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Abstract

We show a deterministic simulation (or lifting) theorem for composed problems f ◦ Eqn where the

inner function (the gadget) is Equality on n bits. When f is a total function on p bits, it is easy to

show via a rank argument that the communication complexity of f ◦ Eqn is Ω(deg(f) · n). However,

there is a surprising counter-example of a partial function f on p bits, such that any completion f ′

of f has deg(f ′) = Ω(p), and yet f ◦ Eqn has communication complexity O(n). Nonetheless, we are

able to show that the communication complexity of f ◦ Eqn is at least D(f) · n for a complexity

measure D(f) which is closely related to the AND-query complexity of f and is lower-bounded by

the logarithm of the leaf complexity of f . As a corollary, we also obtain lifting theorems for the

set-disjointness gadget, and a lifting theorem in the context of parity decision-trees, for the NOR

gadget.

As an application, we prove a tight lower-bound for the deterministic communication complexity

of the communication problem, where Alice and Bob are each given p-many n-bit strings, with the

promise that either all of the strings are distinct, or all-but-one of the strings are distinct, and they

wish to know which is the case. We show that the complexity of this problem is Θ(p · n).
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50:2 Lifting Theorems for Equality

1 Introduction

In the same paper of Karchmer and Wigderson [40], where the notion of formula depth

was shown to be equivalent to the communication complexity of their since-homonymous

games, was also the first proof separating monotone NC2 from monotone NC1. Although not

formulated explicitly in this way, their separation of these two circuit classes can be nowadays

be presented as a two-part argument: (I) one first shows that the monotone Karchmer–

Wigderson game for connectivity on nΘ(1)-node graphs is equivalent to a composition problem

in communication complexity, namely Switchn ◦ Indn, the composition of the Switch relation

on n bits with the Indexing gadget on log n bits (given to Alice) and n bits (given to Bob);

and (II) one then shows lower-bounds for Switchn ◦ Indn by lifting an Ω(log n) adversarial

lower-bound against decision trees trying to solve the Switchn relation, into an Ω((log n)2)

adversarial lower-bound against communication protocols for Switchn ◦ Indn. Formally, a

composed function f ◦g consisting of f on p-bits and g on n bits is defined on p·n bit long input

x = 〈x1, · · · , xp〉 (where each xi is n bit long) as follows: (f ◦ g)(x) = f(g(x1), · · · , g(xp)).

Their seminal paper led to the following general approach for proving lower-bounds

against a given complexity measure. One first (I) finds a composed problem f ◦ g whose

communication complexity is upper-bounded by the given complexity measure, and (II) one

then proves a lower-bound for the communication complexity of f ◦ g by arguing that a

lower-bound for f in a simple model (such as decision trees) will lift to a lower-bound against

protocols for f ◦ g.

Complexity theory has profited greatly from this approach. It appears in the celebrated

Raz-McKenzie separation of the monotone NC hierarchy, [57] but also in the best known

lower-bounds on monotone formula depth and monotone span programs [59, 54]. Several

lower-bounds on the length of proofs in various proof systems were first established using this

approach [14, 54, 19], and it is the only known way of proving various separations between

complexity classes in communication complexity [27, 26, 25, 24, 23, 68]. It may even be

used for proving lower-bounds against data-structure schemes [13], and lower-bounds on the

extension complexity of linear programs [42, 46, 22].

Owing partly to this long list of discoveries, and partly to the Karchmer-Raz-Wigderson

approach [39] for proving lower-bounds against (non-monotone) NC1 [30, 17, 21, 15], the

lower-bounds community developed a specific interest in understanding the computational

complexity of composition, and devoted a large effort to understanding composition problems.

Under this heading we should include Sherstov’s pattern matrix method [61], and the

closely related block-composition method of Shi and Zhu [65], which were developed further

in [10, 47, 11, 63, 64, 55], and resulted in many different applications. The problem of

understanding the communication complexity of XOR functions [56, 66, 31] is another

example of a composition problem, and particularly pertinent to our case since Equality

is itself an XOR function, Eqn = NORn ◦ XOR2. It is conjectured that the communication

complexity of a composition g ◦ XOR2 is approximately equal to the parity decision-tree

complexity of g, and in fact this has been shown to hold up to a polynomial if g is a total

function [31]. From this conjectured connection, it would follows that the communication

complexity of a composition with Equality, f ◦ Eqn, should equal the parity decision-tree

complexity of the composition with the NOR function, f ◦ NORn.

Work on the direct-sum and direct-product problems [35, 2, 29, 33, 16, 53, 34, 36, 1, 5, 6,

7, 4, 41, 32] is also a study of composition, where the outer function f in f ◦ g is the hardest

possible: the identity function; even this case remains unsolved in various settings.
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The complexity of composition is a difficult problem – not just because, generally speaking,

lower-bounds are hard to establish, but also because the composition of two hard problems

is sometimes not as hard as one may expect: sometimes there is a “collapse” of hardness. A

classic example is the case of direct sum in communication complexity: a near-perfect direct

sum result holds in the non-deterministic case [49, 38], but fails to hold in the deterministic

model [52, 18], and is still an open problem in the randomized model. The following recent

example is also of great interest. In the case of deterministic decision-trees, the depth-

complexity of f ◦ g is the product of the complexities of f and g; this both intuitive and easy

to establish, and holds whether f is a total function, a partial function, or relation of any

kind. But already if we look into randomized decision-trees, Gavinsky et al. [20] and Sanyal

[60] show that the depth-complexity of the composition f ◦ g will be as high as the product of

the complexity of f with the square-root of the complexity of g; and, surprisingly, [20] exhibit

a relation f and a function g for which this bound is tight. This “collapse” of hardness when

composing relations or partial functions seems to make such problems difficult to understand.

As we will see, composition with Equality provides another instance of this phenomenon.

1.1 A tea-break puzzle

Alice and Bob, two renowned complexity theorists, get together during the conference’s

tea break: Communication complexity is the most successful area in complexity theory –

Alice says – at least the natural examples of functions are really well understood. Bob

raises his eyebrows – do you mean total functions, like Equality, or partial functions, like

Gap-Hamming-distance? – Both – replies Alice – Equality has been well understood since

the invention of the field [70], and even Gap-Hamming-Distance is at this point understood

for every gap – the constant gap case is a simple result [69], and even 1√
n

fraction gap was

eventually understood [9, 67, 62].

Ok – Bob replied, wryly – how about the “n, (n − 1)-Equality-Gap”? Suppose you are

given p-many n-bit strings x1, . . . , xp, and I am given y1, . . . , yp, and we are promised that

either all of the (xi, yi) pairs are different or exactly one of the (xi, yi) pairs is equal... show

me that we need to communicate Ω(n · p) bits in order to know which is the case. . .

