate decomposition
numbers directly within the setting of the symmetric group (and more generally, within
the cyclotomic quiver Hecke algebras). For instance, the key to the counterexamples of
[28] are the mysterious “intersection forms” controlling decompositions of Bott—Samelson
bimodules; in light of our isomorphism, these intersection forms can be seen simply as
an efficient version of James’ classical bilinear form on the Specht modules of k&,,, and
the efficiency arises by way of idempotent truncation (in particular, the Gram matrices
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of these forms are equal). In other words, by virtue of our isomorphism, one can view
the current state-of-the-art regarding p-Kazhdan—Lusztig theory (in type A) entirely
within the context of the group algebra of the symmetric group, without the need for
calculating intersection cohomology groups, or working with parity sheaves, or appealing
to the deepest results of 2-categorical Lie theory. In Subsection 7.3 we will explain that
the regular decomposition numbers of cyclotomic quiver Hecke algebras are tautologically
equal to p-Kazhdan—Lusztig polynomials, simply by the categorical definition of these
polynomials.

Theorem B. The isomorphism of Theorem A maps each choice of light leaves cellular
basis to a cellular basis element of HS. Thus the Gram matrixz of the intersection form
associated to the fibre of a Bott—-Samelson resolution of a Schubert variety coincides with
the Gram matriz of James’ bilinear form on the idempotent truncated Specht module for

A€ Ph(n).

In the other direction: Soergel diagrammatics is, at present, confined to regular blocks
— whereas quiver Hecke diagrammatics is not so restricted — we expect our isomor-
phism to offer insight toward constructing Soergel diagrammatics for singular blocks.
In particular, our isomorphism interpolates between the (well-understood) LLT-style
combinatorics of KLR algebras and the (more mysterious) Kazhdan-Lusztig-style com-
binatorics of diagrammatic Bott—Samelson endomorphism algebras.

Symmetric groups. For ¢ = 1 our Theorem A has the immediate corollary of reproving
the famous result of Riche-Williamson (and later Elias-Losev) which states that regular
decomposition numbers of symmetric groups are equal to p-Kazhdan—Lusztig polyno-
mials [26,11]. Our proof is conceptually simpler than both existing proofs, as it does
not require any higher categorical Lie theory. Once one has developed the appropriate
combinatorial framework, our proof simply verifies that the two diagrammatically de-
fined algebras are isomorphic by checking the relations. In this regard, our proof is akin
to the work of Brundan—Kleshchev [8] and extends their ideas to the world of Soergel
diagrammatics. We state the simplified version of Theorem A now, for ease of reference.

Corollary A. For k a field of characteristic p > h, we have an isomorphism of graded
k-algebras between certain subquotients of kS,, and Elias—Williamson’s diagrammatic
category of type Ah_l\gh_l. The decomposition numbers of symmetric groups labelled by
partitions with at most h < p columns are tautologically equal to the p-Kazhdan—Lusztig
polynomials of type Ah_l\gh_l.

Blob algebras and statistical mechanics. The (generalised) blob algebras first arose as
the transfer matrix algebras for the one-boundary Potts models in statistical mechanics.
In a series of beautiful and prophetic papers [21-23], Paul Martin and his collaborators
conjectured that these algebras would be controlled by non-parabolic affine Kazhdan—
Lusztig polynomials and verified this conjecture for level £ = 2. It was the advent of quiver
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Hecke and Cherednik algebras that provided the necessary perspective for solving this
conjecture [7]. This perspective allowed Libedinsky—Plaza to push these ideas still further
(into the modular setting) in the form of a beautiful conjecture which brings together
ideas from statistical mechanics, diagrammatic algebra, and p-Kazhdan—Lusztig theory
for the first time [17]. For h = (1) our Theorem A verifies their conjecture, as follows:

Corollary B (Libedinsky—Plaza’s categorical blob conjecture). For k a field, we have an
isomorphism of graded k-algebras, between certain subquotients of the gemeralised blob
algebra of level ¢ and Elias—Williamson’s diagrammatic category of type 25_1. In par-
ticular the decomposition numbers of generalised blob algebras are tautologically equal to
the p-Kazhdan—Lusztig polynomials of type A\g,l.

Weightings and gradings on cyclotomic quiver Hecke algebras. Recently, Elias—Losev
generalised [26, Theorem 1.9] to calculate decomposition numbers of cyclotomic quiver
Hecke algebras. However, we emphasise that our Theorem A and Elias—Losev’s work
intersect only in the case of the symmetric group (providing two independent proofs of
[26, Theorem 1.9]). In particular, Elias-Losev’s work does not imply Libedinsky—Plaza’s
conjecture (as explained in detail in Libedinsky—Plaza’s paper [17]). This lack of overlap
arises from different choices of weightings on the cyclotomic quiver Hecke algebra, we
refer the reader to [17,7,19] for more details.

The structure and ideas of the paper. The isomorphism of this paper was a surprise to
many of the experts in this field. This is because of the fundamental differences in the
ways we think of Bott—Samelson endomorphism algebras versus quiver Hecke algebras.
The elements of the former algebras are thought of as morphisms between words (in
the Coxeter generators of @h), their complex representation theory is controlled by
Soergel’s algorithm, which can be thought of in terms of paths in the Bruhat graph of
G < éh. The elements of the latter algebras are thought of as “graded versions” of
permutations, the complex representation theory of these algebras is controlled by the
LLT algorithm, which can be thought of in terms of graded standard tableaux [16]. Of
course the LLT algorithm and Soergel’s algorithm produce the same results, even though
the steps involved appear quite different. One can think of this as being because the LLT
algorithm has many more “degree zero steps” which simply “pad out” the tableaux. This
is a good heuristic for this paper, which we now expound section by section.

Sections 2 and 3 introduce the combinatorics and basic definitions of quiver Hecke
and diagrammatic Bott—Samelson endomorphism algebras in tandem. We provide a dic-
tionary for passing between standard tableaux (of the former world) and expressions
in cosets of affine Weyl group (of the latter world) by means of coloured paths in our
alcove geometries. We subtly tweak the classical perspective for quiver Hecke algebras
by recasting each element of the algebra as a morphism between a pair of paths in the
alcove geometry. Heuristically, we “equate the combinatorics” of the LLT and Soergel
algorithms by writing tableaux/paths as the concatenation of component paths (each of
which corresponds to a single reflection hyperplane).
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One of the core principles of this paper is that diagrammatic Bott—Samelson endomor-
phisms are simply a “condensed shorthand” for KLR path-morphisms. Section 4 details
the reverse process by which we “dilate” simple elements of the KLR algebra and hence
construct these path-morphisms. Section 4 also provides a translation principle by which
we can see that a path-morphism depends only on the series of hyperplanes in the path’s
trajectory, not the individual steps taken within the path. Heuristically, this translation
principle says that “the degree zero steps in the LLT algorithm are unimportant”.

In Section 5, we recast the generators of the diagrammatic Bott—Samelson endomor-
phism algebra within the setting of the quiver Hecke algebra; this allows us to explicitly
state the isomorphism, ¥, of Theorem A. In Section 6 we verify that ¥ is a graded Z-
algebra homomorphism by recasting the relations of the diagrammatic Bott—Samelson
endomorphism within the setting of the quiver Hecke algebra. This involves rewriting
products of the path-morphisms in the KLR algebra one step at a time — for the prod-
ucts involving forks and spots there is a single “important step” in this procedure with
the others corresponding to “LLT padding”.

Finally, in Section 7 we match-up the light leaves bases of these algebras under the
map ¥ and hence prove that ¥ is bijective and thus complete the proofs of Theorems A
and B.

In Appendix A we provide a coherence theorem for weakly graded monoidal categories
which allows us to relate the classical Bott-Samelson endomorphism algebras to certain
breadth-enhanced versions which are more convenient for the purposes of this paper.
The reader can think of this as inserting “extra monoidal identity padding” into the
diagrammatic Bott—Samelson endomorphisms algebras which corresponds (on the KLR
side of the isomorphism) to the steps of degree zero in paths/tableaux.

Finally we emphasise that the LLT/Soergel analogy above is motivated by the situ-
ation over C. This is merely a heuristic and our results work over a field of arbitrary
characteristic (indeed, the isomorphism is actually proven to hold over the integers).

For the convenience of the reader we provide three tables summarising the notation
used throughout the paper in Appendix B.

2. Parabolic and non-parabolic alcove geometries and path combinatorics

Without loss of generality, we assume that o € Z* is weakly increasing and e > h €
Z)l. We say that h = (h(),...,h@_1) S Zéo with hg + hy + -+ hy_1 = h is (0',6)—
admissible if h,, < o1 — 0y for 0 < m < £ —1 and hy—q < e + 09 — op—1. (This
condition on h = (hg,...,he—1) € Z‘;O is equivalent to the empty partition not lying on
any hyperplane of our alcove geometry, so that the resulting Kazhdan—Lusztig theory is
“non-singular”.)

2.1. Multipartitions, residues and tableauz

We define a composition, A, of n to be a finite sequence of non-negative integers
(A1, A2y ...) whose sum, |[A| = A + A2 + ..., equals n. We say that X\ is a partition
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if, in addition, this sequence is weakly decreasing. An ¢-multicomposition (respectively
(-multipartition) A = (A©, . XED) of n is an f-tuple of compositions (respectively
of partitions) such that |AO| + ... + [A¢D| = n. We will denote the set of /-
multicompositions (respectively ¢-multipartitions) of n by €(n) (respectively by Z2(n)).
Given A = (AO XD AE=DY € 9y(n), the (dual) Young diagram of ) is defined to
be the set of nodes,

N = {(r,e,m) [ 1<r < (A™),,0<m < £}

Notice that we have taken the transpose-dual of the usual conventions so that the mul-
tipartitions are the sequences whose columns are weakly decreasing (this is a trivial,
if unfortunate, relabelling inherited from our earlier work [3,4]). We do not distinguish
between the multipartition and its (dual) Young diagram. We refer to a node (r, ¢, m) as
being in the rth row and cth column of the mth component of A. Given a node, (r, ¢, m),
we define the content of this node to be ct(r,c¢,m) = 0, + ¢ — r and we define its residue
to be res(i,j,m) = ct(i,j,m) (mod e). We refer to a node of residue i € Z/eZ as an
i-node. Given A € €;(n) or Zy(n), we let Rem(\) (respectively Add(\)) denote the set
of all removable (respectively addable) nodes of the Young diagram of A so that the
resulting diagram is the Young diagram of an /-composition or an ¢-partition.

Given A € 6;(n), we define a tableau of shape A to be a filling of the nodes of A with
the numbers {1, ...,n}. We define a standard tableau of shape A to be a tableau of shape
A such that entries increase along the rows and down the columns of each component.
We let Std(\) denote the set of all standard tableaux of shape A € Z(n). We let @
denote the empty multipartition.

Definition 2.1. Given a pair of é-nodes (r,c, m), (', c',m’), we write (r,c,m) < (', ', m’)
if either ct(r,e,m) < ct(r’,c,m') or ct(r,e,m) = ct(+’,¢/,m') and m > m’. For
A € Pe(n), we write p < A if there is a bijective map A : [\] — [u] such that
either A(r,e,m) < (r,e,m) or A(r,c,m) = (r,¢,m) for all (r,c,m) € A.

Given S € Std(A) a, we write S{¢, or Sy ) (respectively S| ;) for the subtableau
of S consisting solely of the entries 1 through k (respectively of the entries k through n).
Given A € Zy(n), we let T, denote the A-tableau in which we place the entry n in the
minimal (under the >>-ordering) removable node of A, then continue in this fashion induc-
tively. Given 1 < k < n, we let (rg,ck, my) € X be the node such that T(rg, ek, mi) = k.
We let At(k) (respectively Rt(k)) denote the set of all addable (respectively remov-
able) res(ry, ¢k, my)-nodes of the multipartition Shape(Tl;  xy) which are less than
(rk,ck, my) in the >-order. We define the (>>)-degree of T € Std(A) for A € Z(n) as
follows,

deg(T) = > (|Ar (k)| — [Rr(k)]).

k=1
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Definition 2.2. Given h € Zéo, we let Z,(n) C %r(n) denote the subsets of ¢-
multipartitions and /-multicompositions with at most A,,, columns in the mth component
for0<m< /.

Ifhe Zéo is (0, e)-admissible, then deg(Ty) =0 for A € P (n).
Example 2.3. Let 0 = (0,3,8) € Z3 and e = 13. We note that h = (3,5,4) is (o, ¢)-

admissible. We depict A = ((5,4,2),(5,4,3,2%),(5,3%2)) € P(n) along with the
residues of this multipartition as follows:

o[1]2 3[4]5 89 [10[11
12|01 2|3 ]4 7 10
11]12 NEE |6
10]11 E 5
9 12 4]

Notice that any given residue ¢ € Z/eZ appears at most once in a fixed row of the
multipartition.

2.2. Alcove geometry

For ease of notation, we set H,,, = hg+---+hy, for0 <m < f,and h = hg+---+hp_1.
For each 1 <7 < hy, and 0 < m < £ we let g, 1= E(hotr A hm—_1)+i denote a formal
symbol, and define an h-dimensional real vector space

Eﬂ = @ Réi,m

os<m<e
1<i<hm

and Ej, to be the quotient of this space by the one-dimensional subspace spanned by

E Ei,m-

o<m<e
1<i<hm,

We have an inner product (, ) on Ej given by extending linearly the relations

(€ips€j,q) = 0i,j0pq

forall 1 < ¢,5 <nand 0 < p,qg < ¢, where 9; ; is the Kronecker delta. We identify
A € Ph(n) with an element of the integer lattice inside Ej, via the map

A= > A (2.1)

o<m<¥
1<i<hm
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We let @ denote the root system of type Ap_1 consisting of the roots
{5i,p - €j,q : 0 g p,q < Ea 1 < 1 < hpa]- < ] < hq7With (va) 7é (]vq)}

and ®( denote the root system of type Ap,—1 x --- X Ap, ,_1 consisting of the roots
{€im —€jm : 0 <m < {1 <i# j< hp}. We choose A (respectively Ag) to be the
set of simple roots inside ® (respectively ®¢) of the form e; — 411 for some 1 < ¢ < h,
and write ®T (respectively <I>§ ) for the set of positive roots with respect to this choice
of simple roots. Given r € Z and o € ® we define s, . to be the reflection which acts
on Ej by

Sare® = — ({z, ) — re)a.

The group generated by the s, 0 with o € ® (respectively o € ®g) is isomorphic to the
symmetric group &, (respectively to & := &p, X - --x Sy, _, ), while the group generated
by the s4 e with « € ® and r € Z is isomorphic to éh, the affine Weyl group of type
Ap_1. Weset ag = g,—e7 and IT = AU{ap}. The elements S = {sq0: @ € A U{S0q,—c}
generate éh. We have chosen oy = e, —e; (rather than g = £1—ep,) as this is compatible
with our path combinatorics.

Notation 2.4. We shall frequently find it convenient to refer to the generators in S in
terms of the elements of I, and will abuse notation in two different ways. First, we will
write sq for sq0 when oo € A and sq, for sq,,—. This is unambiguous except in the
case of the affine reflection s, _., where this notation has previously been used for the
element s, . As the element s, o will not be referred to hereafter this should not cause
confusion. Second, we will write & = €; — g;41 in all cases; if i = h then all occurrences
of ¢ + 1 should be interpreted modulo h to refer to the index 1.

We shall consider a shifted action of the affine Weyl group S n on Ep by the element
p = (po,p2s---,pe—1) € Z" where p,, := (0 + hm — 1,0 + hpm — 2,...,0) € ZMm,
that is, given an element w € G h, we set w-x = w(x + p) — p. This shifted action induces
a well-defined action on Ej; we will define various geometric objects in Ej, in terms of
this action, and denote the corresponding objects in the quotient with a bar without
further comment. We let E(«, re) denote the affine hyperplane consisting of the points

E(a,re) ={z € Ep | Sare - T = z}.
Note that our assumption that h € Zéo is (o, e)-admissible implies that the origin
does not lie on any hyperplane. Given a hyperplane E(a,re) we remove the hyperplane

from Ej, to obtain two distinct subsets E~ (o, re) and E<(a, re) where the origin lies in
E<(a,re). The connected components of

_Q \ (UaelﬁoE(aa O))
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are called chambers. The dominant chamber, denoted E; is defined to be

= () E"(a,0).

acdg

E

=+

The connected components of

_ﬁ \ (UQE‘P,TEZE(Q7 7“6))

are called alcoves, and any such alcove is a fundamental domain for the action of the
group (%h on the set Alc of all such alcoves. We define the fundamental alcove Aj to be
the alcove containing the origin (which is inside the dominant chamber). We note that
the map Z,(n) — Ep N Zxo{e1,. .., en} restricts to be surjective when we restrict the
codomain to the dominant Weyl chamber.

We have a bijection from éh to Alc given by w —— wAp. Under this identification
Alc inherits a right action from the right action of éh on itself. Consider the subgroup

Gf = Gho Xoeee X6h571 géh

The dominant chamber is a fundamental domain for the action of &y on the set of
chambers in Ej. We let &/ denote the set of minimal length representatives for right
cosets Gf\éh. So multiplication gives a bijection & y x & — éh. This induces a bijection
between right cosets and the alcoves in our dominant chamber. Under this identification,
the alcoves are partially ordered by the Bruhat-ordering on &/. (This is the opposite of
the ordering, <, on multipartitions belonging to these alcoves.)

If the intersection of a hyperplane E(a, re) with the closure of an alcove A is generically
of codimension one in Ej, then we call this intersection a wall of A. The fundamental
alcove Ay has walls corresponding to E(a,0) with o € A together with an affine wall
E (v, ). We will usually just write E(«) for the walls E(c,0) (when o € A) and E(«, e)
(when o = ag). We regard each of these walls as being labelled by a distinct colour (and
assign the same colour to the corresponding element of S). Under the action of éh each
wall of a given alcove A is in the orbit of a unique wall of Ay, and thus inherits a colour
from that wall. We will sometimes use the right action of G r on Ale. Given an alcove A
and an element s € S we have that A = wAq for some w under the identification above
(that is, éh to Alc given by w —— wAy). Thus the right action of s on A gives the
element wsAg in Alc, and this can easily be seen to be obtained by reflecting A in the
wall of A with colour corresponding to the colour of s. With this observation it is now
easy to see that if w = s7...s; where the s; are in S then wAq is the alcove obtained
from Ay by successively reflecting through the walls corresponding to s; up to s;.

If a wall of an alcove A corresponds to E(a,re) and A C E>(a,re) then we call
this a lower alcove wall of A; otherwise we call it an upper alcove wall of A. We will call
a multipartition o-regular (or just regular) if its image in Ej, lies in some alcove; the
multipartitions whose images lies on one or more walls will be called o-singular.
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Let A\ € Eﬂ. There are only finitely many hyperplanes E(«, re) for « € Il and r € Z
lying between the points A € Ej; and the point @ € Eﬁ. We let £,(\) denote the total
number of these hyperplanes for a given « € II (including any hyperplane upon which A
lies).

2.8. Paths in the geometry

We now develop the combinatorics of paths inside our geometry. Given a map p :
{1,...,n} = {1, ..., h} we define points P(k) € E;, by

P(k) = Z Ep(i)

1<i<k

for 1 < i < n. We define the associated path of length n by

and we say that the path has shape m = P(n) € Ej. We also denote this path by P =
(€p(1)s -+ -+ Ep(ny) and call g,(;) the ith step in this path. Given A € E;, N Zxo{e1,...,en}
we let Path(A) denote the set of paths of length n with shape A. We define Pathy ()
to be the subset of Path(\) consisting of those paths lying entirely inside the dominant
chamber, IE;LF; in other words, those P such that P(¢) is dominant for all 0 < i < n.

Given a Bath P defined by such a map p of length n and shape A we can write each
p(j) uniquely in the form €,(;) = e, m, where 0 < m; < £ and 1 < ¢; < h;. We record
these elements in a tableau of shape A7 by induction on j, where we place the positive
integer j in the first empty node in the ¢;th column of component m;. By definition,
such a tableau will have entries increasing down columns; if A is a multipartition then the
entries also increase along rows if and only if the given path is in Pathy()), and hence
there is a bijection between Pathy (A) and Std(A). For this reason we will sometimes refer
to paths as tableaux, to emphasise that what we are doing is generalising the classical
tableaux combinatorics for the symmetric group.

Notation 2.5. Given a path P we will let P~*(r, €em) With O < m < fand 1 < e < hy,
denote the (r, ¢)-entry of the mth component of the tableau corresponding to P. In terms
of our path this is the point at which the rth step of the form +¢.,, occurs in P. Given
a path P we define

res(P) = (resp(1),...,resp(n))

where resp(i) denotes the residue of the node labelled by ¢ in the tableau corresponding
to P.
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Fig. 1. An alcove path in Path(3)(20,52) and the corresponding tableau in Std(20,5%). The black vertices
denote vertices on the path in the orbit of the origin. (For interpretation of the colours in the figure(s), the
reader is referred to the web version of this article.)

Example 2.6. We will illustrate our various definitions with an example in E;:l with
e = 5. This space is the projection of R? in two dimensions, which we shall represent as
shown in Fig. 1. Notice in particular that 1 + €2 4+ 3 = 0 in this projection, as required.
Only the dominant chamber is illustrated, with the origin marked in the fundamental
alcove Ap.

The affine Weyl group ég has generating set S corresponding to the green and blue
(non-affine) reflections s., ., o and s about the lower walls of the fundamental
alcove, together with the (affine) reflection s., ., _5 about the red wall of that alcove.
Recall that we will abuse notation, and refer to these simply as s.,_-., S ,and s, ..
The associated colours for the remaining alcove walls are as shown.

Given A = (35,11%) we have illustrated a path P from the origin to A with a black
line. Recall that we embed partitions via the transpose map (as in equation (2.1)) and so
the final point in the path corresponds to the point (20,5,5) € E3 1. The corresponding
steps in the path are recorded in the standard tableau at the bottom of the figure, where
an entry 4 in column j of the tableau (again, note the transpose) corresponds to the ith
step of the path being in the direction ;. This is an element of Pathy(\) as it never
leaves the dominant region.
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The path passes through the sequence of alcoves obtained from the fundamental alcove
by reflecting through the walls labelled R then G then /7 then R then G then /7, and
so the final alcove corresponds to the element s.
If o = (0) then we have

Sep—e1 S Sey—e15e2—1 8 Ao.

3—€1

res(P) =(0,1,4,0,3,4,2,1,0,2,4,...,1).
Example 2.7. Further examples of paths and tableaux are given in Figs. 2 to 4.

Given paths P = (ep(1),---,Epn)) and Q = (g4(1),---,Eq(n)) We say that P ~ Q if
there exists an o € ® and r € Z and s < n such that

Ep(t) for1<t<s

P(s) € E(a,re) and Eq(t) = { Sacpry fors+1<t<n.

In other words the paths P and Q agree up to some point P(s) = Q(s) which lies on
E(a,re), after which each Q(t) is obtained from P(¢) by reflection in E(«, re). We extend
~ by transitivity to give an equivalence relation on paths, and say that two paths in the
same equivalence class are related by a series of wall reflections of paths. We say that
P = (ep1)s---»Ep(ny) is a reduced path if £, (P(s + 1)) > £,P(s)) for all 1 < s < n and
« € II. There exists a unique reduced path in each ~-equivalence class.

Lemma 2.8. We have P ~ Q if and only if res(P) = res(Q).

Proof. Let a = ¢; , — ;5. We first note that a path of shape X lies on E(«,re) if and
only if the addable nodes in A in the ¢th column of the ath component and in the jth
column of the bth component have the same residue. (This is straightforward from the
definition of the inner product, see for example [3, Lemma 6.19].) Also s,er = & for
all t ¢ {Hy—1 + 4, Hp—1 + j} and s, permutes the elements of this set. So if two paths
coincide up to some point and then diverge, but have the same sequence of residues, then
the point where they diverge must lie on some E(a, re) and the divergence must initially
be by a reflection in this hyperplane. From this the result easily follows by induction on
the number of hyperplanes which the two paths cross. O

We recast the degree of a tableau in the path-theoretic setting as follows.

Definition 2.9. Given a path S = (5(0),5(1),S(2),...,5(n)) we set deg(S(0)) = 0 and
define

deg(S)= ) d(S(k),S(k - 1)),

1<k<n

for d(S(k),S(k — 1)) defined as follows. For a € ®* we set d(S(k),S(k — 1)) to be
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o
0

%

Fig. 2. Two paths S and T in an alcove geometry.

1 2 |17
3 4
5 6
7 110
8 |12
9 |13
11
14
15|
16|
15 |

These paths are used in Example 2.30.

1 2 110
3| 4
516
7|14
8 |17
9 |18
11
12|
15|
15|
16|

.

13

Fig. 3. The two tableaux S and T corresponding to the paths in Fig. 2. These paths are used in Example 2.30.

o +1if S(k—1) € E(o,re) and S(k) € E<(«,re) for some r € Z;
o —1if S(k—1) € E”(a,re) and S(k) € E(«, re) for some r € Z;

o 0 otherwise.

We let

deg(S) = > Y da(S(k—1),S(k)).

1<k<n acd+
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2.4. Alcove paths

When passing from multicompositions to our geometry E@ many non-trivial ele-
ments map to the origin. One such element is 6 = ((hg), ..., (he—1)) € Pn(h). (Recall
our transpose convention for embedding multipartitions into our geometry, as in equa-
tion (2.1).) We will sometimes refer to this as the determinant as (for £ = 1) it cor-
responds to the determinant representation of the associated general linear group. We
will also need to consider elements corresponding to powers of the determinant, namely
50 = ((B). o (H_))) € Pulnh).

We now restrict our attention to paths between points in the principal linkage class,
in other words to paths between points in G n - 0. Such points can be represented by the
1 in the orbit @h - 0, for some choice of n.

Definition 2.10. We will associate alcove paths to certain words in the alphabet
SU{1} ={sq |acTU{0}}

where sy = 1. That is, we will consider words in the generators of the affine Weyl group,
but enriched with explicit occurrences of the identity in these expressions. When we wish
to consider a particular expression for an element w € @h in terms of our alphabet we
will denote this by w.

