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SIMULATION THEOREMS VIA

PSEUDO-RANDOM PROPERTIES

Arkadev Chattopadhyay, Michal Koucký,

Bruno Loff, and Sagnik Mukhopadhyay

Abstract.

We generalize the deterministic simulation theorem of Raz & McKenzie
(Combinatorica 19(3):403–435, 1999), to any gadget which satisfies a cer-
tain hitting property. We prove that inner product and gap-Hamming
satisfy this property, and as a corollary, we obtain a deterministic sim-
ulation theorem for these gadgets, where the gadget’s input size is log-
arithmic in the input size of the outer function. This yields the first
deterministic simulation theorem with a logarithmic gadget size, answer-
ing an open question posed by Göös, Pitassi & Watson (in: Proceedings
of the 56th FOCS, 2015).
Our result also implies the previous results for the indexing gadget, with
better parameters than was previously known. Moreover, a simulation
theorem with logarithmic-sized gadget implies a quadratic separation
in the deterministic communication complexity and the logarithm of
the 1-partition number, no matter how high the 1-partition number is
with respect to the input size—something which is not achievable by
previous results of Göös, Pitassi & Watson (2015).

Keywords. Communication complexity, lifting theorem, simulation
theorem, Inner-product, gap-Hamming

Subject classification. Theory of computation — Communication
complexity

1. Introduction

A very basic problem in computational complexity is to understand
the complexity of a composed function f ◦ g in terms of the com-
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plexities of the two functions f and g used for the composition. For
concreteness, we consider f : {0, 1}p → Z and g : {0, 1}m → {0, 1}
and denote the composed function as f ◦ gp : {0, 1}mp → Z; then,
f is called the outer function and g is called the inner function, or
gadget. The special case of Z being {0, 1} and f the XOR function
has been the focus of several works (Impagliazzo 1995; Lee, Shraib-
man & Spalek 2008; Levin 1987; Shaltiel 2003; Sherstov 2012b;
Viola & Wigderson 2008; Yao 1982), commonly known as XOR
lemmas. Another special case is when f is the trivial function
that maps each point to itself. This case has also been widely
studied in various parts of complexity theory under the names of
‘direct-sum’ and ‘direct-product’ problems, depending on the qual-
ity of the desired solution (Barak, Braverman, Chen & Rao 2013;
Beame, Pitassi, Segerlind & Wigderson 2005; Braverman & Rao
2014; Braverman, Rao, Weinstein & Yehudayoff 2013a,b; Brody,
Buhrman, Kouckỳ, Loff, Speelman & Vereshchagin 2013; Drucker
2012; Harsha, Jain, McAllester & Radhakrishnan 2007; Jain 2015;
Jain, Klauck & Nayak 2008; Jain, Pereszlényi & Yao 2012; Jain,
Radhakrishnan & Sen 2003; Jain & Yao 2012; Kerenidis, Laplante,
Lerays, Roland & Xiao 2015; Pankratov 2012). Making progress on
even these special cases of the general problem in various models
of computation is an outstanding open problem.

In the last few years, there has been some progress toward
understanding the complexity of f ◦ gp, in the setting of communi-
cation complexity. In this setting, each input for g is split between
two parties, Alice and Bob. A particular instance of progress from
a few years ago is the development of the pattern matrix method by
Sherstov (2011) and the closely related block-composition method
of Shi & Zhu (2009), which led to a series of interesting devel-
opments (Chattopadhyay 2007; Chattopadhyay & Ada 2008; Lee,
Shraibman & Spalek 2008; Rao & Yehudayoff 2015; Sherstov 2012a,
2013), resolving several open problems along the way. In both these
methods, the relevant analytic property of the outer function is the
approximate degree. While the pattern-matrix method entailed the
use of a special inner function, the block-composition method, fur-
ther developed by Chattopadhyay (2009), Lee & Zhang (2010) and
Sherstov (Sherstov 2012a, 2013), prescribed the inner function to
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have small discrepancy. These methods are able to lower bound
the randomized communication complexity of f ◦ gp essentially by
the product of the approximate degree of f and the logarithm of
the inverse of the discrepancy of g.

From the upper-bound perspective, the following simple proto-
col is suggestive: Alice and Bob try to solve f using a deterministic
decision-tree algorithm. Such an algorithm queries the input bits
of f frugally. Whenever there is a query, Alice and Bob solve the
relevant instance of g by using the best protocol for g. This allows
them to progress with the decision-tree computation of f , yield-
ing (informally) an upper bound of Dcc

(

f ◦ gp
)

≤ Ddt
(

f
)

· Dcc
(

g
)

,
where Dcc and Ddt denote the deterministic communication com-
plexity and deterministic decision-tree complexity, respectively1. A
natural question is whether the above upper bound is essentially
optimal. The case when both f and g are XOR clearly shows that
this is not always the case. However, this may be just a patholog-
ical example. It is natural to ask: for which inner functions g, is
the above naive algorithm optimal?

In a remarkable and celebrated work, Raz & McKenzie (1999)
showed that this naive upper bound is always optimal, when g is a
large indexing function (IND), i.e., the gadget size, m, is polynomi-

ally large in p. This theorem was the main technical tool used by
Raz-McKenzie to famously separate the monotone NC hierarchy.
The work of Raz-McKenzie was recently simplified and built upon
by Göös, Pitassi & Watson (2015) to solve a long-standing open
problem in communication complexity. In line with Göös, Pitassi
& Watson (2015), we call such theorems simulation theorems, be-
cause they explicitly construct a decision tree for f by simulating
a given protocol for f ◦ gp.

Simulation theorems have numerous applications. To give an
example closely related to (Göös, Pitassi & Watson 2015; Raz
& McKenzie 1999): Bonet, Esteban, Galesi & Johannsen (2000),
and more recently de Rezende, Nordström & Vinyals (2016) port

1An analogous result holds in the randomized model, where the upper
bound holds with a multiplicative factor of log Rdt(f)— this is because we
need to amplify the success probability of solving each instance of g so that
we can do an union bound for the overall success probability of solving all
instances of g.
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the above deterministic simulation theorem to the model of real
communication, yielding new trade-offs for the measures of size
and space in the cutting planes proof system. Other applications
of composition theorems include monotone-circuit lower bounds
(Göös & Pitassi 2014; Johannsen 2001; Karchmer & Wigderson
1990; Raz & McKenzie 1999; Robere, Pitassi, Rossman & Cook
2016; Sokolov 2017), small-depth circuit lower bounds (Chattopad-
hyay 2007; Sherstov 2009), proof-complexity lower bounds (Beame,
Huynh & Pitassi 2010; Huynh & Nordstrom 2012), and separations
of complexity classes in communication complexity (David, Pitassi
& Viola 2009; Göös, Lovett, Meka, Watson & Zuckerman 2015;
Göös, Pitassi & Watson 2015).

Many of these developments have happened recently. Since our
work has been publicly disseminated, we have seen new simulation
theorems, analogous to the above, proven in various settings (Göös,
Kamath, Pitassi & Watson 2017a; Göös, Pitassi & Watson 2017b;
Watson 2017); indeed, in FOCS 2017, a workshop (Meka & Pitassi
2017) was devoted entirely to such results and their applications.

1.1. Our contributions. The main contributions of this work
are the following:

◦ Generalization of Raz-McKenzie. We generalize the sim-
ulation theorem of Raz-McKenzie, by singling out a new prop-
erty (P) of a function g : {0, 1}n × {0, 1}n → {0, 1}, that we
call “having (δ, h)-hitting monochromatic rectangle distribu-
tions”, and then showing that a simulation theorem will hold
for any gadget g with this property.

Our paper makes a conceptual contribution, by separating
the proof of a deterministic simulation theorem into two dis-
tinct parts: a generic argument that guarantees simulation
theorems whenever g has property (P), and a proof that a de-
sired g has property (P). Thus, given our work, if one wished
to prove a deterministic simulation theorem for a new gadget
g′, one will only need to show it has property (P) and the
rest will seamlessly follow.

The proof of the first part, the simulation theorem for gadgets
g having property (P), has a similar structure to the proof
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by Göös, Pitassi & Watson (2015) of the Raz & McKenzie
(1999) simulation theorem. Some modifications are required
to make the argument work for “symmetric” gadgets g.

◦ Other gadgets. Furthermore, we prove that property (P)
holds for the gap-Hamming problem over n bits (GHn), where
the gap may be as large as n

4
. For proving this, we make an

interesting use of Harper’s theorem. We also prove that prop-
erty (P) holds for the inner-product mod 2 function over n
bits (IPn). To establish this, we use a probabilistic argument
based on the second-moment method.

◦ Improvement in gadget size. The resulting simulation
theorems for f ◦IP

p
n and f ◦GH

p
n only require the gadget input

size n to be logarithmic in p, whereas the input size of the
indexing gadget appearing in (Göös, Pitassi & Watson 2015;
Raz & McKenzie 1999) is roughly p20. Our results are the first
examples of deterministic simulation theorems with such log-
size gadgets, and the only example of a simulation theorem
proven for a gadget having constant discrepancy (such as
gap-Hamming with n

4
gap).

Both of the above arguments require novel techniques, which
are different than either the original Raz-McKenzie paper
(Raz & McKenzie 1999) or its exposition by Göös, Pitassi &
Watson (2015).

◦ Application. As an application of our simulation theorem
(with a small gadget), we strengthen the separation result
between deterministic communication complexity and loga-
rithm of the 1-partition number (see Section 1.3) by Göös,
Pitassi & Watson (2015). This results in a family of func-
tions which exhibit a quadratic separation between these two
quantities, no matter how high the 1-partition number is with
respect to the input size. The result of Göös, Pitassi & Wat-
son (2015) can show this separation only when the partition

number is at most N
1

42 where N is the input size.