Alice thinks for a while – I know, we can do it via a rank argument. Your “n, (n − 1)-

Equality-Gap” function is the composition F ◦ Eqn, where F is the partial function which is

1 on the all 0 string and 0 on the strings of Hamming weight 1, and Eqn is Equality on n

bits. The decision tree complexity of F is Ω(p) which can be seen by a simple adversarial

argument, and by the connection between degree and decision tree complexity [8, 51], we

can show that any completion F′ of F has degree Ω(p1/3). Also, Eqn has rank 2n, so the

rank of the communication matrix of F′ ◦ Eqn is 2Ω(p1/3n) (see Lemma 6), and hence the

communication complexity is Ω(p1/3n). This is not tight, but it’s close to what you want.

Bob nods – Your argument holds true, but it only implies that any protocol for F′ ◦ Eqn

needs Ω(n · p1/3) bits. However, even though a protocol for F ◦ Eqn does give you a completion

of the partial communication matrix for F ◦ Eqn, this completion does not need to be in the

composed form F′ ◦ Eqn where F′ is a completion of F. So you did not answer my question,

not even if I disregard the polynomial loss. . .

At this point Alice does not know what to answer, and rightly so. We will see below

an example of a p-bit partial function f , such that any completion of f must have degree

Ω(p1/3), and yet the communication complexity of f ◦ Eqn is O(n), instead of Ω(n · p1/3),

which is what one would expect from a rank-degree argument. The protocol that shows this

will precisely take advantage of the fact that a completion of f ◦ g does not have to be of the

form f ′ ◦ Eqn for some completion of f ′ of f . We will also show that such a counter-example

does not exist if f is a partial function.

STACS 2019
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A solution to Bob’s tea-break puzzle appears as Corollary 18, in page 10. Using our

lifting theorem (Theorem 13, page 9) the desired tight lower-bound of Ω(n · p) is a 2-line

argument.

Interestingly, the counter-example provided below the problem of distinguishing the case

when all of the (xi, yi) pairs are equal, from the case when all but one of the (xi, yi) pairs are

equal, so it is strongly related to the example Alice and Bob were discussing above. However,

the communication complexity of the example is Ω(p · n), but the communication complexity

of the counter-example is only O(n).

1.2 Composition with Equality

In this work, we answer a question pertaining to the communication complexity of composition

of Boolean relations with the Equality gadget. Before stating the question and our main

results, we explain the context surrounding this question. We begin with some definitions.

Define the “Switch” relation: Switchp = {(z, i) ∈ {0, 1}p × {0, 1, . . . , p} | zi = 1, zi+1 = 0},

where we use z0 = 1 and zp+1 = 0, i.e., we are given p bits and wish to find a “switching

point”, a position i where a 1-bit flips into a 0-bit. If z = 0p we must output i = 0 and if

z = 1p we must output i = p.

Let Indn : [n] × {0, 1}n → {0, 1} denote the two-player Indexing function on n-bits, so

that Indn(x, y) = yx.

Then Switchp ◦ Indn denotes the composed Boolean relation:

Switchp ◦ Indn = {(x̄; ȳ; i) ∈ [n]p × ({0, 1}n)p ×{0, 1, . . . , p} | (yi)xi
= 1, (yi+1)xi+1

= 0}.

Let Eqn : {0, 1}n × {0, 1}n → {0, 1} denote two-player Equality on n-bits, so that

Eqn(x, y) = 1 iff x = y.

Then Switchp ◦ Eqn denotes the composed Boolean relation:

Switchp ◦Eqn = {(x̄; ȳ; i) ∈ ({0, 1}n)p ×({0, 1}n)p ×{0, 1, . . . , p} | xi = yi, xi+1 6= yi+1}.

Let F ⊆ A × B × C be a relation. The deterministic communication complexity of F ,

Dcc(F ), is the minimum communication cost of a protocol for solving the communication

problem where Alice is given a ∈ A, Bob is given b ∈ B, and they wish to find c such that

(a, b, c) ∈ F , whenever one such c exists (see [45], Chapter 5).

Let f ⊆ {0, 1}p × C be a relation. The deterministic query complexity of f , Ddt(f), is the

minimum number of queries made by a deterministic decision-tree which, given query

access to z ∈ {0, 1}p, finds a c ∈ C such that (z, c) ∈ F , whenever one such c exists.

In STOC’88, Karchmer and Wigderson [40] presented a proof that connectivity is not in

monotone NC1. At the heart of their result was an argument which may be reinterpreted as

a proof of the following theorem:

◮ Theorem 1 (Karchmer and Wigderson, [40]). Dcc(Switchp ◦ Indn) = Ω((log n) · log p).

In Structures’91, the conference now known as CCC, Grigni and Sipser [28] provided an

alternative proof that connectivity is not in monotone NC1. Their proof uses Eq in place of

Ind, and this allows for a simpler argument:

◮ Theorem 2 (Grigni and Sipser, [28]). Dcc(Switchp ◦ Eqn) = Ω(n · log p).

It is not hard to see that Theorem 2 implies Theorem 1, by reducing Eqlog n to Indn.

Later, in FOCS’97, Raz and McKenzie [57] separated the entire monotone NC hierarchy. At

the heart of their proof was an argument for a vast generalization of Theorem 1:
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◮ Theorem 3 (Raz and McKenzie, [57]). For any Boolean relation f ⊆ {0, 1}p × C, whenever

n ≥ p20, Dcc(f ◦ Indn) = Ω
(

(log n) · Ddt(f)
)

.

Theorem 3 was not stated with such generality in [57], but appeared in this form in a

recent work of Göös, Pitasi and Watson [26]. Theorem 3 has been the basis of several papers

[26, 12, 44].

Knowing the above history, one naturally comes to the question of whether one can prove

a similar generalization for Grigni and Sipser’s Theorem 2, i.e., whether we can prove the

conjecture:

◮ Conjecture 4. For any Boolean relation f ⊆ {0, 1}p × C, Dcc(f ◦ Eqn) = Ω
(

n · Ddt(f)
)

.

Very general lifting theorems may be proven using rank arguments, and the current state

of the art [59, 54] is a lifting of the Nullstellensatz degree of any CNF-relation1 f to the rank

of f ◦ g, which works for a large class of gadgets g having a certain algebraic property2. The

equality gadget does possess the required property, however our lower-bound technique will

work for any relation, and not just CNF-relations.

In the case when f is a total function, however, there is an ad-hoc degree-to-rank lifting

theorem which works for the equality gadget, and which is in the same spirit as [59, 54]. It

uses the following characterization:

◮ Proposition 5 ([3]). If h is a Boolean function and F is the communication matrix of

h ◦ XOR2, then rank(F ) = ‖h‖0.

Above, rank(F ) is the real rank of the communication matrix of F , and ‖h‖0 is the Fourier

sparsity (the number of non-zero Fourier coefficients) of h. We can view f ◦ Eqn as an XOR2

function, f ◦ NORn ◦ XOR2. The following observation is easy to prove, but the proof is

omitted due to space constraints (see the ECCC version [48] for the proof).