Our aim is to define certain distinguished paths from the origin to multipartitions in
the principal linkage class; for this we will need to proceed in stages. In order to construct
our path we want to proceed inductively. There are two ways in which we shall do this.

Definition 2.11. Given two paths
P=(gi,,€ip,---,6:,) € Path(u) and Q= (gj,,¢,,...,¢;,) € Path(v)
we define the naive concatenated path
PXQ = (€i1+Cigs -+ »EipsEj1rEjas - - -»E4,) € Path(u +v).

There are several problems with naive concatenation. Most seriously, the naive con-
catenation of two paths between points in the principal linkage class will not in general
itself connect points in that class. Also, if we want to associate to our path the coloured
sequence of walls through which it passes, then this is not compatible with naive
concatentation. To remedy these failings, we will also need to define a contextualised
concatenation.

Given a path P between points in the principal linkage class, the end point lies in the
interior of an alcove of the form wAg for some w € @h. If we write w as a word in our
alphabet, and then replace each element s, by the corresponding non-affine reflection
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Sq in & to form the element w € & then the basis vectors e; are permuted by the
corresponding action of W to give g;), and there is an isomorphism from Eﬁ to itself
which maps Ag to wA( such that 0 maps to w - 0, coloured walls map to walls of the
same colour, and each basis element €; map to eg(;). Under this map we can transform
a path Q starting at the origin to a path starting at w -0 which passes through the same
sequence of coloured walls as Q does.

More generally, the end point of a path P may lie on one or more walls. In this case,
we can choose a distinct transformation as above for each alcove wAg whose closure
contains the endpoint. We can now use this to define our contextualised concatenation.

Definition 2.12. Given two paths P = (&;,,¢4,,...,¢;,) € Path(u) and Q = (gj,, 5, -,
€5,) € Path(v) with the endpoint of P lying in the closure of some alcove wAq we define
the contextualised concatenated path

P®.,Q= (51‘1751‘2; .. ,Eip) X (Em(jl),Eﬁ(jz), .. 75m(jq)) S Path(,u + (w . V))

If there is a unique such w then we may simply write P ® Q. If w = s, we will simply
write P ®, Q.

It is not difficult to understand contextualised concatenation in terms of tableaux.
Each symbol ¢; for 1 < ¢ < h labels a column of a partition. Contextualised concatenation
is then given by permuting the columns (according to the rule in Definition 2.12) and
then vertically stacking the tableaux (and shifting the entries), see Fig. 5.

Our next aim is to define the building blocks from which all of our distinguished paths
will be constructed. We begin by defining certain integers that describe the position of
the origin in our fundamental alcove.

Definition 2.13. Given « € II we define b,, to be the distance from the origin to the wall
corresponding to «, and let by = 1. Given our earlier conventions this corresponds to
setting

be; p—cjqg =0q —Op+J—1i bep—e, =€— 00+ 001+ hi—1 -1
for0<p<g<land 1l <i<hy 1<7 < hy. We sometimes write o for the element
Op,,- Given a, 7 € Il we set bo s = bo + bs.

Example 2.14. Let e = 5, h = 3 and ¢ = 1 as in Fig. 1. Then b.,_., and b both
equal 1, while b.,_., =3 and by = 1.

Example 2.15. Let ¢ =7, h =2 and £ = 2 and o = (0,3) € Z2. Then b and b., .,
both equal 1, while b. =3,b =2, and by = 1.

4—€1

We can now define our basic building blocks for paths.
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112

3|4 ,
112|7
31418

112(3

41516
— 51619 71819
8

Fig. 4. Three paths and their corresponding tableaux. The leftmost two paths are the path P, which walks

through an a-hyperplane in Eim and the path P';L which reflects the former path through the same -
hyperplane. The rightmost path is Py (which we repeat thrice).

Definition 2.16. Given o« = ¢; —€;41 € I, we consider the multicomposition s, - d,, with
all columns of length b, with the exception of the ith and (¢ + 1)st columns, which are
of length 0 and 2b,,, respectively. We set

Mi = (51, ~--75i717é\i75i+17 ...,Eh) and Pi = (+5¢)

where ~ denotes omission of a coordinate. Then our distinguished path corresponding to
S« is given by

Po = MY ®PYs

i+1 G Path(sa ° 50()'

The distinguished path corresponding to () is given by
Py = (1, ..-,€i-1,€i,Ei41, ---, €n) € Path(d) = Path(sg - 9)

and set P, = (Pg)b=. We will also find it useful to have the following variant of M;. We
set

Mi7j = (51, . 75i—1a€i75i+1a e ,€j_1,€j,€j+1, I ,6h).

Example 2.17. The paths/tableaux S and T from Figs. 2 and 3 are equal to P, ®, Ps®
P, ®+Psand P, ®qPy®+Ps®sP, respectively for o = €1 —€3, [ = €1 —€2, 7 = €2 —¢3.

Given all of the above, we can finally define our distinguished paths for general words
in our alphabet. There will be one such path for each word in our alphabet, and they
will be defined by induction on the length of the word, as follows.

Definition 2.18. We now define a distinguished path P,, for each word w in our alphabet
S U {1} by induction on the length of w. If w is sy or a simple reflection s, we have
already defined the distinguished path in Definition 2.16. Otherwise if w = s,w’ then
we define



C. Bowman et al. / Advances in Mathematics 429 (2023) 109185 17

12
3 | 4
5|6
1|2 1|2 7 1210
3 | 4 3|4 s | 3| 412
506 5|6 9 51614
Oa = =
7 7 21 71116
s | s | 4|3 8 13|17
B B 6| 5 91518
7
B
B

Fig. 5. The tableau P, ®. P~ obtained by contextualised concatenation from the path/tableau P, in Fig. 4.
The reflection s, for o« = €7 — €3 permutes the first and third columns of P,. The entries of tableaux are
coloured to facilitate comparison. The reader is invited to draw the corresponding path.

Pw :=Ps ®a Pu.
If w is a reduced word in (A‘Sh, then the path P, is a reduced path.

Remark 2.19. Contextualised concatenation is not associative (if we wish to decorate
the tensor products with the corresponding elements w). As we will typically be con-
structing paths as in Definition 2.18 we will adopt the convention that an unbracketed
concatenation of n terms corresponds to bracketing from the right:

QUERREWE - Q=AU (R (--®Q,)--)).

We will also need certain reflections of our distinguished paths corresponding to elements
of II.

Definition 2.20. Given o € I we set
PE’ = M?" X Pg“ = M?“ R e Pfil = (—|—€1, ceey +5i—17 —T&‘\i, +€i+17 ceey —|—Eh)b°‘ X (&‘i)bo‘
the path obtained by reflecting the second part of P, in the wall through which it passes.

Example 2.21. We illustrate these various constructions in a series of examples. In
the first two diagrams of Fig. 4, we illustrate the basic path P, and the path PEX
and in the rightmost diagram of Fig. 4, we illustrate the path Py. A more compli-
cated example is illustrated in Fig. 1, where we show the distinguished path P,, for
W = Scyzy 8,2, Scy—e,5e1—258 as in Example 2.6. The components of the
path between consecutive black nodes correspond to individual Ps.
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Remark 2.22. There are plenty of other paths we could have chosen. For example, we
could replace the leftmost path in Fig. 4 with the path

(e1,€1,€1,€2,€2,€9,€1,€1,€1) € Path(6,3).

In Proposition 4.4 we will see that it does not matter which path we pick, providing it
“does not hit any extra hyperplanes”. Our “zig zagging” paths are merely the easiest to
define such general paths.

Remark 2.23. By Lemma 2.8 we have res(P,) = res(P”). This fact is key to our con-
struction of the KLR versions of the diagrammatic Bott—Samelson generators using
step-preserving permutations.

Definition 2.24. We say that a word w = sy a)...5,p) in either of the alphabets S or
S U {1} has breadth

breadth, (w) = Z bo o)

1<i<p

which we denote simply by b,, when the context is clear. We let A(n,o) (respectively
At (n, o)) denote the set of words w in the alphabet S U {1} (respectively the alphabet
S) such that breadth,(w) = n. We define

Pr(n,o) ={X € P (n) | there exists P, € Std(A),w € A(n,0)}.
Example 2.25. We can insert the path Py = (41, +¢€2,+e3) into the path in Fig. 1

at seven distinct points to obtain a new alcove path. For example, we can insert
two copies of this path (in two distinct ways) to obtain P, and P, for w =

S5pSpSes—c18e—e35S Se3—e1Se3—e3S and w' = 8., -, 595:, ¢, S SpSes—e18e,—e3

s respectively. Then res(P,,) and res(P,) are equal to
(0,1,2,4,0,1,3,4.2,3.1,2,0,4,3,0.2, 1, 3,4,2,3,1,2,0,4,3,0,2,1,
(0,1,4,0,3,4,2,1,0,2,3,4,4,1,0, 2,3,4,3,4,2,3,1,2,0,4,3,0,2,1,

For any A € Z7,(n), we define the set of alcove-tableaux, Std,, »(\), to consist of all
standard tableaux which can be obtained by contextualised concatenation of paths from
the set

{Po | eI} U{P’, | a € II} U {Py}.
We let Std:,a()\) C Std,,»(A) denote the subset of strict alcove-tableaux of the form

(Pp)®? ® Q for Q obtained by contextualised concatenation of paths from the set {P,, |
a € T} U{P’, | o € TT} and some p > 0.
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Example 2.26. The tableau of shape (20,52%) in Fig. 1 is the strict alcove tableau given
by Po ®a Py ®y Ps ®5 Pa ®a Py ®4 Ps.

Clearly any such (strict) alcove tableau terminates at a regular partition in the prin-
cipal linkage class of the algebra. By definition, we have that there is precisely one
alcove-tableau P,, for each expression w in the simple reflections (and the emptyset).
Similarly, we have that there is precisely one strict alcove-tableau P,, for each expression
w in the simple reflections.

Example 2.27. Let h =3 and / =1 and e = 5 and o = 3 — ;. We have that b, = 3.
We have that

Paos = (€1,€2,€1,€2,€1,€2,€1,€1,€1) ® (€1,€2,€3,€1,62,€3,€1,€2,€3)
= (61,52761,82751,62,61751,61,53762,61753,62,61753762,81)

P(Z)Oc = (51752753751762753751762;83751752;51752751752761751751)
are both dominant paths of shape (33,23,13).

2.4.1. Permutations as morphisms between paths

We now discuss how one can think of a permutation as a morphism between pairs of
paths in the alcove geometries of Section 3. This shift in perspective, from permutations
acting on tableaux (the usual combinatorics of &,,) to “morphisms between paths” is a
central idea of this paper.

Definition 2.28. Let A € Zxo{e1,...,er}. Given a pair of paths S,T € Path(\) we
write the steps ¢; in S and T in sequence along the top and bottom edges of a frame,
respectively. We define w% € 6,, to be the unique step-preserving permutation with the
minimal number of crossings.

Recall that a step ¢; in a path corresponds to adding a node in the ith column (indexed
from left to right) of the multi-partition tableau. Thus one can rewrite the above for pairs
of column standard tableaux as follows: w$ is the unique element such that w$(S) = T
(under the usual action of the symmetric group on tableaux). An example is given in
Example 2.30.

Example 2.29. We consider k&g in the case of p = 5. We set o« = €3 — g1 € II. Here we
have

b
Py = (e1,€2,€3,€1,€2,€3,€1,62,63) and P}, = (e1,e2,61,62,61,2,€3,€3,€3)

(the corresponding tableaux are given in Fig. 4). The unique step-preserving permutation
of minimal length is given by
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€1 €2 €3 €1 €2 €3 €1 €2 €3

Po
Ps
wiol] | e >
(e Pba

€1 €2 €1 €2 €1 €2 €3 €3 €3

Notice that if two strands have the same step-label, then they do not cross. This is, of
course, exactly what it means for a step-preserving permutation to be of minimal length.

Example 2.30. We depict two paths S, T € Path(11,6,1) in Fig. 2 and the corresponding

tableaux in Fig. 3. The path-morphism w3 is as follows

€1 €2 €1 €2 €1 €2 €1 €1 €1 €2 €1 €2 €2 €1 €1 €1 €3 ¢€1

e

€1 €2 €1 &2 €1 €2 €1 €1 €1 €3 €1 €1 €1 &2 €1 €1 &2 &2

Notice that the sequence of &; along the top (bottom) of the word simply record the
columns of the entries of the tableaux S, T read in order according to the entries 1 < ¢ <
18. We always use ¢; as our labels of strand (dropping the epsilons would cause confusion
later on, when we further attach KLR residues to these strands).

When we wish to explicitly write down a specific reduced expression for w? for con-
creteness, we will find the following notation incredibly useful.

Definition 2.31. Given ¢ an integer, we let r,(t) denote the remainder of ¢ modulo h.
Given p,q > 1 such that rp(p) #i and o = ¢; — g;41 € I, we set

alp) =P '(1,ra(p))  and  O(q) = Py'(1,74(q))

This notation allows us to implicitly use the cyclic ordering on the labels of roots without
further ado.

Convention 2.32. Throughout the paper, we let o = ¢; — €41, [/ = € — €541, ¥ =
Ek—Ek+1, 0 = Em—Em+1- We will assume that (7, v, 0 label distinct commuting reflections.
We will assume throughout that /7 and « label non-commuting reflections. Here we read
these subscripts in the obvious cyclotomic ordering, without further ado (in other words,
we read occurrences of h + 1 simply as 1).

3. The diagrammatic algebras

We now introduce the two protagonists of this paper: the diagrammatic Bott—
Samelson endomorphism algebras and the quiver Hecke algebras — these can be defined
either as monoidal (tensor) categories or as finite-dimensional diagrammatic algebras.
We favour the latter perspective for aesthetic reasons, but we borrow the notation from
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the former world by letting ® denote horizontal concatenation of diagrams — in the
quiver Hecke case, we must first “contextualise” before concatenating as we shall explain
in Subsection 3.3.2. (We refer to [9] for a more detailed discussion of the interchange-
ability of these two languages.) The relations for both algebras are entirely local (here
a local relation means one that can be specified by its effect on a sufficiently small re-
gion of the wider diagram). We then consider the cyclotomic quotients of these algebras:
these can be viewed as quotients by right-tensor-ideals, or equivalently (as we do in this
paper) as quotients by a non-local diagrammatic relation concerning the leftmost strand
in the ambient concatenated diagram. (We remark that the cyclotomic relations break
the monoidal structure of both categories.) We continue with the notation of Conven-
tion 2.32.

Remark 3.1. The cyclotomic quotients of (anti-spherical) Hecke categories are small cat-
egories with finite-dimensional morphism spaces given by the light leaves basis of [13,18].
Working with such a category is equivalent working to with a locally unital algebra, as
defined in [9, Section 2.2], see [9, Remark 2.3]. Throughout this paper we will work in
the latter setting. The reader who prefers to think of categories can equivalently phrase
everything in this paper in terms of categories and representations of categories.

3.1. The diagrammatic Bott—Samelson endomorphism algebras

These algebras were defined by Elias—Williamson in [13]. In this section, all our words
will be in the alphabet S.

Definition 3.2. Given o = ¢; — £;41 we define the corresponding Soergel idempotent, 1,
to be a frame of width 1 unit, containing a single vertical strand coloured with o € II.
For w = s 1) ...S4 an expression with ol eIl simple roots, we set

lg =1, 001,00 ® - ®1,w
to be the diagram obtained by horizontal concatenation.

Example 3.3. Consider the colour-word from the path in Fig. 1. Namely,

~

y—e,8en—248 Sey—c,8ey—248 € Gs.

w=Ss €2—E€3

™

The corresponding Soergel idempotent is as follows

1, =
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Definition 3.4. Given w = 5,01)...5,(m, W = s501)...55 € &, a (w, w')-Soergel diagram
D is defined to be any diagram obtained by horizontal and vertical concatenation of the

A x X

their flips through the horizontal axis and their isotypic deformations such that the top

following diagrams

and bottom edges of the graph are given by the idempotents 1,, and 1, respectively.
Here the vertical concatenation of a (w,w’)-Soergel diagram on top of a (v,v’)-Soergel
diagram is zero if v # w’. We define the degree of these generators (and their flips) to
be 0,1,—1,0, and 0 respectively.

Example 3.5. Examples of (w, w’)-Soergel diagrams, for

Sey—e3$ Se3—e18ey—e35 S )

W = Seg—e15ep—e35 Seg—e18e3—e35

are as follows

We let * denote the map which flips a diagram through its horizontal axis.

Definition 3.6. Let k be an arbitrary commutative ring. We define the diagrammatic
Bott—Samelson endomorphism algebra, .#(n,c) to be the span of all (w,w’)-Soergel
diagrams for w,w’ € A(n, o), with k-associative multiplication given by vertical concate-
nation and subject to isotypic deformation and the following local relations: For each
colour (i.e. each generator s, for v € II) we have

along with their horizontal and vertical flips and the Demazure relation

We now picture the two-colour relations for non-commuting reflections s, s; € &,. We
have



C. Bowman et al. / Advances in Mathematics 429 (2023) 109185 23

along with their flips through the horizontal and vertical axes. We also have the cyclicity
relation

. I NS -
for @ of rank greater than 1 (or double the righthand-side if ® has rank 1). For commuting
reflections sz, s, € &), we have the following relations

along with their flips through the horizontal and vertical axes. In order to picture the
three-colour commuting relations we require a fourth root s; € @h which commutes with
all other roots (such that sssa = $aSs, S585 = 8585, 855y = 5755) and we have the
following,

\/ , = ’< >< (S7)

Finally, we require the tetrahedron relation for which we make the additional assumption
on ~ that it does not commute with c.. This relation is as follows,
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Remark 3.7. The diagrammatic Bott—Samelson category of S r is normally defined using
an underlying reflection representation h = (V,{aY : o € S}, {an : @ € S}) of &
called a realisation. Our construction of the diagrammatic Bott—Samelson endomorphism
algebra implicitly assumes that the roots {a, : @ € S} C V* form a basis, and that the
pairing between roots and coroots is given by the usual Cartan matrix of type ﬁh_l.
These two conditions uniquely determine the realisation, which we call the universal
realisation of &, with respect to this Cartan matrix [5]. It coincides with the modular
reduction of the “dual geometric” realisation of @h (which can be defined over Z as éh
is simply laced) [18].

Remark 3.8. We do not include “isotopy” as an explicit relation here (unlike in [13])
as it follows from the one-colour relations and cyclicity of the braid generator (see [12,
Proposition 8.6]). This is the more modern definition, see for example [25, Section 2.3]

Definition 3.9. We define the cyclotomic diagrammatic Bott—Samelson endomorphism
algebra,

Fn(n,0) = Endpg‘sphv@(Ah,lx...xAh,l\Ah,l) (@MGA(n,o)Bw)

to be the quotient of .#(n, o) by the relations
1lo®1,=0 and I ®1, =0 (S9)

for v € IT arbitrary, a € II corresponding to a wall of the dominant chamber, and w any
word in the alphabet S.

3.2. The breadth-enhanced diagrammatic Bott—Samelson endomorphism algebra

We now use the notion of a weakly graded monoidal category (see Appendix A) to
introduce the breadth-enhanced diagrammatic Bott—Samelson endomorphism algebra.
On one level this definition and construction is utterly superficial. It merely allows us to
keep track of occurrences of the identity of G n in a given expression. The occurrences of
sp = 1 are usually ignored in the world of Soergel diagrammatics and so this will seem
very foreign to some. We ask these readers to be patient as this extra “blank space” will
be very important in this paper: each occurrence of sy corresponds to adding h additional
strands in the quiver Hecke algebra or, if you prefer, corresponds to “tensoring with the
determinant”. For this reason, in this section all our words will be in the alphabet SU{1}.

Definition 3.10. Given o« = ¢; —e;1 we define the breadth-enhanced Soergel idempotent,
1., to be a frame of width 2b, with a single vertical strand coloured with « € II placed
in the centre. We define the breadth-enhanced Soergel idempotent 1y to be an empty
frame of width 2. For w = s a)...S,t) an expression with ald e TIuU {0}, we set
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ly=1,0® 1,20 @ - @ 1,wm

to be the diagram obtained by horizontal concatenation. In order that we better illustrate
this idea, we colour the top and bottom edges of a frame with the corresponding element

of TTU {0}.
Example 3.11. Continuing with Fig. 1 and Example 2.14, we let

W = 5¢5pSecs—c18ep—e58 Sey—e18e2—e38

!
= 55:5*51 5@55

[S

2—635 ‘9@553*51582—635

The breadth-enhanced Soergel idempotents are as follows

(3.1)

1y =

[y
[

Il
P
P
P
———

Definition 3.12. Let w € &) and suppose w = S,1) .-y and w’' = Sg)..-Sgpm for

o, BU) € TTU{(} are two expressions which differ only by occurrences of sy within the
w
w’)

word. We define the corresponding Soergel adjustment 1, ,, to be the diagram with 1,,

along the top and 1, along the bottom and no crossing strands.

Example 3.13. Continuing with Example 3.11, we have that

T
,I,

=

Definition 3.14. Given w = 5,0)...5,), W = Sg01)...54 for a® gl e TTU {0}, a

breadth-enhanced (w, w’)-Soergel diagram D is defined to be any diagram obtained by
horizontal and vertical concatenation of the following generators

|
\
D

(3.2)

>

and their flips through the horizontal axes such that the top edge of the graph is given
by the breadth-enhanced idempotent 1,, and the bottom edge given by the breadth-
enhanced idempotent 1,. Here the vertical concatenation of a (w,w’)-diagram on top
of a (v,v')-diagram is zero if v # w’. The degree of these generators (and their flips)
are 0,0,0,1,—1,0, and 0 respectively. When we wish to avoid drawing diagrams, we will
denote the above diagrams by
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L
|

55 o .

N

h

Fig. 6. The adjustment-inversion relations and the naturality relation for the spot diagram (we also require
their flips through horizontal axis).

N
N/
ST

-\

116 T

Fig. 7. The remaining naturality relations (we also require their flips through horizontal axis).

\
AR

1, 1y 132 SPOTY FORKZZ HEX_.%. and COMMY_.
These diagrams are known as “single strand”, “blank space”, “single adjustment”, “spot”,
“fork”; “hexagon” (in order to distinguish from the symmetric group braid) and “com-
mutator”.

Definition 3.15. We define the breadth-enhanced diagrammatic Bott—Samelson endomor-
phism algebra, " (n, o) (respectively, its cyclotomic quotient %}’ (n, o)) to be the span
of all (w,w’)-breadth enhanced Soergel diagrams for w,w’ € A(n,a), with multiplica-
tion given by vertical concatenation, subject to the breadth-enhanced analogues of the
relations (S1) to (S8) (plus the additional cyclotomic relation (S9), respectively) which
are explicitly pictured in Section 6, the adjustment inversion and naturality relations
pictured in Figs. 6 and 7 and their flips through the horizontal axis.

We are free to use the breadth-enhanced form of the diagrammatic Bott—Samelson
endomorphism algebra instead of the usual one because of the following result. We let ¢ :
Uocm<n AT (m, o) < A(n, o) denote the map which takes w € At (m, o) to (sp)" ™w €
A(n, o). We refer to the image, im(¢) = AT(< n, o), as the subset of left-adjusted words
in A(n, o) and we define an associated idempotent

L,= > 1l

wEAT(Ln,0)
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Proposition 3.16. We have the following isomorphisms of graded k-algebras,
S (n,o) = 1;05”1”(71,0)1:,0 In(n, o) = ligfﬁbr(n, a)lfw.

Proof. This is the one point in the paper in which we require the notions from Ap-
pendix A and all references within this proof are to the appendix. Thus for this proof
only, we briefly switch perspectives and think of the algebras above as categories . and
P and use the notation in Appendix A. The category .7 (resp. ") has objects given
by expression in the alphabet S (resp. SU{1}) and Hom-spaces given by 1,.%(n, o)1,
(resp. 1,7 (n,0)1,,) for some sufficiently large n (resp. for some n).

We will establish the first isomorphism; the second isomorphism is similar. Let b :
Ob() — Z>p be a monoidal homomorphism given by b(s.) = b, for all o € II. We
now apply Theorem A.3 to show that . "(n,o) is isomorphic to the weak grading of
#(n, o) concentrated in breadth b. Most of the hypotheses of this result follow by design.
For example, since .¥ is already defined by generators and relations, it’s enough to add
breadth-enhanced versions of the relations to ensure the composition and tensor product
axioms in the theorem. Also, adjustments on objects are defined monoidally, so the weak
grading axioms (WG2) and (WG3) automatically hold. Finally (WG1) follows from the
adjustment inversion and naturality relations above. O

3.83. The quiver Hecke algebra

We now introduce the second star of the paper, the quiver Hecke or KLR alge-
bras. Given ¢ = (i1,...,in) € (Z/eZ)" and s, = (r,r +1) € &, we set s.(i) =

(€ T P By MITIC Ry S S S S

Definition 3.17 (/8,15,27]). Fix e > 2. The quiver Hecke algebra (or KLR algebra), H.,,
is defined to be the unital, associative Z-algebra with generators

{61 | Z: (il, ,Zn) - (Z/eZ)"} U {yl, ,yn} U {1/)1, ...,ﬂ)n_l},

subject to the following relations, for all 7, s, i, j we have that

dYoei=1ly,; eiej =0ije; yrei = €Yy Yrei = es.ithr YrYs = Ysyr (R1)

where the sum is over all § € (Z/eZ)™ and

1/)rys = yswr for s 7é r,r+1 Yrths = st for |T - 5| >1 (RQ)

Yrhrei = (ryry1 — 0i, iy )€i Yrp1¥rei = (VrYr + 0,00y )i (R3)
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0 if 4 = dpy1,
e; if Tpy1 Ay iy £ 1,
wrwrei = . . (R4)

(Yr+1 — yr)es if ipyy =ir + 1,
( yr+1> €4 ifipp1 =i —1
(wr+1wrwr+l - 1) if 7;7" = Z"r’Jr2 = 7;7"+1 + 17

wrwr+1wr = (1/1r+11/}r¢r+1 + 1) if ’ir = ir+2 = ir+1 -1 (R5)
Vr1Vrryie; otherwise

for all permitted 7, s, 7, j. We identify such elements with decorated permutations and the
multiplication with vertical concatenation, o, of these diagrams in the standard fashion
of [8, Section 1]. We let * denote the anti-involution which fixes the generators (this can
be visualised as a flip through the horizontal axis of the diagram).