1.2. Statement of our results. Informally, a (δ, h)-hitting rect-
angle distribution (for δ ∈ (0, 1) and h ∈ N) is a distribution over
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rectangles such that a random rectangle from this distribution will
intersect any 2−h-large rectangle with probability ≥ 1 − δ. It is
easy to come up with such a distribution: Consider a distribution
where a rectangle of size 2n/2 is picked uniformly at random from
the set of all rectangles of that size. It is not hard to see that such a
random rectangle will intersect a large enough fixed rectangle with
high probability, i.e., it is a (o(1), n/2)-hitting rectangle distribu-
tion. This is a considerably random distribution, i.e., the distribu-
tion has large entropy. We are interested in the following kind of
monochromatic hitting distributions: by a function g having (δ, h)-
hitting monochromatic rectangle distribution, we mean that there
are two (δ, h)-hitting rectangle distributions σ0 and σ1, such that σc

only samples rectangles which are c-monochromatic with respect
to g. Note that the distributions σc may have much smaller entropy
compared to a rectangle distribution μ which chooses a uniformly
chosen rectangle of the same size. Even then, like μ, a rectangle
sampled from σc is also required to intersect a large enough fixed
rectangle with nonzero probability. Hence we may think of σc as
being a pseudo-random rectangle distribution. Our generalization
of Raz-McKenzie is the following:

Theorem 1.1. Let f : {0, 1}p → Z be a (possibly partial) func-
tion over p-bit input, and Z is any domain. If g has (δ, h)-hitting

monochromatic rectangle distributions, δ < 1/100, and p ≤ 2
h
2 ,

then

Ddt(f) ≤ 8

h
· Dcc(f ◦ g p).

We mention here, much like the Raz–McKenzie simulation the-
orem for the indexing gadget, Theorem 1.1 works even when f
is a search problem, i.e., f ⊆ {0, 1}n × Z and given query ac-
cess to x ∈ {0, 1}n we wish to find z ∈ Z such that (x, z) ∈ f .
This kind of simulation theorem is sometimes harder to prove for
search problems than it is for total functions. Contrast this with
the following two results: (1) When g is a 2-bit XOR, Hatami,
Hosseini & Lovett (2018) proved a simulation theorem of the form
Dcc(f ◦ g) ≥ Ddt

⊕ (f)1/6, where Ddt
⊕ (f) is the parity decision-tree

complexity of f . This result, as is proven, requires f to be a total
Boolean function. We still do not know whether such a result holds
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when f is a search problem. (2) When g is the n-bit equality func-
tion, Loff & Mukhopadhyay (2019) have shown that a simulation
theorem of the form Dcc(f◦g) ≥ Ddt(f)·n is provably not possible if
we consider f to be a search problem. The best that can be proven
in this case is Dcc(f ◦g) ≥ Ddt

AND(f) ·n where Ddt
AND(f) is the AND-

decision-tree complexity of f . It is not hard to see that the equality
gadget does not admit a hitting 1-monochromatic rectangle distri-
bution, even though it does admit a hitting 0-monochromatic rect-
angle distribution. Surprisingly, if f is a total Boolean function,
the following can be proven: Dcc(f ◦ g) = Ω(Ddt

⊕ (f)1/3 · n).

We show that two well-studied functions—the inner-product func-
tion (IP) and the gap-Hamming family of functions (GH)—have the
above property. The inner-product function IPn{0, 1}n ×{0, 1}n →
{0, 1} is defined as IPn(x, y) =

∑

i∈[n] xi · yi, where the summa-
tion is taken over field F2. Problems in the class of the gap-
Hamming promise problems, parameterized with γ and denoted
by GHn,γ : {0, 1}n × {0, 1}n → {0, 1}, distinguish the case of (x, y)
having Hamming distance at least (1

2
+ γ)n from the case of (x, y)

having Hamming distance at most (1
2

− γ)n, for 0 ≤ γ ≤ 1/4.

Theorem 1.2. The inner-product function and any function from
the gap-Hamming class of promise functions over n bits admit
(o(1), n

5
) hitting monochromatic rectangle distributions.

Combining Theorem 1.1 and Theorem 1.2 immediately yields the
following simulation theorem.

Theorem 1.3. Let p ≤ 2
n

200 , f : {0, 1}p → Z be a (possibly
partial) function over p-bit input where Z is any domain, and
g : {0, 1}n × {0, 1}n → {0, 1} be the inner-product function, or
any function from the gap-Hamming class of promise problems.
Then,

Dcc
(

f ◦ gp
)

= Θ

(

Ddt
(

f
)

· n

)

.

The above theorem solves a problem raised by both Göös-
Pitassi-Watson (Göös, Pitassi & Watson 2015) and Göös et al.
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(Göös, Lovett, Meka, Watson & Zuckerman 2015) of proving a Raz-
McKenzie style deterministic simulation theorem for a different in-
ner function than indexing with a better gadget size. (Although
the results presented in Göös, Lovett, Meka, Watson & Zuckerman
(2015) do not deal with deterministic simulation theorems, the au-
thors did raise the question of whether the proof of the determinis-
tic simulation theorem can be simplified, and whether a simulation
theorem can be shown for a larger class of gadgets g —we answer
both these questions in this work.) Moreover, it is not hard to ver-
ify that any function g : {0, 1}n × {0, 1}n → {0, 1} reduces to the
indexing function IND2n : {0, 1}n × {0, 1}2n → {0, 1} (see Section
2), i.e., by exponentially blowing up the input size. This enables
us to re-derive the original Raz-McKenzie simulation theorem for
the indexing function, even attaining significantly better parame-
ters. This improvement in parameters answers a question posed
to us by Jakob Nordström (Nordström 2016). In the next section,
we will show how this strong form of simulation theorem helps us
prove a strong complexity separation result.

It is well known that the inner-product function has strong
pseudo-random properties. In particular, it has vanishing discrep-
ancy under the uniform distribution which makes it a good 2-source
extractor. In fact, such strong properties of inner product were re-
cently used to prove simulation theorems for more exotic models
of communication by Göös et al. (Göös, Lovett, Meka, Watson &
Zuckerman 2015) and also by the authors and Dvořák (Chattopad-
hyay, Dvorák, Koucký, Loff & Mukhopadhyay 2017a) to resolve
a problem with a direct-sum flavor. By comparison, the pseudo-
random property we abstract for proving our simulation theorem
seems milder. This intuition is corroborated by the fact that we
can show that the gap-Hamming problems also possess our prop-
erty, even though we know that these problems have large Ω(1)
discrepancy under all distributions. Interestingly, any technique
that relies on the inner function having small discrepancy, such as
the block-composition method, will not succeed in proving simula-
tion theorems for such inner gadgets.

1.3. An application. If F : X × Y → {0, 1} is a two-player
function, the 1-partition number of F : A × B → Z, denoted
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by χ1(F ), is the smallest number of rectangles needed to form a
partition of F−1(1). It was known since Yannakakis (1991) that
the deterministic communication complexity of F is O(log χ1(F )),
and Göös, Pitassi & Watson (2015) used a simulation theorem to
show a matching separation. At this point, it is interesting to note
the relation between input size and the 1-partition number of the
functions for which they are able to show this separation. For
an input of size N = p21, Göös, Pitassi & Watson (2015) exhibit
a function that has log(χ1) = Õ(

√
p) = Õ(N1/42), whereas the

deterministic communication complexity is Ω̃(p) = Ω̃(N1/21). This
is shown by first constructing a function f witnessing an analogous
separation for query complexity and then using a lifting theorem
to establish the above separation for F = f ◦ gp. The input size
N is large because Göös, Pitassi & Watson (2015) use a gadget g
with a large input.

This raises the question whether such a separation is possible
when χ1 is closer to

√
N . The results of Göös, Pitassi & Wat-

son (2015) do not rule out the possibility that for all F such that

log χ1(F ) is, say, ω(N
1

42 ), the deterministic communication com-
plexity of F is actually linear in log χ1(F ). Our lifting theorem,
with the improved gadget size, rules out this possibility—our sim-
ulation theorem can be used, in the same way as in (Göös, Pitassi
& Watson 2015), to construct a function F ∗ for which log χ1(F

∗) is
Θ̃(

√
N) and for which the deterministic communication complexity

is Ω̃(N). We are thus able to obtain a quadratic separation in all
regimes:

Theorem 1.4. For any function s : Z → Z such that s(N) ≤
√

N
log N

,

there is a family of functions {FN}N∈Z such that FN : {0, 1}N ×
{0, 1}N → Z has 1-partition number log χ1(FN) = Õ(s(N)) and
deterministic communication complexity Dcc(FN) ≥ s(N)2.

1.4. Our techniques. Our main tool for proving a tight deter-
ministic simulation theorem is to use the general framework of the
Raz-McKenzie theorem as expounded by Göös, Pitassi & Watson
(2015). Here we provide a high-level sketch of our techniques.