◮ Lemma 6. For every f : {+1, −1}p → {+1, −1} with deg(f) ≥ 1, and every g :

{+1, −1}n → {+1, −1}, we have ‖f ◦ g‖0 ≥ (‖g‖0 − 1)deg(f).

Lemma 6 implies that ‖f ◦ NORn‖0 = Ω(2deg(f)·n), since ‖NORn‖0 = 2n. By the rank-lower

bound for communication complexity, we thus have Dcc(f ◦ Eq) ≥ Ω(deg(f) · n). Now we can

use the following connection between deg(f) and Ddt(f), which improves upon a theorem of

Nisan and Smolensky theorem [8].

◮ Proposition 7 ([51]). , deg(f) = Ω(Ddt(f)1/3).

Combining the three above facts, we get that when f is a total Boolean function, then

Dcc(f ◦Eqn) = Ω(Ddt(f)1/3 ·n). This easy-to-prove result is similar to Conjecture 4, except for

the 1/3 loss in the exponent, and works for all total functions. But surprisingly, when allow

f to be a partial function, Conjecture 4 is false! The following counter-example was given to

us by Arkadev Chattopadhyay, Suhail Sherif, and Mark Vinyals. Let f ⊆ {0, 1}p × {0, 1} be

the relation

f = {(z, 1) | |z| = p or |z| < p − 1} ∪ {(z, 0) | |z| = p − 1 or |z| < p − 1},

1 A CNF-relation fφ ⊆ {0, 1}n × [m] is defined for a given unsatisfiable CNF φ on n variables and m
clauses, by (x, i) ∈ fφ if x falsifies the i-th clause. Such relations appear prominently in the study of
monotone Karchmer–Wigderson games.

2 These results are explained in Robert Robere’s excellent PhD thesis [58]. The mentioned algebraic
property appears in Section 5.1.

STACS 2019
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i.e., we are given a Boolean string z ∈ {0, 1}p, and wish to distinguish the case when z has

Hamming weight p from the case when z has Hamming weight p − 1. It is easy to show that

Ddt(f) ≥ p: an adversary keeps answering 1 to all queries, and f(z) will remain unknown

until the very last query. This adversary also shows that Ddt(f ′) ≥ p for any “completion”

of f , i.e. any total function f ′ : {0, 1}p → {0, 1} which agrees with f on the inputs with

Hamming weight p or p − 1; and hence deg(f ′) = Ω(p1/4) for any such f ′, by Proposition 7.

So one might mistakenly hope, like Alice did in Section 1.1, that a rank/degree argument

would serve to prove a lower-bound of Ω(p1/4 · n) for f ◦ Eqn.

However, a protocol for f ◦ Eqn(x1, . . . , xp; y1, . . . , yp) may proceed as follows. Think of

each of Alice and Bob’s inputs for f ◦ Eqn as a matrix with p rows and n columns. Then let

a ∈ {0, 1}n be the XOR of each column of Alice’s input, and b ∈ {0, 1}n be the XOR of each

column of Bob’s input. Then Alice sends a to Bob, and Bob replies whether a = b. Now, if

every xi equals the corresponding yi, then clearly a = b; and if every xi equals yi, except for

a single value of i ∈ [p], then there must exist a j ∈ [n] such that aj 6= bj . It then holds that

Dcc(f ◦ Eqn) ≤ n + 1, and so Conjecture 4 is false. Remarkably, this seems to suggest that

rank/degree arguments will fail to hold.

This counter-example also shows that Eqlog n behaves differently from Indn, when used as

the inner function in a composition – indeed Theorem 3 implies that Dcc(f ◦ Indn) ≥ p log n,

which is strictly higher when p = ω(1). The difference between Equality and Indexing may

be further explained with the help of a recent paper of Chattopadhyay, Koucký, and the

authors [12]. There it is shown that a theorem like Conjecture 4 will hold for any inner

function g, in place of Eqn, which admits certain hitting distributions3. As it turns out,

all gadgets for which we could prove a deterministic simulation theorem, namely, Indexing

[57], Inner-product and gap-Hamming [12], and several others [44], all admit such hitting

distributions. But it may be seen that although Equality has a 0-hitting distribution, it fails

to have any 1-hitting distribution.

The existence of such a counter-example was surprising to us, because in the case of the

Switch relation, the Karchmer–Wigderson theorem and Grigni–Sipser theorem behave the

same way (by lifting a decision-tree adversary for the Switch relation). The main purpose of

this work was to understand what is happening.

1.3 Almost Conjecture 4

We will be able to prove a simulation theorem for composition with Equality, but for a notion

different than decision-tree depth. In order to avoid long preliminaries for now, we postpone

the full list of our results until the end of Section 2. However, one of our results is sufficiently

close to what was already discussed, that it may be easily stated in the present section, and

may thus serve as motivation for the remainder.

For a given relation f ⊆ {0, 1}p ×C, let Ldt(f) denote the smallest number of leaves of any

deterministic decision-tree which, given query access to z ∈ {0, 1}p, finds a c ∈ C such that

(z, c) ∈ F , whenever such a c exists. Notice that Ddt(f) ≥ log Ldt(f), and so if Conjecture

4 were true, a consequence would be that Dcc(f ◦ Eqn) = Ω
(

n · log Ldt(f)
)

. The following

theorem, thus, may be considered a weak variant of Conjecture 4:

3 A (δ, h)-hitting rectangle-distribution (for δ ∈ (0, 1) and h ∈ N) is a distribution over rectangles such

that a random rectangle from this distribution will intersect any 2−h-large rectangle with probability
≥ 1 − δ. By a Boolean function g having (δ, h)-hitting monochromatic rectangle-distributions, we mean
that there are two (δ, h)-hitting rectangle-distributions σ0 and σ1, such that σc only samples rectangles
which are c-monochromatic with respect to g.
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◮ Theorem 8 (Lifting for log Ldt). For any Boolean relation f ⊆ {0, 1}p × C, whenever

n ≥ 100 · log p,

Dcc(f ◦ Eqn) = Ω

(

n ·
log Ldt(f)

log p

)

.

1.4 Organization

In Section 2 we state the definitions required to understand the statements of our results,

and then state all our results in full; in this section we give the first new concept required

by our results, namely the notion of 0-query complexity. In Section 3, we introduce the

combinatorial invariants required to prove our main result, including the notion of thickness,

which comes from Raz and McKenzie [57, 26, 12], but also the notion of square, which is the

second new concept required by our proofs. In Section 4 we prove a projection lemma – the

crucial lemma required to prove the simulation theorem – which is then proven in Section 5.

2 Preliminaries, and precise statements of our results

In this section we provide basic notations and precise statements of all our results.

We will assume the reader is familiar with various basic concepts pertaining to complexity

of Boolean functions, namely: decision trees, query complexity, leaf complexity, protocol

trees, communication complexity, combinatorial rectangles, and Fourier analysis of Boolean

functions. See [45, 37] for reference.