We identify an undecorated single strand with the sum over all possible residues on
that strand, as in de(Z/eZ)n e; = 1y, . We freely identify an element d € H,, with an
element of H, 41 by adding such an undecorated vertical strand to the right; we extend
this to all H,,, with m > n. The y; elements are visualised as dots on strands; we hence
refer to them as KLR dots. Given T € Std()\), we set et := eye(t) € Hn. Using the
notation of Subsection 2.1, we define

yr=]] T ler, (3.3)
k=1

such elements should be familiar to those working in KLR algebras, see for example [14
Section 4.3]. Given p < g we set

W = SpSpt1 ... S5g-1 Wi =54-1...5p118p

ws = Yptpt1.-- Vg1 ¢Z = g-1---Vp+1¥p,
and given an expression w = s, ... 8;, € &, we set ¥y = Py, ... Yy, € Hy.

Definition 3.18. Fix ¢ > 2 and o € Z*. The cyclotomic quiver Hecke algebra, 7, is defined
to be the quotient of H,, by the relation

ﬁ{am|o’m711,1<m<f}

o =0 forie (Z/eZ)". (3.4)

Definition 3.19. We define the degree on the generators as follows,

—2 if i, =i
deg(e;) =0 deg(y,) =2 deg(re)) =<1  ifdi, =441 £1.

0 otherwise
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Py

W Pix

Fig. 8. The element 1/;55‘ for kSg in the case p =5 and o« = €3 — &1 € II (see also Example 2.29).

Definition 3.20. Given a pair of paths S, T € Path(\), and a fixed choice of reduced
expression for w-Sr = S, Si, - - - S, we define z/J-Sr = esi, Viy - - - Vi ET-

Remark 3.21. The quiver Hecke algebra and its cyclotomic quotients are isomorphic (over
a field) to the classical affine Hecke algebra and its cyclotomic quotients (at a root of
unity) by [8, Main Theorem]. Setting e = p and o = (0) € Z! we have that k&,, is
isomorphic to H? and we freely identify these algebras without further mention. (See
Fig. 8.)

3.3.1. Our quotient algebra and regular blocks

A long-standing belief in modular Lie theory is that we should (first) restrict our
attention to fields whose characteristic, p, is greater than the Coxeter number, h, of the
algebraic group we are studying. This allows one to consider a “regular” or “principal
block” of the algebraic group in question. For example, the diagrammatic Bott—Samelson
endomorphism algebras categorify the endomorphisms between tilting modules for the
principal block of the algebraic group, GLy(k), and this is the crux of the proof of [26,
Theorem 1.9]. Extending this “Soergel diagram calculus” to singular blocks is a difficult
problem. As such, all results in [26,1] and this paper are restricted to regular blocks. In
the language of [26,1] this restricts the study of the algebraic group in question to primes
p > h.

What does this mean on the other side of the Schur—Weyl duality relating GLj, (k)
and kG&,,?7 By the second fundamental theorem of invariant theory, the kernel of the
group algebra of the symmetric group acting on n-fold h-dimensional tensor space is
the element - s . <&,
is equal to yrm+1 (the element introduced in equation (3.3)). The module category of
kS, /k&,yrrnin k&, is the Serre subcategory of k&,,-mod whose simple modules are in-
dexed by partitions with at most h columns. For p > h, the algebra k&, /k&S,yrni1) kS,
is the largest quotient of k&,, controlled by the diagrammatic Bott—Samelson endo-

sgn(g)g € kG,,. Modulo “more dominant terms” this element

morphism algebra with h distinct colours. Combinatorially, the condition that p > h
ensures that & does not lie on any hyperplane in the alcove geometry (and so the
p-Kazhdan—Lusztig theory is “regular” not “singular”). The importance of this Serre
subcategory and the condition p > h can also be explained in the context of cali-
brated/unitary modules [6, Introduction]. The main theorem of [26] calculates decom-
position numbers of kS, /kS, y1rn+1kS,,.
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There is a canonical manner in which the above situation generalises to cyclotomic
Hecke algebras. For a given e > h, one can ask “what is the largest quotient of HS
controlled by the diagrammatic Bott-Samelson endomorphism algebra with h distinct
colours?” Assuming that h € Z% is (o, e)-admissible, we define

Y = > yre

a=(2,....9,(ha+1),2,...,9)
0<a</t

and we claim that the answer to the question is provided by the quotient algebras
HZ /HZyHE for (o,e)-admissible h € Zéo. Our claim is justified as follows: for e > h
the condition that h € Z£>0 is (o0, e)-admissible is equivalent to requiring that & does
not lie on any hyperplane in the alcove geometry (so that our p-Kazhdan-Lusztig theory
is “regular” not “singular” as required). We further remark that the importance of the
Serre subquotient with regards to calibrated /unitary modules goes through verbatim to
our setting, see [6, Introduction].

Example 3.22. Let e = 3 and h = 3 € Z (and let 0 = (0) € Z). We have that y, =
Y13 = y4e(0a 1) 27 3)

Example 3.23. Continuing with Example 2.3, we let 0 = (0,3,8) € Z3 and e = 13. We
have that y, = y4e(0,1,2,3) + yse(3,4,5,6,7,8) + €(8,9,10,11, 12). The reader should
compare these residue sequences with the residues appearing in the first row of the
tableau in Example 2.3.

Remark 3.24. The tableaux T% for 0 < a < /¢ all have different residue sequences, in
particular the corresponding e« are pairwise orthogonal idempotents. For h, < 0411—0,
and 0 < a < ¢ — 2, we have that yt« = eto. Similarly, for « = ¢ — 1 and h, <
e+ 09— 041 — 1, we have that yt« = eta. If we replace either of the strict inequalities
above with an equality, then we obtain yt« = yp,4161~. Thus the element y; need not
be homogenous, however each element yto is homogeneous in the grading (of degree 0
or 1). We have that the ideal generated by yj, is the same as the ideal generated by the
set of homogeneous elements {yto | 0 < a < £} and therefore the quotient is a graded
algebra.

Remark 3.25. In [14, 4.1 Lemma)] it is proven that relation (3.4) is equivalent to e; = 0
for any ¢ # res(S) for some S € Std(A) with A € Fy(n). In HE /HSyrH? we have that
e; = 0 for any i # res(S) for some S € Std(\) with A € &2, (n). For more details, see [4,
Theorem 1.19(a)].

3.3.2. The Bott-Samelson truncation
In the previous section, we defined the Bott—Samelson endomorphism algebra and
its breadth-enhanced counterpart. The idempotents in the former (respectively latter)
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Fig. 9. Continuing Example 2.29, we depict 1[);;’ X 1!1;;’ and 1/):,’,‘,‘ ® ws;“ respectively.

algebra were indexed by expressions w in the simple reflections (respectively, in the
simple reflections and the empty set). We define

f’r—l_,a = Z €s fn,a = Z €s

sestdi () SEStdn, o ()
AP, (n) AE Py (n)

and the bulk of this paper will be dedicated to proving that
foo (Mo /HoynH) . and  fo o (Hy /Ho YA, oo

are isomorphic to the cyclotomic Bott—Samelson endomorphism algebra and its breadth-
enhanced counterpart, respectively. For the most part, we work in the breadth-enhanced
Bott—Samelson endomorphism algebra where the isomorphism is more natural (and we
then finally truncate at the end of the paper to deduce our Theorem A).

3.8.8. Concatenation

We now discuss horizontal concatenation of diagrams in (our truncation of) the quiver
Hecke algebra. First we let X denote the “naive concatenation” of KLR diagrams side-
by-side as illustrated in Fig. 9. Now, given two quiver Hecke diagrams 1/18 and 1/181 we
define

P P/ P
Vg © Uy = epraq © Upinty © Pieqr

We refer to this as the contextualised concatenation of diagrams (as the residue sequences
appearing along the bottom of the diagram are not obtained by simple concatenation,
but rather from considering the residue sequence of the concatenated path).

4. Translation and dilation
In this section we prove some technical results for KLR elements which will appear

repeatedly in what follows. The reader should feel free to skip this section on first reading.
We continue with the notation of Convention 2.32.
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VNN
N NN NN

Fig. 10. A series of paths P, Q, R, S, T and U. The paths P, Q, U are a-crossing paths.

4.1. The translation principle for paths

Our first result of this section says that our choice of distinguished path P,, in Defini-
tion 2.18 for w = oy ... oy, was entirely arbitrary (the only thing that matters is that
the path crosses the hyperplanes o, g, . . . v, In sequence).

Lemma 4.1. Let P denote any path which terminates at a regqular point and let r € Z/eZ.
Then

epXe,, =0.
Proof. The result follows from Remark 3.25 in light of the proof of Lemma 2.8. O

For o € II, we say that a path P of length n is an «-crossing path if (i) there
exists 1 < p1 < p2 < m such that P(k) € E(«) if and only if k € [p1,p2] and (i)
P(k) ¢ E(,se) # E(a) for any 1 < k < n. We say that P is an @-crossing path if P(k)
is a regular point for all 1 < k& < n. We say a path is a-bouncing if it is obtained from
an a-crossing path by reflection through the a-hyperplane.

Example 4.2. Let e = 5, ¢/ = 1, h = 3, and o = €3 — 1. For the paths in Fig. 10,
we have that res(P) = (0, 1,4,0, 3,4,2,1,0,2), res(Q) = (0,1,4,0,3,4,2,1,2,0), res(R) =
(0,1,4,0,3,4,2,2,1,0), res(S) = (0,1,4,0,3,4,2,2,1,0), res(T) = (0,1,4,0,3,2,4,2,1,0),
and res(U) = (0,1,4,0,2,3,4,2,1,0) and we have that

I‘eSp(Pil(l,Sg)) =2 resP(Pfl(S,el)) =3 resP(P*1(4,51)) =2 resP(P*1(5,51)) =1.

It is not difficult to see that the elements wg, 1/)5, z/)sp, w-'?, and 1/)5 have 0, 1, 2, 3, 3,
crossings of non-zero degree respectively. We will see that ep = wgpr = 1/’%#; = ¢5wg.

Remark 4.3. Given P and U two (a-crossing) paths, we can pass between them induc-
tively, this lifts to a factorisation of wﬁ as a product of Coxeter generators. An example
is given by the sequence of paths P, Q, R, S, T and U in Fig. 10 (for example w$ = (6,7)).
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The degree of each of these crossings is determined by whether we are stepping onto or
off-of a wall. For example, the elements 1/)8 = er¥seq, wﬁ = egyreR, and wST = eTyge€s
have degrees 1, —2, and 1 respectively.

Proposition 4.4. Fiz o € TLU {@}. Let P,Q be a pair of c-crossing/bouncing paths of
length n from @ € Ay to A € s Ag. We have that

VoS =ep and  YIPh = eq. (4.1)
Proof. The o = () case is trivial, and so we set o = g; — g;41. We fix P = (¢j,,...,¢;,)
and Q = (&xy,---,€k, ) Recall that wg is minimal and step-preserving and that the

paths P and Q only cross the hyperplane o € II. This implies, for any pair of strands
froml<axz<y<ntol < wg(y) < wg(x) < n whose crossing has non-zero degree,
that e;, = g;41 and ¢;, = &; and P(y) € s Ag and Q(w§(y)) € Ao (one can swap P and
Q and hence reorder so that 1 <y < x < n). We let 1 < y < n be minimal such that
P(y) € saAp and we suppose that resp(y) = r € Z/eZ. We let Y denote this r-strand
from y to w§(y).

We recall our assumption that P and Q cross the a-hyperplane precisely once. This
implies that there exists a unique 1 < z < n such that P~1(2,&;11) € [p1, p2]. We have
that resp(P~1(2,6;11)) =7+ 1, resp(P~ (2 + 1,6;41)) =, and resp(P~1(2 +2,6;41)) =
r — 1. The Y strand crosses each of the strands connecting the points P~1(z,&;41),
P~1(2+1,6,41), and P~1(2 4+ 2,&;41) to the points Q7 1(z,&;11), Q (2 + 1,€:41), and
Q7 '(2 + 2,£;41) and these are all the crossings involving the Y-strand which are of
non-zero degree. We refer to these strands as Z1, Zy, Z_1.

We are ready to consider the product wgﬂjg. We use case 4 of relation (R4) to resolve
the double-crossing of the Y and Z,; strands, which yields two terms with KLR-dots
on these strands. The term with a KLR-dot on the Z,; strand vanishes after applying
case 1 of (R4) to the like-labelled double-crossing r-strands Y and Zp. The remaining
term has a KLR-dot on the Y strand. We next use (R3) to pull this KLR-dot through
one of the like-labelled crossings of Y and Z,. Again we obtain the difference of two
terms, one of which vanishes by applying case 1 of (R4). This remaining term has the r-
strands Y and Z; crossing only once. We then pull the Z_;-strand through this crossing
using the second case of relation (R5), to obtain another sum of two terms. The term
with more crossings is zero by Lemma 4.1, while the remaining term has no non-trivial
double-crossings involving the Y strand. As the Y strand was chosen to be minimal, we
now repeat the above argument with the next such strand; we proceed until all double-
crossings of non-zero degree have been undone. O

Remark 4.5. More generally, given P and Q two a- and [J-crossing/bouncing paths, we
can apply Proposition 4.4 to any local regions S@ P ® T and S® Q ® T of a wider
pair of paths. The proof again follows simply by applying the same sequence of relations
as in the proof of Proposition 4.4. Indeed, P and Q can be said to be “translation-
equivalent” if the non-zero double-crossings in wgd)g are precisely those detailed in the
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proof of Proposition 4.4 (and so are in bijection with the crossings of non-zero degree in
Example 4.6).

Example 4.6. We now go through the steps of the above proof for the product ¢{jyp =
6(071,470,374,271,072) from Example 4.2.

-
&

0 1 4 0 3 4 2 1 0 2 014034210

\V)
o

140342102

=
&

0140342102 014034210

[\

e
%

0140342102 014034210

[\

&

0140342102 014034210

[\

0140342102

The first and second equalities hold by case 4 and case 3 of relation (R4). The first term
in the second line and the second term in the third line are both zero by case 1 of relation
(R4). Thus the third equality follows by relation (R3) and the fourth equality follows
from case 1 or relation (R5). The first term in the fourth line is zero by Lemma 4.1
(the partition (2%) does not have an addable node of residue 1). The second term in the
fourth line is equal the term in the fifth line by case 2 of relation (R4).

4.2. Good and bad braids

Given w € &,,, we define a w-braid to be any triple 1 < p < ¢ < r < n such that
w(p) > w(q) > w(r). We recall that an element w € &,, is said to be fully-commutative
if there do not exist any w-braid triples. We define a bad w-braid to be a triple 1 < p <
g <r < nwith i, =14, =iy = 1 such that w(p) > w(q) > w(r). We say that a w-braid
which is not bad is good. We say that w is residue-commutative if there do not exist any
bad-braid triples.
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Fig. 11. The 2- 3- and 4- dilated elements ep(1,2),ep for b = 2,3, 4.

Lemma 4.7. Suppose that w is residue-commutative and let w be a reduced expression
for w. Then 1, is independent of the choice of reduced expression and we denote this
element simply by 1y, .

Proof. If w is fully-commutative then any two reduced expressions differ only by the
commuting Coxeter relations see [2, Theorem 2.1] (in particular, one need not use the
braid relation). Thus the claim follows by the second equality of (R2). An identical
argument shows that if w is residue-commutative, then any two reduced expressions
differ only by the commuting Coxeter relations and good braid relations. The condition
for a braid to be good is precisely the commuting case of relation (R5). Thus the claim
follows by relation (R2) and (R5). O

4.8. Breadth dilation of permutations

We will see later on in the paper that the commutator and hexagonal generators of
equation (3.2) roughly correspond to “dilated” copies of transpositions and braids in
the KLR algebra. Similarly, the tetrahedron relation roughly corresponds to the equality
between two expressions for a “dilated” copy of (1,4)(2,3). In this section, we provide
the necessary background results which will allow us to make these ideas more precise in
Sections 5 and 6. Given b > 1, we define the b-dilated transpositions to be the elements

(4,8 + 1)y = Spi(Sbi—15bi+1) - - - (Sbi—bt15bi—b+3 - - - Sbi—b—3Sbitb—1) - - - (Sbi—1Sbi+1)Sbi

for 1 < ¢ < n. (The examples in Fig. 11 should make this definition clear.) Now, we note
that &, = {(i,5+1)p | 1 € i < n) < Spy,. We remark that (i,7+ 1), is fully commutative.
Given any permutation w € &,, and w an expression for w € &,,, we let w;, denote the
corresponding expression in the generators (i,i+ 1); of this b-dilated copy of &,, < Gy,
We set B = (—1,-2,...,-b)" € (Z/eZ)" and we let 1y, e denote the corresponding
element in (ept(; 41y, | 1 <i<n) CH.

We fix w a reduced word for w € &,,. We say that D € Hj, is a quasi-b-dilated
expression for w if for each 1 < r < b, the subexpression consisting solely of the —r-
strands and —(r + 1)-strands from D forms the 2-dilated element ¢y, e, —p_1yn. It is
easy to see that a quasi-b-dilated element for w differs from 1)y, simply by undoing some
crossings of degree zero. In particular, all quasi-b-dilated expressions for w (including
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Fig. 13. A quasi-4-dilated expression for (1,2). This diagram is obtained from the final diagram of Fig. 11
by undoing a degree zero crossing.

Fig. 14. A quasi-5-expression element for w = (23)(12)(23). Conjugating this diagram by the invertible
element (Y10¢1299%11910)€(—1,—2,-3,—4,—5)3s We obtain the diagram in Fig. 12.

Yy, itself) have the same bad braids (in the same order, modulo the commutativity
relations). (See Fig. 13.)

Finally, we define the nibs of a permutation w to be the nodes 1 and n and w=!(1)
and w~!(n) from the top edge and the nodes 1 and n and w(1) and w(n) from the
bottom edge. We define the nib-truncation of w to be the expression, nib(w), obtained
by deleting the 4 pairs of nibs of w and then deleting the (four) strands connecting
these vertices. Similarly, we define nib(ty€;) = ¥nib(w)€nibi) Where the residue sequence
nib(i) € (Z/eZ)’"~* is inherited by deleting the 1st, nth, w(1)th and w(n)th entries of
1 € (Z/eZ)™. See Figs. 14 and 15 for examples.

4.4. Freedom of expression

We now prove that the quasi-dilated elements and their nib-truncations are indepen-
dent of the choice of reduced expressions. For 0 < g < b, we define the element vy,
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Fig. 15. A diagram obtained by nib-truncation from that in Fig. 14. This diagram is a subdiagram of the
hexagonal generator in Fig. 23.

which breaks the strands into two groups (left and right) according to their residues as
follows

Ypg = 11 < II %13213)

O<p<n M 1<ikq

where  eptppq) € €(—1,...,—b)n Hp€(—1,...,—q)"B(~q—1,...,~b)"-
We remark that v, o) = Yy = 1 € G-
Lemma 4.8. We have that eptp(1,2),%¥(1,2),e =0 for b > 1.

Proof. For b = 1 the result is immediate by case 1 of relation (R4). Now let b > 1. We
pull the strand connecting the strand connecting the 1st top and bottom vertices to the
right through the strand connecting the (b + 2)th top and bottom vertices using case 4
of relation (R4) and hence obtain

eBWVip,b—1] ((1/2(1,2)17,1yzb—zw(l,z)b,1 X a,2%01,2)

— (Y2001 %1,2),, ® 1#(1,2)?/1#)(1,2)))1/){;,71,,1]63

and the first (respectively second) term is zero by the (b—1)th (respectively 1st) inductive
step. O

Proposition 4.9. Let 1 < b < e. The elements ept(; ;12),eB and nib(epi; ;12),eB) are
independent of the choice of reduced expression of (i,i+ 2), € Sypy,.

Proof. For ease of notation we consider the i = 1 case, the general case is identical up
to relabelling of strands. We first consider ep1)(; 3),ep, as the enumeration of strands is
easier. We will refer to two reduced expressions in the KLLR algebra as distinct if they are
not trivially equal by the commuting relations (namely, the latter case of (R2), case 2 of
relation (R4) and case 3 of relation (R5)). There are precisely b+ 1 distinct expressions,
Qy, of epth(1,3),ep as follows
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Fig. 16. The 3 distinct expressions, Qo, 21, and Q2 for ¥y 3),. The b+ 1 distinct expressions for v (; 3), are
determined by where the central “fat strand” is broken into “left” and “right” parts.

Fig. 17. The 4 equivalent expressions for ; of Fig. 16. These differ only by applications of case 3 of relation
(R5) (and so the bad braids are all the same).

Qq = en¥p.q (Va2),¥@8),Y02), R ¥@3),_,02),_,Y@8),_, ) V€8 (4.2)

for 0 < ¢ < b. See Figs. 16 and 17 for examples. We remark that Qg = ept)(23), ¥ (12), ¥ (23),
ep and Q = epi12), Y (23),Y12),eB- We will show that , = Q11 for 1 < ¢ < b and
hence deduce the result.

Step 1. If ¢ = 0 proceed to Step 2, otherwise we pull the (—¢)-strand connecting the
(b + ¢)th northern and southern nodes of €, to the right. We first use relation (R5) to
pull (—g)-strand through the crossing of (1 — ¢)-strands connecting the (¢ — 1)th and
(2b 4 ¢ — 1)th top and bottom vertices. We obtain two terms: the first is equal to

eBVlb.q) (Vig.a—1 (V(12), 1 ¥(23), 1 P012), 1 B P(12)(28)(12)) Y]y q-1]
23y, Y (12)5_, V(23)s 0 ) Vb, €B (4.3)

and an error term of strictly smaller length (in which we undo the crossing pair of (1—g)-
strands). If ¢ = 1, the error term contains a double-crossing of (r — ¢)-strands and so is
zero by case 1 of relation (R4). If ¢ > 1, then we apply relation (R5) to the error term
to obtain two distinct terms; one of which is zero by Lemma 4.8 and the other is zero
by case 2 or relation (R4) and the commutativity relations.
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Step 2. The output from Step 1 has a subexpression t(12)(23)(12) Which we rewrite as
Y(23)(12)(23) using case 3 of relation (R5) (as the three strands are all of the same residue,
—q € Z/eZ). We also have that ¥, ¥(q.q—1] = Yp.q—1)(1ng,_, B ¥p—_g41,1))- Thus (4.3)
is equal to

Dibg) (V(12),1V23),1¥02),
B0 q+1.1) (V(23)(12)23) B ¥(23),_,0(12)s— s V(23)5—0) Vlb—g1,1]) Vbra]

Now, by the mirror argument to that used in Step 1, we have that this equals

Vlb,g—1] (7/1(12)q_17/’(23)q_11/)(12)q_1 X (23),— 11 P20 g4 ¢(23)b—q+1)¢rb,q71]

as required. The argument for nib(ep1(1,3),e5) is identical (up to relabelling of strands)
except that the ¢ = 0 and ¢ = b cases do not appear. 0O

Corollary 4.10. Let x be any expression in the Coxeter generators of &,. Any quasi-b-
dilated expression of x is independent of the choice of expression x. Similarly, the nib
truncations of these elements are independent of the choice of expression x.

Proof. By Lemma 4.7 it is enough to consider the bad braids in ¢,. If £ = w,, for some
w € &, then we can resolve each bad braid in 1, and nib(¢,) using Proposition 4.9.
Now, if 9, is quasi-b-dilated then 1, and nib(z,) are obtained from v, and nib(ty, )
by undoing some degree zero crossings (thus introducing no new bad braids) and the
result follows. O

5. Recasting the diagrammatic Bott—Samelson generators in the quiver Hecke algebra

We continue with the notation of Convention 2.32. The elements of the (breadth-
enhanced) diagrammatic Bott—Samelson endomorphism algebras can be thought of as
morphisms relating pairs of expressions from @h. We have also seen that one can think
of an element of the quiver Hecke algebra as a morphism between pairs of paths in the
alcove geometries of Section 3. This will allow us, through the relationship between paths
and their colourings described in Section 3, to define the isomorphism behind Theorem A.
In what follows we will define generators

(Yo%

adjo,  spotf, forki?, com

hex, 7.,
for v, 7, € II and their duals. The hyperplane labelled by « (respectively [7) is a wall of
the dominant chamber if and only if P, (respectively P;) leaves the dominant chamber.
By the cyclotomic KLR relation, one of the above generators is zero if (and only if) one
of its indexing roots labels a path which leaves the dominant chamber. However, one

should think of these as generators in the sense of a right tensor quotient of a monoidal
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category. In other words, we still require every generator for every simple root (even if
they are zero) as the left concatenates of these generators will not be zero, in general.

In order to construct our isomorphism, we must first “sign-twist” the elements of
the KLR algebra. This twist counts the number of degree —2 crossings (heuristically,
these are the crossings which “intersect an alcove wall”). For w an arbitrary reduced
expression, we set

T, = (—1)Hisp<asnlwp)>w(@)ip=iate )

w Cuw(s)-

While KLR diagrams are usually only defined up to a choice of expression, we empha-
sise that each of the generators we define is independent of this choice. Thus there is
no ambiguity in defining the elements TB for wg without reference to the underlying
expression. In other words: these generators are canonical elements of H. Examples of
concrete choices of expression can be found in [4, Section 2.3]. In various proofs it will be
convenient to denote by T and B the top and bottom paths of certain diagrams (which
we define case-by-case).