Suppose we know a protocol for f ◦ gp. We are now given an
input z ∈ {0, 1}p for f and wish to compute f(z) using a decision
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tree. To do this, we will query the bits of z while simulating (in
our head) the communication protocol for f ◦gp on inputs that are
consistent with the queries to z we have made thus far. Namely,
we maintain a rectangle A×B ⊆ {0, 1}np ×{0, 1}np so that for any
(x, y) ∈ A × B, gp(x, y) is consistent with z, meaning it gp(x, y)
equals z on all the coordinates that were queried by the decision
tree thus far. We will progress through the protocol with our rect-
angle A × B from the root to a leaf. As the protocol progresses,
A × B shrinks according to the protocol, and our goal is to main-
tain the consistency requirement. For that, we need that inputs
in A × B allow for all possible answers of g on those coordinates
which we did not yet query. Hence, A×B needs to be rich enough,
and we are choosing a path through the protocol that affects this
richness the least. If the protocol forces us to shrink the rectan-
gle A × B so that we may not be able to maintain the richness
condition, we query another coordinate of z to restore the richness.
Once we reach a leaf of the protocol we learn a correct answer for
f(z), because there is an input (x, y) ∈ A×B on which gp(x, y) = z
(since we preserved consistency) and all inputs in A × B give the
same answer for f ◦ gp,

The technical property of A×B that we will maintain is called
thickness. A×B is thick on the i-th coordinate if for each input pair
(x, y) ∈ A×B, even after one gets to see all the coordinates of x and
y except for xi and yi, the uncertainty of what appears in the ith
coordinate remains large enough so that g(xi, yi) can be arbitrary.
For a given x = (x1, . . . , xp) ∈ {0, 1}np, let us denote by x �=i the tu-
ple (x1, . . . , xi−1, xi+1, . . . , xp) and by Ext

i
A(x �=i) the set of possible

extensions x′ ∈ {0, 1}n such that (x1, . . . , xi−1, x
′, xi+1, . . . , xp) ∈ A.

We define y �=i and Ext
i
B(y �=i) similarly. If for a given x and y

we know that both Ext
i
A(x �=i) and Ext

i
B(y �=i) are of size at least

2( 1

2
+ǫ)n then for g = IPn there are extensions x′ ∈ Ext

i
A(x �=i) and

y′ ∈ Ext
i
B(y �=i) such that IPn(xi, yi) = zi. Hence, we say that A×B

is τ -thick if Ext
i
A(x �=i) and Ext

i
B(y �=i) are of size at least τ · 2n, for

every choice of i and x = (x1, . . . , xp) ∈ A, y = (y1, . . . , yp) ∈ B.
So if we can maintain the thickness of A × B at a coordinate

i which is not queried yet, then no matter which value zi takes,
there is some (x, y) ∈ A × B with g(xi, yi) = zi. It turns out that
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it is indeed possible to maintain thickness using the technique of
Raz-McKenzie and Göös-Pitassi-Watson. Hence, as we progress
through the protocol, we maintain a large rectangle A × B which
is reasonably thick on the coordinates not queried so far. Once the
size of either A or B drops below certain level, we are forced to
make a query to another coordinate zi and choose a sub-rectangle
A′×B′ of A×B, so that g(xi, yi) is fixed to zi for all (x, y) ∈ A′×B′.
This can be done in such a way that the thickness of A′ × B′ on
the unqueried coordinates is restored.

We give a sufficient condition for the inner function g that al-
lows this type of argument to work, as follows. For δ ∈ (0, 1) and
integer h ≥ 1, we say that g has (δ, h)-hitting monochromatic rect-

angle distributions if there are two distributions σ0 and σ1 where
for each c ∈ {0, 1}, σc is a distribution over c-monochromatic rect-
angles R = U ×V ⊂ {0, 1}n×{0, 1}n (i.e., g(u, v) = c on every pair
(u, v) ∈ U × V ), such that for any set X × Y ⊂ {0, 1}n × {0, 1}n

of sufficient size, a rectangle randomly chosen according to σc will
intersect X × Y with large probability. More precisely, for any
c ∈ {0, 1} and for any X × Y with |X|/2n, |Y |/2n ≥ 2−h,

Pr
R∼σc

[R ∩ (X × Y ) �= ∅] ≥ 1 − δ.

If such distributions σ0 and σ1 exist, we say that g has (δ, h)-hitting
monochromatic rectangle distributions.

The distribution σ0 for GHn, 1
4

is sampled as follows: we first
sample a random string x of Hamming weight n

2
, and we look at the

set of all strings which are at Hamming distance at most n
8

from x.
Let’s call this set Ux. The output of σ0 will be the rectangle Ux×Ux.
The output of σ1 is Ux × Ux̄, where x̄ is the bitwise complement of
x. For any such x, Ux × Ux will be a 0-monochromatic rectangle
and Ux × Ux̄ will be a 1-monochromatic rectangle. Note that if Ux

does not hit a subset A of {0, 1}n, then it means that x is at least
n
8

Hamming distance away from the set A. By an application of
Harper’s theorem, we can show that for a sufficiently large set A,
the number of strings which are at least n

8
Hamming distance away

from A is exponentially small. This will imply that both σ0 and σ1

will hit a sufficiently large rectangle with probability exponentially
close to 1, which is our required hitting property.
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The σ0 distribution for IPn is picked as follows: To produce a
rectangle U × V we sample uniformly at random a linear subspace
V ⊆ F n

2 of dimension n/2 and we set U = V ⊥ to be the orthogonal
complement of V . Since a random vector space of size 2n/2 hits a
fixed subset of {0, 1}n of size 2( 1

2
+ǫ)n with probability 1 − O(2−ǫn),

and both U and V are random vector spaces of that size, U × V
intersects a given rectangle X × Y with probability 1 − O(2−ǫn).
Hence, we obtain (O(2−ǫn), (1

2
+ǫ)n)-hitting distribution for IP. For

the 1-monochromatic case, we first pick a random a ∈ F n
2 of odd

Hamming weight and then pick random V and U = V ⊥ inside of
the orthogonal complement of a. The distribution σ1 outputs the
1-monochromatic rectangle (a + V ) × (a + U), and will have the
required hitting property.

1.5. Organization. Section 2 consists of basic definitions and
preliminaries. In Section 3, we prove a deterministic simulation the-
orem for any gadget admitting (δ, h)-hitting monochromatic rect-
angle distribution: Section 3.1 provides some supporting lemmas
for the proof, and Section 3.2 holds the proof itself. In Section
4, we show that INDn on n bits has ( 1

10
, 3

20
log n)-hitting rectan-

gle distribution, in Section 5 we show that GHn, 1
4

on n bits has

(o(1), n
100

)-hitting rectangle distribution, and in Section 6 we show
that IP on n bits has (o(1), n/5)-hitting rectangle distribution.

1.6. Further remarks. We remark here that Wu, Yao & Yuen
(2017) have independently reported a proof of the simulation theo-
rem for the inner-product function, while a draft of this manuscript
was already in circulation. Implicit in their proof is the construc-
tion of hitting rectangle distributions for IP, and their construction
of these distributions is similar to our own.

We would also like to point out to the readers that a prelim-
inary version of the results obtained in this paper appeared in
(Chattopadhyay et al. 2017b).

2. Basic definitions and preliminaries

A combinatorial rectangle, or just a rectangle for short, is any prod-
uct A × B, where both A and B are finite sets. If A′ ⊆ A and
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B′ ⊆ B, then A′ × B′ is called a sub-rectangle of A × B. We will
often be in a scenario where we wish to measure the size of a set A′

which is contained in another set A; in this scenario, we will call
density to the fraction |A′|/|A|. For two sets denoted using capital
A, such as A′ ⊆ A, we will use the Greek letter α to denote the
density; for two sets denoted using capital B, such as B′ ⊆ B, we
will use β instead.

Consider a product set A = A1 × · · · × Ap, for some natural
number p ≥ 1, where each Ai is a subset of {0, 1}n. Let A ⊆ A
and I ⊆ [p]

def

= {1, . . . , p}. Let I = {i1 < i2 < · · · < ik}, and
J = [p]\I. For any a ∈ ({0, 1}n)p, we let aI = (〈ai1 , ai2 , . . . , aik)
be the projection of a onto the coordinates in I. Correspondingly,
AI = {aI | a ∈ A} is the projection of the entire set A onto I. For
any a′ ∈ ({0, 1}n)k and a′′ ∈ ({0, 1}n)p−k, we denote by a′ ×I a′′

the p-tuple a such that aI = a′ and aJ = a′′. If I is clear from
the context, we may omit the set I and write only a′ × a′′. For
i ∈ [p] and a p-tuple a, a �=i denotes a[p]\{i}, and similarly, A �=i

denotes A[p]\{i}. For a′ ∈ ({0, 1}n)k, we define the set of extensions
Ext

J
A(a′) = {a′′ ∈ ({0, 1}n)p−k | a′ ×I a′′ ∈ A}; we call those a′′

extensions of a′. Again, if A and I are clear from the context, we
may omit them and write only Ext(a′).

Suppose n ≥ 1 is an integer and A = {0, 1}n. For an integer
p, a set A ⊆ Ap, and a subset S ⊆ A, the restriction of A to S at
coordinate i is the set Ai,S = {a ∈ A | ai ∈ S}. We write Ai,S

I for
the set (Ai,S)I (i.e., we first restrict the i-th coordinate and then
project onto the coordinates in I). Clearly Ai,S

�=i is non-empty if
and only if S and Ai intersect.

The density of a set A ⊆ Ap will be denoted by α = |A|
|A|p , and

αi,S
I =

|Ai,S
I |

|A||I| .

Interval algebra. We will use the following notation to denote
closed intervals of the real line:

◦ If δ is a nonnegative real, 1±δ denotes the interval [1−δ, 1+δ].

◦ For two intervals I = [a, b] and J = [c, d], IJ = {xy | x ∈
I, y ∈ J}, I + J = {x + y | x ∈ I, y ∈ J}, and if 0 �∈ J , then
I
J

= {x
y

| x ∈ I, y ∈ J}.
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◦ For an interval J = [a, b] and x ∈ R, xJ = {xy | y ∈ J},
x + J = {x + y | y ∈ J} and (if 0 �∈ J) x

J
= {x

y
| y ∈ J}.