We will be studying the decision-tree complexity of relations. A Boolean relation f is a

subset of {0, 1}p × C where C is a finite set; associated with f is the search problem where we

are given a string z ∈ {0, 1}p, and wish to find an element c ∈ C such that (z, c) ∈ C, if such

an element exists.4 If to each z corresponds exactly one c, we call f a total Boolean function.

For a given Boolean relation, we let Ddt(f), called the query complexity of f , be the

minimum height of T , taken over deterministic decision-trees T which solve the search

problem associated with f . We let Ldt(f), called the leaf complexity of f , be the minimum

number of leaves of T , again taken over deterministic decision-trees T which solve the search

problem associated with f .

We will also be interested in the communication complexity of relations. A two-player

relation F is a subset F ⊆ A × B × C where A, B, C are finite sets; associated with F is the

communication problem where Alice is given a ∈ A, Bob is given b ∈ B, and they wish to find

c ∈ C such that (a, b, c) ∈ F , if one such c exists. If g ⊆ A×B ×{0, 1} is a two-player relation

such that to each pair (a, b) ∈ A × B corresponds exactly one c ∈ {0, 1} with (a, b, c) ∈ g,

we call g a gadget. The Equality and Indexing function defined in page 4 are examples of

gadgets. A third example is the Set-disjointness function Disjn : {0, 1}n × {0, 1}n → {0, 1},

where Disjn(x, y) = 0 iff xi = yi = 1 for some i ∈ [n].

For a given two-player relation F ⊆ A × B × C, we let Dcc(F ), called the communication

complexity of F , be the height of the shortest deterministic protocol-tree for solving the

communication problem associated with F .

4 Although when considering functions the difference between a total function and a partial function (a
promise problem) is very important, this distinction is irrelevant when thinking more generally about
relations, at least in computational models which are guaranteed to produce an output. Indeed, a
partial Boolean relation f ⊆ {0, 1}n × C may be replaced by the total Boolean relation f ′ = f ∪ {(x, c) ∈
{0, 1}n × C | (x, c′) /∈ f for any c′ ∈ C}, meaning if the input is outside the promise we allow the
algorithm to output anything.

STACS 2019
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The composition of a Boolean relation f ⊆ {0, 1}p × C with a gadget g : A × B → {0, 1}

is the two-player relation f ◦ g ⊆ Ap × Bp × C, given by

f ◦ g = {(a1, . . . , ap; b1, . . . , bp; c) | (g(a1, b1) . . . g(ap, bp), c) ∈ f}.

The following definition is crucial to our result and, to our knowledge, has not been used

prior to this work:

◮ Definition 9. Given a deterministic decision-tree T over {0, 1}p, the 0-depth of T is the

maximum number of queries which are answered 0, in any root-to-leaf path of T . The 0-query

complexity of f , denoted Ddt
0 (f), to be the smallest 0-depth of T , taken over deterministic

decision-trees T which solve the search problem associated with f .

It is unusual to make a query complexity notion depend on the specific outcome of the

queries, instead of just the number of queries. However, the above notion is closely related

to a notion analogous to parity decision-trees. Indeed, we may define AND decision-trees to

be like parity decision-trees, but where the algorithm is allowed the query an AND of the

input bits, instead of a parity of the input bits:

◮ Definition 10. An AND decision-tree over {0, 1}p is a rooted tree where each internal node

v is labeled by a set of variables Qv ⊆ [p] and each edge is labeled 0 or 1. As in the case of

deterministic decision-tree, the execution of T on an input z ∈ {0, 1}p traces a path in this

tree: at each internal node v the execution is given the value of the conjunction q =
∧

i∈Qv
zi,

and follows the edge labeled q into one of v’s children. With each node v of the tree we may

associate the set Sv ⊆ {0, 1}p of those inputs whose execution follows the path down to the

node v; the set Sv is given by a system of conjunctive equations.

An AND decision-tree over {0, 1}p is said to solve the search problem associated with a

Boolean relation f ⊆ {0, 1}p × C if, for every leaf v, there exists a choice of c ∈ C such that

(z, c) ∈ f for every z ∈ Sv.

Then, the AND-query complexity of f , denoted Ddt
AND

(f), is defined as the minimum depth

of T , taken over AND decision-trees T which solve the search problem associated with f .

We are then able to establish the following relationship:

◮ Lemma 11. Let f ⊆ {0, 1}p × C be any Boolean relation. Then

Ddt
AND

(f) ≥ Ddt
0 (f) ≥

Ddt
AND

(f)

⌈log(p + 1)⌉

Since these measures are within a log p factor of each other, it is possible to think of the

more natural Ddt
AND

(f) as a proxy for Ddt
0 (f). The proof is simple, but is omitted due to

space constraints (it appears in the full version of the paper [48]).

There is also a simple relation between 0-query complexity and leaf complexity. If a

decision-tree over p bits never makes more than d zero-queries, each root-to-leaf path may

be specified by the positions of the 0-answers along that path, so there are fewer than
(

p
≤d

)

≤ 2(d+1) log p leaves. Hence it follows:

◮ Lemma 12. Let f ⊆ {0, 1}p × C be any Boolean relation. Then

Ddt
0 (f) ≥

log Ldt(f)

log p
− 1.

If log Ldt(f) = Ω(p), we have
(

p
≤d

)

≥ 2Ω(H2(d/p)·p), and so Ddt
0 (f) = Ω(p) also.
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Lifting theorems for Equality. Our main result is a simulation theorem which lifts 0-query

complexity of a Boolean relation f ⊆ {0, 1}p × C to the communication complexity f ◦ Eqn:

◮ Theorem 13 (Lifting for Ddt
0 ). Let f ⊆ {0, 1}p ×C be any Boolean relation. Then, whenever

n ≥ 100 · log p,

Dcc(f ◦ Eqn) = Ω
(

n · Ddt
0 (f)

)

.

The proof of Theorem 13 uses the notion of thickness from Raz-McKenzie [57], and a

new invariant, called a square, which is inspired by Grigni-Sipser [28]. These notions are

presented in Section 3.

Our proof is similar in flavor to Or Meir’s lower-bound for the direct-sum of the universal

relation [50], although for that problem a rank argument will work [43].5

◮ Remark 14. It is not hard to verify that Ddt
0 (f) = 1 when f is the counter-example to

Conjecture 4, which we described in Section 1.2: a decision tree for f queries coordinates

one at a time until it finds the first 0. Then it follows from Theorem 13 that the protocol for

f ◦ Eqn appearing in page 5 is optimal, up to constant factors.

Theorem 8 follows from Theorem 13 and Lemma 12. Theorem 13 and Lemma 11 give us the

following:

◮ Corollary 15 (Lifting for Ddt
AND

). Let f ⊆ {0, 1}p × C be any Boolean relation. Then,

whenever n ≥ 100 · log p, Dcc(f ◦ Eqn) = Ω
(

n ·
D

dt
AND

(f)
log p

)

.