5.1. Idempotents in diagrammatic algebras

We consider an element of the quiver Hecke or diagrammatic Bott—Samelson endo-
morphism algebra to be a morphism between paths, lifting the ideas of Subsection 2.4.1.
The easiest elements to construct are the idempotents corresponding to the trivial mor-
phism from a path to itself. Given « a simple reflection, we have an associated path
P., a trivial bijection wE: =1 € &, and an idempotent element of the quiver Hecke
algebra

€p, ‘= Cres(P,) € leﬂ
where we reemphasise that eres(p,) = €eq(pr) (see Remark 2.23). Given o a simple
reflection, we also have a Soergel diagram 1, given by a single vertical strand coloured
by a. We define

U(1.) = ep,. (5.1)

More generally, given any w = $,1)S42) - - - Sox) any expression of breadth b(w) = n, we
have an associated path P,,, and an element of the quiver Hecke algebra

€P,, = Cres(P,) = €P_) ® €P (2 Q& €P iy € Ho
and a (w,w)-Soergel diagram

1y, =101, Q@ - @1, m
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given by k vertical strands, coloured with o), a(®) ..., a¥) from left to right. We define

U(1,) = ep,. (5.2)

Example 5.1. Continuing with Fig. 1 and Examples 2.14 and 2.25, we let

W= 8pSpSes—c1Se—e3S Se3—e18e3—e3S

!
w = s€:z*€15®552*538 S(DSE:;*EHSEz*E:sS

Recall these paths came from “inserting determinants” into the path in Fig. 1. We have
that

U(ly) =€01,24,01,34.2.3.1,2.0.4,3,0,2,1, 3,4,2,3,1,2,0,4,3,0,2,1,

U(1ly) = €0,1,4,0,3,4,2,1,0,2,3,4,4,1,0, 2,3,4,3,4,2,3,1,2,0,4,3,0,2,1,

Remark 5.2. For two paths S and T, we have that S ~ T if and only if res(S) = res(T).
Therefore if S ~ T then et = eset = es. In particular ep_, = ep_ €p> = €pb .

Remark 5.3. We have defined two distinct paths P,, and P?, which label the same idem-
potent, thus ep, Hy ep, = ep, Hy_ eps - This apparent redundancy is required because
we cannot directly compare P, and P, as they do not have the same shape — however,
we can compare P, and Pfx as they do have the same shape. Thus Pfl is required in
order to define the spot-morphism. For the remainder of this section, we will restrict our
attention to a subset of morphisms between paths of the same shape which form a set
of monoidal generators of our truncated KLR algebra.

5.2. Local adjustments and isotopy

We will refer to the passage between alcove paths which differ only by occurrences of
sp = 1 (and their associated idempotents) as “adjustment”. We wish to understand the
morphism relating the paths P, ® Py and Py ® P,,.

o

Proposition 5.4. The element Q/JEM

is independent of the choice of reduced expression.
Proof. There are precisely three crossings in wg;‘j of non-zero degree. Namely, the r-
strand (for some r € Z/eZ) connecting the Pa;(l, g;)th top vertex to the P;é(l,ei)th
bottom vertex crosses each of the strands connecting Paal (¢,€i+1)th top vertices to the
P;é(q, €;+1)th bottom vertices for ¢ = by, — 1,b0,bn + 1 (of residues r + 1, r, and r — 1
respectively) precisely once with degrees +1, —2, and +1 respectively. Thus 1/1:;;(? is
residue-commutative and the result follows from Lemma 4.7. O
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€1 €2 €3 €4 €5 Eg €1 €2 €4 €5 € €1 E2 €4 €5 € €4 €4
0O 2 4 6 8 10 11 1 5 7 9 10 0 4 6 8 3 2
o 2 6 & 101 1 5 7 9 4 3 10 0 2 4 6 8
€1 €2 €4 E5 E6 €1 €2 E4 E5 E6 €4 €4 €1 E2 €4 E3 E5 Eg

Fig. 18. We let h = 1, £ = 6, e = 12, 0 = (0,2,4,6,8,10) and o« = €3 — £4. The adjustment term adj@a%
is illustrated. The steps of the path P, and Py are coloured pink and black respectively within both P_,g
(along the top of the diagram) and Py, (along the bottom of the diagram).

Thus we are free to define the KLR-adjustment to be
adjgg = TE@“{‘S
which is independent of the choice of reduced expression of the permutation. (See Fig. 18.)
Proposition 5.5. We have that
adj% oep_, 0 adjg‘g = ep,., and adjg‘g oep,, © adjga@ =ep_,
and so adjustment is an invertible process.

Proof. The paths P,y and Py, satisfy the conditions of Proposition 4.4 and so the result
follows. O

Finally, we remark that the above adjustment can be generalised from the by = 1

case to the by > 1 case as follows. For w = 5,85 with a,y € II two (equal, adjacent, or
non-adjacent) simple roots, we set

Aﬁ%(q) = Pq@ @ Pa ® P(b.y—q)@
for 0 < ¢ < b, and we set
adj‘;‘;(q) = €A2% (g+1) <6Pq@ ® adj% ® eP(b-y—q—l)0> €A% (q)
and we define

adj%y = adj5 (b, — 1)...adjo5 (1)adjos (0).
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Fig. 19. An example timeline for the KLR spot. Fix £ = 1 and h = 3 and e = 5 and o« = €3 — &1 (so
that b, = 3). From left to right we picture Sz, o = S (3) = Py, Si,a; So,a = Pi. We do not picture the
k = 2,1,0 copies of the path (4e1,+e2,+e3) at the start of each path, for ease of readability.

5.8. The KLR-spot diagram
We now define the spot path morphism. Recall that
— b b _ = b ba
Pga—(517-~-75i71;5i75i+17---;5h) Pa—(51;--~,5i7175i75i+17~~-75h> |Z|(EZ)

are both paths of the same shape. The permutation wgf is fully-commutative and so we

are free to define the KLR-spot to be the elements
b
spot? := TEE spot 1= Tﬁ;‘

which are both independent of choice of reduced expressions and both belong to
ep Hy ep., = eps Hy eps .

We wish to inductively pass between the paths PZ‘ and P, by means of a visual
timeline (pictured in Fig. 19). This allows us to factorise the KLR~spots and to simplify
our proofs later on. To this end we define

Sq,a = PQQ&M?G_QXP?Q_q = (61752, ...,Eh)qg(El, -~~75i—17€i35i+1a ey € )ba—qg( )b“‘_q

for 0 < ¢ < b, and we notice that Sg o = P'; and Sy, o = Ps. We define spot?, (¢) to be
the element spot?,(q) = wg:tj‘“ for 0 < ¢ < b, and we factorise spot? as follows

spotf, := ep, o spoty, (bo — 1) o+ ospoty, (1) o spotf, (0) o eps .
Example 5.6. Let h =3 and / =1 and e =5 and o« = €3 — &1. We have that b, = 3 and

b
Pa = S(La

€1,€2,€1,€2,€1,E2,E3,E3,E3)

SZ,a
P(Z) = S3 a

)

(

Si,a = (e1,62,€3) W (e1,€2,€1,€2,€3,€3)
(e1,€2,e3) X (e1,¢€2,e3) W (1, €9, €3)
= (

€1,€2,e3) M (e1,€2,e3) W (€1, €9,€3)
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res(Ss,o) = res(Py)

res(Sz2,a)

spot?, =

res(Si,a)

res(So,o) = res(PL’y)

Fig. 20. The element spot? of Example 5.6. We have added the step labels on top and bottom so that one
can appreciate that this element is a morphism between paths. However, we remark that while a necessary
condition for a product of two KLR diagrams to be non-zero is that their residue sequences must coincide,
the same is not true for their step labels (see Remark 5.2).

which are depicted in Fig. 19. Of course, S o = Sz  in this case, but this is only because
« is the affine root €3 — g7 with 3 = h.

Remark 5.7. We have that wéj;j“ = wg:;iba+q+1 for 0 € ¢ < by, where the sub and

superscripts correspond to

Seala+le)=qh+i S (¢+1,6)=bah—bo+q+1

and so one can think of the spot morphism as successively removing each +¢; step from
the latter path and adding it to the former. (See Fig. 20.)

Remark 5.8. The element es .,  spotf,(q)es, . is of degree 1 for ¢ = 0 and degree 0 for
0 < g < b,. The terms with 0 < g < b, are invertible by Proposition 4.4. Thus one
can think of the ¢ = 0 term as the real substance of spot?. One should intuitively think
of this degree contribution as coming from the fact that the path Sg . steps onto and
off of a hyperplane but S; ., does not touch the hyperplane at any point. The diagram
spot,, (0) has a crossing involving the strand from the Sa;(l, €;)th node on the bottom
edge to the Sl_}x(l, €;)th node on the top edge and the strand from the Sii(ba, gi1)th
node on the bottom edge to the SO_)(lx(ba, €;+1)th node on the top edge. See Fig. 19 for a
visualisation.

5.4. The KLR-fork diagram

We wish to understand the morphism from P, ® P, to P, ® P’ (which are both
Py®@Po

P @Pb is not fully

paths of the same shape, so this makes sense). The permutation w
commutative and so we must do a little work prior to our definition.
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A Wa WA
NN N\

Fig. 21. An example of a timeline for the KLR fork. Fix £ =1 and h =3 and e = 5 and o« = 3 — €1 (so that
bo = 3). From left to right we picture the paths Fg g0 = Po ® PEX, Fi,6a5 F2,60, F3,60c = Pgo. Notice that
we do not picture the ¢ = 0,1, 2, 3 copies of the path (4e1, 42, +e3) at the start of each path, for ease of
readability.

s®@Po dwp®¢

2P, Py op., (7€ independent of the reduced ex-

Proposition 5.9. The elements ’(/JE
pressions.
VI® @

Pa®P?,
precisely b,, crossings of strands with the same residue label: Namely for each I'< q < by

Proof. We focus on the former case, as the latter is similar. The element wp contains

the strand connecting the top and bottom vertices labelled by the integers
Poald.e) =gh+i  (Pa®Py) g ei) = bah + (¢ = 1)(h—1) +a(i+1)
crosses the strand connecting the top and bottom vertices labelled by the integers

Pod(ba + g,8i41) =bah + (¢ —1)(h—1) + (i + 1)
(POC & ka)il(ba + q, €i+1) - bah - ba + q.

The gth of these like-labelled crossings forms a braid with a third strand if and only if
this third strand connects a top and bottom node labelled by the integers

Poalbe +p.6j) =bah+ (p—1)(h = 1) + a(j)
(Po ®PL) " (ba +p,5) = bah + (p— 1)(h — 1) + a(j)
for a(j) # a(i+1) and 1 <p < qorp=qand a(j) < a(i+ 1). None of the resulting
braids is bad; thus wpw@ o is residue-commutative and the result follows. O

Po®P?,

Thus we are free to define the KLR-forks to be the elements

(zia . Ps®Pq oc@ . Poa®Py
forky, =T, P, oP?, forkyo = TPb 2P

which are independent of the choice of reduced expressions. We reemphasise that
res(P,) = res(P?), thus former element belongs to (ep, @ep, )HY (ep, @ep,) =
(ep, @ ep, )H7 (ep. @ ep: ) (a similar statement holds for the latter element).
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We wish to inductively pass between the paths P, ® PEX and Py, (respectively P'(’x RPa
and Pog4) by means of a visual timeline (as in Fig. 21). This allows us to factorise KLR-
forks and to simplify our proofs later on. To this end we define

Fooo = P9 RIME R Pl 90 M= ~9 R Phe
Fq,atzi = M,IZ(! X P?Oﬁq X M?aiq X ngjl@an@

and we remark that
FO,Q)a - Pa ® PEX Fba,Q)a - P(Z) ® Pa FO,a(z) - PEX X ch Fba,a(z) - Pa (39 PQ)-

We define fork®% (q) = TEee  and fork? () = T,E""“’ for 0 < k < bn and we

oo Foti0a oo a+1la0

factorise the KLR-forks as follows

fork),s, = ep,, o fork(?, (bo, — 1) 0 -+ o fork( %, (1) o forki?, (0) o ep_ gps.

forks,t, = ep,,,, o fork(?, (bo, — 1) o -+ o fork(?, (1) o forkg?, (0) o eps gp._ -

ag

Example 5.10. Let h =1,/ =3,e =6, 0 = (0,2,4) € Z3 and o = g5 — €3 (thus b, = 2).
We have
POL @ PEX = (51753351753,5&53) & (51a537€1,53;52752)
= (e1,€3,€1,€3,€3,€3,61,62,€1,€2,3,€3)

PQ)OL = (81782) 63351782383751763a81783763a63)

are both dominant paths terminating at (14 | 12 | 15) € 2, 5(12). The KLR-fork diagram
is as follows

€1 €2 €3 €1 €2 €3 €1 €3 €1 €3 €3 €3

0245%105 res(Pye)
fork2% = res(Fi,0a)

res(P, ® PEX)

0 4 5 3 2 1 4 2 3 1 0 5

E1 €3 €1 €3 €3 €3 €1 €2 €1 €2 €3 €3

The following proposition allows us to see that these two elements are essentially the
same. We will see in the proof that the “timelines” for the fork generators allow us to
proceed step-by-step (the steps are indexed by b, > ¢ > 1).

Proposition 5.11. Let o € II. We have that fork(,?, = adjosfork?s,.
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Proof. We note that AL (bo) = Py ® Po, = Fp g0 and A%5(0) = P, @ Py = Fo ag. We
claim that

adjgi(q = 1) o Yo o forks (g — 1) = Too (Y (5.3)

for b, = q > 1. The result follows immediately from Proposition 5.9 once we have proven
the claim. We label the top and bottom vertices of the lefthand-side of equation (5.3) by
the paths T, = A%3(q) and By = F 4o respectively. We remark res(Fy g0) = res(Fg aq)
(as these paths are obtained from each other by reflection) and so this labelling makes
sense.

We now prove the claim. There are two strands in the concatenated diagram which
do not respect step-labels. Namely, the r4-strands (for some 7, € Z/eZ) connecting the
T, '(q,€:) and B, ! (bs 4 ¢,€:11) top and bottom vertices and the strand connecting the
Tq_1 (bo+¢,€i+1) and B;l (g, ;) top and bottom vertices. There are four crossings of non-
zero degree in the product, all of which involve the former, “distinguished”, r4-strand.
Namely, the distinguished r4-strand passes from T;l(q, €;) to the left through the latter
ro-strand and then through the vertical (r; 4+ 1)-strand connecting the T~ (bs + ¢, €i4+1)
and B71(b,, +¢,¢e;11) vertices before then passing back again through both these strands
and terminating at B, '(bo + ¢,€i41). (The distinguished strand crosses several other
strands in the process, but the crossings are of degree zero and so can be undone trivially,
by case 2 of relation (R4).) Using case 4 of relation (R4), we pull the distinguished r,-
strand rightwards through the (r, — 1)-strand and hence change the sign and obtain a
dot on the rg-strand (the term with a dot on the (ry + 1)-strand is zero by case 1 of
relation (R4) and the commutativity relations). Using relation (R3), we pull the dot on
the distinguished strand rightwards through the crossing of r4-strands and hence undo
this crossing, kill the dot, and change the sign again (the other term is again zero by
case 1 of relation (R4) and the commutativity relations). The resulting diagram has
no double-crossings and respects step labels and thus is equal to the righthand-side of
Proposition 5.9, as required. 0O

5.5. The KLR hexagon diagram

We now define the hexagon in the KLR algebra. We let «, 7 € II label non-commuting
reflections. We assume, without loss of generality, that 7 =i 4+ 1. We have two cases to
consider: if b, > by then we must deform the path P,z into the path Py_, ® Psq
and if b, < by then we must deform the path P,_4 ® P4 into the path Ps. 5, where
here ¢ — & := Pba—bs,

Proposition 5.12. The elements 1/):3;’7“@,3 ., and 1/1,2 ;"’®P“ * are independent of the

choice of reduced expressions for b, > by and by > by, respectively.

a

Proof. We consider the first case as the second is similar. The bad triples of wg:_ P

are precisely the triples labelled by the integers
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Pl (g.6) <Pl (bas +q£1,ei42) <P (ba + ¢ i41)

for 1 < ¢ < ba, where the first and third steps have residue r, € Z/eZ and the second
has residue 7411 =14 F 1 € Z/eZ. Thus it is enough to consider the subexpression, 1y,
formed from the union of the (rq,r¢41)-strands for 0 < ¢ < b, enumerated above. We
set T=Pypo and B=P,_45 ® P, s, and we let

ti(q) =T~ 1( g) tiv1(q) =T Hbo + ¢ 6i41) tive(q) =T Hbas + g €it2)
B~'(g,ei) biy1(q) =B '(ba +q,€i41) biya(q) =B (bap + ¢, €i42)

for 0 < g < bo + 1. We have that

ti(q) <ti(g+1) <tiya(q) <titalg+1) <tiyi1(q) <tizi(g+1)
bi(q) > bi(q+1) > biya(q) > biy2(qg+1) > biyi(q) > biti(g+1)

for 1 < g < b, and

tl(l) < ti+2(0) < ti_;,_l(l) ti(ba) < ti+2(ba + 1) < ti+1(ba)
bi(1) > bi42(0) > bi11(1) bi(ba) > bit2(ba +1) > biti(ba).

Thus the subexpression 1), is the nib truncation of a quasi-(bs + 2)-expression for w =
(13) € &3, which is independent of the choice of expression by Corollary 4.10. Thus the
result follows. O

We are now free to define the KLR-hexagon to be the element

hex® 7 = TP;“®P . or hex®., _T "Z’®P" ‘*
for b, = bs or b, < bs respectively, which are independent of the choice of reduced
expressions. See Fig. 23 for an example. We wish to inductively pass between the paths
Pase and Py_, ® Pso s by means of a visual timeline (as in Fig. 22). This allows us
to factorise the KLR-hexagon and to simplify our proofs later on. First assume that
bo = bs. We define Hy o 50 to be the path

P ®ME= BRIPY o MY TORIPY,, s MY, M T RPY 0<g<b

Pop M= RIPYS ™7 o PYL, o MY, RIME R Phe, by < q < ba
b —ba

Py RIMY KPS, @0 Pl s MY, KIPY RIPY bo < q < bo

This is demonstrated in the first 5 paths in Fig. 22. We now come from the opposite side
to meet in the middle. We define Hy 5.5 to be the path
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Fig. 22. An example of a timeline for the KLR hexagon. Mutating from P, 54 to Py_. ® Psn s for by > b
(again we do not picture the determinant paths). Steps in the procedure should be read from left-to-right
along successive rows (the paths are Ho opa, Hi,apa, H2,apa, Hs apa, Hiapa, Ha,apa = Pog B Hy pap,
H31 o ,Hg, o ,Hly o ,H()’ o )

by — b — : b b
Pq@ X Mi+1 ® Mg,i+1 X Pi+2 M?a X P?—T—l Qe Mz‘+1 X Pi+2 0<qg<bd

P.RIMI" KM, BPY, s MPTIRPY @0 ML BIPY,  be < g <ba
P.RIMIT RPY, 0 MEs MPY @ M T RPY, be < ¢ < ba

This is demonstrated in the final 5 paths in Fig. 22. While the definitions seem technical,
one can intuitively think of this process as “flattening” the path layer-by-layer by means
of the timeline depicted in Fig. 22. We see that Hy_ , asa = Pg—o X Hy_, sas.

We now assume that bo < bs. We define Hy o 2o to be the path

by — b —
Py BIMY™ RIPY ) @0 M T RIP) L, o MY RIMP T RIPY 0<q<ba
~ L by— —be, b o —ba
Py KM} K P?—i—l Do MR MITT RP M?,i+2 X Py, XP] ba <q<Db
Po B B P, 0 MU BPY, o Mg, BPYL @RI b <q<ha
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€1 €2 €3 €1 €2 €3 €2 €1 €2 €1 €2 €1 €2 €2 &2

o 1 2 4 0 1 L o o 2 3 1 2 0 1 ¢ 3 2 0 . .

o 1 4 0 3 4 2 1 0 3 4 2 1 2 0 1 4 0 3 2 1

€1 €2 €1 €2 €1 €2 €1 €1 €1 €2 €3 €2 €3 €2 €3 €2 €2 €2
Fig.23. Let h =3,f=1,e=>5and o« = €5 —e1, [J = €1 — £2. We depict the element hex_ 7, and highlight

the dilated word nib(1, 3)5 in bold. The reader should compare the 11 highlighted strands with the diagram
from &11 depicted in Fig. 15. (We have drawn all bad-crossing so that they bi-pass on the right.)

We now come from the opposite side to meet in the middle. We define H, 5o to be the
path

Pao X M?+1_q XM, K P?+2 M= "1 RPYey o M?H X P?JFQ 0<qg<ba

bs—q b b -~ boap—q b

Pog MM, " BIME;  BIPE, s Py @a MTy T RIPG, bo < g <b
q—b bss—q b bo o bas—q b

PLRIMI RMY TTRPY, L Pl o, M T RPY, by < q<ba

With our paths in place, this allows us to define

hex® oz(q) _ THq,a a hex o (q) _ T:q+1, o

Hot1,a0a a.8c

and we set

hexa > — H hexa a(q) hex aff — H hex a (q)

baps>q=0 0<q<ba

which allows us to factorise the hexagon generators as follows

afo hex®”*(epo—» @ hexpnps) for by
b

(epo—o @ hex™ ¥ )hexsqp  for by

NV
>~ o

and, finally, we define

are | )ep, ® hex. % ifbo <D
ep. ® hexo‘aa if by =0
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the latter notation will be useful when we wish to consider products of such hexagons
without assuming b, > bs or vice versa. Finally, the following shorthand will come in
useful when addressing some of the relations in Section 6. Recall that adjustment is
invertible. With this in mind, we set

hex % o = ading o (ep, @ hex? 50 @ ep, )adiy ™! = oo o
where the second equality follows by removing the resulting double-crossings using
Proposition 4.4 in each case. Independence of the reduced expression follows from
residue-commutativity of adjustment. Alternatively, the reader is invited to make mi-
nor modifications to the proof of Proposition 5.12.

5.6. The commuting strands diagram

Let ~, /7 € II be roots labelling commuting reflections (in terms of convention 2.32,
this is equivalent to |k —j| > 1). We wish to understand the morphism relating the paths
P, ®Ps to Pz ® P,. We suppose without loss of generality that b, > bgs.

Proposition 5.13. The element wgwggw 1s independent of the choice of reduced expression

Proof. There are precisely b,z like-labelled crossings. The first b, of these connect the
P_l(q,Ej)th and P ! (b + g, ;41)th northern vertices to the P (q,aj)th and P (b +
¢ €541)th southern vertices for 1 < ¢ < b,. The latter bs of these connect the P (b +
q,€k+1)th and P'y (g, €x)th northern vertices to the P 'v(b +q,ek+1)th and P (q, e)th
southern vertices for 1 < g < b,.

For k # h (respectively k = h) each of the first 1 < g < b, (respectively 1 < ¢ <
b~) like-labelled crossings forms a braid with precisely one other strand, namely that
connecting the Pfl(b + ¢,ek+1)th top vertex to the Pf,ly(b + ¢,&k+1)th bottom vertex
for 1 < ¢ < b, (rebpectlvely 1 < g < by). This strand is of non-adjacent residue (by
our assumption that v and /7 label commuting reflections). The latter b cases can be
treated similarly.

Thus each of the braids involving a like-labelled crossing (either totalling ba~ if k,j # h
or by, — 1 otherwise) is residue-commutative. Thus 7,/):;"7 is residue commutative and the
result follows. 0O

Thus we are free to define the KLR-commutator to be the element

Y =7 P, ®P

com P oP,

which is independent of the choice of reduced expression. We wish to inductively pass
between the paths P, @ Ps and Ps ® P, by means of a visual timeline (as in Fig. 24).
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\
’ +ejt
+ek +ek41
+e;
Fig. 24. An example timeline for the KLR commutator. We mutate from P7" to Ps, for b, = 4,bs = 3.
Reading from left-to-right along successive rows the paths are p-Lf pos plLayd pZoas pdoyd — P2 oy,

P1,5~, Po,s~, P—1,5~. We draw paths in the projection onto R{e; + €11, + ent1}-

We define
My R Py @MY RIPY, for g = —1
o =S M@, MY KPY, KPY for g =0
P BIM) Yo MY KM TIRPY KPP for 0<g<b
P oMY RIMY L RMIRIPY KPY, forby 2q>b
o qu@ b M?b_q b MZJ? KM TRPY RPyY, for by >q>0
Mj Mk”@Pj XP, forq =0
M2 RPYL My P for g = —1
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and we note that Cp_ . = C*7” (to see this, note that the definition of the former
contains a tensor product ®. and the latter contains a tensor product ®; and this
explains the differences in the subscripts). We now define

a7 — pChY — Ca+1.0y
com =7 com =7 .
Catly a7 Caoimy
This allows us to factorise
g ¥ Yo — a7y —
com!_ = com”" com . com”” = H com compay = H COMyg, -
—1<q<b by>q2>2—1
The following notation will come in useful in Section 6
vyfw _ vyfw
com, ', =ep, @com, ' ®ep,.

5.7. The isomorphism

Finally, we now explicitly state the isomorphism. Our notation has been chosen so as
to make this almost tautological at this point. We suppose that « and /7 (respectively
and ~) label non-commuting (respectively commuting) reflections. We define

U yﬁbr(n, o) — fno (Ho/Ho Yy HY) fro (5.4)

to be the map defined on generators (and extended using vertical concatenation and
contextualised horizontal concatenation) as follows

(1) =ep, U(lg) =ep, ¥(1°%) =ad’y W(SPOTY) = spot?

W(FORKZS) = fork??,  W(HEX..) = hex%. W(COMY) = com?

and we extend this to the flips of these diagrams through their horizontal axes.

Remark 5.14. We note that our use of contextualised horizontal concatenation implies
that equation (5.2) holds (see also Example 5.1).

6. Recasting the diagrammatic Bott—Samelson relations in the quiver Hecke algebra

The purpose of this section is to recast Elias—Williamson’s diagrammatic relations of
Subsection 3.1 in the setting of the quiver Hecke algebra, thus verifying that the map ¥,
is indeed a (graded) Z-algebra homomorphism. We have already provided timelines which
discretise each Soergel generator (which we think of as a continuous morphism between
paths with a unique singularity, where the strands cross). We will verify most of the
Soergel relations via a similar discretisation process which factorises the Soergel relation
into simpler steps; we again record this is a visual timeline. We check each relation
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in turn, but leave it as an exercise for the reader to verify the flips of these relations
through their vertical axes (the flips through horizontal axes follow immediately from
the duality, ). We continue with the notations of Convention 2.32. Our relations fall
into three categories:

e Products involving only hexagons, commutators, and adjustment generators. Sim-
plifying such products is an inductive process. At each step, one simplifies a non-
minimal expression (in the concatenated diagram) to a minimal one without changing
the underlying permutation. This typically involves a single “distinguished” strand
which double-crosses some other strands; these double-crossings can be undone using
Proposition 4.4. (This preserves the parity of like-labelled crossings.)

e Products involving a fork or spot generator. Such generators reflect one of the in-
dexing paths in an irreversible manner. Simplifying such products is an inductive
process. At each step, one rewrites a single pair of crossing strands (in the concate-
nated permutation) which do not respect step-labels of the reflected paths. By undoing
this crossing using relation (R3), we obtain the scalar —1 times a new diagram which
does respect the new step-labelling for the reflected paths. (Thus changing the parity
of like-labelled crossings and also changing the scalar +1.)

e Doubly spotted Soergel diagrams (such as the Demazure relations) for which we
argue separately.