The following is easy to verify:

Proposition 2.1. Let 0 ≤ δ < 1/2 and x, y be reals.

◦ (Monotonicity) 1 ± δ ⊆ 1 ± δ′ whenever δ ≤ δ′.

◦ (Product rule) (1 ± δ)2 ⊆ 1 ± 3 · δ.

◦ (Weak inverse) 1
1±δ

⊆ 1 ± 2δ.

◦ (Weak symmetry) If x ∈ (1 ± δ) · y then y ∈ (1 ± 2δ) · x.

Deterministic communication complexity. See Kushilevitz
& Nisan (1997) for an excellent exposition on this topic, which
we cover here only very briefly. In the two-party communication
model introduced by Yao (1979), two computationally unbounded
players, Alice and Bob, are required to jointly compute a function
F : A×B → Z where Alice is given a ∈ A and Bob is given b ∈ B.
To compute F , Alice and Bob communicate messages to each other,
and they are charged for the total number of bits exchanged.

Formally, a deterministic protocol π : A × B → Z is a binary
tree where each internal node v is associated with one of the players;
Alice’s nodes are labeled by a function av : A → {0, 1}, and Bob’s
nodes by bv : B → {0, 1}. Each leaf node is labeled by an element of
Z. For each internal node v, the two outgoing edges are labeled by
0 and 1, respectively. The execution of π on the input (a, b) ∈ A×B
follows a path in this tree: starting from the root, in each internal
node v belonging to Alice, she communicates av(a), which advances
the execution to the corresponding child of v; Bob does likewise on
his nodes, and once the path reaches a leaf node, this node’s label
is the output of the execution. We say that π correctly computes

F on (a, b) if this label equals F (a, b).

To each node v of a deterministic protocol π, we associate a set
Rv ⊆ A × B comprising those inputs (a, b) which cause π to reach
node v. It is easy see that this set Rv is a combinatorial rectangle,
i.e., Rv = Av × Bv for some Av ⊆ A and Bv ⊆ B.
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The communication complexity of π is the height of the tree.
The deterministic communication complexity of F , denoted Dcc(F ),
is defined as the smallest communication complexity of any deter-
ministic protocol which correctly computes F on every input.

Decision-tree complexity. In the (Boolean) decision-tree model,
we wish to compute a function f : {0, 1}p → Z when given query
access to the input, and are charged for the total number of queries
we make.

Formally, a deterministic decision tree T : {0, 1}p → Z is a
rooted binary tree where each internal node v is labeled with a
variable number i ∈ [p], each edge is labeled 0 or 1, and each
leaf is labeled with an element of Z. The execution of T on an
input z ∈ {0, 1}p traces a path in this tree: at each internal node
v it queries the corresponding coordinate zi and follows the edge
labeled zi. Whenever the algorithm reaches a leaf, it outputs the
associated label and terminates. We say that T correctly computes

f on z if this label equals f(z).
The query complexity of T is the height of the tree. The deter-

ministic query complexity of f , denoted Ddt(F ), is defined as the
smallest query complexity of any deterministic decision tree which
correctly computes f on every input.

Functions of interest. The Inner-product function on n bits,
denoted IPn, is defined on {0, 1}n × {0, 1}n to be:

IPn(x, y) =
∑

i∈[n]

xi · yi mod 2.

Whenever n is a power of 2, the Indexing function on n bits, INDn,
is defined on {0, 1}log n × {0, 1}n to be:

INDn(x, y) = yx (the x’th bit of y).

Let n be a natural number and γ = k
n

where k is an integer in
the interval [1, n/2 − 1] (This implies γ ∈ (0, 1/2).) For two n-
bit strings x and y, let dH(x, y) =

∑

i xi ⊕ yi be their Hamming



632 Chattopadhyay et al. cc 28 (2019)

distance. The gap-Hamming problem on n bits, denoted GHn,γ, is
a promise problem defined on {0, 1}n × {0, 1}n, by the condition

GHn,γ(x, y) =

{

1 if dH(x, y) ≥ (1
2

+ γ) n,

0 if dH(x, y) ≤ (1
2

− γ) n.

3. Deterministic simulation theorem

A simulation theorem shows how to construct a decision tree for a
function f from a communication protocol for a composition prob-
lem f ◦ gp. Such a theorem can also be called a lifting theorem,
if one wishes to emphasize that lower bounds for the decision-tree
complexity of f can be lifted to lower bounds for the communica-
tion complexity of f ◦gp. As mentioned in Section 1, the determin-
istic lifting theorem proved in (Raz & McKenzie 1999), and subse-
quently simplified in (Göös, Pitassi & Watson 2015), uses INDn as
inner function g with n being polynomially larger than p. In this
section, we will show a deterministic simulation theorem for any
function which possesses a certain pseudo-random property, which
we will now define. Later, we will show that the inner product and
any function of the gap-Hamming family have this property.

Definition 3.1 (Hitting rectangle distributions). Let 0 ≤ δ < 1
be a real, h ≥ 1 be an integer, and A,B be some sets. A distribu-
tion σ over rectangles within A×B is called a (δ, h)-hitting rectan-
gle distribution if, for any rectangle A×B with |A|/|A|, |B|/|B| ≥
2−h,

Pr
R∼σ

[R ∩ (A × B) �= ∅] ≥ 1 − δ.

Let g : A×B → {0, 1} be a (possibly partial) function. A rectangle
A×B is c-monochromatic with respect to g if g(a, b) = c for every
(a, b) ∈ A × B.

Definition 3.2. For a real δ ≥ 0 and an integer h ≥ 1, we
say that a (possibly partial) function g : A × B → {0, 1} has
(δ, h)-hitting monochromatic rectangle distributions if there are two
(δ, h)-hitting rectangle distributions σ0 and σ1, where each σc is a
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distribution over rectangles within A×B that are c-monochromatic
with respect to g.

The theorem we will prove in Section 3.2 is the following:

Theorem 3.3 (Theorem 1.1 restated). Let ε ∈ (0, 1) and δ ∈
(0, 1

100
) be real numbers, and let h ≥ 6/ε and 1 ≤ p ≤ 2h(1−ε) be in-

tegers. Let f : {0, 1}p → Z be a function and g : A×B → {0, 1} be
a (possibly partial) function. If g has (δ, h)-hitting monochromatic
rectangle distributions, then

Ddt(f) ≤ 4

ε · h
· Dcc(f ◦ g p).

In Section 5, we will show that GHn, 1
4

has (o(1), n
100

)-hitting
monochromatic rectangle distributions. From this, we obtain a
simulation theorem for GHn, 1

4

:

Corollary 3.4. Let n be a large enough even integer, ε ∈ (0, 1),
and p ≤ 2

n
100

(1−ε) be an integer. For any function f : {0, 1}p → Z,
Ddt(f) ≤ 400

nε
· Dcc(f ◦ GH

p

n, 1
4

).

In Section 6, we will show that IPn has (o(1), n(1
2

− ε))-hitting
monochromatic rectangle distributions, for any constant ε ∈ (0, 1/2).
This allows us to derive after some simple calculations:

Corollary 3.5. Let n be large enough integer, ε ∈ (0, 1/2) be

a constant real, and p ≤ 2( 1

2
−ε)n be an integer. For any function

f : {0, 1}p → Z, Ddt(f) ≤ 36
nε

· Dcc(f ◦ IP
p
n).

These two corollaries together imply2 Theorem 1.3. This allows us
to significantly improve the gadget size known for simulation theo-
rem of (Göös, Pitassi & Watson 2015; Raz & McKenzie 1999), that
uses the indexing function instead of inner product. Indeed, Jakob
Nordström (Nordström 2016) recently posed to us the challenge of

2The constant 1
4 for GH

p

n, 1

4

in Corollary 3.4 is arbitrary. For any gap

ζ ≤ 1
2 , we can show for GH

p
n,ζ a (2−n(1−H( 1

2
−

ζ
4
)), (1 − H( 1

2 − ζ

4 ))n)-hitting
monochromatic distribution, where H(·) is the binary entropy function.
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proving a simulation theorem for f ◦ IND
p
n, with a gadget size n

smaller than p3; note that p3 is already a significant improvement
over (Göös, Pitassi & Watson 2015; Raz & McKenzie 1999).

This follows from the above corollary, because of the following
reduction: Given an instance (a, b) ∈ {0, 1}mp ×{0, 1}mp of f ◦ IP

p
m

where p ≤ 2m( 1

2
−ε), Alice and Bob can construct an instance of

f ◦ IND
p
n where n = 2m. Bob converts his input b ∈ {0, 1}mp to

b′ ∈ {0, 1}np, so that each b′
i = [IPn(x1, bi)〉, . . . , IPn(xn, bi)〉] where

{x1, . . . , xn} = {0, 1}m is an ordering of all m-bit strings. It is
easy to see that IPm(ai, bi) = INDn(ai, b

′
i). Hence, it follows as a

corollary to our result for IP:

Corollary 3.6. Let ε ∈ (0, 1/2) be a constant real number, and

n and p be sufficiently large natural numbers, such that p ≤ n
1

2
−ε.

Then, for any function f : {0, 1}p → Z, Ddt(f) = 36
ε·log n

· Dcc(f ◦
IND

p
n).