Lifting theorems for Set-disjointness. By a simple reduction, we are also able to show the

first lifting theorem known for set-disjointness. Indeed, we may reduce an instance of Eqn to

an instance of Disj2n. Alice maps each of her bits xi into the pair of bits ai = (1 − xi)xi,

and Bob maps each of his bits yi into bi = yi(1 − yi); it now holds that xi = yi iff ai and bi

are disjoint, and hence Eqn(x, y) = Disj2n(a, b). As a corollary, we find:

◮ Corollary 16 (Lifting for disjointness). Let f ⊆ {0, 1}p × C be a Boolean relation and

n ≥ 100 · log p. Then Dcc(f ◦ Disjn) = Ω
(

n · Ddt
0 (f)

)

.

Naturally, Theorem 8 and Corollary 15 will hold for Set-disjointness.

Lifting theorems for parity decision-trees. A composition with Equality, f ◦Eqn, is a XOR

function f ◦ NORn ◦ XOR2. It is well known and easy to see that Dcc(F ◦ XOR2) ≤ Ddt
⊕ (F )

[31], where Ddt
⊕ (F ) is the parity-query complexity of F . Hence a consequence of our lifting

theorem for Equality in communication complexity is also a lifting theorem for the NOR

function, with respect to parity decision-trees:

◮ Corollary 17. For any Boolean relation f ⊆ {0, 1}p × C, whenever n ≥ 100 · log p,

Ddt
⊕ (f ◦ NORn) = Ω

(

n · Ddt
0 (f)

)

.

It may be seen that Ddt
0 (f) cannot be replaced by Ddt(f), by the same counter-example f of

page 5.

5 Or Meir’s proof is similar to what one would obtain if one were to carry out our proof when f is the
identity function, so our technique can be seen as a generalization of Meir’s. Of course in our case
composition with identity would be just a larger equality, so the lower-bound follows trivially, whereas
in the case of the universal relation the result is not trivial.

STACS 2019



50:10 Lifting Theorems for Equality

A solution to the tea-break puzzle. A lifting theorem such as Theorem 13 is a powerful

tool for proving lower-bounds in communication complexity. The theorem is very general

and many such results may be proven, but let us here give an example of lower-bound for a

concrete problem in communication complexity.

Consider the Bob’s example F ◦ Eqn from the tea-break puzzle where Alice and Bob are

each given p-many n-bit strings, with the promise that either all strings are different, or

exactly one pair of strings is equal, and they wish to know which is the case.

We have F(z) = 1 when its input, z, has Hamming weight 0, and F(z) = 0 when z has

Hamming weight 1. This is a partial function, so we may not use Lemma 6 to prove a

lower-bound on it. However (this is the two-line proof): an adversary may answer 0 p − 1

times before fixing F(z); hence Ddt
0 (F) ≥ p − 1, and it follows immediately from Theorem 13:

◮ Corollary 18. Whenever n ≥ 100 · log p, Dcc(F ◦ Eqn) = Ω(n · p).

To the best of our knowledge, there is currently no other way to establish this lower-bound.

3 Thickness and squares

Notation . If p is a natural number, we write [p] for the set {1, . . . , p}. For sets A and B,

we use A → B to denote the set of total functions from A to B. We write f : A → B to

mean f ∈ (A → B). We also use BA to denote the set of total functions from A to B, but

in this case we think of them as A-indexed sequences of elements from B, and if we first

write f ∈ BA, instead of f : A → B, we will later write fa instead of f(a). If f : A → B (or

f ∈ BA) and A′ ⊆ A, then f
∣

∣

A′ is the restriction of f to A′. A disjoint union is denoted by

∪· , i.e. A ∪· B denotes the union of two disjoint sets A and B.

We will look at sets A ⊆ ({0, 1}n)[p], and we will often want to think of some set of

coordinates I ⊆ [p] as being alive, and the corresponding complement D = [p] \ I will be

the set of dead coordinates. We will be working with partial assignments of elements from

({0, 1}n)[p], which can be encoded as total functions from I to {0, 1}n. Hence the following

two definitions will be helpful.

◮ Definition 19 (Join). Let n ≥ 1 and p ≥ 2 be integers, ∅ 6= I ( [p] and D = [p] \ I.

If s′ ∈ ({0, 1}n)I and s′′ : ({0, 1}n)D, then their join s′ × s′′ ∈ ({0, 1}n)[p] is given by:

(s′ × s′′)i =

{

s′
i if i ∈ I

s′′
i if i ∈ D.

This notation is extended to subsets of ({0, 1}n)I and ({0, 1}n)D in the natural way.

If i ∈ I ⊆ [p], s′ ∈ {0, 1}n and s′′ ∈ ({0, 1}n)I\{i}, then their join at i is the sequence

s′ ×i s′′ ∈ ({0, 1}n)I with (s′ ×i s′′)i = s′, and ∀j ∈ I \ {i} (s′ ×i s′′)j = s′′
j .

◮ Definition 20. Let n ≥ 1 and p ≥ 2 be integers, I ⊆ [p], i ∈ I and S ⊆ ({0, 1}n)I .

We define the projections: Si = {si | s ∈ S} ⊆ {0, 1}n and S 6=i = {s
∣

∣

I\{i} | s ∈ S} ⊆

({0, 1}n)I\{i}.

Likewise if ∅ 6= E ⊂ I, we define SE = {s
∣

∣

E
| s ∈ S} ⊆ ({0, 1}n)E and, for each s′′ ∈

({0, 1}n)I\E, the extensions of s′′ in S is the set ExtS(s′′) = {s′ ∈ ({0, 1}n)E | s′ × s′′ ∈ S}.

For a subset U ⊆ {0, 1}n, the restriction of S to U at coordinate i is the set Si,U = {s ∈

S | s(i) ∈ U}. We will also write Si,U
6=i for the set (Si,U )6=i (i.e. we first restrict the i-th

coordinate then project onto the remaining coordinates in I): Si,U
6=i = {s

∣

∣

I\{i} | s ∈ S, si ∈ U}.
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3.1 Thickness and its properties

The notion of thickness was first used by Raz and McKenzie in [57], and is by now a

well-known notion. But whereas previously the notion of thickness was only looked at with

respect to all coordinates simultaneously, we will be interested in the notion of thickness

with respect to a subset of coordinates. This difference is non-essential, and all the relevant

properties are proven mutatis mutandis. Due to space constraints, the proofs are omitted

(but appear in the full version of the paper [48]).

◮ Definition 21 (Aux graph, average and min-degrees). Let n ≥ 1, p ≥ 2 be integers, I ⊆ [p],

and S ⊆ ({0, 1}n)I . For each i ∈ I, the aux graph G(S, i) is the bipartite graph with left-side

vertices Si, right-side vertices S 6=i and edges corresponding to the set S, i.e., (s′, s′′) is an

edge iff s′ ×i s′′ ∈ S.