In each of the former two cases, we will decorate the top and bottom of the concatenated
diagram with paths T and B (which we define case-by-case) and use the step-labelling
from these paths to keep track of crossings of strands in the diagram.

6.1. The double fork

This leftmost relation in (S1) is incredibly simple to verify, and so there is no need to
record this in a timeline. For o € II, we must verify that

S ——
| |
|
w e I (6.1)
|
|
|
| |
| | | | | |
Thus we need to check that
(ep., @ forkis) o (forkgs @ep.) = (forkgS ®ep,) o (ep, ® forkan) . (6.2)

The permutation underlying ep_ ®fork’? is the element wg indexed by the pair of paths

T=P,®P,®P, and B=P,®P° @P,
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which differ only by permuting the final (b, h + b,,) steps. The permutation underlying
fork S @ ep,, is the element wg,/ indexed by the pair of paths

T=P,®P’, ®P, and B ' =P,®P,®P,,

which differ only by permuting the first (booh — bo) steps. These elements of Ggp_p,
commute as they permute disjoint subsets of 1, ..., 3b,h. Thus the elements fork ®ep
kaa

and ep_ ® fork(,; commute by relation (R2) (and the result follows immediately).

Remark 6.1. The reader might wonder why the element wg appears to permute a greater
number of strands than wg, . This is because our distinguished choice of P,, has a total
of (bo,h — by ) steps below (or on) the a-hyperplane and b, steps above the hyperplane.

6.2. The one-colour zero relation

We now consider the rightmost relation in (S1). For « € II, we must verify that

= fork?7, o forks =0 (6.3)

For b, > ¢ > 1 the paths F; 4o and F,_; 4, are concatenates of a single a-crossing path
and a single a-bouncing path. By Proposition 4.4 we have that

forkie (@)er, . .. forki S (q) = er, ..

for 1 < g < b,. We apply this from the centre of the product fork2? o forkS" which is
equal to

epooforkl s, (ba — 1) - - - fork’ %, (0)epae o epaaforkis (0) - - - forkSs (ba — 1)epo
until we obtain
fork??, o forkgS = ep, forkl%, (o — L)er, . forkgS (be — 1)ep, .. (6.4)

This is illustrated in Fig. 25.

We cannot apply Proposition 4.4 to the pair of paths Fp__1 40 and Fp_ _2 40 be-
cause the former path passes through the a-hyperplane once, whereas the latter passes
through /bounces the a-hyperplane twice. There is a pair of double-crossing r-strand
(for some 7 € Z/eZ) between the P (b, e;)th and P, L (bae,ciq1)th top and bottom
vertices in the diagram
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SO0 N

I
Simplifies by Proposition 4.4

Fig. 25. Let h =1, ¢ =3, 0 = (0,2, 4) and e = 6. The lefthand-side is fork?, fork$'<; we apply Proposition 4.4

o)

to undo the highlighted strands (compare the highlighted strands with the highlighted strands of the first
diagram of Example 4.6). The thick double-crossing of strands in the rightmost diagram is zero by the first
case of relation (R4) (after applying commutativity relations).

epoforkl?, (ba — 1)er, _, . forkg S (bo — 1)epoe

This double-crossing of r-strands is not intersected by any strand of adjacent residue.
Therefore the product is zero by the commutativity relations and the first case of relation
(R4), as required.

6.3. Fork-spot contraction

We now consider the second relation depicted in (S1), namely

(spot?, ®ep,, ) o forkgs =ep, Qep,, (6.5)

for o € II. For 0 < g < b, we define the spot-fork path to be

FSyo = Py ®IMb™ @, PY % g MU 79 RPY ) = PO RME ®PY 9 I MY~ "9 @ Py
which is obtained from F, 4o by reflection by s, (see Fig. 26). We note that FSy_ o =
Ps ® Po and FSp o = Pt’l ® P4. Thus these spot-fork paths allow us to iteratively prove
equation (6.5), as we will see below.

The following example illustrates all of the important ideas in the proof of this relation
(in particular, it illustrates our iterative approach using the fork-spot paths, examples
of which are depicted in Fig. 26). These ideas will be used repeatedly when we consider
(more complicated) relations in the remainder of this section.
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66 ¢4

Fig. 26. An example of a timeline for the KLR spot-fork relation, with £ =1, h =3, e =5 and o« = e3 — £1.
From left to right we picture the paths FSg o = PEX ® P&, FS1,a, FS2,a, FS3,o = Py ® P

Example 6.2. We set 0 = (0,2,4) and e = 6. We will consider the following product

€1 €2 €3 €1 €2 €3 €1 €3 €1 €3 €3 €3

0o 2 4 5 1 3 4 2 3 1 0 5

I Ps®Po
I Tsl,a®Pa
’ I ; Sl.,a@P(x
| | _ TPEX@)PQ
€1 €3 €1 €3 €2 €2 €1 €3 €1 €3 €3 €3
o —
€1 €3 €1 €3 €3 €3 €1 €2 €1 €2 €3 €3
| P ®P,
\ H i Fl,wa
{ Fioa
| | NSO M,
0o 2 4 5 1 3 4 2 3 1 0 5
€1 €2 €3 €1 €2 €3 €1 €3 &1 €3 €3 €3

where we have emphasised the factorisation of spot and fork by recording the steps
within these paths at top and bottom and the corresponding labelled Tg elements for
each layer of the righthand-side. We have also recorded the residues of paths (at the very
top and bottom: 0,2,4,...).

Notice that the path at the bottom of the spot-strand KLR-diagram is not the same
as the path at the top of the fork KLR-diagram — however, the residue sequences are
identical (simply trace through the residues on strands). We start at the middle of the
product — that is we first compute

Ty e o TR
as follows: we first place the diagrams on top of each other recording the paths S; o ® P
and Fi 4o ® P, at the top and bottom of the diagram (notice that the permutation is
not step-preserving) and we highlight the strands in the product which have crossings
of non-zero degree
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€1 €2 €3 €1 €3 €2 €1 €3 €1 €3 €3 E3

024531423105_51,a®Pa

TSl,rx@Pa ° TP(,®P(, = m

PL’) ®RPa Fi oo

0 2 4 5 3 4 2 1 3 1 0 5 Figa

€1 €2 €3 €1 €3 €1 €E3 €3 €1 €2 €£3 €3

We apply relation (R5) to obtain two terms: the term in which we undo this highlighted
braid and the other term which is equal to zero by Lemma 4.1. We relabel the bottom
of the (non-zero) diagram by the folded fork path, FS; 4, and hence obtain

€1 €2 €3 €1 €3 €2 €1 €3 €1 €3 €3 €3

0 2 4 5 3 1 4 2 3 1 0 5 S1,a®P,

S1,a®Pa Po®Po _
TPK@PQ oTgr U =

0 2 4 5 3 4 2 1 3 1 0 5 FSiga

€1 €2 €3 €1 €3 €1 &3 €3 &1 €2 €3 €3

which we now observe is a step-preserving KLR diagram. We trivially undo the double-
crossings in the above diagram (using Proposition 4.4) and hence obtain

S1,a®Pq P.®Po _ ~~S1,a®Pa
Yo op. ©Te o, = Yor,,.

We now insert this back into the larger product (see also equation (6.6)) and hence
obtain the following (not-step-preserving) KLR diagram of

(spot’, (1) ®ep_) o Tg;’fipu o forkg s (1)
which is equal to

E1 €2 €3 €1 €2 €3 €1 €3 €1 €3 €3 €3
- P¢ & Pa

>< Sl,a & Pa

SFl [.Ye%

M\ S Py@P,

E1 €2 €3 €1 €2 €3 €1 €3 €1 €3 €3 €3
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where we have highlighted the wiggly strands from the previous step (to facilitate com-
parison) and we have emboldened the unique pair of crossing strands of the same residue.
The rightmost wiggly strand and the pair of bold strands are the only strands have cross-
ings of non-zero degree. We apply the same argument as above to undo this braid (we
do not need to relabel the bottom of the diagram in this case, as the final fork-spot path
is equal to Py ® P,,) and we hence obtain

€1 €2 €3 €1 €2 €3 €1 €3 €1 €3 €3 €3
>< . Py®Pg4

3 Sl,a ® Pe
/ SFl,wa

IS L e,

€1 €2 €3 €1 €2 €3 €1 €3 €1 €3 €3 €3

which we now observe is a step-preserving KLR diagram. We trivially undo the double-
crossings (using Proposition 4.4) and hence obtain

51, ®Pa
(spotf (1) ®ep, ) 0 Ts;’lﬁ o fork< (1) = ep,wp..
as required.

What the above example illustrates is that we start at the middle of the product on
the lefthand-side which is labelled by two distinct paths which have the same residue
sequence, that is we start at the middle term in the product

(spot?, @ ep,.) (eps wp., © ep, gps,) (forkgs)

where we note that ep, gp = €p_gps . Each iterative stage (of which there are two in
Example 6.2) simply transforms a non-step-preserving KLR-permutation into a step-
preserving one (by undoing all non-zero-degree crossings and relabelling). Thus the
(seemingly technical) spot-fork paths become incredibly natural, as does their “time-
line” construction (each stage corresponds to one KLR braid which we undo). Most
beautifully of all: one should emphasise that the spot-fork path is simply the reflection
of the fork path through the a-hyperplane (what else?!). This brings us to the general
case:

Proposition 6.3. For o € Il and 0 < g < b, we have that

Sq,a®Pa S «®Pa
(spot?.(q) ® ep,,) 0 Y&~ """ o forkg () = Teght ™ e (6.6)
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Proof. We first note that the righthand-side is residue commutative (one can reindex
the proof of Proposition 5.9). We decorate the top and bottom edges of the concatenated
product on the lefthand-side of equation (6.6) with the tableaux T, = S, o ® P, and
B, = FSq .o respectively for 0 < ¢ < b,. For each 0 < ¢ < bn, the product on the
lefthand side of equation (6.6) has a single pair of strands whose crossing if of degree
—2: Namely, the strand @); from connecting the Bq (¢ + 1,&;)th bottom node to the
T, (ba+q+1,€i41)th top node and the strand Qo connecting the B, ! (bo +¢+1,i41)th
bottom node to the Tq_l(q + 1,&;)th top node. The strands @1 and @2 are both of the
same residue, 7, € Z/eZ say, and they cross each other exactly once. This crossing of
rq-strands is bi-passed on the left by the (rq 4 1)-strand connecting the B, *(be +¢,&;)th
bottom node to the Tq_l(ba + ¢, €i)th top node. We pull the (ry — 1)-strand through this
crossing, using relation (R5). We hence obtain two terms: the term in which we undo
this braid is equal to the righthand-side of equation (6.6) and the other term is equal to
zero by Lemma 4.1. O

Equation (6.5) holds by iteratively applying Proposition 6.3 a total of b, times, as in
Example 6.2.

6.4. The spot and commutator

Let /7,~ € II label two commuting reflections, we now verify the leftmost relation in
(S6), namely that

P, @P" .
com!_ (spot, ®@ep,) = Tp’ gp = (ep, @ spot, )adj’ (6.7)

where the righthand equality is immediate. We now set about proving the lefthand-
equality. We assume that bs < by (the other case is similar, but has fewer steps). We
define

KM, IR P K Py

P.RIMI RM) v forby>q>b

k,j+1

Po®M TTRIMY . BIM URIPY KP, forbs =g >0

SC - k,j+1
9, T
M) RIMy KPY RPY for g =0
M) KPY RM) ®PY, for ¢ = —1

which is obtained from C,4 2+ by reflection through ss. We invite the reader to draw an
example of the timeline by reflecting the final four paths of Fig. 24 through s;.

Proposition 6.4. For 0 < g < by, we have that

SCqq1,
com~(q) o T 5, o (spot. (q) ®ep,) = TSH?I b
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SCo. iy

(note that Y’ @p., = com ~(=1)) and for bz < q < by, we have that

com 1 (q) 0 Tp p! = Tp ™. (6.9)
Proof. All these elements are residue commutative (by reindexing the proof of Propo-
sition 5.13). We prove equation (6.8) and (6.9) by induction on 0 < ¢ < by (the
g = —1 case is trivial). Label the top and bottom frames of the concatenated dia-
grams on the lefthand-side of equation (6.8) and (6.9) by the paths Tq11 = SCqi1, 0+
and Bgy1 = S¢41,0 ® P4. The concatenated diagram on the lefthand-side of both equa-
tion (6.8) and equation (6.9) has a single crossing which does not preserve step labels.
Namely the strands connecting the T *(q + 1,;)th and T (bs + ¢ + 1,£;41)th top
vertices to the B, ' (¢ +1,¢;)th and B; ' (bs + ¢+ 1,£;11)th bottom vertices form an r-
crossing, for some 1, € Z/eZ say, and these strands permute the labels +¢; and +¢;;.
This crossing is bi-passed on the left by a strand connecting the T Yoy +q, €j41)th top
and Bq_l(b + ¢,€;41)th bottom vertices. We undo this triple using case 2 of relation
(R5) and hence obtain the righthand-side of equation (6.8) and (6.9). O

In order to deduce that equation (6.7) holds, we observe that

SChry iy TPﬂ,@Pb

com™ o (com . (spot. @ ep,)) = com™ 0 Tp 3" = Ty op

as the lefthand-side of the final equality is minimal and respects step-labels.
6.5. The spot-hexagon

For o, 7 € II labelling two non-commuting reflections, we now check the rightmost
relation in (S3), namely that

v = + U ' (6.10)

(and we leave it the reader to check the reflection of this relation through its vertical
axis). In other words, we need to check that

o
(ep, @spot’, @ep_  Jhex’ %

is equal to

adjﬂaaﬁ(ep ®@ spot?) + ep. ® (fork2?, ® spot., Jadjo " (ep.. @ spot’, @ ep._)).

e
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Fig. 27. An example of the tableaux SHy 505 for 0 < ¢ < bo . The reader should compare these reflected
paths with the final five paths of Fig. 22.

We set j =i+ 1 so that a« = ¢; — €41, [/ = €;41 — €42. We will begin by considering
the lefthand-side of the equation. In order to do this, we need to use the reflections of
the braid H, s s-paths for 0 < ¢ < bo s through the first F-hyperplane which they come
across (namely the hyperplane whose strand we are putting a spot on top of) and we
remark that this path will have the same residue sequence as the original Hg s 5-paths,
but different step labelling. We define SHy ss to be the path

P RM/ I RM?,, RPY

ba—
7,541 X M 1 X PZ+1 @C M

it+1 z+1IXP 0<g<bd

P, X Mq ’ X M1 i1 X P1+1 Mba_q X P1+1 P Mz+1 X P1+2 b < q < ba

P &Mgib |Z|P |Z|Mgz_ﬁ‘5|Z|Pb 1§<>(¥ Mz—T—l q|Z|P2+2 bagnga

for b, > by (the by, < by case is similar). See Fig. 27 for an example.
Proposition 6.5. We have that

(ep, @spot’ @ep,,. ) hex” ™ =P, (6.11)
Proof. First, we remark that the righthand-side of equation (6.11) is residue-commuting
and so makes sense. For 0 < g < b, 5, we claim that

Py®Sq, s ®Pe Ps®Sqi1,5 0P
(ep, @spot’(q) @ep,.) Tplaafi, .~ hex”  (q) = Tplggh 7 (6.12)

and we will we label the top and bottom of these diagrams according to the paths
Ty =Py ®Sg41,5 ®Pos and By = Py ® SHgy1, 50 respectively (with the convention
that Sq 5 = P, for ¢ > bs). Again, this element is residue-commuting and so there is
no ambiguity here. In the concatenated diagram on the lefthand-side of equation (6.12),

there is a single pair of strands, @ and @’ whose crossing if of degree —2 (of residue
rq € Z /e, say); these strands connect the

T, (o +q+1,e41) Ty (ban +q+1e42)

top vertices and the



C. Bowman et al. / Advances in Mathematics 429 (2023) 109185 63

€1 €2 €3 €4 €5 €1 €2 €4 E5 E3 €1 €3 €4 &5 €1 €2 €3 €4 €5 €1 €2 €4 €5 €3 €1 €3 &4 €5

0 2 4 6 8 91 5 7 3 8 2 4 6 02 4 6 8 91 5 7 3 8 2 4 6
[77L _

0 2 4 6 8 9 1 5 7 8 4 6 3 2 0 2 4 6 8 91 5 7 8 4 6 3 2

€1 €2 €3 €4 €5 €1 €2 &4 &5 £1 €4 &5 €3 €3 €1 €2 €3 €4 €5 €1 €2 €4 €5 €1 €4 €5 €3 €3

Fig. 28. The product (spot’,(0) ® ep, )hex”*”(0) in the proof of Proposition 6.5 for h = 1, £ = 5, k =
(0,2,4,6,8), e = 10 and v = g3 — €3, /[ = €3 — €4. The top path is S;,o ® M2 and the bottom path is
SH1, sap ® Ma (the prefix P, and the remainder of the postfix P, = Mg“ X Pg“ would not fit).

B, '(ba + g+ 1,6i11) By l(bay +q+1,ei40)

bottom vertices (thus crossing one another). This crossing of r,-strands, @ and @', is
bi-passed on the left by the (r,+1)-strand from Tq_l(bu +q,€i12) to B;l(ba +q,€it2).

Applying case 2 of relation (R5) to the concatenated diagram we obtain two terms:
the term with the crossing is bi-passed on the right is zero by Lemma 4.1; the term in
which we undo the crossing is equal to the righthand-side of equation (6.12) (since the
resulting diagram is minimal). An example is given in Fig. 28. O

We now wish to show that

Pyse
TE e, X
is equal to
adj’”aaﬁ(ep ., @spot?) + ep. ® (fork2? @ spot. )adjo " (ep, @ spot’, @ ep.)).

In what follows, we assume that b, > bs. In order to consider the first term, we use the
reflections of the Hy o zq-paths for 0 < g < bo s through the final a-hyperplane which
they come across (namely the hyperplane whose strand we are putting a spot on top
of) and we remark that this path will have the same residue sequence as the original
Hy o sa-paths but with a different step labelling. We define S, H, ., 5~ to be the path

bs— b _
Py MY RIPY ) @0 M TRIP) L, o MY RIMP " 0 Pl 0<g<b

b b

o bap—aq bo— - o

P BIMI P51 T @0 Py 0 My BIMP T 0, PY2y by <q<ba
b bap—aq b b ~ be —b,,

Py M KPS " @, P/, M, 1o @a Py BPY bo < q < by

In order to consider the second term, we need the reflections of the Hy o sa-paths for
0 < ¢ < b5 through the first -hyperplane which they come across. We define S Hq
to be the path

apa
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Fig. 29. An example of the paths S H, oo for bos > q > 0.

Poo BIMP™ BIPYT) o My T RIPE, RIMY, IIMP™ T RIPY:, 0<g<b

Pgo B M}~ ) P?—tl_q O P?+2 X M?,z‘+2 KMy 1R P by << ba
Py BIMY RIP ™ @, Y, RIMY,,, RPY BIPY e be < q < ba

See Fig. 29 for an example of the SoH, . paths. We leave it as an exercise for the
reader to draw the S;H paths. Finally, for the purposes of the proof we will also

q,axpox
need the following “error path”

eS:H, ., =Py RM @, PYy RIM, 0 KPP RIMY, , KIPY KIP
which one should compare with the final path (the b, sth case) above. One should repeat

the above definitions for the b, < bs case.

Proposition 6.6. We have that

Ps®P.®P’ @P”

P.®P.®P%.®P, " (6.13)

Pooo _ ~Ps®P.®P,Q®P
TP¢®SHbQ o NeXoasa = Ty o, op ®P?, +7

Proof. First, we remark that both terms on the righthand-side of equation (6.13) are
residue-commuting. We suppose b, > bs as the other case is similar. We observe that

yPoce — PoBP.OPaBP: TP“’®P QP P
Po®@SHy_, , rar T P.®SaHy_  ian - P.®SH,

,Ba

as the underlying permutations (and residue sequences) are all identical. We set

Ta =Py, ®P, QP T,=P,, @P, @P
Bq,a:P ®Squ+17a o Bq, =P, ®S Hq’

for bo s > q > 0. We first consider the ¢ = b, 5 — 1 case. The concatenated diagram
Pooo
Yo osH, o (ep, ® hexppa(bas — 1))

contains a single like-labelled crossing of 74, —1-strands connecting the pair
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T (bara +1,6i41) = T M bay +1,6) T2 2b0s +1,6i40) = T (baia + 1,€i41)
of top vertices to the pair of
BL (20 +1,6i40) = B (basa + 1,6i41) BL'(baie + 1,6i41) = B (bas + 1,64)

These 1y, —1-crossing strands are bi-passed on the left by the 74, -strand connecting
the

T2 (200 ci2) = T (2bas,i2)  BL'(2bas, €iv2) = B! (200, €i42)

top and bottom vertices. We apply case 2 of relation (R5) to this triple of strands and
hence obtain

Pooa _ ~P,RP.®P, QP Ps@P.QP" ®P% P ®eS:H_
TP«»®5Hba an¥oapalbas —1) =T TTp ges . H P.®S:H,

o

- °P ®Sme(x 1, afo -1,

(6.14)
where in the first term we have undone the triple-crossing and in the second “error” term
the 7 -strand bi-passes the crossing to the right (and is labelled by the “error path”).
We are now ready to consider the b,s — 1 > ¢ > 0 cases — which we do separately for
a and /7, in turn.

Case a. We first consider the first term on the righthand-side of equation (6.14). We
claim that

P, ®P. PP P @PL®P
T 9 Hy 1 0o M%0aial(@) = Tolgs b, (6.15)

for bos —1 > q = 0. For each b, s > ¢q > b, the concatenated diagram in equation (6.15)
contains a single like-labelled crossing of r4-strands (for some r, € Z/eZ say) connecting
the pair

T;1(2b + 3be — q,€i+1) T;l(gb + 3be — q,EH_Q)
of top vertices to the pair of
BL (35 +3ba — q,€i42)  BLN(3bs + 3ba — ¢, €i41)

bottom vertices, respectively. For b, 5 — 1 > q > b, the aforementioned (unique) pair of
crossing rg-strands in

Py ®Pa ®P _ APs®Pa®P
TP ®SaHgt1,a ahex o a(q) - TP ®SaHg apa

is bi-passed on the left by the 7,1-strand connecting T (3b: + 3bo, — ¢ — 1,£;42) and
B.1(3b: + 3bs — q — 1,6;42) top and bottom vertices. Applying case 2 of relation (R5)
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we undo this triple crossing (the other term is zero by Lemma 4.1) as required. Now for
bo > q > 0 the concatenated product on the lefthand-side of equation (6.15) is both
minimal and step-preserving and so the claim follows.

Case /7. We now consider the second term on the right of equation (6.14). We have that

P.®eS:H

P.®eS;H
To gs.H

hex,asa(q) :Tp ®S:H

qg+l,axfex q,o [T

afo afo

for bos —1 > q > b, as the lefthand-side is minimal and step-preserving. Now, we claim
that

P,®P,®P?, ®P° . P.®eS;H P, @P,®P?, QP

Tr. ges H, o P.®S Hbm "heX aralba —1) =Tp" s Hyo oo (6.16)
and that
P,®P,®P, ®P" P,®P. P, ©P"
Yo osh, .. nexoaral(d) = Telgs.n * (6.17)

for b, — 1 > ¢ > 0. For each b, > ¢ > 0 the concatenated diagram on the lefthand-side
of equation (6.16) and (6.17) contains a crossing pair of r,-strands connecting the

T by +q+1,6) T H2by +bo+q+1,6i490)

and

B_l(Zb —|—ba+q—|—1,5i+2) B_l(b —|—q—|—1,al)

top and bottom vertices, respectively (note that this crossing does not respect step
labels). This r,-crossing is bi-passed on the right by the (r, — 1)-strand connecting the

T bs +q+2,¢) B by +q+2,¢)

top and bottom vertices. We undo this triple-crossing using case 1 of relation (R5) (the
other term is zero by Lemma 4.1). The concatenated product is minimal and step-
preserving, as required. 0O

Finally, in order to deduce equation (6.10), we observe that

TP¢ «®P

adj?. % J(ep... ®spotl) =T, ey

J(x(z)

Py, ®P°, ®P°

ep, @ ((forkl?, @ spot.)adja . (ep,, @spot’ @ep,)) =T, oty

as the concatenated diagrams are minimal, step-preserving, and residue-commutative.
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6.6. The fork-hexagon

For «, 7 € II labelling two non-commuting reflections, we now check the leftmost
relation in (S3), namely that

oo

(ep., @ hex?, % )(ep, @ forkly @ep. )adj 70 % (ep. . @ hex " 7) (6.18)
is equal to

[z]2]e] e

o (ep,,,. @fork’ ) (ep, @ hex”

® ep )adj’ > > (6.19)

afa agla

adj,,
Unlike earlier sections, we find that neither of (6.18) or (6.19) is of minimal length. We
again set j = ¢ + 1. First assume that b, > bs. For (6.18), we must simplify the middle
of the diagram. We define FH, o5~ to be the path

P X Mb= R Pl MY, 7 RPY; M{, o, BIMPTTRPY: 0<q<b

Py XM= P IR PY, M”+2®M”~ IR Pbe by < q<ba
N bes— —ba

P¢®Mf BP;” quzw M11+2&P’ZL)+1IXP’LQ boe < ¢ < ba

We have that FHy o506 ~ Hgapa because the former is obtained from the latter by
reflection through the first a-hyperplane it crosses, this is depicted in Fig. 30. Similarly,
we define FH, 20 to be the path

quj&Mqu&Mle&PHQ M" q@PbHXQMZ_l Pihio 0<g¢g<b

b

P.oBIMIT" MY, BPY, s M TIRIPY @0 MY o P, be < g <ba

—b bos— b
P.RM!I" ®PY, M{TPs RPY ) @a Migy 0 Pl bo < q<ba

We have that FHq sas ~ Hg 5oz because the former is obtained from the latter by
reflection through the final J-hyperplane it crosses. We note that FH_  oap0 = Pg—o X
FH, ap- One can define the paths FH, o5 and FHy gaps for by < bs in an entirely
analogous fashion.

a3

Proposition 6.7. The element T po 18 independent of the choice of reduced expres-

®
sion.