Also, it is worth noting that the proof of Lemma 7 in (Göös,
Pitassi & Watson 2015), which Göös et al. call the ‘Projection
Lemma’, implicitly proves that INDn has ( 1

150
, 3

20
log n)-hitting rect-

angle distribution. Here the c-monochromatic rectangle distribu-
tion (c is either 1 or 0) is sampled as follows: Alice samples a
subset of indices U ⊂ [n] of size n7/20, and Bob picks V ⊂ {0, 1}n

where V = {b | bj = c for all j ∈ U}.3 Hence, we can also apply
Theorem 3.3 directly to obtain a corollary similar to Corollary 3.6
(albeit with much larger gadget size n). See Section 4 for a detailed
derivation.

3.1. Thickness and its properties. In this section, we list
several properties related to ‘thickness’, a combinatorial property
which will be needed in Section 3.2 to prove a simulation theorem.
Readers may also refer to (Göös, Pitassi & Watson 2015).

3Readers may note that δ in the proof of Claim 9 of (Göös, Pitassi &
Watson 2015) is 1/4, where as we need δ < 1/100. This is not a problem, as
we can make δ as small a constant as we wish for by the same calculation as
that in the proof of Claim 9.
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Definition 3.7 (Aux graph, average and min degrees). Let p ≥
2. For i ∈ [p] and A ⊆ Ap, the aux graph G(A, i) is the bipartite
graph with left side vertices Ai, right side vertices A �=i and edges
corresponding to the set A, i.e., (a′, a′′) is an edge iff a′ ×{i} a′′ ∈ A.

We define the average degree of G(A, i) to be the average right
degree:

davg(A, i) =
|A|

|A�=i|
,

and the min-degree of G(A, i), to be the minimum right degree:

dmin(A, i) = min
a′∈A �=i

|Ext(a′)|.

Definition 3.8 (Thickness and average thickness). For p ≥ 2 and
τ, ϕ ∈ (0, 1), a set A ⊆ Ap is called τ -thick if dmin(A, i) ≥ τ · |A|
for all i ∈ [p]. (Note, an empty set A is τ -thick.) Similarly, A
is called ϕ-average-thick if davg(A, i) ≥ ϕ · |A| for all i ∈ [p]. For
a rectangle A × B ⊆ Ap × Bp, we say that the rectangle A × B
is τ -thick if both A and B are τ -thick. For p = 1, set A ⊆ A is
τ -thick if |A| ≥ τ · |A|.

The following property is from (Göös, Pitassi & Watson 2015,
Lemma 6). Informally it says that if we can maintain high average-
thickness of a set, then there is a large enough subset of it which has
high thickness. Looking ahead, this will be useful while traveling
down the protocol tree where we only have to worry about main-
taining high average-thickness. For completeness, we also include
the proof.

Lemma 3.9 (Average thickness implies thickness). For any p ≥ 2,
if A ⊆ Ap is ϕ-average-thick, then for every δ ∈ (0, 1) there is a
δ
p
ϕ-thick subset A′ ⊆ A with |A′| ≥ (1 − δ)|A|.

Proof. The set A′ is obtained by running Algorithm 1.
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Algorithm 1

1: Set A0 = A, j = 0.
2: while dmin(A

j , i) < δ
pϕ · |A| for some i ∈ [p] do

3: Let a′ be a right node of G(Aj , i) with nonzero
degree less than δ

pϕ · |A|.
4: Set Aj+1 = Aj\{a′} ×i Ext(a′), i.e., remove every

extension of a′. Increment j.

5: Set A′ = Aj .

The total number of iteration of the algorithm is at most
∑

i∈[p] |A�=i|.
(We remove at least one node in some G(Aj, i) in each iteration
which was a node also in the original G(A, i).) So the number of
iterations is at most

∑

i∈[p]

|A�=i| =
∑

i∈[p]

|A|
davg(A, i)

≤ p|A|
ϕ · |A| .

As the algorithm removes at most δ
p
ϕ · |A| elements of A in each

iteration, the total number of elements removed from A is at most
δ|A|, so |A′| ≥ (1 − δ)|A|. Hence, the algorithm always terminates
with a non-empty set A′ that must be δ

p
ϕ-thick. �

Lemma 3.10. Let p ≥ 2 be an integer, i ∈ [p], A ⊆ Ap be a τ -
thick set, and S ⊆ A. The set Ai,S

�=i is τ -thick. Ai,S
�=i is empty iff

S ∩ Ai is empty.

Proof. Notice that Ai,S
�=i is non-empty iff S ∩ Ai is non-empty.

Consider the case of p ≥ 3. Let a ∈ A, where ai ∈ S. Set a′ = a �=i.
For j′ ∈ [p−1], let j = j′+1 if j′ ≥ i, and j = j′ otherwise. Clearly,

Ext
{j}
A (a �=j) ⊆ Ext

{j′}
Ai,S

�=i

(a′
�=j′); hence, the degree of a′ in G(Ai,S

�=i , j
′) is

at least the degree of a in G(A, j) which is at least τ · |A|. Hence,
Ai,S

�=i is τ -thick.
To see the case p = 2, assume there is some string a′ ∈ A �=i

which has some extension a′′ ∈ S, but A itself is τ -thick, so there
have to be at least τ · |A| many such a′, which will then all be in
Ai,S

�=i . �
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The next lemma is the heart of the proof of the simulation theo-
rem. To provide context, recall from Section 1.4, we will traverse
down the protocol tree maintaining high average-thickness over the
coordinates which are not queried yet which, in turn, will guaran-
tee high thickness over those coordinates, thanks to Lemma 3.9.
We may end up in a situation where we do not have high average-
thickness anymore, and we have to issue a query. The following
lemma provides a way to gain back thickness in the unqueried co-
ordinates irrespective of the value of the query issued.

Lemma 3.11. Let h ≥ 1, p ≥ 2 and i ∈ [p] be integers and
δ, τ, ϕ ∈ (0, 1) be reals, where τ ≥ 2−h. Consider a function
g : A × B → {0, 1} which has (δ, h)-hitting monochromatic rectan-
gle distributions. Suppose A×B ⊆ Ap ×Bp is a non-empty rectan-
gle which is τ -thick, and suppose also that davg(A, i) ≤ ϕ · |A|.
Then for any c ∈ {0, 1}, there is a c-monochromatic rectangle
U × V ⊆ A × B such that

(i) Ai,U
�=i and Bi,V

�=i is τ -thick,

(ii) αi,U
�=i ≥ 1

ϕ
(1 − 3δ)α,

(iii) βi,V
�=i ≥ (1 − 3δ)β,

where α = |A|/|A|p, β = |B|/|B|p, αi,U
�=i = |Ai,U

�=i |/|A|p−1 and β =

|Bi,V
�=i |/|B|p−1.

The constant 3 in the statement may be replaced by any value
greater than 2, so the lemma is still meaningful for δ arbitrarily
close to 1/2.

Proof. Fix c ∈ {0, 1}. Consider a matrix M where rows cor-
respond to strings a ∈ A �=i, and columns correspond to rectangles
R = U × V in the support of σc. Set each entry M(a,R) to 1 if

U ∩ Ext
{i}
A (a) �= ∅, and set it to 0 otherwise.

For each a ∈ A�=i, |Ext
{i}
A (a)| ≥ τ |A|, and because σc is a (δ, h)-

hitting rectangle distribution and τ ≥ 2−h, we know that if we pick
a column R according to σc, then M(a,R) = 1 with probability
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≥ 1 − δ. So the probability that M(a,R) = 1 over uniform a and
σc-chosen R is ≥ 1 − δ.

Call a column of M A-good if M(a,R) = 1 for at least 1 − 3δ
fraction of the rows a. Now it must be the case that the A-good
columns have strictly more than 1/2 of the σc-mass. Suppose not.
The expected number of 0’s in each column is at most δ. So, by
Markov’s inequality, the fraction of columns which has at least 3δ
fraction of 0’s is at most 1/3. This means that at least 2/3 > 1/2
fraction of columns will have at least 1 − 3δ fraction of 1’s.

A similar argument also holds for Bob’s set B �=i. Hence, there is
a c-monochromatic rectangle R = U × V whose column is both A-
good and B-good in their respective matrices. This is our desired
rectangle R.

We know: |Ai,U
�=i | ≥ (1 − 3δ)|A �=i| and |Bi,V

�=i | ≥ (1 − 3δ)|B�=i|.
Since |B�=i| ≥ |B|

|B| , we obtain |Bi,V
�=i |/|B|p−1 ≥ (1 − 3δ)|B�=i|/|B|p−1

which is at least (1 − 3δ)β. Because |A|/|A �=i| ≤ ϕ|A|, we get

|A�=i|
|A|(p−1)

≥ 1

ϕ
· |A|
|A|p =

α

ϕ
.

Combined with the lower bound on |Ai,U
�=i |, we obtain |Ai,U

�=i |/|A|p−1 ≥
(1 − 3δ)α/ϕ. The thickness of Ai,U

�=i and Bi,V
�=i follows from Lemma

3.10. �

The next lemma will be used as a closing argument for the
proof of the simulation theorem. At the end of our traversal down
the protocol tree, when we land on a leaf, we will be left with a
rectangle which is thick on all unqueried coordinates. The next
lemma says that, for any instantiation of these coordinates, there
is an input pair inside the rectangle which, when g applied on it,
will have those values in the corresponding coordinates.