We define the average degree of G(S, i) to be the average right-degree: davg(S, i) = |S|
|S6=i| ,

and the min-degree of G(S, i), to be the minimum right-degree: dmin(S, i) = min
s′′∈S6=i

|ExtS(s′′)|.

◮ Definition 22 (Thickness and average thickness). Let n ≥ 1, p ≥ 2 be integers, ∅ 6= F ⊆

I ⊆ [p], and S ⊆ ({0, 1}n)I . Then S is called τ -thick on F if dmin(S, i) ≥ τ · 2n for all i ∈ F .

(By convention an empty set S is τ -thick.) Similarly, S is called ϕ-average-thick on F if

davg(S, i) ≥ ϕ · 2n for all i ∈ F . For p = 1, set S is τ -thick if |S| ≥ τ · 2n.

We will need the following two lemmas. The proofs are similar to the analogous lemmas in

[26].

◮ Lemma 23 (Average thickness implies thickness). Let n ≥ 1, p ≥ 2 be integers, ∅ 6= F ⊆

I ⊆ [p], and S ⊆ ({0, 1}n)I . If S is ϕ-average-thick on F , then for every δ ∈ (0, 1) there is a

subset S′ ⊆ S which is δ
p ϕ-thick on F and has |S′| ≥ (1 − δ) · |S|.

A recent example by Kozachinskiy [44] shows that the 1
p loss in Lemma 23 is needed. This

loss is the core reason why we need the gadget to have size n = Ω(log p) in Theorem 13.

◮ Lemma 24. Let n ≥ 1, p ≥ 2 be integers, i ∈ F ⊆ I ⊆ [p], and S ⊆ ({0, 1}n)I be τ -thick

on F . Then for any set U ⊆ {0, 1}n, Si,U
6=i will also be τ -thick on F \ {i}, and Si,U

6=i will be

empty iff U ∩ Si is empty.

3.2 Squares

We will be interested in rectangles R = A × B, where A, B both are subsets of ({0, 1}n)[p],

and which have a certain “square-like” structure. Such a “square-like” rectangle appears in

our proofs, and will always be a sub-rectangle of the rectangle induced by a protocol.

A “square-like” rectangle R = A × B, is one for which we have a set I ⊆ [p] of live

coordinates, with a corresponding set D = [p] \ I of dead coordinates, and also a family

S ⊆ ({0, 1}n)I , for which one can do the following:

For any s ∈ S, there exist α(s), β(s) ∈ ({0, 1}n)D, such that

A is exactly the set of all s × α(s) and B is exactly the set of all s × β(s),

and, furthermore, α(s)i 6= β(t)i for every s ∈ S, t ∈ S, i ∈ D.

i.e., given any s in S, which is a way of filling the live coordinates, there are two ways of

filling the dead coordinates, α(s) and β(s), such that the various s × α(s) will be Alice’s side

of the rectangle, and the various s × β(s) will be Bob’s side of the rectangle; furthermore,

α(s)i 6= β(t)i always holds. We will call such a configuration a square:
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◮ Definition 25 (Square). A square is a tuple S = 〈n, p, R = A × B, I, S, α, β〉 where:

n ≥ 1, p ≥ 2 are integers;

R = A × B where A, B ⊆ ({0, 1}n)[p];

∅ 6= I ⊆ [p] is a non-empty set of so-called live coordinates, and

D = [p] \ I is the corresponding set of dead coordinates;

S ⊆ ({0, 1}n)I ;

α : S → ({0, 1}n)D and β : S → ({0, 1}n)D are such that A = {s×α(s) | s ∈ S} and B =

{s × β(s) | s ∈ S};

for every s ∈ S, t ∈ S, i ∈ D, we have α(s)i 6= β(t)i.

◮ Definition 26. The density of square S = 〈n, p, R = A × B, I, S, α, β〉 is given by

Density(S) = |S|
2n|I| .

◮ Definition 27. We say a square S = 〈n, p, R = A × B, I, S, α, β〉 is τ -thick on F ⊆ I if S

is τ -thick on F , and is ϕ-average-thick on F if S is ϕ-average-thick on F .

One may justify the name square by the observation that a square S = 〈n, p, R = A ×

B, I, S, α, β〉 induces a bijection between A and B, where s × α(s) ∈ A corresponds to

s × β(s) ∈ B.

4 The projection lemma

The main technical lemma of our simulation theorem is a projection lemma, which allow us to

constrain coordinates of a square while preserving thickness, in such a way that α(s)i 6= β(t)i

always holds.

◮ Lemma 28. Let S = 〈n, p, R = A × B, I, S, α, β〉 be a square and τ, ϕ ∈ [0, 1] be real

numbers. Suppose that p ≤ 1
12 · 2τ ·2n

. Suppose also that S is τ -thick, but not ϕ-average-thick,

on F ⊆ I.

Then, for any z ∈ {0, 1}F , there exists a non-empty set E = E(z) ⊆ F such that,

letting E0 = {i ∈ E | zi = 0}, we may construct a square S ′ = S ′(z) = 〈n, p, R′ =

A′ × B′, I ′, S′, α′, β′〉, where:

(i) A′ ⊆ A and B′ ⊆ B;

(ii) I ′ = I \ E0;

(iii) Density(S ′) ≥ ( 1
2ϕ )|E0| · Density(S); and

(iv) S ′ is 1
2 ϕ-average-thick on F \ E.

Furthermore, the set E = E(z) ⊆ F is obtained by a query procedure on the string z, and is

exactly the set of positions queried by this procedure.

Proof. We will explain the projection procedure in three steps. The entire procedure is

achieved by running Procedure 1, 2 and 3 one after another (see below).

To begin with, S is not ϕ-average-thick on F , and so we are assured we will add at least

one coordinate to E. Every time we add an index i to E we have, immediately prior to this,

that
|SI\E0

|
|SI\(E0∪{i})| ≤ ϕ ·2n, and hence |SI\(E0∪{i})| ≥

|SI\E0
|

ϕ·2n . This means that if zi = 0 and we

then add i to E0, we will have |SI\E0
| grow by a factor of ϕ · 2n. By the end of this process,

SI\E0
must be ϕ-average-thick on F \ E (otherwise we would add another coordinate to E),

and furthermore |SI\E0
| ≥ |S|

(ϕ·2n)|E0| , which is to say

|SI\E0
|

2|I\E0|·n ≥
1

ϕ|E0| ·
|S|

2|I|·n . (∗)

This will later ensure our density increase.
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◮ Procedure 1. Choosing E.

We start by letting E = ∅.

As long as SI\E0
is not ϕ-average-thick on F \ E, there exists some i ∈ F \ E such

that

|SI\E0
|

|SI\(E0∪{i})|
≤ ϕ · 2n.

We will then add i to E and query zi (to know if i ∈ E0 or not).

◮ Procedure 2. Choosing W = (Ui, Vi)i∈E0 , X and Y .