Proof. We proceed as in the proof of Proposition 5.12. We set T = P_ 44547 and B =
Pawa®Pb~F0r0\ \b(1+1,Webet
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Fig. 30. An example of the tableaux FHg oo for bos>g>0. We note that FHy_ opa = FHp . sap. The
reader should compare these reflected paths with the first five paths of Fig. 22.

ti(q) = T (bar +q,€) tit1(q) = T (boe + ¢, €i41)
tivo(q) = T (bapa + ¢, €it2)
b;(¢) = B~ (bas + q,€i41) bi+1(¢) = B~ (baao + ¢,€it1)

bit2(q) = B~ (basa + ¢, €ita)-
We have that
ti(q) <ti(qg+1) <tiya(q) <tiga(g+1) <tip1(q) <tizi(g+1)
bi(q) > bi(g+1) > bira(q) > biy2(qg+1) > biy1(q) > biti(g+1)
for 1 < g < b, and

tz(l) < tH_Q(O) < ti+1(1) ti(ba) < ti+2(ba + 1) < ti+1(ba)
bl(l) > bi+2<0) > bi+1(1> bz<ba) > bi+2(ba + 1) > bi+1(ba).

Thus the subexpression 1), is the nib truncation of a quasi-(bs + 2)-expression for w =
(13), which is independent of the choice of expression by Corollary 4.10. Thus the result
follows. O

Proposition 6.8. We have that

. P o
(ep., @ hex?, %, )(ep. . @ forkl? @ep . )adj 00 G ep., ®hex 5.0) =T,

Proof. For 0 < ¢ < bsn, we claim that
(ep, @ hex,aia(q))(ep, @ forkls, ®@ep, )adj o = (ep, ., @ hex"*"¥(q)) = T:Zu"%';f_iz -

and the statement of the proposition will immediately follow. We now prove our claim.
We set Ty = Py ® hexqapa(q) and By = Pos ® FHy 5. We consider the strand, @Q,
from Tq_l(ba + ¢,&;) on the top edge to B;l(ba o« +¢q,€i+1) on the bottom edge of the
diagram

(ep, @ hexaa(q)) o (fork?, ®ep,, ) © (ep,, @ hex™"%(q))
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for 0 < ¢ < bap. We wish to consider the non-zero degree crossings of the rg-strand @
within the diagram. These are with the strands 2y, 25, 23, 24, 25, Zg, 27 connecting
the

T;_il(ba +q—1, 51‘)7 Tq__&1(ba o t4q, €i+1)7 Tq__il(b(x oatqg+ 1>€i+1)7

Tq_—il(ba oatqg+ 2a €i+1)
T

1

Tq_.;}l(ba % +Q+1,€i+2)7 q+1(ba « +q+2a€i+2)7 Tq__&l(boz [e% +q+378i+2>

top vertices (which are ordered in increasingly from left to right) to the

B;Jil(ba +q»‘€i)a B;Jila)a a+q75i+1)7 B;il(ba +q+175i)7 B;Ji1<ba a+q+2a8i+1)
Boti(basas +a+1,6i12), Bili(bavas +a+2,6i12), Byli(basas +a+3,6i42)

bottom vertices, respectively. The residues of these strands are ry + 1,74 + 1,174,174 — 1
for the first row and r4 4+ 1,74,74 — 1 or the second row. We have that

Tl (bar +a—16) < Tl (basa +a€it1)

B;Jil(ba + Q75i) > B;Jil(ba o+ q75i+1)

and so the pair of strands &1 and 25 form a crossing of (4 + 1)-strands. The strand @
crosses 27 and 2, exactly once each. The remaining 5 strands are all vertical lines (in
other words their top and bottom vertices coincide). The strand @ crosses each of these
vertical strands twice. (Thus the total degree contribution of these crossings is zero.)

We undo the crossing of @ with the triple of strands 25, Zg, 27 as in the proof of
Proposition 4.4. Pull the @ strand through 2, using case 4 of relation (R4) at the
expense of acquiring a dot on @ (the other term is zero by case 1 of relation (R4)) we
then pull the dot on @ upwards through the crossing of @ and 23 using relation (R3)
and obtain two terms: the first term, in which the dot has passed through the crossing,
is zero by case 1 of relation (R4); in the second term, in which we undo one (of the two)
crossings between Q and 23, is equal to wsagﬂﬁ: ~  as required.

Now suppose b, < q¢ < bajs. The rg-strand cohnecting the B=1(4b,, +2b: — q,€i11)
and T~1(4b, + 2bs — ¢,€i41) top and bottom nodes double-crosses the (14 + 1)- 74
and (r, — 1)- strands connecting the T—!(4b,, + 3bs — ¢ — 1,€i12), T 1 (4by + 3b; —
q,€i42), T H(4bs + 3bs — q + 1,6;42) top vertices to the B=1(4b,, + 3bs — q — 1,442),
B~1(4b, + 3bs — q,€i42), B71(4by + 3bs — g + 1,6;12) bottom vertices. We undo these
double-crossings as in the proof of Proposition 4.4. O

Proposition 6.9. We have that

o (ep,,.. @ fork Yhex)? % Cadj” o 0 = yhoeerer (6.20)

goaSa agfa Poogio®P?

adj,,
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Proof. For 0 < g < b, 5, we claim that

Pogopa Pogopa
TPV’®HQ, apa®P (€P¢ @ hex @ a(q+ 1) ®ep ) = TPV)@HQ, apa®Ps” (621)

We decorate the top and bottom edges of the concatenated diagram in equation (6.21)
by the paths T = Pgg.pas and Bgr1 = Py ® Hyt1,0a20 ® Ps. For each 0 < g < b
the strand (of residue r, € Z/eZ, say) connecting the top T~1(bos + ¢,€;41))th and
B, ' (bas + ¢, €i41)th bottom vertices (both of which are equal to (bes + q)h + 0(i + 1))
of the concatenated diagram has double-crossings of non-zero degree with three strands
of residues r + 1, r, and 7, — 1 connecting the T~ (bsnys — 1+ ¢, €i42)th, T (boas +
q,€i40)th, and T~ (bsas + ¢+ 1,6;42)th top vertices to the B;l(b ap — 1+ q,ei40)th,
B;l(b aptq, €ive)th, and B;l (bpas+q+1, g;42)th bottom vertices respectively; we undo
these crossings using Proposition 4.4. Now, for by < ¢ < bnps the claim is immediate
as the concatenated diagram is step-preserving and has minimal length. Finally, we
substitute equation (6.21) into equation (6.20) and the resulting diagram is again step-
preserving and has minimal length and the result follows. 0O

6.7. The tetrahedron relation

We now check that the image of relation (S8) holds in the quiver Hecke algebra. Our
aim is to show that

VYL OO0 oy XV ONODD o XYL OLYOO (o XTH AN [OOD |y XPOVXDAD g g X [IY 7000

hexa'ya ayos ayPafvss affyay[os afayoaess afyoess ayBoafess

is equal to

YOYLONODI @y XIVAVIDOY g VXL AV XODT (VI APY OO o VXV IADOD g YA P0D

com’ya YOYDPD Yyafayass afyopdsoy Yoy ogs iy ag ayLofoee "

Proposition 6.10. The element wg”*::’y 709" is independent of the choice of reduced ex-

[ aet=1=1"]

pression.

Proof. For notational ease, we let j = ¢+ 1 and £ = ¢ — 1 and we decorate the top
and bottom edges with T = Pyoysav000 and B = Psaqypassss respectively. For each
bs < ¢ < baps + 1, we consider the collection of permutations w, formed from the
rq-strands connecting each of the
Bi—1(q) =B (g, &i-1) Bi(q) =B~ '(by +q,:)
Bi+1(q) = B (bary + q,8i41) Bit1(q) = B (bainy + ¢, €i42)

bottom vertices to

Tici(q) =T (g, ei-1) Ti(q) =T by +q,5)
Tis1(q) = T (bay + ¢ €i41) Tis1(q) = T Hbainy + ¢, €i12)
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Fig. 31. The element wng ngw for p =5, h=3,¢=1and o = €3 — €3, = €3 — €4, ¥ = €1 — €2.
The thick black 4-strands form a w = s3s2s1535283 braid. Together with the wiggly strands, these form a
subexpression nibv,,, containing all bad crossings.

top vertices respectively. By definition r4 = rq4+1+1 for by < ¢ < baps+1. We let w denote
the subexpression consisting of all strands from (the union of) the wy-subexpressions for
by < ¢ < bos + 1. One can verify, simply by looking at the paths T and B (and their
residue sequences) that any bad-crossing in w belongs to ¥y (w). We have that

Bi—1(q) <Bi—1(¢+1) <Biy2(q) < Biya(qg+1) <Biti(g) <Biri(g+1) <Bi(q)
< Bl(q + 1)
Tic1(g) > Tica(g+1) > Tiva(q) > Tiga(g + 1) > Tiga(g) > Tiva(g+1) > Ti(g)
for by < ¢ < bas. In other words, the rg-strands for by < g < bo s form a (1 4y(2,3),,

braid (and thus this subexpression is quasi-dilated and of breadth b, ). We now restrict
to the case ¢ = bs, as the ¢ = b, 5 + 1 is similar. We have that

Ti_l(b + 1) > Ti+2(b ) > Ti+2(b + 1) > Ti+1(b ) > Ti+1(b + 1) > Tz(b + 1)

(We have not considered the strands connecting B;_1(bs) and T,_1(bs) or B;(bs) and
T;(bs) as these were removed under the nib truncation map.) Thus ¢yib(w) is independent
of the choice of expression by Corollary 4.10 and the result follows. See Fig. 31 for an
example. 0O

Proposition 6.11. We have that TE”:: - ﬁ‘:g s equal to both

YOYL OO0 oy XV ONODD o q XY LAY OO Y ATH AN VOOD |y o XPOVXDOD (g g [ XY 7000

hexa'ya [e%a%al"] ayfBalvyos affyayPod alfayallero afyo S oo ayfalopd
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and

YOYPANOOO @ XY ONODOY | @ VXD XV ATOD VI ALY ADOD ) o TV XYLOXDDD o OVA P0D

Com—ya Yoyod Yyoboayass afyagssy YyoyPogd slayaap ayfafess*

Proof. We set k =i —1, 7 =i+ 1. We will prove the first equality as the second is very
similar (for more details, see Remark 6.12). We proceed from the centre of the diagram,
considering the first pair of hexagons (on top and bottom of a pair of commutators), the
second pairs of hexagons (on top and bottom of the previous product) and then finally
the last commutator (below the previous product).

Step 1. We add the first pair of hexagonal generators symmetrically as follows

ayafoayss

o afyoyPess Pavyapea
o ex o (€P, @ com ST @ ep,, Jhex, 10T =Y, (6.22)

hex Yoy affayafess — T Papavapsse

The only points worth bearing in mind are (i) double-crossings strands of non-adjacent
residue can be undone trivially and (47) that the implicit adjustments in the definitions of
hex 7% 70 . and hex(, 707 208 will give rise to (a total of [bo —by|+[ba —by |40 —bs )
double-crossings which can be undone as in the proof of Proposition 4.4.

Step 2. We now add the next pair of hexagonal generators symmetrically to the diagram,

Poyapay :, output by the previous step in the procedure. We first note that

Pasavass

afayofoss _ Py®Ho,aya®Psay

Pu®@Ho, cye ®P oy Povryox iy P
adjp” o X A i T P me = P @Ho e @P e

)

again by (a total of |bs — b,| applications of) Proposition 4.4. We claim that

(hex* ™ (@)@ep..o. ) Yo Gne 70 o 72" (hexiaa (@) e, . ) = TE7GH TG0 T

(6.23)
for 0 < ¢ < max{bs,by} + bo. For 0 < q¢ < by + |bs — b,| the concatenated diagram
on the lefthand-side of equation (6.23) contains a distinguished strand connecting the
T~ Y(min{bs,b,} + ¢+ 1,&;) top and B~!(min{b;,b,} + ¢ + 1,&;) bottom vertices. For
0 < g < ba + |bs — b,| the distinguished strand passes from left to right and back
again, thus admitting a double-crossing with each of the (rq — 1)-, r¢-, (rq + 1)-strands

connecting the

T (min{b;, by} + b + g, €i41) T (min{bs, by} + bo +q+ 1,8i41)
T Y min{b;, b} + bo + g+ 2,€i41)
top vertices to the

B~ (min{b:, b} + bo + ¢, €i41) B~ (min{b:, by} +bo + g+ 1,6i11)

B! (min{bs, by} + b +q+2,€41)

bottom vertices. For |bs —by| < ¢ < b + |bs — b,| the distinguished strand also admits
a double-crossing with each of the (ry — 1)-, r¢-, (rq + 1)-strands connecting the



C. Bowman et al. / Advances in Mathematics 429 (2023) 109185 73

T Y min{bs, by} + bas + q,€i42) T min{bs, b} +bas +q+ 1,6i12)
T min{by, by} + bas + g+ 2,6i42)
top vertices to the

B~ (min{bs, by} + bas + ¢, €i42) B~ (min{b:, by} +bay +q+ 1,6i42)

B~ (min{bs, by} + bay + ¢+ 2,i42)

bottom vertices. Note we have broken these strands into two triples. For 0 < g < bo +
|bs — by| we undo the double-crossing of the distinguished strand with the former triple
using a single application of Proposition 4.4. For |bs — by| < ¢ < bo + |by — by| we
undo the double-crossing of the distinguished strand with the latter triple and then the
former triple as in the proof of Proposition 4.4. Thus equation (6.23) follows. If bz > b,
(respectively b, > bs) we must now multiply on the bottom (respectively top) by the
remaining terms to obtain a minimal, step-preserving diagram. We hence deduce that

THbLm ,Bayo ®P oy

Pu‘yu Yo —
T (hex afo @ €Pya ¢¢) T T Hp,,

Pasayassss

(heXgara ®ep...,.) o0pe®Pyapss’

We now multiply on the top and bottom by the other “halves” of the hexagonal generators
to get

yoy[Bayos Povyapavyss apfayafess _ ArPyavpavos
hexava o TPQ o whex fyoBoos = Tp S (6.24)

where here the hexagonal terms are minimal and step-preserving, but we must again
undo any double-crossings arising from adjustments as in the proof of Proposition 4.4.
We emphasise that the righthand-side of equation (6.24) is independent of the choice of
reduced expression, which can be shown in a similar fashion to Proposition 6.10.

Step 3. For 0 < ¢ < bs~, we claim that

Pyoa~pBavyss ~ _ ~ArPravparyos
TP «®CTITRep, (ep o ®com (q) ®ep, ¢¢¢) - TP A ®CITLAYRP L e

and for bz = g > 0, we claim that

Pyavypavyos _ ~Proysaryos
TP OL®C<1~‘1 ®€Pa P50 (eP < ®Com7 (q) ®6P°‘ ‘Z’*W’) - TP Q®C'Y (q71)®Pa 00

We consider the former product, as the latter is similar. If b, > b5, then the concatenated
diagram is minimal and step-preserving. If b, < bz then the r4-braid connecting the
strands

T_l(q—s—l,gi,l) T_l(b7+q+1,gi) T_l(ba7+q+175i+1> T_l(ba7+q+1,€i+2)
B~ '(g+1,ei-1) B7'(by+q+1,6) B '(bay +q+1ci41) B (bainy +q+1,6i40)
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top and bottom vertices form the non-minimal expression (s2s1835253)s3 (the bracketed
term belongs to the multiplicand TE"Z”’WZ";Q’ and so can be chosen arbitrarily, we have
chosen the simplest form for what follows). The r,-strand with label €; double-crosses
the (r, — 1)-strand connecting the T~ (b~ + ¢ +2,€;41) and B™1 (boy + ¢+ 2,£;41) top
and bottom vertices. We undo this double-crossing at the expense of placing a KLR dot
on the r-strand (the other term is zero, by case 1 of equation (R4)). We then pull this
dot through the ry-crossing labelled by the €; and €;49 strands and hence undoing the
bottommost crossing (the other, dotted, term is zero, again by case 1 of equation (R4)).
Thus our r,-braid now forms the non-minimal expression s2s1535253. The r4-crossing of

strands connecting the
T_l(ba,Y +q+1,841), T_l(b +q+1,e), B_l(b +q+1,g), B_l(ba.y +q+1,841)

top and bottom vertices is bi-passed on the left by the (ry + 1)-strand connecting the
T bary + ¢,€i+1) and B7(bay + q,£i41) vertices. We pull this (r, + 1)-strand through
this crossing using relation (R5) and hence obtain the diagram in which the crossing
is undone (at the expense of another term, which is zero by Lemma 4.1). Thus our
r4-braid now forms the minimal expression sss1s3s2, and the diagram is minimal and
step-preserving, as required. 0O

Remark 6.12. The reader should note that in equation (S8), the righthand-side is ob-
tained by first flipping the lefthand-side through the horizontal and vertical axes and
then swapping the 7 and = labels. The “very similar” proof of the second equality
in Proposition 6.11 amounts to rewriting the above argument but with indices of the
crossing-strands determined by the horizontal and vertical flips and recolouring (swap
mentions of b and b, ) of the indices in the proof above.

6.8. The tricoloured commutativity relations

We now verify the two relations depicted in (S7). Namely, we will show that

afoao alfo B B Booa Haleeye
Yiias = hex scom s ocom 5o com 5o adjs,
(6.25)
=com” Y T com” ™ com” T Yadj ’ ™ Thex 3
- afda adfa afa J ala [, J¥e1
and we have that
v5 _ v v v _ v v v
T, , =com ;i com; com; ! =com_ ! ;com!,_ com;_ . (6.26)

We suppress mention of crossing which can be undone using the commutativity KLR
relations in what follows.
Consider the former product in equation (6.25). For 1 < g < bs the strand connecting

the P_; ws(a,e;5) and P_; o2 (@,€5) northern and southern vertices double-crosses the
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strands connecting each of the P! -(bs 4+ p,e;11) and Pj; oo (bs 4+ pgjq1) north-
ern and southern vertices for p = ¢ — 1,¢q,q + 1. Now consider the latter product of
equation (6.25). For 1 < ¢ < bs the strand connecting the P! (basa + ¢,¢;) and
P‘; o (base +4,€5) northern and southern vertices double-crosses the strands connect-
ing each of the P_; wsbapas +p,ej41) and P_Q1 wi(basas + p,ej41) northern and
southern vertices for p=q¢—1,q,q+ 1. For each 1 < ¢ < bs we can undo these crossings
using Proposition 4.4.

Consider the former product in equation (6.26). For 1 < ¢ < min{bs,bs} the strand
connecting the P_'lv (¢,exr) and P‘; (g, ex) northern and southern vertices double-crosses
the strands connecting each of the P_}/ (by+p, ex41) and P_,i (by+p, €k+1) northern and
southern vertices for p = ¢—1, ¢, ¢+ 1. Now consider the latter product in equation (6.26).
For 0 < ¢ < min{bs,bs} the strand connecting the Pily (bp~ys — ¢, k) and Pi} (bp~ys —
q,€r) northern and southern vertices double-crosses the strands connecting each of the
Pf,ly (bgy~ys — Ds€k+1) and Pii (bgy~ys — Dy €k+1) northern and southern vertices for
p=q+1,q,q— 1. For each 0 < ¢ < min{bs,bs} we can undo these crossings using
Proposition 4.4.

Thus we obtain the desired equalities and the image of relation (S7) holds.

6.9. The fork and commutator

Let ~,/7 € II label two commuting reflections, we now verify the middle relation
depicted in (S6), namely that

P ey
TR,@PE,@P = (ep, ® fo"k?,?y)(COmf ®ep,)(ep, ® comﬂ{"’)

= (adj,” ® ep,,)(ep, © com_T)(forkS? @ ep..)
as both products produce minimal, step-preserving, and residue commutative elements

(after undoing any double-crossings of non-adjacent residue using the commutativity
relations).

6.10. Naturality of adjustment

For each generator, we must check the corresponding adjustment naturality rela-
tion pictured in Figs. 6 and 7. For the unique one-sided naturality relation, (spot? ®
ep,)adjgs = ep, @spot?,, this follows by a generalisation of the proof of Proposition 5.11.
The remaining relations all follow from Proposition 4.4.

6.11. Cyclicity

Given «, (7 € II labelling a pair of non-commuting reflections, we now verify relation
(S4), namely that
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\

v = U & . (6.27)

The lefthand-side of equation (6.27) is equal to

(ep..,..®(spot’ @ep )fork " )hex2? % "~ ((adjS o (ep, @ (forkSS (ep, @spoty)))) ®ep... )

avo oo

aga
oo
of the choice of reduced expression by simply re-indexing the proof of Proposition 5.12).

The righthand-side of equation (6.27) is equal to

which is minimal and step-preserving and so is equal to T (which is independent

adj;” 70 (ep, @ hex, T % ®@ep ) (ep,, ®adj 7. 7). (6.28)

goafSo a

It will suffice to show that

H «r@P
(hex s ®ep®)adj0aa@ _ pHas s ®Po (6.29)

DoaBa
as by applications of this will simplify equation (6.28) so that it is minimal and step-
preserving. The lefthand-side of equation (6.29) contains an r-strand from H;}l olg+

1,e,41) to Pala (@ +1,&;41) which double-crosses the strands connecting the top and
bottom vertices

Hq_,lot a(ba + q, gi) H_l (b(x + q + 1a5i) H_l (ba + q + 2761')

g, q, o

Pol o(ba+ae) Pyt (bat+q+le) Pyt (ba+q+2e),

Poafa Poafa Poafa

respectively. We undo these double-crossings as in the proof of Proposition 4.4 to obtain

agfla
T¢¢ [e7

6.12. Some results concerning doubly-spotted Soergel diagrams

The remainder of this section is dedicated to proving results involving the “doubly-
spotted” Soergel diagrams. These proofs are of a different flavour to the “timeline” proofs
considered above. We shall see that each Soergel spot diagram roughly corresponds to
“half” of a KLR dotted diagram. This idea is easiest to see through its manifestation in
the grading (Soergel spots have degree 1, whereas KLR dots have degree 2). We have
that
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: _ qh+1 boh—ba+q+1
N4 : =e€p, < H d)bah—ba—o—q—o—l) ep, < H ’(/}qh+l ) €p,
) b >q>0 0<q<ba

= ep, (yb(,h—h+(b(i+1) - yi)eP¢ (6.30)

by relation (R4); this is easily seen from the fact that the only crossings of non-zero
degree are a double-crossing of strands which begin and end at the P 1(ba,si+1) =
(boh — h + 0(i + 1)) and P,'(1,e;) = i points on the top and bottom edges of the
diagram (and application of case 3 of relation (R4)). Arguing similarly, one has that

LA

bah—bo+q+1 qh+i
RO H Vahti )er ( H Vech—be +q+1>
_f__ 0<q<be b >0
=ep, (ybah—ba—h+1+a(i+1) - ybah—ba+1)6Pa- (6.31)

Proposition 6.13. Let o = ; — €41, =€ — €kt1 € Il with by > 1 and 0 < g < b. We
have that

Yo(i+1)€Po0 = Yn+0(i+1)€Pos  Y0()Pap = Yh+0(i)CPyy (6.32)

Yh4~(i+1)€Py, = YB(i+1)€Py., Yh+~()€Py, = Y0(i)€Py, (6.33)
Ya(h—1)+7(+1) Py = Y(g+1)(h—)+tv(+1)EP,  Ya(h—1)+7(1)EPy = Y(g+1)(h—1)+())EP

(6.34)

whenever the indices are defined (cross reference Definition 2.31).

Proof. We prove both cases of equation (6.32), the other pairs of cases are similar. Our
assumption that b, > 1 implies that the residues of the ith and (i+1)th strands are non-
adjacent and similarly that the (h+4 0(i))th and (h+@(i + 1))th strands are non-adjacent
(this is not true if b, = 1). Therefore we have that

7 1 h+0(i+1 i+1
O = wh+iepgq) w;l"rl = (yl - yh-‘ri)eP@@? 0 = 7,/1@(1_’_(1) ) Pwﬂ,ll}hg-@(l)-‘rl) ( yh+z‘)€PM

where in both cases, the first and second equalities follow from Lemma 4.1 and the final
case of relation (R4). O

Proposition 6.14. Let o = &; —€;41,7 =€ — €pg1 € M with by =1 and 0 < g < b. We
have that

(Yi — Yit1)eryy = (Ynti — Yntit1)ePy,
(Ynt~(i+1) = Yni~(i) )Py, = (Yit1 — Yi)epy,

(Ya(h—1)++() = Ya(h—1)+~7(i+1))€Py, = (Y(g+1)(h—1)+~()) — Y(g+1)(h—1)+~(i+1))€P,,
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whenever the indices are defined (cross reference Definition 2.31).