Lemma 3.12. Let p, h ≥ 1 be integers and δ, τ ∈ (0, 1) be reals,
where τ ≥ 2−h. Consider a function g : A × B → {0, 1} which
has (δ, h)-hitting monochromatic rectangle distributions. Let A ×
B ⊆ Ap × Bp be a τ -thick non-empty rectangle. Then for every
z ∈ {0, 1}p there is some (a, b) ∈ A × B with gp(a, b) = z.
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Proof. This follows from repeated use of Lemma 3.10. Fix
arbitrary z ∈ {0, 1}p. Set A(1) = A and B(1) = B. We proceed in
rounds i = 1, . . . , p−1 maintaining a τ -thick rectangle A(i)×B(i) ⊆
Ap−i+1 × Bp−i+1. If we pick Ui × Vi from σzi

, then the rectangle
(A(i)){i} ∩ Ui × (B(i)){i} ∩ Vi will be non-empty with probability
≥ 1 − δ > 0 (because σzi

is a (δ, h)-hitting rectangle distribution
and τ ≥ 2−h). Fix such Ui and Vi. Set ai to an arbitrary string
in (A(i)){i} ∩ Ui, and bi to an arbitrary string in (B(i)){i} ∩ Vi. Set

A(i+1) = (A(i))
i,{ai}
�=i , B(i+1) = (B(i))

i,{bi}
�=i , and proceed for the next

round. By Lemma 3.10, A(i+1) × B(i+1) is τ -thick.
Eventually, we are left with a rectangle A(p) × B(p) ⊆ A × B

where both A(p) and B(p) are τ -thick (and non-empty). Again with
probability 1 − δ > 0, the zp-monochromatic rectangle Up × Vp

chosen from σzp will intersect A(p) × B(p). We again set ap and
bp to come from the intersection, and set a = 〈a1, a2, . . . , ap〉 and
b = 〈b1, b2, . . . , bp〉. �

3.2. Proof of the simulation theorem. Now we are ready to
present the proof of the simulation theorem (Theorem 3.3). Let ε ∈
(0, 1/2) and δ ∈ (0, 1/100) be real numbers, and h ≥ 6/ε and 1 ≤
p ≤ 2h(1−ε) be integers. Let f : {0, 1}p → Z be a function and g :
A×B → {0, 1} be a (possibly partial) function. Assume that g has
(δ, h)-hitting monochromatic rectangle distributions. We assume
we have a communication protocol Π for solving f ◦gp, and we will
use Π to construct a decision tree (procedure) for f . Let C be the
communication cost of the protocol Π. If p ≤ 5C/h, the theorem is
true trivially. So assume p > 5C/h. Set ϕ = 4 · 2−εh and τ = 2−h.
The decision-tree procedure is presented in Algorithm 2 (page 641).
On an input z ∈ {0, 1}p, it uses the protocol Π to decide which
bits of z to query.

An informal description of simulation algorithm. Given
an input z ∈ {0, 1}p, the algorithm starts traversing a path from
the root of the protocol tree of Π. The variable v indicates the
node of the protocol tree which is the current node during the
ongoing simulation. Associated with v, the algorithm maintains
a rectangle A × B ⊆ Ap × Bp and a set I ⊆ [p] of indices. I
corresponds to coordinates of the input z that were not queried, yet.
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Throughout the execution of the algorithm, the following invariants
are maintained: The set A × B is thick in the coordinates I, and
every pair of inputs (x, y) ∈ A×B is consistent with the answer to
the queries made so far. To start off, I is [p], and A×B = Ap ×Bp.
So the invariants are trivially maintained at the beginning.

In each iteration of the simulation, the algorithm checks the
following condition: Are both AI and BI ϕ-average-thick? De-
pending on the answer to this check, the algorithm does one of the
following two things:

If both AI and BI are ϕ-average-thick, the algorithm proceeds
to that child of v whose corresponding rectangle Rv has at least
half the mass of AI × BI and applies Lemma 3.9 to prune the
rectangle (A × B) ∩ Rv to ensure the thickness condition. Note
that the working set A × B loses a constant fraction of density in
doing so.

Otherwise, if there is a coordinate i in I, where AI or BI has
low average degree, then the algorithm queries zi and, depending
on the value of zi, applies Lemma 3.11 accordingly. Lemma 3.11
crucially exploits the fact that AI and BI are thick in i-th coor-
dinate and outputs a sub-rectangle of A × B which, in the i-th
coordinate, is restricted to a zi-monochromatic rectangle U × V ,
while maintaining the thickness invariant in the coordinates I\{i}.
This also results in a boost in density of A×B in the current work-
ing universe AI\i ×BI\i. The algorithm updates I to be I\{i} and
reiterates (i.e., does the average thickness check again on A×B in
the coordinate of the new I). We describe the parameters of the
algorithm next in more detail.

Correctness. The algorithm maintains an invariant that AI×BI

is τ -thick. This invariant is trivially true at the beginning.
If both AI and BI are ϕ-average-thick, the algorithm finds sets

A′ and B′ on lines 5–7 as follows. Consider the case that Alice
communicates at node v. She is sending one bit. Let A0 be inputs
from A on which Alice sends 0 at node v and A1 = A\A0. We can
pick c ∈ {0, 1} such that |(Ac)I | ≥ |AI |/2. Set A′′ = Ac. Since
AI is ϕ-average-thick, A′′

I is ϕ/2-average-thick. So using Lemma
3.9 on A′′

I with δ set to 1/2, we can find a subset A′ of A′′ such
that A′

I is ϕ
4·|I| -thick and |A′

I | ≥ |A′′
I |/2. (A′ ⊆ A′′ will be the pre-
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Algorithm 2 Decision-tree procedure
Input: z ∈ {0, 1}p

Output: f(z)
1: Set v to be the root of the protocol tree for Π, I = [p], A = Ap and

B = Bp.
2: while v is not a leaf do

3: if AI and BI are both ϕ-average-thick then

4: Let v0, v1 be the children of v.
5: Choose c ∈ {0, 1} for which there is A′ ×B′ ⊆ (A×B)∩Rvc

such that

6: (1) |A′
I × B′

I | ≥ 1
4 |AI × BI |

7: (2) A′
I × B′

I is τ -thick. ⊲ Using Lemma 3.9

8: Update A = A′, B = B′ and v = vc.
9: else if davg(AI , j) < ϕ|A| for some j ∈ [|I|] then

10: Query zi, where i is the j-th (smallest) element of I.

11: Let U × V be a zi-monochromatic rectangle of g such that
12: (1) Ai,U

I\{i} × Bi,V
I\{i} is τ -thick,

13: (2) αi,U
I\{i} ≥ 1

ϕ(1 − 3δ)α,

14: (3) βi,V
I\{i} ≥ (1 − 3δ)β, ⊲ Using Lemma 3.11

15: Update A = Ai,U , B = Bi,V and I = I\{i}.
16: else if davg(BI , j) < ϕ|B| for some j ∈ [|I|] then

17: Query zi, where i is the j-th (smallest) element of I.

18: Let U × V be a zi-monochromatic rectangle of g such that
19: (1) Ai,U

I\{i} × Bi,V
I\{i} is τ -thick,

20: (2) αi,U
I\{i} ≥ (1 − 3δ)α,

21: (3) βi,V
I\{i} ≥ 1

ϕ(1 − 3δ)β, ⊲ Using Lemma 3.11

22: Update A = Ai,U , B = Bi,V and I = I\{i}.

23: Output f ◦ g p(A × B).
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image of A′
I obtained from the lemma.) Since ϕ = 4 · 2−εh and

|I| ≤ p ≤ 2h(1−ε), the set A′
I will be 2−h-thick, i.e., τ -thick. Setting

B′ = B, the rectangle A′ × B′ satisfies properties from lines 6–7.
A similar argument holds when Bob communicates at node v.

If AI is not ϕ-average-thick, the existence of U ×V at line 11 is
guaranteed by Lemma 3.11. Similarly in the case when BI is not
ϕ-average-thick.

Next we argue that the number of queries made by Algorithm
2 is at most 5C/εh. In the first part of the while loop (lines 3–8),
the density of the current AI × BI drops by a factor 4 in each
iteration. There are at most C such iterations; hence, this density
can drop by a factor of at most 4−C = 2−2C . For each query that
the algorithm makes, the density of the current AI × BI increases
by a factor of at least (1 − 3δ)2/ϕ ≥ 1

2ϕ
≥ 2εh−3. (Here we use the

fact that δ ≤ 1/100.) Since the density can be at most one, the
number of queries is upper bounded by

2C

εh − 3
≤ 4C

εh
,when h ≥ 6/ε.

Finally, we argue that f(A×B) at the termination of Algorithm
2 is the correct output. Given an input z ∈ {0, 1}p, whenever the
algorithm queries any zi, the algorithm makes sure that all the
input pairs (x, y) in the rectangle A×B are such that g(xi, yi) = zi

— because U × V is always a zi-monochromatic rectangle of g. At
the termination of the algorithm, I is the set of i such that zi was
not queried by the algorithm. As p > 4C/εh, I is non-empty. Since
AI ×BI is τ -thick, it follows from Lemma 3.12 that A×B contains
some input pair (x, y) such that g|I|(xI , yI) = zI , and so gp(x, y) =
z. Since Π is correct, it must follow that f(z) = f ◦ g p(A × B).
This concludes the proof of correctness. �

With greater care the same argument allows for δ to be close to 1
2
.

This would require also tightening the 1 − 3δ factors appearing in
Lemma 3.11 to something close to 1−2δ and make the calculations
(only) slightly longer. Although we noticed this improvement, we
found no use for it, so we opted to keep the above presentation.
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4. Hitting rectangle distribution for IND

Here we derive the ( 1
150

, 3
20

log n)-hitting monochromatic rectangle
distribution for INDn. Consider the following distribution σc over
c-monochromatic rectangles: Alice samples a subset of indices U ⊂
[n] of size n7/20, and Bob picks V ⊂ {0, 1}n where V = {b | bj =
c for all j ∈ U}. We next show the following lemma.