Independently for each i ∈ E0, choose a partition {0, 1}n = Ui ∪· Vi, so that each

string x ∈ {0, 1}n is placed in Ui with probability 1
2 , and is placed in Vi otherwise.

Let us use W = (Ui, Vi)i∈E0
to denote all the partitions chosen in this step.

Now let us start by letting X = Y = S.

Then for each index i ∈ E0 in turn, we change X to Xi,Ui

6=i and change Y to Y i,Vi

6=i .

Now consider the Procedure 2. At the end of its execution, we have both X, Y ⊆ SI\E0
.

Now we may ask how much of SI\E0
survived inside both X and Y . Let us first consider the

difficult case when |E0| ≥ 1. We make the following claim:

⊲ Claim 29. If |E0| ≥ 1, then for some choice of the partitions (Ui, Vi)i∈E0
we will have

|X ∩ Y | ≥ 1
2 · |SI\E0

|.

Before proving this claim, let us see why it is enough to give us our new square S ′. Let U ⊆

({0, 1}n)E0 be the product of the various Ui sets, for i ∈ E0, and likewise let V ⊆ ({0, 1}n)E0

be the product of the various Vi sets, for i ∈ E0. The square S ′ is chosen thus:

◮ Procedure 3. Choosing the square S ′.
We set S′ = X ∩ Y .

For each s′ ∈ S′, we choose a string u(s′) ∈ U ∩ ExtS(s′) ⊆ ({0, 1}n)E0 ; such a

u(s′) exists because of how X was constructed; letting s = s′ × u(s′) ∈ S, for each

i ∈ [p] \ I ′ = ([p] \ I) ∪ E0, set

α′(s′)i =

{

u(s′)i if i ∈ E0,

α(s)i if i ∈ [p] \ I.

We proceed symmetrically to choose β′(s′).
A′ and B′ are simply the images of S′ under α′ and β′.

For any s ∈ S, t ∈ S and i ∈ ([p]\I)∪E0, we have α(s)i 6= β(t)i. This follows, on coordinates

i ∈ E0 because Ui and Vi are disjoint, and on coordinates i ∈ [p] \ I because square S has

the same property for α and β.

Properties (i) and (ii) are by construction. Property (iii) is a calculation using Claim 29

and (∗):

Density(S ′) =
|S′|

2|I′|·n ≥
Claim 29

1
2 · |SI\E0

|

2|I\E0|·n ≥
Using (∗)

1

2
·

1

ϕ|E0| ·
|S|

2|I|·n =
1

2
·

1

ϕ|E0| · Density(S).
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Now Property (iii) follows using the fact that |E0| ≥ 1. Property (iv) follows by Claim 29,

because SI\E0
is ϕ-average-thick on F \ E, and S′ is a subset of SI\E0

with |S′| ≥ 1
2 · |SI\E0

|.

In the simple case when |E0| = 0, we have X = Y = S, and so we set S ′ to be exactly S.

Properties (i) and (ii) are easy to check, and Property (iii) is trivial, and property (iii) holds

even without the 1/2 factor loss, by our choice of E.

Now to prove Claim 29. Let δ = 2−τ ·2n

. Let us think of a matrix M where the rows

are indexed by the various possible s′ ∈ SI\E0
and the columns are indexed by the different

possible choices W = (Ui, Vi)i∈E0 . The entry M(s′, W ) equals 1 if s′ ∈ X, where X is

obtained from S and (Ui)i∈E0
by Procedure 2. In other words, again denoting by U the

product of the various sets Ui, we have M(s′, W ) = 1 iff U ∩ ExtS(s′) 6= ∅.

Now fix some s′ ∈ SI\E0
, and let us estimate the probability that M(s′, W ) = 1, i.e.

that s′ ∈ X, over the randomized choice of W . At the beginning of Procedure 2, we

have X = S, and X is τ -thick on F . Then for each index i ∈ E0 ⊆ F in turn, we will

change X to Xi,Ui

6=i . Before we do this for the first time, s′ will have at least one extension

s ∈ ExtX(s′) ⊆ ({0, 1}n)E0 ; at this point X is τ -thick on F , and so, taking any extension

s′′ ∈ ExtX6=i
(s′) ⊆ ({0, 1}n)E\{i}, there will be at least τ · 2n strings s′′′ ∈ {0, 1}n such that

(s′ × s′′) ×i s′′′ ∈ S. Each of these strings s′′′ is placed in Ui with probability 1/2; hence the

probability that (s′ × s′′) ∈ Xi,Ui

6=i is at least 1 − 2−τ ·2n

= 1 − δ, i.e., some extension s′′ of

s′ survived with at least 1 − δ probability over the choice of this first Ui. By Lemma 24,

changing X to Xi,Ui

6=i gives us a set which is again thick on F \ {i}. Hence we may apply the

same reasoning to the next index in E0.

Changing X in this way |E0| times, we conclude that, in the end, Pr[M(s′, W ) = 1] =

Pr[s′ ∈ X] ≥ (1 − δ)|E0| ≥ 1 − |E0|δ, where the probability is with respect to the distribution

of W given by the above process. Now call a certain choice of W X-good if the W -column

of M has at least a 1 − 3|E0|δ fraction of the rows s′ ∈ SI\E0
with M(s′, W ) = 1. Then,

by a standard averaging argument, we must have Pr[W is X-good] > 1/2 (where again the

probability is with respect to the distribution of W ).

Arguing in the same way with respect to Y , we conclude that the probability that W is

Y -good will also be more than 1
2 . Hence there must exist a choice of W which is both X-good

and Y -good. For this choice of W we will have both |X|, |Y | ≥ (1 − 3|E0|δ)|SI\E0
|, and given

that X, Y ⊆ SI\E0
, this implies that |X ∩ Y | ≥ (1 − 6|E0|δ) · |SI\E0

| ≥ (1 − 6pδ) · |SI\E0
|.

This is at least 1
2 |SI\E0

| by our assumed bound on p. The claim is thus proven. ◭

◮ Lemma 30. Let S = 〈n, p, R = A × B, I, S, α, β〉 be a square which is τ -thick on F ⊆ I,

and let z ∈ {0, 1}p be such that zi = 1 for every i ∈ I \ F , and zi = 0 for every i ∈ [p] \ I.

Then there exists some (x, y) ∈ A × B with Eqp(x, y) = z.

Proof. This is proven very similarly to Lemma 28. Instead of using Procedure 1 to choose

E and E0, we choose them directly based on z.

If there are no i0 ∈ I with zi0
= 0, then any s ∈ S will give Eqp(s × α(s), s × β(s)) = z.