Proof. We prove the first equality as the other cases are similar. Since b, = 1, we have
that §(¢) =4 and §(i+1) =i+ 1 (in other words, 7 # h) and are of adjacent residue. We
have that

_ h4i+1, ) h+i
(yh+i+1 - yh+i)ePw@ = ePQ)(Z)wh—‘,-’i ¢h+¢+1eP@w

= (epmi/lgif"_l)wf:;wzi%(w,?lﬁlepw)

= (EPMwﬁif+lw?j_g)(¢i+lwi¢i+l + 1/)i1/)i+17/fi)(¢flfi¢2ﬂ+1epm)

= (epwm wgizwrlwfj;)?ﬁﬂﬁwrlwl (w;;ﬁwgiz?-&-lepww)

= (GPM,wiwﬁﬂﬂW?ﬂ%ﬂlﬂiﬁ(¢Zﬂ+1¢i6pm)

= (epyo Vitn it T U npi TR iepy,)

= (epmmwiw}ilili—l)wﬁiz?—i_lwh-i-i—lq/};zlﬂ-i-l (wz@_f—lwiepm@)

= (6P0m¢i¢;:li—1)(1 + ¢h+i71¢h+i¢h+if1)(¢£Lj1i711/)iepw)
(epmmwiwﬁli—l)

= epy, ViiCPy,

h+i—1
(%ff %6%@)

- ePQ)Q) (y2+1 - yi)epwm

where the first equality holds by the third case of relation (R4), the second holds by the
second case of relation (R4) (the commuting version), the third holds by case 2 of relation
(R5), the fourth holds by Lemma 4.1, and the fifth to the seventh by the second case
of relation (R4) (the commuting version), and the eighth by the first case of (R5), and
the ninth by Lemma 4.1, the tenth by the second case of relation (R4) (the commuting
version), and the eleventh by the third case of relation (R4). O

6.13. The barbell and commutator

For /3,~ € II labelling two commuting reflections, we check that

y 4

7 =T , (6.35)

In other words,
(spot’spot. ) ® ep., = adj,(ep, @ (spot’spot.))adj’, .

This relation is very simple to check. We have that
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adj,” (ep, @ (spot;spot. ))adj’, = adj, ) (Ys,.h—nto(+1) — Yo h+s)adil ep
= (U h—ht1-by b~y (G+1) — Yo, hir(j))adiy adj e
= (yb7 h—h+1—bo+~v(j+1) — yb.yh+~y(j))eP 5
= (1 h—h+0(j+1) — yj)ep o
where the first equality follows from equation (6.31), the second equality follows from
the commuting cases of relations (R3) and (R2), the third equality follows from Propo-

sition 4.4, the fourth equality follows from applying Propositions 6.13 and 6.14. Again
by equation (6.31), we have that

(spot ;spot.) ® ep. = (Yo, h—ht0(j+1) — Yj)€P..,
as required.
6.14. The one colour Demazure relation

We now verify (5S2), namely that

= VA "
!

o ) ¢ +U /’ =20
O \@®

(6.36)

for o € II. In other words, we must check that
(spot?,spot]) @ ep,, + adjos(ep, ® spotlspots)adjss = 2(ep, ® spotg spot?)

Substituting equation (6.30) and (6.31) into the above, we must show that

P oo (Yo h—ht0(i+1) — Yi + adi0s (Yoo, h—ht0(i+1) — Ybuhti)adins ) ep,, (637)

=2ep,. (Ybooh—bo—ht14a(it1) = Ybooh—ba+1)€P,. -

This leads us to consider the effect of passing dots through the adjustment terms.
Proposition 6.15. Let o« € II. We have that

adjl oy ntiadige = Ybeoh—bo +1€P,, (6.38)

adj’o (b — 2)...adj25 (0)ys.. . h—nt0(i+1)3dje (0)..adj55 (Do — 2) = Yb.,.. h—ht-0(i+1)EP e -
(6.39)



80 C. Bowman et al. / Advances in Mathematics 429 (2023) 109185

Proof. By the commuting case of relation (R2), we have that the lefthand-sides of equa-
tion (6.38) and (6.39) are equal to .. h—s.+123djogadiss and yp - nio@i+1)ading (be —
2)...adj55 (ba — 2) respectively. The result then follows by Proposition 4.4. O

In equation (6.39) we pulled the dot through most of the adjustment term; in equa-
tion (6.40) below, we pull the dot through the final adjustment term. Equation (6.41)
has an almost identical proof and so we record it here, for convenience.

Proposition 6.16. Let oo € II. We have that

adjg%ybah+®(i+1)adj$£ = (Yi + Yboh—bot 10 (i+1) — Ybahth—bo+1) €Py.. (6.40)

adi®G . . +12dj50 = Yo nthobo+1€P,. . (6.41)

Proof. We first prove equation (6.40). The dotted strand in the concatenated diagram
on the left of equation (6.40) connects the i = P(D_;(l, €;) top and bottom vertices, by way
of the boh+0(i+1) = P;%(l, €i+1) vertex in the centre of the diagram. We suppose this
dotted strand is of residue r € Z/eZ, say. This dotted strand crosses a single strand of
the same residue: namely, the strand connecting the P i (bo. + 1, ;41)th vertices on the
top and bottom edges. By relation (R3), we can pull the dot upwards along its strand
and through this crossing at the expense of an error term. We thus obtain
adi%Gus, n0(i+)adigh = ep_, (BR IR Vep,, + ep,, (Vo “op U2 Topt Up ep,,
(6.42)
(we note that So ., = P?,). The first term in equation (6.42) is equal to y;ep,_ by Proposi-
tion 4.4 (and this is equal to the leftmost term on the righthand-side of equation (6.40)).
We now consider the latter term. We label the top and bottom edges by T = Py ®P?, and
B = Py ® P,. There is a unique crossing of strands of the same residue in the diagram

Py ®So, S1,a®Pgp Pao
€Pya (wsl,Q@)P@ © ¢SO,Q®P@ o ¢P@Z )ePoa

namely the r-strands connecting the i = T~1(1,¢;) and B=1(b, + 1,&;41) vertices on
the top and bottom edges of the diagram. This crossing of strands is bi-passed on the
left by the (r + 1)-strand connecting the T~1(b,,&i11) = B™!(ba,&i41) top and bottom
vertices. We pull this (r + 1)-strand to the right through the crossing r-strands using
case 2 of relation (R5) (and the commuting relations). We hence undo this crossing and
obtain

Pyp®So0,a 1 S1,a®Pp
6P@a (,(/)517Q®Pq) wP@@Soya )epﬁa

(the other term depicted in equation (R5) is zero by Lemma 4.1). Now, this diagram
contains a double-crossing of the r-strand connecting the (Pyp @ P?)~ (b, + 1,€;41) top
and bottom vertices and the (r — 1)-strand connecting the (Py ® P%)~1(2,¢;) top and
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bottom vertices. We undo this double-crossing using case 4 of relation (R4) (and the
commutativity relations) to obtain

Py, (Ubo h—bo414c(i+1) = Ybohth—bo+1)EPy., (6.43)

and so equation (6.40) follows. Regarding the enumeration above, we note that

(Pg @ P°) L (ba + 1,6441) = boh —bo + 1 + (i + 1)
(Py @ P°)71(2,¢;) = boh 4+ h —bo + 1.

Now we turn to equation (6.41). We push the KLR-dot upwards along its strand using
(R3) to obtain

Pjo 1 Pa P@@So)a S VQ®P@ P.
Py (Uboh—bo 140t Vp s Upe ) ery., — epy. (Vs opa sy “apy © Up )epy,..  (6.44)

The first term is equal to ¥y n—b.+14+a(i+1)€P,., (again this follows by Proposition 4.4).
The second term is identical to the second term in equation (6.42) and so is equal to
equation (6.43) but with negative coefficient. Thus we can rewrite equation (6.44) in the
form

€Py. (yb,,h—b(,+1+a(z'+1) - (ybah—ba-&-l-&-a(i-i-l) - ybah+h7ba+1)) Py

and equation (6.41) follows. O

We now gather together our conclusions from Propositions 6.15 and 6.16 (shifting the
indexing where necessary) in order to prove equation (6.36). We have that (spot?,spot)®
ep,_, is equal to

EPyu (ybahchr@(iJrl) - yi)ePw
and adj’ (ep, @ spotspoty)adjs is equal to
TCPyo Yoo h—ba+1CP,, T €P,, (yb(,hchri F Ybpoh—bo—h+1+a(i+tl) — ybwhfbaﬂ)epw
By Propositions 6.13 and 6.14, we have that
Yoo h—h4+0(i+1)€Psa = Ybooh—bo —h+1+c(i4+1)CPyq
for b, > 1 and by Proposition 6.13 we have that
Yi€P,, = Ybo h—h+i€P,,

for b, > 1 (we note that this latter statement is vacuous if b, = 1 as the subscripts are
equal). The former pair of terms sum up and the latter cancel, so we obtain
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(spotZspoty) @ ep,, + adji(ep,, ® spot? spots)adjs

=2ep,, (Ybo h—h0(i+1) — Yboah—ba+1)EP,,

Hence equation (6.37) holds by a further application of Propositions 6.13 and 6.14.

6.15. Two colour Demazure

5),

For «, 7 € II labelling two non-commuting reflections, we now verify relation (S
namely that

—_\

v -v =v ' -v

o

(6.45)

o
!
| |
We assume that the rank of ® is at least 2. The reader is invited to check the rank 1
case separately (here the scalar 2 appears due to certain coincidences in the arithmetic).

Proposition 6.17. Let o € I1. If b, > 1, we have that

Ybe hth-0(i+1)EPgop = (YitY0(i+1) ~Ybahth—bo+1)EPyup

ybah+h+i6Pw(,w - ybathheP@am — ybah+h7ba+16Pm,,w

and if bo, = 1 we have that

(Yoo ht-hti = Yoo bt h b 0(i41) )€Py g = (2Ubahth—bat+1 = Yi — Yd(it+1))EPyag-

Proof. We check the b, > 1 case as the other is similar. The second equality follows as in
the proof of Proposition 6.13. We now consider the first equality. We momentarily drop
the prefix Py to the path Pgy,g for the sake of more manageable indices. Since b, > 1
we can pull the vertical strand connecting the b, h + (i + 1) top and bottom vertices
leftwards until we reach a strand of adjacent residue (namely the (boh—b,, +2)th strand)
as follows

_ boh+0(i+1) | boh—bo+3
Py = €P gV hob,+3 wbah-',-(z)(i—&-l)epaw

we can rewrite the centre of the diagram which using the braid relation as follows,

bo h+0(i+1
ep.., wbah_bilg ) (Vb h—bo+2Vbo h—bo 41V h—bo 42—

boh—ba+3
Yo, h—ba+1wbah—ba+2¢bah—ba+1)wbah+@(iil)€Pa®

where the latter term is zero by Lemma 4.1 and so this simplifies to
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b h+0(i+1) R—bo 42
€P ooV h—bo 12 (Vbon—b., +1)¢b ht0(i+1)EPa0

now we use the non-commuting version of relation (R2) together with case 1 of relation
(R4) to rewrite the middlemost crossing as a double-crossing with a KLR-dot,

bo h+0(i+1) boh—bo+2
a@¢b h—bo+2 (1/% h—bo+1Yboh—ba+1Vb o h— b(,+1)wb h+0(i+1)€Pao>

we pull the dotted strand leftwards through the next strand of adjacent residue (namely
the ((bo —1)(h — 1) + (i + 1))th strand) using the commutativity relations and case 4
of relation (R4) to obtain

ba h+0(i+1
amwbahfbil+2)(y(bafl)(h71)+a(i+1)+
boh—be +2 (ba—1)(h—1)+c(i+1)\  boh—bo+2
w(b —1)(h—1)+a(i+1) wb h—be+2 )d}b h40(i+1) EPao

where the first summand is zero by case 1 of relation (R4) and the latter term is equal
to

boh+0(i+1) —D(h-Dta(itl),
€Poo W (bo—1)(h—1)+u(i+1) wb h40(i+1) a0

Now we concatenate on the left by Py and then multiply by y_n4n+0(i+1) to obtain

_ b h+h+0(i+1) boh—ba+1+a(i+1)
Yoo hth+0(i41)€Pgg = Yo hth+0(i+1)€Pog Yy p_p,. +1+a(z+1)¢’b ht+h+0(i+1)  EPoco

(6.46)

which by relation (R4) is equal to

bohtht0(i+1)
EPgap (wb(,h—ba+1+a(i+1)ybah*bu+1+a(i+1)+
¢bah+h+®(i+1)¢b wh+h—ba+1 )Z/Jb ah— ba+1+a(z+1)e
boh+h—ba+2 Fboh—bo+1+a(i+1)) T oo h+h+0(i+1) Poagp-
We consider the first term in the sum first. By the commuting relations, this term is
equal to

beh-+h+0(i+1) heti
CPyao (1/)h+i Yntithy h+h+®(i+1))ePM

and by Proposition 6.13 this is equal to

boh+h+0(i+1)  h+0(i+1)
€Ppap (wh-i-i Yils  htnto 7.+1))€P(0cw)

and now, having moved this KLR-dot a total of h strands leftward, we can apply the
commutativity relations again to obtain

) bo h+h+0(i+1) boh—bo+1+a(i+1) o
Yi€Ppao (% h—ba+1+a(i+1) Voo ht-h0(i+1) Poco) = Yi€Pyoy (6.47)
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where the final equality follows by equation (6.46). We now turn to the second term in
the above sum, namely

o ¢bah+h+@(i+1)¢bah+h—ba+l wbah—ba+1+a(z‘+1)6
Poco Foohth—ba+2 Fboh—bo+1+a(i+1) ¥boh+h+0(i+1) Poagp-

This has a crossing of like-labelled strands (of residue r € Z/eZ) connecting the (b, h +
0(i +1))th and (boh — bs + 1)th top and bottom vertices. This crossing is bi-passed on
the right by the (r — 1)-strand connecting the (b, h — b, + 2)th top and bottom vertices.
We undo this braid using case 1 of relation (R5) to obtain

e (dfb oh+h+0(i+1) ,(/)b wht+h—ba+1 )(wbahfba+1+a(i+1 ,(/)b wh+h—ba +2)
Poco \ Yoo hth—bo+2 Voo h—bo+1+c(i4+1)/ \ Yoo hth—bo+1 b h+h+0(i+1))Poan

where the other term in relation (R5) is zero by Lemma 4.1. This diagram contains a
single double-crossing of adjacent residues, which we undo using case 4 of relation (R4)
(and we undo all the other crossings using the commutativity relation) to obtain

P oo (Yboh—bo +14cx(i41) — Ybah—bo+1)€Py = €P o (Yp(i+1) — Yboh—ba+1)€Py.., (6.48)

where the final equality follows by Proposition 6.13. The result follows by summing over
equation (6.47) and (6.48). O

Proposition 6.18. Let oo = ¢; — €41, 7 = €i41 — €iy2 € II. We have that

(spot’spot.) ®ep,., — (adj, ®ep,)(ep. @ spot spot, ® ep,)(adj’, ®ep,)

=ep, (Ui = Ybo.n)ep,,
=ep_, ® (spotlspoty) —ep @ (spotyspotl,) ® ep,.

Proof. Substituting equation (6.30) and (6.31) into the third line, we obtain

P vy (Uber s hmh0(i41) = Ybor s hti = Yo s hmbos —hb 14 cx(i41) T Yoo s h—bo+1)EP oy -

We apply Proposition 6.17 to the first term in the sum and then cancelling terms using
Propositions 6.13 and 6.14. Substituting equation (6.30) and (6.31) into the first line,
we obtain

P (Yo hent0(i+2) — Yo(i+1) — aincs (Yoo s h—h+0(i+2) — Yoo ht0(i+1))di s ) €P .o -
(6.49)
We have that

P padin Yoo, h—h+0(i+2)3dI0 00 €P s = Yoo h—bo —ht14a(i+2) = Yb h—ht0(i+2) (6.50)

where the first equality follows from the commuting KLR-dot relation (R3) and the latter
follows from Propositions 6.13 and 6.14. We also have that
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adjn > b ht0(i+1)2diT e = €y (Ubshehti Yoo h—h—bot14c(i+1) — Yoo h—bo+1) €P. 0y
= C€P.as (yz + Yoi+1) — Yo, h) €P. .y (6.51)
where the first equality follows from Proposition 6.16 and the second by Propositions 6.13

and 6.14. Thus substituting equation (6.50) and (6.51) in to equation (6.49), the first
equality follows. 0O

6.16. The cyclotomic relation

We now verify relation (S9). We have that ¥(1,) = ep, for any o € IL. If the a-
hyperplane is a wall of the dominant region, then the tableau P, is non-standard and
therefore ep, = 0 by Lemma 4.1. Now, let v € II be arbitrary. By equation (6.30), we
have that

= ep, (Yo, n—n+0(k+1) — Uk)ep, = ep, (Yo(k+1) — Yk )ep,

where the latter equality follows from Propositions 6.13 and 6.14. If z = 1 modulo h,
then

yzer, = ep, (YTy19;)ep, =0 (6.52)

by relation (3.4). If not, then by relation (R4) we have that

Yz€pP, = Ya—1€p, — €p, Vszep, (6.53)

where the latter term is zero by Remark 3.25 (as (1,...,62-1,€x41,ExsExt2y- -, ER) IS
non-standard for b, = 1). Thus the cyclotomic relation holds (as we can apply equa-
tion (6.53) as many times as necessary and then apply equation (6.52)).

7. Decomposition numbers of cyclotomic Hecke algebras

In this section we recall the construction of the graded cellular and “light leaves” bases
for the algebras Yﬁ”(n,a), our quotient algebras HZ /Hy,HS, and their truncations.
We show that the thomorphism U preserves these Z-bases (trivially, by definition) and
hence deduce that ¥ is indeed an isomorphism and hence prove Theorems A and B of
the introduction.
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7.1. Why is it enough to consider the truncated algebras?

Thus far in the paper, we have truncated to consider paths which terminate at a point
A€ Pp(n,o) C Pu(n). This is, in general, a proper co-saturated subset of the principal
linkage class of multipartitions for a given n € Z>,.

Theorem 7.1 ([/, Corollary 2.14]). For each X\, we fiz P € Std(\) a choice of reduced
path. The algebra HE /HIypHS is quasi-hereditary with graded cellular basis

{vp, Yg* | T.B € Std(\), A € Pp(n)}

with respect to the reverse cylindric order on Pp(n) (see [4, Definition 1.3], but for the
subset Pp(n,0) C Pu(n) is a refinement of the opposite of the Bruhat ordering on their
alcoves) and the anti-involution, x, given by flipping a diagram through the horizontal
axis.

Remark 7.2. In [4, Corollary 2.14] it is not explicitly stated that the algebra is quasi-
hereditary. However, this is immediate from the fact that each layer in the cell-filtration
has an idempotent ep, for A € Z,(n) (and standard facts about cellular algebras).

Remark 7.3. In the case of the Hecke algebra of the symmetric group, the basis of [4,
Corollary 2.14] is equivalent (via uni-triangular change of basis with respect to the dom-
inance ordering) to the cellular basis of Hu-Mathas [14].

Example 7.4. Let A = (3", 11%) with n > 0. The first n = 0,1, 2, 3, 4, 5 partitions in this se-
quence are (11°), (3,11%), (32,119), (33,115), (3%,1%%) and (3°, 11), all of which label sim-
ple modules which belong to the principal blocks of their corresponding group algebras. In
fact, they all label the same point, in the alcove s., ., 5., <, Scy—e,Se1—258 Ao,
in the projection onto 2-dimensional space in Fig. 1. However, Std,, »(\) = () for the first
five of these partitions. For A = (3", 1'°) with n > 5 we have that Std, ,(\) # 0. Thus,
one might be forgiven in thinking that our Theorem A only allows us to see A for n > 5.
This is, in fact, not the case as we shall soon see.

Proposition 7.5. Given a partition A = (A1, Ag, ... ), we set detp(N) = (h, A1, Aa,...). We
have an injective map of partially ordered sets dety, : Pp(n) — Pp(n+ h) given by

detp (A, A0, AED) = (detyy (X)), dety, A, ..., dety,, (A7)

and detp(Pr(n)) C Pp(n+ h) is a co-saturated subset. We have an isomorphism of
graded Z-algebras

> er(HG/HGynHS )es > erpat(Mon/Ho nynH o )eper (T.1)
B,T€Std, B,TeStd,



C. Bowman et al. / Advances in Mathematics 429 (2023) 109185 87

where Std, = Uxez, (n)Std(N).

Proof. On the level of graded Z-modules the isomorphism, ¢ say, is clear. The local KLR
relations also go through easily. We have that

P(y1ep) = yn+1€pyep = Y1ep,op = 0 = yiep (7.2)

where the second equality follows using the same argument as Propositions 6.13 and 6.14
and the other equalities all hold by definition. We further note that P is dominant path
if and only if Py ® P is a dominant path. Thus the cyclotomic relation follows from
equation (7.2) and Remark 3.25. O

We wish to only explicitly consider the principal linkage class, but to make deduc-
tions for all regular linkage classes. This is a standard Lie theoretic trick known as the
translation principle. Given I' C 7, (n) any co-saturated subset and r € Z/eZ we let

er = Z ep E, = Z e(i1y ..., in,T)

PeStd(u) i1, sin€Z /el
pel

denote the corresponding idempotents. Given A € Z(n) we set A = (@h “A) N Ph(n).
Since every A belongs to some linkage class, we have that &,(n) = A’UA”U... and we
have a corresponding decomposition

HO /MOy HE = HY T @ HA @ ... where HM = en(HT /MOy H e

and similarly for the primed cases. Now, we let [0 denote an addable node of the Young
diagram multipartition A € y,(n), that is we suppose that AU O = X for some X €
Qﬂ(n + 1).

Proposition 7.6. Suppose that A € Zp(n) and A\+0 =X € Pp(n+1) are o-regular and
O is of residue r € Z/eZ say. We have an injective map

p: A=A o) =p+0

for O the unique addable node of residue r € Z/eZ. The image, ©(A), is a co-saturated
subset of A’. We have an isomorphism of graded 7 -algebras:

/Hﬁ"g = Er(%(A)HQ;1€¢(A))Er (7.3)
and this preserves the cellular structure.

Proof. Since both A and A + [ are both e-regular, there is a bijection between the path
bases of the algebras in equation (7.3). (Note that if A were on a hyperplane and A + O
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in an alcove, then the number of paths would double.) Thus we need only check that this
Z-module homomorphism lifts to an algebra homomorphism. However this is obvious,
as all we have done is add a single strand (of residue r € Z/eZ) to the righthand-side of
the diagram and this preserves the multiplication. O

Thus any regular block of HE, /HKyrH is isomorphic to a co-saturated idempotent
subalgebra of HZ /HTy,HE for some n > N. Such truncations preserve decomposition
numbers [10, Appendix] and much cohomological structure and so it suffices to consider
only these truncated algebras (which is precisely what we have done thus far in the

paper!).
7.2. Bases of diagrammatic algebras

For A\, € &, (n,0), we choose reduced paths P,, € Std, +(A) and P, € Std,, ()
which will remain fixed for the remainder of this section. We remind the reader that this
implicitly says that A € wAy and p € vAy. We have shown that the map

v yé)r(n’ o) = fmU(HZ/HZYErHZ)fmU

is a graded Z-algebra homomorphism. It remains to show that this map is an iso-
morphism. Let A € Z,(n,0). Given any reduced path P, € Std, -(A) and any (not
necessarily reduced) Q € Std, »(\) we will inductively construct elements

CoelpS P (n,0)lq  ch € ep(HS /My HT)eq

which provide (cellular) Z-bases of both algebras which match up under the homomor-
phism, thus proving that ® is indeed an isomorphism.

We can extend a path Q" € Std,, » () to obtain a new path Q in one of three possible
ways

Q=Q®P, Q=QoP, Q=Q&P,

for some o € II. The first two cases each subdivide into a further two cases based
on whether « is an upper or lower wall of the alcove containing A. These four cases
are pictured in Fig. 32 (for Py we refer the reader to Fig. 4). Any two reduced paths
Pw, Py € Std,, »(A\) can be obtained from one another by some iterated application of
hexagon and commutativity permutations. We let

P, P,
rexp REXp

w w

denote the corresponding path-morphism in the algebras Hg/HynH and .7 (n, o),
respectively (so-named as they permute reduced expressions). In the following construc-
tion, we will assume that the elements cg,, and C’S: exist for any choice of reduced path
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Fig. 32. The first (respectively last) two paths are P, and P"a originating in an alcove with o labelling an
upper (respectively lower) wall. The origin lies below the a-hyperplane. We call these paths Uy, Uy, Do,
and D; respectively.

P’. We then extend P’ using one of the Uy, Uy, Dy, and D; paths (which puts a restric-
tion on the form of the reduced expression) but then use a “rex move” to remove obtain
elements cg and Cg for P an arbitrary reduced expression.

Definition 7.7. Suppose that A belongs to an alcove which has a hyperplane labelled by «
as an upper alcove wall. Let Q" € Std,, »(A). If Q = Q'®P,, then we set deg(Q) = deg(Q’)
and we define

CS = REXE,®PQ (CS: ® 1s) cg = rexg,®pa (cgl/ ® ep,).
If Q = Q' ® P’ then we set deg(Q) = deg(Q’) + 1 and we define
Ccq = REX$/®p¢(C’5: ® SPOTY) = reXprigp, (cg// ® spot?).

Now suppose that A belongs to an alcove which has a hyperplane labelled by « as a
lower alcove wall. Thus we can choose P, ® P, = P’ € Std(\). For Q = Q' ® P, we set
deg(Q) = deg(Q’) and define

C§ =REXE (1, ® (SPOT, o FORKS2))(CE ® 1.)
cq =rexp, . (ep, ® (spot?, o fork(?,)) (b @ep.)
and if Q = Q' ® P?, then we set deg(Q) = deg(Q’) — 1 and we define
C§ =REXE (1, ® FORKZ2) (CH @ 1.)
cq =rexp, _ (ep, @ fork??) (b @ep.).

In each of the four cases above, the path P is a reduced path by construction (and
our assumption that P’ is reduced). We remark that the degree of the path, Q, is equal
to the degree of both the elements cg and C’g (recall that P is a path associated to a
reduced word and so is of degree zero).
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Theorem 7.8 (Light leaves basis, [13,18]). For each A € Pp(n,0), we fix an arbitrary
reduced path P, € Std, (). The algebra yir(n,a) is quasi-hereditary with graded
integral cellular basis

{C¥

w

Cgm | P’Q (S Stdn7a‘(>\),>\ S gz@(nag)}

with respect to the Bruhat ordering > on Py(n, o), the anti-involution x given by flipping
a diagram through the horizontal axis and the map deg : Std,, - (A) = Z.

We recalled a general construction of a cellular basis of H7/HTy,HS in Theo-
rem 7.1 subject to choosing the reduced expressions. This provides a cellular basis of
froHS /HIy  HEf, » by idempotent truncation. Choosing our expressions so as to be
compatible with Theorem 7.8 through the map ¥, we obtain the following.