Lemma 4.1. The distribution σc, for c ∈ {0, 1}, is a ( 1
150

, 3
20

log n)-
hitting c-monochromatic distribution for INDn.

The proof of this lemma is implicit in the proof of Lemma 7 (Pro-
jection lemma) of (Göös, Pitassi & Watson 2015). They show the
following properties of σc in the course of proving their Lemma 7.

Lemma 4.2. If U × V is sampled from σc, then

(i) For any set A′ ⊆ [n] that has size at least n17/20, PrU [A′∩U �=
∅] ≥ 1 − e−n1/5

,

(ii) For any set B′ ⊆ {0, 1}n with |B′|
2n ≥ 2−n11/20

, PrU [B′ ∩ V �=
∅] ≥ exp(−14(n−2/20 + n−6/20)).

The inverse exponential term on RHS is lower bounded by 3/4
in (Göös, Pitassi & Watson 2015). We can bound this term by

199/200 as well. Hence, for this distribution, δ ≤ 1/200 + e−n1/5 ≤
1/150.

Now we bound h. We have |A′|
n

≥ n−3/20 = 2− 3

20
log n from

property (1). The bound on the size of B′ comes from property

(2), which is much smaller compared to |A′|
n

. Hence we have h =
3
20

log n.

5. Hitting rectangle distributions for GH

We construct a hitting monochromatic rectangle distribution for
GHn, 1

4

. Subsequently, we will show that the distribution is

(2− n
100 , n

100
) hitting rectangle distribution which will show a deter-

ministic simulation result when the inner function is GHn, 1
4

, i.e.,
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Dcc(f ◦ GH
p

n, 1
4

) ≥ Ddt(f) · Ω(n).

Let dH(x, y) denotes the Hamming distance between the strings
x and y. Let Br(x) be the Hamming ball of radius r around x, i.e.,
Br(x) = {y ∈ {0, 1}n | dH(x, y) ≤ r}; for a set A ⊂ {0, 1}n,
Br(A) = ∪a∈ABr(a).

Let ε = 1
8

and H be the set of all strings in {0, 1}n with Ham-
ming weight n/2. Now consider the rectangle distributions σ0 and
σ1 obtained from the following sampling procedure:

Sampling from σ0: Choose a random string x ∈ H. Now let
Ux = Bεn(x); output Ux × Ux.

Sampling from σ1: Let x̄ ∈ H be the bitwise complement of x
and Vx = Bεn(x̄). Output Ux × Vx.

For the chosen value of ε, Ux × Vx is a 1-monochromatic rectangle,
since for any u ∈ Ux, v ∈ Vx,

dH(u, v) ≥ n − 2εn ≥ 3

4
n.

On the other hand, Ux × Ux is 0-monochromatic, since for any
u, u′ ∈ Ux,

dH(u, u′) ≤ 2εn ≤ 1

4
n.

Both inequalities are obtained by a straightforward application of
triangle inequality.

Lemma 5.1. The distributions σ0 and σ1 are (2− n
100 , n

100
)-hitting

monochromatic rectangle distributions for GHn, 1
4

.

To prove Lemma 5.1, we need the following theorem due to Harper.
We will call S ⊂ {0, 1}n a Hamming ball with center c ∈ {0, 1}n

if Br(c) ⊆ S ⊂ Br+1(c) for some nonnegative integer r. For
sets S, T ⊂ {0, 1}n, we define the distance between S and T as
d(S, T ) = min{dH(s, t) | s ∈ S, t ∈ T}.
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Theorem 5.2. Harper’s theorem, (Frankl & Füredi 1981),
(Harper 1966) Given any non-empty subsets S and T of {0, 1}n,
there exist a Hamming ball S0 with center 1̄ and Hamming ball
T0 with center 0̄ such that |S| = |S0|, |T | = |T0| and d(S0, T0) ≥
d(S, T ).

Note that Theorem 5.2 also tells us when Br(S) is smallest for a
set S ⊂ {0, 1}n in the following way:

Lemma 5.3. Let r ∈ [n] be any nonnegative integer and let Sk =
{S ⊂ {0, 1}n | |S| = k} for any k. If S is a Hamming ball centered
around either 1̄ or 0̄, then |Br(S)| ≤ |Br(S

′)| for any S ′ ∈ Sk.

Proof. Fix any k ≤ n. The cases when k = 0 and k = n
are trivial. Given a set S ∈ Sk, let TS = {0, 1}n\Br(S). It is
immediate that d(S, TS) = r + 1. Now let us suppose that S is
such that it achieves the smallest Br(S

′) among all S ′ ∈ Sk. This
also means that TS is the biggest such set. Using Harper’s theorem,
we can find set S0 and T0 such that d(S0, T0) ≥ r + 1 where S0 is
centered around 1̄ and T0 is centered around 0̄ with |S0| = |S|
and |T0| = |TS|. Now it is easy to see that T0 ⊆ {0, 1}n\Br(S0),
i.e., |TS| = |T0| ≤ |TS0

|, which is a contradiction. This means that
|Br(S)| will be the smallest if S is a Hamming ball centered around
1̄. This proves the lemma. �

Now we state the proof of Lemma 5.1.

Proof (Proof of Lemma 5.1). We will show that any set A ⊂
{0, 1}n of size |A| ≥ 2

99

100
n will be hit by Ux with probability ≥

1 − 2− n
100 . The lemma now follows since Ux and Vx have the same

marginal distribution.

Let us first suppose that x is chosen uniformly at random from
the entire Hamming cube. We first show that, for such an x, Ux

does not intersect A with extremely small probability. Then it
follows immediately that, when conditioned on the event that x is
chosen uniformly at random from H, the same result holds. To
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this end, note that the event Ux ∩ A = ∅ happens exactly when
x /∈ Bεn(A):

Pr[Ux ∩ A = ∅] = Pr[x /∈ Bεn(A)] ≤ 2n − |Bεn(A)|
2n

.

From Lemma 5.3, we know that |Bεn(A)| is smallest when A is
itself a Hamming ball around 0 of the same density as A, i.e., if,
for some γ ≤ 1 − ε, |Bγn(0)| ≤ |A|, then

|Bεn(A)| ≥ |Bεn(Bγn(0))| = |B(γ+ε)n(0)|.

Next we argue that if A is large enough, then the smallest such
Bεn(A) set is big enough to include a good fraction of x. Now
we estimate the value of γ. For γ = 1

2
− ε

2
= 1

2
− 1

16
, and since

H(γ) < 98
99

, we have

|Bγn(0)| ≤ 2H(γ)n ≤ 2
98

99
n ≤ |A|.

And so |Bεn(A)| ≥ |B(γ+ε)n(0)| = |Bn
2
+ n

16
(0)| ≥ 2n − |Bn

2
− n

16
(1)| ≥

2n − 2
98

99
n. As promised, this is a large set. It now follows

Pr[Ux ∩ A = ∅] ≤ 2
98

99
n

2n
≤ 2− n

99 .

Now if we condition on x ∈ H, then we get

Pr[Ux ∩ A = ∅ | x ∈ H] ≤ Pr[Ux ∩ A = ∅]

Pr[x ∈ H]

≤ 2− n
99 ·

√

π · n

2
≤ 2− n

100 . �

6. Hitting rectangle distributions for IP

In this section, we first construct the hitting monochromatic rect-
angle distribution for IPn. We will then show that IPn has (4 ·
2−n/20, n/5)-hitting monochromatic rectangle distributions. This
will show a deterministic simulation result when the inner function
is IPn, i.e.,

Dcc(f ◦ IP
p
n) ≥ Ddt(f) · Ω(n).
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We define the distributions σ0 and σ1 by the following sampling
methods:

Sampling from σ0: We choose a uniformly random n
2
-dimensional

subspace V of F
n
2 , and let V ⊥ be its orthogonal complement;

output V × V ⊥.

Sampling from σ1: First we pick a ∈ {0, 1}n uniformly at ran-
dom conditioned on the fact that a has odd Hamming weight;
then, we pick random subspace W of dimension (n − 1)/2
from a⊥, and let W⊥ be the orthogonal complement of W
inside a⊥. We output V × V ‖, where V = a + W and
V ‖ = a + W⊥.

Lemma 6.1. For all 0 < ε < 1/2 and every sufficiently large n,
the distributions σ0 and σ1 are IPn has (2 · 2− ε

4
n, (1

2
− ε)n)-hitting

monochromatic rectangle distributions.

To prove this, we use the well-known second-moment method. The
idea is the following: Let us consider the distribution σ0 and con-
sider a large enough rectangle A × B. We show that a random
n
2
-dimensional subspace V intersects A with very high probability.

Moreover, the intersection size is concentrated around its mean—
this follows from pairwise independence of the indicator variables
[x ∈ V ], for different x, using which we may use concentration
bounds to complete the argument. The orthogonal complement
of V has the same marginal distribution as that of V , and hence,
a similar argument will follow for the intersection of V ⊥ and B.
For σ1, we have use a similar but slightly more delicate argument.
Below we will formalize both of the arguments. We start with the
following well-known variant of Chebyshev’s inequality. Readers
can choose to skip to Lemmas 6.4 and 6.5 if needed.

Proposition 6.2 (Second-moment method). Suppose that Xi ∈
[0, 1] and X =

∑

i Xi are random variables. Suppose also that for
all i and j, Xi and Xj are anti-correlated, in the sense that

E[XiXj] ≤ E[Xi] · E[Xj].
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Then X is well-concentrated around its mean, namely for every ε:

Pr[X ∈ μ(1 ± ε)] ≥ 1 − 1

ε2μ
.