Otherwise, let E = F \ {i0}, so that E0 = {i ∈ I | i 6= i0, zi = 0}. We may then use

Procedure 2 to construct sets X and Y such that X, Y ⊆ SI\E0
. Note now that Claim 29

will still hold, because it only requires that S be thick on F . We may then use Procedure 3

to construct S ′, and Properties (i) and (ii) will hold as before. S ′ is a square on coordinates

I \ E0 = {i | zi = 1} ∪ {i0}. By Lemma 24, we know that S ′ is τ -thick on {i0} and thus

there are two strings s ∈ S′ and t ∈ S′ with si0 6= ti0 but si = ti for all i ∈ I ′ \ {i0}. Then

x = s × α(s) and y = t × β(t) give us Eqp(x, y) = z. ◭
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5 Lifting 0-query complexity

We now prove our main simulation theorem (Theorem 13). Suppose p ≤ 2n/100, and let us

fix τ = 2−n/10 and ϕ = 2−n/20. Suppose we are given a C-bit communication protocol π for

f ◦Eqn. We will then construct a decision-tree τ for f . On input z ∈ {0, 1}p, τ will find a leaf

v of the protocol-tree of π, such that the associated rectangle Rv has some (x, y) ∈ Rv with

Eqp(x, y) = z. The label of such a leaf then equals f(Eqp(x, y)) = f(z, ). We now present an

informal description of τ , and in Algorithm 1 below we provide pseudocode for τ . We will

then show that the algorithm for τ is correct, i.e. that it is always able to find such a leaf

v, and then show that the number of 0-queries that τ makes is O( C
n ), which completes the

proof of Theorem 13.

Given an input z ∈ {0, 1}p, τ starts traversing a path from the root of the protocol tree

of π. A variable v is maintained, indicating the node of the protocol tree of π which is

the current-node during the ongoing simulation; associated with v is the rectangle Rv of

inputs which cause the protocol to reach node v. The decision-tree τ , when traversing node

v, maintains a rectangle R = A × B and a square S = 〈n, p, R = A × B, I = F ∪ O, S, α, β〉,

such that R is a sub-rectangle of Rv. The set F corresponds to coordinates of the input z

that were not queried yet, and O is set of coordinates i which have been queried and found

to have zi = 1. Throughout the execution of the algorithm, it is maintained as an invariant

that the square S is τ -thick in the coordinates F . At the beginning, I = F = [p], O = ∅,

and A = B = ({0, 1}n)[p], so the invariant is trivially true.

In each iteration of the simulation, the algorithm checks whether S is ϕ-average-thick on

F . If this fails to hold, the algorithm will use the projection lemma (Lemma 28) and change

S to ensure this requirement, as follows. Using Procedure 1 of Lemma 28, it chooses the

set E ⊆ F ; this requires querying zi for i ∈ E, and gives us the set E0 ⊆ E of coordinates

where zi = 0, and the set E1 = E \ E0 of coordinates where zi = 1. The algorithm then

uses Procedure 3 of Lemma 28 to construct a square S ′. Lemma 28 guarantees that S ′

is ϕ
2 -average-thick on F \ E, and that Density(S ′) grows by a factor of (2ϕ)−|E0|. If E0 is

non-empty, i.e. if we have made some 0 queries, the density will grow significantly; otherwise

the density will not change. The algorithm proceeds with S = S ′, I = I \ E0, O = O ∪ E1,

and F = F \ E.

Now the algorithm is promised to have a square S which is at least 1
2 ϕ-average-thick. The

algorithm then proceeds to a child vc of v which has at least 1/2 fraction of the density of S,

as follows. Suppose Alice communicated in v, and for each c ∈ {0, 1}, let Rvc = Avc × Bvc

be the rectangle which π associates with vc. We then fix a choice c ∈ {0, 1} such that

|R ∩ Rvc
| ≥ |R|/2. Now consider the set S′ = {s ∈ S | s × α(s) ∈ Avc

}. This set is still
1
4 ϕ-average-thick. We may then apply Lemma 23, with δ = 1

2 , to S′, which gives us a subset

S′′ ⊆ S′ which is τ -thick on F . The new square S is then given by restricting α and β to

the set S′′. By changing S in this way, we have preserved a 1
4 fraction of the density.

Eventually, when we reach a leaf node v of the protocol tree, we are left with a square S

which is τ -thick on F . The algorithm outputs the labeling of Rv in π, and we will now argue

that this must equal f(z).

Correctness. Because π correctly solves f ◦ Eqn, then for each leaf v of π we have

(x, y, π(v)) ∈ f for all (x, y) ∈ Rv; the rectangle R obtained at the termination of Al-

gorithm 1 is a sub-rectangle of Rv for a leaf of π, hence (x, y, π(v)) ∈ f for all (x, y) ∈ R. On

the other hand, we have preserved a square S = 〈n, p, R = A × B, I, S, α, β〉 which is τ -thick

on F ⊆ I, and such that zi = 1 for every i ∈ O = I \ F , and zi = 0 for every i ∈ [p] \ I. Then

Corollary 30 tells us that some pair (x, y) ∈ R is such that Eqp(x, y) = z; hence (z, π(v)) ∈ f .
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Algorithm 1 Decision-tree procedure τ .

Input: z ∈ {0, 1}p

Output: f(z)

1: Initialization: Set v to be the root of the protocol tree for π, I = F = [p], O = ∅, S =

〈n, p, R, I, S, α, β〉, where R = A × B, A = B = S = ({0, 1}n)[p], and α, β are the empty

functions.

2: while v is not a leaf do

3: if S is not ϕ-average-thick on F then

4: Use Lemmas 28 and 23, to get E ⊆ F , E0 ⊆ E, and

5: a square S ′ = 〈n, p, R′, I \ E0, S′, α′, β′〉, such that

6: (1) S ′ is τ -thick on F \ E, and

7: (2) Density(S ′) ≥ 1
4

1

ϕ|E0| Density(S).

8: Update S = S ′, O = O ∪ (E \ E0),

9: F = F \ E, I = I \ E0.

10: end if

11: ⊲ At this point S is at least 1
2
ϕ-average-thick on F .

12: Choose c ∈ {0, 1} such that |R ∩ Rvc | ≥ 1
2
|R|.

13: Using Lemma 23, choose S ′ = 〈n, p, R′, I, S′, α′, β′〉, such that

14: (1) R′ ⊆ R ∩ Rvc

15: (2) Density(S ′) ≥ 1
4
Density(S).

16: (3) S ′ is τ -thick on F .

17: Update S = S ′, and v = vc.

18: end while

19: Output π(v).

Number of queries. In each time when the simulation goes down the protocol tree of π,

Density(S) drops by a factor of at most 1
4 and hence, in total, by a factor of 4−C . For each

set E of queries that the algorithm makes in a round, the density of the current square

increases by a factor of (2ϕ)−|E0| – this is Property (iii) of Lemma 28. So, if Q0 is the

total number of queries which the algorithm makes, and which are answered 0, then the

total gain in Density(S) is at least (2ϕ)−Q0 . Since the density can be at most 1, we have,

4−C · (2ϕ)−Q0 ≤ 1, and so Q0 ≤ −2C
log(2ϕ) = 2C

n
20 −1 = O

(

C
n

)

. This concludes the proof. ◭
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