Theorem 7.9 (Light leaves basis, [/, Theorem 3.12]). For each A € Pp(n,o), choose
an arbitrary reduced path Py, € Std, »(N\). The algebra f, o (HS /HIynHE fn.o is quasi-
hereditary with graded integral cellular basis

{B, cq” | P,Q € Stdno (M), A € Py(n,0)}

with respect to the Bruhat ordering > on Py (n, o), the anti-involution * given by flipping
a diagram through the horizontal axis and the map deg : Std, »(A) = Z.

Theorem 7.10. Let o € Z* and e € Z~, and suppose that h € Zéo is (o, e)-admissible.
We have a canonical isomorphism of graded Z-algebras,

+ o o o\ £+~
fn,a (/Hn//HnyﬂHn) fn,a = EndDgssph@(AhO X...XAh[_l\Ah0+...+h[_1) (@QGA("J)BQ) ’
That is, Theorem A of the introduction holds.

Proof. In Section 5 we defined a map from .#P"(n) to HI /HIy,HS via the generators
of the former algebra. In Section 6 we showed that this map was a homomorphism by
verifying that the relations for Y,l“(n) held in the image of the homomorphism. Now,
the construction of the light leaves bases in P (n) (respectively HZ) is given in terms
of the generator (respectively their images). Thus the map preserves the Z-bases and
hence is an isomorphism. Thus the result follows from Proposition 3.16. O

An earlier attempt to solve the Libedinsky—-Plaza conjecture for the classical blob
algebra (the case of h = 1 and ¢ = 2) has already led to a deeper understanding of
structure of the diagrammatic Soergel category [19]. We remark that their is no obvious
intersection between their results and ours (they do not succeed in proving the h = 1
and ¢ = 2 case, but nor do our results imply theirs).
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7.8. Decomposition numbers of Hecke algebras

For A\, € P(n,0), we reiterate that we have chosen to fix reduced paths P, €
Stdp,»(A) and P, € Stdy, o (1). We define one-sided ideals

L= S (n,0)lp,  STL=IPENL{CE Cp* | T,B € Stdno (1), i > A}
HI" = P (n)ep, H7 = HTA N Z{c] Cp* | T,B € Stdno (1), i > A}

and we define the standard modules of Ybr(n o) and f, o (H /HIyLHE ) o by consid-
ering the resulting subquotients. The light leaves construction gives us explicit bases of
these quotients as follows

Az(w) ={C3, + 72 |SeStdy(N)}  fuoSz(A) ={cp, +H>*|S € Stdy(\)}

N N (7.4)
respectively for A € 2%, (n, o). The modules f, ,Sz()\) are obtained by truncating the
cell modules (Sz()), say) for the cellular structure in Theorem 7.1. For k a field, we
define

Ak(w) = AZ(M) Xz k fn,aslk<)\> = fn,o'SZ(A) Kz k.

We recall that the cellular structure allows us to define bilinear forms, for each A €
Py (n), there are bilinear forms (, )% and (, )3, on A(\) and f, ,Sk()\) respectively,

which are determined by

Cp=C8 = (CE,,C8 )% 1 (mod Z22)

Pu Q
cpcp,

(7.5)

(b, 8, )% ep, (mod M%)

for any P,Q, Py, Py € Std(\). Factoring out by the radicals of these forms, we obtain a
complete set of non-isomorphic simple modules for . br(n o) and HZ /HZyHS as follows

Ly(w) = Ag(w)/rad(Ax(w)) fr,oDK(A) = fr,oSk(A) /rad(fn oSk (N))

respectively for A € @2 (n). Finally, the projective indecomposable modules are as fol-
lows,

2L = P dimy (1, Ly (w)) Pe(w) HZ% = @D dimy(ep, D(N)Pr(N). (7.6)

wLv Al p

The isomorphism, W, preserves standard, simple, and projective modules.

The categorical (rather than geometric) definition of p-Kazhdan-Lusztig polynomials
is given via the diagrammatic character of [13, Definition 6.23]. This graded character is
defined in terms of dimensions of certain weight spaces in the light leaves basis. Using
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the identifications of equation (7.4) and (7.6), the definition of the anti-spherical p-
Kazhdan-Lusztig polynomial, Pn, ,,(t), is as follows,

Pry w(t) == dimy Homyir(mg)(P(y), Alw)) = Z dim[Ag (w) : Ly (v) (k)]t*
keZ

for v,w € A(n, o). We claim no originality in this observation and refer to [24, Theorem
4.8] for more details. Through our isomorphism this allows us to see that the graded
decomposition numbers of symmetric groups and more general cyclotomic Hecke algebras
are tautologically equal to the associated p-Kazhdan—Lusztig polynomials as follows,

Prya(t) = dim[Ay(w) : Li () (k)]t* = dimy[foSk(A) : f o Di (1) (R)]t*
keZ kEZ

for A, u € P(n,o) where the equality follows immediately from our isomorphism. Fi-
nally, we remind the reader that truncation by f,, , is to a co-saturated subset of weights
and so preserves the decomposition matrices of these algebras, see for example [10, Ap-
pendix]

7.4. Counterezamples to Lusztig’s conjecture and intersection forms

In [28], the counterexamples to Soergel’s conjecture are presented in the classical
(rather than diagrammatic) language of intersection forms associated to the fibre of a
Bott—Samelson resolution of a Schubert varieties. However, Williamson emphasises that
all his calculations were done using the equivalent diagrammatic setting of the light
leaves basis, which is “ezplicit and amenable to computation”. Moreover, Williamson’s
counterexamples are dependent on the diagrammatics because it is only “from the dia-
grammatic approach [that] it is clear that [the intersection form] Igﬂijyd is defined over
Z” in the first place (see Section 3 of [28] for more details). In terms of the light leaves
cellular basis, Williamson’s calculation makes a clever choice of a pair of partitions A, u
(equivalently, words w,v € S » labelling the alcoves containing these partitions) for which
there exists a unique element Q € Std,, »(A) such that Q ~ P, € Std,, »(x). By highest
weight theory, we have that

{tdeg(Q) if (C ,CR ), =0¢ck
dru(t) = oo
0 otherwise
and Williamson proved for A, u € &, 1(n) (a pair from “around the Steinberg weight”)
that the form is zero for certain primes p > h whereas it is equal to 1 for k = C (and
hence disproved Lusztig’s and James’ conjectures).

Now, clearly the Gram matrices of the bilinear forms in equation (7.5) are preserved
under isomorphism. Thus applying our isomorphism (and Brundan—Kleshchev’s [8]) one
can view Williamson’s counterexamples as being found entirely within the context of the
symmetric group. More generally, we deduce the following:
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Theorem 7.11. Theorem B of the introduction holds.
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Appendix A. Weakly graded monoidal categories

In this appendix we describe the framework for constructing the breadth-enhanced
diagrammatic Bott—Samelson endomorphism algebras. Informally, “breadth-enhanced”
means that we record and keep track of the “breadth” of Soergel diagrams, including
the “blank spaces” between strands. This is contrary to the usual working assumption
that Soergel diagrams are defined only up to isotopy. We will say a few words for why
we have chosen to break this convention in this paper.

Soergel diagrams and KLR diagrams have an important fundamental difference. KLR
diagrams, which are essentially decorated wiring diagrams, always have the same number
of nodes on the top and bottom edges. By contrast, the top and bottom edges of a Soergel
diagram may not have the same number of nodes. This basic observation is enough to
ensure that a Soergel diagram cannot correspond to only one KLR diagram under the
isomorphism in the main theorem. For example, suppose the isomorphism maps the

a-coloured spot diagram to a KLR diagram spot,, with bottom edge P and top edge

(a'h)
Q. Then the empty Soergel diagram (with no strands at all) should map to the KLR
idempotent eq. However it is also clear that the empty Soergel diagram should correspond
to the empty KLR diagram.

The breadth-enhanced diagrammatic Bott—Samelson endomorphism algebra intro-
duces new idempotents, indexed by expressions in the extended alphabet S U {{}. This
ensures that the isomorphism is well defined, with each breadth-enhanced Soergel dia-
gram corresponding to a single KLR diagram. The breadth of a breadth-enhanced Soergel
diagram is simply the number of strands of the corresponding KLR diagram, divided by
h. We draw breadth-enhanced Soergel diagrams so that the width is proportional to the
breadth. In particular, we write 1y to indicate the empty Soergel diagram of breadth 1
(i.e. a “blank space”), which corresponds to the KLR idempotent ep, with A strands.
The breadth-enhanced algebras are Morita equivalent to the usual diagrammatic Bott—
Samelson endomorphism algebras, by simply truncating with respect to the idempotents
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indexed by expressions which do not contain (). Thus once we prove the isomorphism
for the breadth-enhanced algebras, we immediately obtain an isomorphism for the usual
Bott—Samelson algebras.

The machinery for building breadth-enhanced algebras is the notion of a weakly graded
monoidal category. Weakly graded monoidal categories can be thought of as generaliza-
tions of graded monoidal categories, with the grade shifts represented by tensoring with
a fixed shifting object. The construction of breadth-enhanced algebras is then analogous
to defining a graded category from a non-graded category by concentrating the objects
in certain fixed degrees.

We have chosen to write this appendix using the categorical (rather than the algebraic)
perspective. We hope that this will make the results more applicable and the proofs
easier to read. All the categories below will be assumed to be small. We will also use
“monoidal” to mean “strict monoidal” unless stated otherwise. It is probably possible to
generalize everything to arbitrary monoidal categories, but this will not be necessary for
our purposes.

A.1. Definition and examples

Definition A.1. A weakly graded monoidal category is a monoidal category (A, ®) together
with an object in the Drinfeld centre with trivial self-braiding. This consists of the
following data:

o an object I in A called the shifting object;
o for each object X in A, an isomorphism sx : X ® I = I ® X called a simple
adjustment

such that

(WG1) the simple adjustments {sx} are the components of a natural isomorphism s :
(H)YRI=T®(-);
(WG2) for any objects X,Y in A the following diagram commutes

SXQ®Y

XRY®I I XQRY
& %7
XRIRY

(WG3) we have s; = 11g7.

Example A.2. Suppose A° is a graded monoidal category, i.e. a monoidal category whose
Hom-spaces are graded modules. For the moment, let us drop the assumption of strict-
ness and suppose that A® is strictly associative, but with non-trivial unitors. In the
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usual way we may construct a new category A by adding grade shifts and restricting to
homogeneous morphisms. More precisely, the objects of A are the formal symbols X (m)
for each object X of A®* and each m € Z, and the Hom-spaces are

Hom 4 (X (m),Y (n)) = Hom';, " (X,Y).

It is clear that the grade shift (1) is an autoequivalence of A. Moreover, the tensor
product X(m)®Y(n) = (X ® Y)(m + n) gives A the structure of a monoidal category.
Now let 1 be the identity object in A® and set I = 1(1). We observe that

Xm)o1l=Xo1)1) 2 x(m+1) 2 10 X)1) =10 X(m),

and it is straightforward to check that the isomorphisms sx () = Ax (m) (1)1t 0 px (m)(1)
satisfy axioms (WG1)—-(WGS3). Thus A has the structure of a weakly graded monoidal
category.

The main result which we will need in the next subsection is a coherence theorem
for weakly graded monoidal categories. Roughly, coherence for weakly graded monoidal
categories means that every diagram built up from s and identity morphisms (using com-
position and tensor products) commutes. The precise formulation of coherence requires
some combinatorial constructions, which we describe below. Let # be the set of non-
empty words in the symbols e and z. We define the following semigroup homomorphisms
length : % — Z( and breadth : #* — Z > on the generators:

length(e) =0 breadth(e)
length(z) =1 breadth(x) = 0.

1

For w € # of length n, we can associate a functor w4 : A" — A by replacing each
e with the object I, each x with the identity functor 14, and tensoring the resulting
sequence. More formally, we fix

eq:x — A xa: A— A
* —> [ A— A
and inductively define
(ew)q: A" — A (zw) 4 : AV — A

(Al,...7An)l—)I@wA(A17...7An) (Al,...,An+1) l—)A1®’LUA(A27...,An+1)

where n = length(w).
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Theorem A.3. Let u,v € # such that length(u) = length(v) and breadth(u) =
breadth(v). There is a unique natural isomorphism u g = v built up from tensor prod-
ucts and compositions of components of s, s~1, and the identity.

We will defer the proof to the end of this appendix.

We call a component of any natural isomorphism arising from Theorem A.3 an ad-
justment. For two morphisms f: X — Y and g : Z — W we write f ~ g and say that f
and g are adjustment equivalent if there exist adjustments

: X5 Z r:Y S W
such that g =70 foqg™ L
Example A.4. For any morphism f: X — Y in A, we have f ® 1; ~ 17 ® f, because
felr=s7"0(lr®f)osx
by the naturality of simple adjustments.

A.2. Breadth grading

Suppose A is a monoidal category. Assuming A is small, the set Ob(A) has the
structure of a monoid. We call a monoidal homomorphism b : Ob(A) — Z>( a breadth
function.

Definition A.5. Let A be a monoidal category with a breadth function b. The weak grading
of A concentrated in breadth b is the following weakly graded monoidal category .A[b].

Objects The objects of A[b] are formal free tensor products of objects in A and a new
object I. In other words, each object X in A[b] is a formal sequence

I®To ® Xl ® I®T’1 ® X2 R ® I®T’m—1Xm ® I®Tm
for some non-negative integers rg,r,,, positive integers ri,72,...,7m_1, and
non-identity objects Xy, Xo,..., X,, in A. The tensor product on objects in
A extends in the obvious way to objects in A[b]. We also extend the breadth

function b to a monoidal homomorphism b : Ob(A[b]) = Z>¢ by fixing b(I) = 1.
Morphisms For any object X of the above form write X’ for the object

X10Xo®- - X,,

in A. We define
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!/ ! : _
Hom 4 (X, ¥) = {HomA(X YY) i b(X).— b(Y),
0 otherwise.
Composition and tensor products follow from those in A.
Weak grading For X an object in .A[b], the natural isomorphism sx : X ® I = I ® X in
A[b] corresponding to the identity morphism 1x. in A gives A[b] the structure
of a weakly graded monoidal category.

If f: X — Y is a morphism in A[b], write ' : X’ — Y’ for the corresponding
morphism in A. It is easy to check that this mapping is functorial. We write b(f) for the
non-negative integer b(X) = b(Y).

Remark A.6. The category A[b] is the weak graded analogue of the following graded
construction. For a monoidal category A with a breadth function b, define a grading by
setting deg f = b(X) — b(Y") for each morphism f: X — Y. As in Example A.2, we add
grade shifts and restrict to homogeneous morphisms to obtain the category A(b). We
may extend the breadth function b to all of A(b) as above. For any morphism g : U — V'
in A(b), we have 0 = deg g = b(U) — b(V'), which allows us to define the breadth of g to
be b(g) = b(U) = b(V) as in the weakly graded case.

Our naming convention for A[b] (“concentrated in breadth b”) comes from a special
case of the above graded construction. If A is a category of modules over some ring R,
then we may equivalently construct the grading by considering R to be a graded ring
concentrated in degree 0 and each object X to be concentrated in degree —b(X).

As a consequence of our coherence result, there is an alternative presentation of A[b)]
in terms of generators and relations. First we introduce a way of embedding morphisms

from A into A[b].

Definition A.7. Let f : U — V be a morphism in 4. The (left) minimal breadth repre-
sentative of f is the morphism g : X — Y in A[b] such that ¢’ = f and

X = I® max(0,b(V)—b(U)) ® U, Y = [® max(0,b(U)—b(V)) V.

Theorem A.8. Let M be the set of all minimal breadth representatives of morphisms in
A. The category A[b] is generated as a monoidal category by the morphisms

{1[} U {SX : X € Ob(.A)} um
subject to the following relations:

o the usual weak grading axioms (WG1)-(WG3);
o for morphisms f : X — Y, g: Z — W,h: U — V in M such that f'og = I,
we have
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o for morphisms f : X — Y, g: Z — W,h: U — V in M such that f' @ ¢ = I,
we have

f Qg ~ 1?b(f)+b(9)—b(h) ® h.

Proof. Let B be the monoidal category defined by the above generators and relations.
It is clear that the same relations hold in A[b], so there is a functor B — A[b]. It is
enough to show that this functor is full and faithful. Let X,Y be objects in B such that
b(X) = b(Y). We will show that any morphism X — Y can be written in the form

o (OO g

)

where p, q are adjustments and f is a minimal breadth representative. In other words,
we will show that every morphism in B is adjustment equivalent to the tensor product of
a minimal breadth representative and some number of copies of 1;. This automatically
gives fullness and faithfulness of the functor above, which proves the result. Since the
generating morphisms of B are all already of this form, it is enough to show that any
composition or tensor product of two morphisms of this form is again of this form. Now,
consider a composition

o(17™ @ flop toto (17" ®g)or™!

of two morphisms of the above form. Both f and g are minimal breadth representatives,

so their domains and codomains are “left-adjusted”, i.e. of the form I®' @ U for some

object U in A and some non-negative integer [. The adjustment p~!ot is an isomorphism

between I®" ® codg and I®™ ® dom f which are both left-adjusted, so in fact they must
be equal. By Theorem A.3 we must have p = t, so the composition above equals
c(12" @ flo(18"®g)or !t =qo (19" V@1l @ f) o 1" M 18+ 0 g)or!
~qo (1?(m_j) ®@h)or 1
where j = max(0,b(g) — b(f)), k = max(0,b(f) — b(g)), and h is the minimal breadth

representative of f/ o ¢’. Similarly, consider a tensor product of two morphisms of the
above form. We have

(4

=(@et)o(1If" e fel1f" ®g)o(p tar )

1§70 f)op ) ® (te (17" ® g)or)

o (

)
~(qet) o (19" @ fRg)o(pter )
~(got)o (15 ®(mA4n+b(f)+b(g)—b(h)) @ h)o (p_l ® r‘l),
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where h is the minimal breadth representative of f' ® ¢’. O
A.8. Proof of coherence

We conclude with the proof of the coherence theorem for weakly graded monoidal
categories (Theorem A.3). The strategy is broadly similar to Mac Lane’s proof of the
coherence theorem for monoidal categories [20, VIL.2]. This involves first proving the
result for a single object X in the category A, and then extending to all of A.

Now let . be the set of words in the symbols {0y, 0, : w € #'} U {tc,t,} defined
inductively as follows. For any w € # we have 0,0, € .#. Moreover, for any a € .
and w € # we also have t.a,t,a € ¥ and aie,at, € . For convenience we write
by fOT Loy, bawy *+ - Law,,,, Where w = wyiwsa ---wy is a word in #. We inductively define
dom:.¥ — # and cod : .¥ — # as follows:

dom(ay,) = we cod(oy,) =
dom(o,') = ew cod(o,!) =

dom (i) = wdom(ar) cod (i) = weod(a)
dom(aiy,) = dom(a)w cod(auy,) = cod(a)w

Let ¢ be the quiver with vertices given by # and arrows given by .. It is easy to verify
that for any word in « € ., length(dom(«)) = length(cod(a)) and breadth(dom(«)) =
breadth(cod(c)). Thus the graph ¢ has components %, , whose vertices #,, i consist of
words of length n and breadth k.

Now let A be a weakly graded monoidal category. We fix an object X in 4 and set

Ix(e)=1 Ix(@
I = ®fx()

) )
)=1® Jx(w) A x (zw)
fX Uw)zsu)x /X(le)
) = luyx © Fx(a) Ax(av) = / (@) @ Luy
Proposition A.9. Let u,v € # such that length(u) = length(v) and breadth(u) =

breadth(v). Suppose aj o --- 0 ay, and af o --- 0 al,, are two paths in 4 from u to
v. Then

Ix(am)o--o Ix(a) = Fx(ap)o-o FIx(a}).

Proof. Let n = length(u) = length(v) and k = breadth(u) = breadth(v). We will pivot
on the sink vertex w(™*) = eFz™ in the component 9,k Every nonempty word in S
contains exactly one symbol of the form o, or o' for w € W. Call such words directed
or anti-directed respectively. It is easy to check that for any two directed words a, o’

with the same domain and codomain, we must have fZx(a) = Zx(a').
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We inductively define a function p: W — Zx( by

ple) =0 p(z)=0  plew) =p(w)  p(zw) = p(w) + breadth(w).

We also inductively define a function can,, , mapping words in W, ; to directed paths
in %, i by

cang1(e) =0 canjo(z) =0 can,p(ew) = tecan, 1 (w)

k-2

k—1 n—1
L e

can, ,(zw) = (tg gty )0+ 0 (LeOgL 1,;“1) o (UxLif*lLZ*l) o (tgcan, 1 x(w))

It can be shown that can, x(w) is the longest directed path in ¥, from w to w(k)
and that p(w) = length(can,, ;(w)).

Lemma A.10. For any u € W, x, #x maps all directed paths from u to w™*) to the
same morphism.

Before we prove this lemma, we will show that the proposition follows from it almost
immediately. For a € . let inv(«) be the word obtained by switching the symbols
ow ¢ oyt Clearly Zx(inv(a)) = Zx(a)”!, and we may write any anti-directed word
as the formal inverse of a directed word. Let us write the path «,, o--- 0 a7 from u to v
in this manner, using formal inverses of directed words for any anti-directed word that
appears. For example, if as is the only anti-directed word in this path, we write:

ay inv(az) as am
U . ° ° e — >

Now draw canonical paths downwards to w(™*) underneath each of these objects:

aq inv(as) as [o7
U ° . ° L
Wk () W) WMk () Wk

After applying Zx, each square commutes by the above lemma, so
Ix(am)o--o Fx(ar) = Fx(can, ,(v)) ™ o Fx(cannx(u)).
Since the right-hand side only depends on v and v, we are done. O

Proof of Lemma A.10. We induct on p(u), n and k. Suppose we have two directed paths
from w to wy, ; which start with o and o' respectively.
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w w

w(n,k) w(n,k)

As p(w) < p(u), we are then done by induction. Otherwise, suppose w # w’ and o # /.
It is enough to find some w” € W and some paths from w and w’ to w” such that the
following diamond

commutes after applying #x. For if so, then p(w”) < p(u), and by induction the trape-
zoids in the following diagram

/ K/)
w . /w’
\\\\\\\\\é k=" -
- - +
w (k) w (k) w (k)

commute after applying #x, and therefore the whole diagram commutes.

Case 1. If @ = ¢,8 and o = 1,/8 for some 2,2’ € # and 38,8 € .7, then both 2 and
Z' begin with some non-empty word z”. Thus u, w, and w’ also begin with z”, and we
can write @ and o' as ¢,y and ¢, respectively. Let v/ = dom(y), y = cod(v), and
y' = cod(v’), and let n’ and k" be the length and breadth of y (or y’) respectively. Since
y is a strict subword of w, we must have n’ < n or k' < k. Taking w” = 2"w™ *) we
obtain the following diamond

Uu=z1mu
w=2z" w = z”y'
Lorcanni (5) "= 5 4= rmcann (v

w”! = 2™k
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which commutes after applying #x by induction on n and k. A similar proof works if
a = B, and o' = B'1, for some z,2"” € # and 5,5 € .7.

Cases 2 & 3. The next cases to consider occur when one of a or ¢ is o, for some y € #'.
Without loss of generality suppose o = o,,. If & is of the form ¢, 0,/ for some 3/, 2" € #
then we must have y = 2’y’ and thus u = ye = 2’y’e. Taking w” = ez’y’ we obtain the
following diamond

u=2zye
ez'y =w w' = Zey
\ - - Tarly
" __ /Q /
w” =ez'y

which commutes after applying #x by (WG2). On the other hand, if o’ is of the form
oyt for some y', 2" € W, then we must have 2’ = 2”e for some z” € W, and thus
y = y'ez”. Taking w” = eey’z” we obtain the following diagram

u=y'e'e
ey'er! =w w =ey'z'e
Leayw;“‘\\? &,,/”" Teylzr
w = eey’"

which commutes after applying #x, by the naturality of s.

Cases 4 & 5. The last cases are when o = oy¢, and o = 1,10, for some y,y’, 2,2 € W,
so that u = yez = 2’y’e. Suppose first that 2’ starts with ye. Then there is some 2" € W

such that 2/ = yez”. Using yez = z'y’e it is also clear that z = 2”y’e too. Taking

w” = eyz"ey’ we obtain the diamond

u=yez"y'e

Tylzry'e lyez' Oy’

eyz"'y'e =w w' =yez"ey’

L-- Oylarley
_ 1" /
=eyz'ey

Leyazway7*~~\?
/
w

which commutes after applying #x by bifunctoriality of the tensor product. On the
other hand, if ye starts with 2/, then there exists some y” € W such that y = z’y”. This
also implies that y’e ends with z, so there also exists some z”” € W such that z = z"e.
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This means that 3’ = y”ez”. This time we complete the diamond in two steps. First, we
COMPOSE Ly Tyrrezrr With 04rtyre.r. By (WG2) of a weak grading, this composition equals
Oryrex. Thus we have reduced to a previous case and so we are done.

u=2z'y"es’e

Ozryrlzre m}

ez/y//zlle = w w/ — Zley//ez//
!
} o'zr]_y:Ezn
~
eZ/:g///z//e ez/y//ez//
Tez'y’z" leoaryrlzr
w// — 662’/:1//2’”

0O
To extend to the full coherence theorem, we consider objects in a higher category.

Proof of Theorem A.3. Let Iter(A) be the category of functors of the form A™ — A,
where n is a non-negative integer. It is clear that Iter(.A) is also monoidal, with the
tensor product of two functors F': A™ — A and G : A" — A defined to be

(FRG): A™" — A, (A1, Apan) — F(Ay, .. Ap) @ G(Amsts o Aman)

We observe that w 4 is precisely ¢ , (w) as defined above, where we consider the identity
functor 14 as an object in Iter(.A). Applying #1, to any path between u and v gives
an isomorphism in Iter(A) between uy and v4, or in other words, a natural isomor-
phism between the two functors. Uniqueness of this natural isomorphism follows from
Proposition A.9. O

Appendix B. List of symbols

For the convenience of the reader we list the symbols used in the main body of the
paper in three categories: those corresponding to the general setup and basic combina-
torics; those corresponding to the geometry and choice of paths; and those corresponding
to the various algebras of interest (Tables 1-3). As Appendix A is relatively short and
self-contained we omit those symbols here.
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