All of the rectangle distributions rely on the following fundamental
anti-correlation property:

Lemma 6.3 (Hitting probabilities of random subspaces). Let 0 ≤
d ≤ n be natural numbers. Fix any v �= w in F

n
2 , and pick a random

subspace V of dimension d. Then the probability that v ∈ V is
exactly

pv =

{

2d−1
2n−1

if v �= 0

1 if v = 0.

And the probability that both v, w ∈ V is exactly

pv,w =

⎧

⎪

⎨

⎪

⎩

(

2d−1
2

)/(

2n−1
2

)

if v, w �= 0

pv if w = 0, and

pw if v = 0.

Hence, it always holds that pv,w ≤ pvpw.

Proof. The case when v or w are 0 is trivial. The value pv =
Pr[v ∈ V ] for a random subspace V of dimension d equals Pr[Mv =
0] for a random non-singular (n − d) × n matrix M , letting V =
ker M . For any v �= 0, v′ �= 0, M will have the same distribution
as MN , where N is some fixed linear bijection of F n

2 mapping v
to v′; it then follows that pv = pv′ always. But then

∑

v �=0

pv = E

[

∑

v �=0

[v ∈ V ]

]

= 2d − 1,

and since all pv’s are equal, then pv = 2d−1
2n−1

.
Now let pv,w = Pr[v ∈ V,w ∈ V ]. In the same way, we can show

that pv,w = pv′,w′ for all two such pairs, since a linear bijection will
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exist mapping v to v′ and w to w′ (because every v �= w is linearly
independent in F

n
2 ). And now

∑

v,w �=0

pv,w = E

[

∑

v,w �=0

[v ∈ V ][w ∈ V ]

]

=

(

2d − 1

2

)

.

The value of pv,w is then as claimed. We conclude by estimating

pv,w

pvpw

=

(

2d−1
2

)

(

2n−1
2

) · 1

pvpw

=
2d − 2

2d − 1
· 2n − 1

2n − 2
< 1. �

It can now be shown that a random subspace of high dimension
will hit a large set w.h.p.:

Lemma 6.4. Let ε < 1
2

be a positive real number and consider

a set B ⊆ {0, 1}n of density β = |B|
2n ≥ 2−( 1

2
−ε)n. Pick V to be

a random linear subspace of {0, 1}n of dimension d, where d ≥
(1

2
− ε

4
)n + 6. Then

Pr
V

[ |B ∩ V |
|V | ∈ (1 ± 2− ε

4
n) · β

]

≥ 1 − 1

4
· 2− ε

4
n.

Proof. Let b1, . . . , bN be the elements of B and define the ran-
dom variables Xi = [bi ∈ V ] and X = |B ∩V | =

∑

i Xi. The E[Xi]
were computed in the proof of Lemma 6.3, which gives us

μ = E[X] =
∑

i

E[Xi] =

{

β2n 2d−1
2n−1

if 0̄ /∈ B

β2n 2d−1
2n−1

+ (1 − 2d−1
2n−1

) otherwise.

Let’s look at the case where 0̄ �∈ B. We can estimate μ as follows:

μ =

(

1 +
1

2n − 1

)

(1 − 2−d)β|V |

∈ (1 ± 2−( 1

2
− ε

2
)n)2β|V |

⊆
(

1 ± 1

3
· 2− ε

2
n

)

β|V |.
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When 0̄ ∈ B we still have μ ∈ (1 ± 2− ε
2
n)β|V |, because 1 − 2d−1

2n−1
≤

1 ≪ 1
3

· 2− ε
2
nβ|V |. So this holds in both cases.

Lemma 6.3 also says that E[XiXj] ≤ E[Xi]E[Xj] for all i �= j.
And so by the second-moment method (Lemma 6.2):

Pr [X ∈ μ (1 ± δ)] ≥ 1 − 1

δ2μ
,

which means

Pr
[

X ∈ (1 ± 2− ε
2
n)(1 ± δ)β|V |

]

≥ 1 − 1

δ2 · β · 2d · (1 − 2− ε
2
n)

.

Taking δ = 1
3
2− ε

4
n, we get

Pr
[

X ∈ (1 ± 2− ε
4
n)β|V |

]

≥ 1 − 9

2− ε
2
n · 2−( 1

2
−ε)n · 64 · 2( 1

2
− ε

4
)n

≥ 1 − 1

4
· 2− ε

4
n. �

We will show a similar result when we pick the set V in the following
manner: First we pick a uniformly random odd Hamming weight
vector a ∈ {0, 1}n, and then, we pick W to be a random subspace
of dimension d within a⊥, where d ≥ (1

2
− ε

4
)n+6; then V = a+W .

Lemma 6.5. Consider a set B ⊆ {0, 1}n of density β = |B|
2n ≥

2−( 1

2
−ε)n. Pick V as described above. Then

Pr
V

[ |B ∩ V |
|V | ∈ β(1 ± 2− ε

4
n)

]

≥ 1 − 2− ε
4
n.

Proof. Let B′ = (−a+B)∩a⊥ where −a+B denotes the affine
subspace which is obtained by adding the vector −a to all vectors
in B and let β′ = |B′|

|a⊥| . A vector a ∈ {0, 1}n is called good when

β′ def

=
|(−a + B) ∩ a⊥|

|a⊥| ∈ β · (1 ± 2− ε
4
n).

We will later show that if a is a uniformly random string of odd
Hamming weight, then

Pr
a

[a is good] ≥ 1 − 2

4
· 2− ε

4
n.(∗)
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For every good a, Lemma 6.4 gives us:

Pr
W

[ |B′ ∩ W |
|W | ∈ β′(1 ± 2− ε

4
n)

∣

∣

∣

∣

a

]

≥ 1 − 1

4
· 2− ε

4
n.

Our result then follows by Bayes’ rule.

To prove (∗), suppose that a is chosen to be a uniformly random
nonzero string (i.e., with either even or odd Hamming weight).
Then a⊥ is a uniformly random subspace of dimension n − 1 ≫
(1

2
− ε

4
)n + 6. Hence by Lemma 6.4,

Pr
a

[ |B ∩ a⊥|
|a⊥| ∈ β · (1 ± 2− ε

4
n)

]

≥ 1 − 1

4
· 2− ε

4
n.(∗∗)

Now |a⊥| = 2n−1, so if a‖ denotes the complement of a⊥ (in
{0, 1}n), then |a‖| = 2n−1 also, and

|B ∩ a⊥|
|a⊥| ∈ β · (1 ± 2− ε

4
n) ⇐⇒ |B ∩ a⊥| ∈ 1

2
|B| · (1 ± 2− ε

4
n)

⇐⇒ |B ∩ a‖|
|a‖| ∈ β · (1 ± 2− ε

4
n).

So (∗∗) also holds with respect to the rightmost (equivalent) event.
Since a uniformly random nonzero a has odd Hamming weight with
probability > 1

2
, it must then follow that if we pick a uniformly

random a with odd Hamming weight, then:

Pr
a

[ |B ∩ a‖|
|a‖| ∈ β · (1 ± 2−n/20)

]

≥ 1 − 2

4
· 2− ε

4
n.

Now notice that |a‖| = |a⊥| and that for odd Hamming weight a,
B ∩ a‖ = (−a + B) ∩ a⊥; this establishes (∗). �

The lemmas above are the key to constructing rectangle distribu-
tions for IP.

Proof (Proof of Lemma 6.1). The rectangles produced in σ0 and
σ1 are monochromatic as required. Also, V and V ⊥ of σ0 are both
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random subspaces of dimension ≥ (1
2

− ε
4
)n + 6 — as required by

Lemma 6.4 — and V and V ‖ of σ1 are both obtained by the kind
of procedure required in Lemma 6.5. It then follows by a union
bound that if R is chosen by either σ0 or σ1 that, if A,B are subsets
of {0, 1}n of densities α, β ≥ 2−( 1

2
−ε)n, then

Pr
R

[ |A × B ∩ R|
|R| = (1 ± 9 · 2− ε

4
n) · αβ

]

≥ 1 − 2 · 2− ε
4
n.

Hence, the same probability lower-bounds the event that A × B ∩
R �= ∅. �

7. Conclusion and follow-up work

We have shown deterministic simulation theorems for two choices
of the inner function g for which such theorems were hitherto un-
known. The input size for our chosen gadgets is exponentially
smaller than for the indexing function.

A recent follow-up paper of Alexander Kozachinskiy (Kozachin-
skiy 2018) also makes use of our technique, by proving that certain
gadgets constructed from expander graphs have monochromatic
rectangle distributions with good hitting parameters. In particular,
he constructs such distributions for the gadget SQR

q(a, b) which de-
cides whether the difference a−b, of two elements of the field Fq2 , is
a perfect square. Simulation theorems then follow from our result.

Kozachinskiy also shows that our thickness lemma (Lemma 3.9)
cannot be improved. This lemma is the bottleneck which pre-
vents the technique from working with even smaller gadgets, and
Kozachinskiy’s result suggests that any further improvement in the
gadget size of deterministic simulation theorems may well require
a new approach.

After our paper, a randomized simulation theorem was proven
by Göös, Pitassi & Watson (2017b) which uses the indexing func-
tion as a gadget. A follow-up work by Loff & Mukhopadhyay (2019)
shows a deterministic simulation theorem for the equality gadget,
using techniques similar to our own. Very recently, a randomized
simulation theorem was proven for the inner-product function by
Chattopadhyay, Filmus, Koroth, Meir & Pitassi (2019).
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The most important open problem in this topic is currently
to prove a simulation theorem for a constant-size gadget. This
would lead to significant improvements to known lower bounds on
monotone circuits, propositional proof systems, and possibly more.
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