
This is a repository copy of Distributed weighted min-cut in nearly-optimal time.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/200972/

Version: Accepted Version

Proceedings Paper:
Dory, M., Efron, Y., Mukhopadhyay, S. orcid.org/0000-0002-3722-4679 et al. (1 more
author) (2021) Distributed weighted min-cut in nearly-optimal time. In: Khuller, S., (ed.)
STOC 2021: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing. STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
21-25 Jun 2021, Virtual Italy. Association for Computing Machinery (ACM) , pp. 1144-1153.
ISBN 9781450380539

https://doi.org/10.1145/3406325.3451020

© ACM 2021. This is the author's version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in STOC 2021:
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
http://dx.doi.org/10.1145/3406325.3451020

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Distributed Weighted Min-Cut in Nearly-Optimal Time

Michal Dory∗1, Yuval Efron†2, Sagnik Mukhopadhyay‡3, and Danupon Nanongkai§3

1Technion, Israel
2University of Toronto, Canada

3KTH Royal Institute of Technology, Sweden

Abstract

Minimum-weight cut (min-cut) is a basic measure of a network’s connectivity strength. While
the min-cut can be computed efficiently in the sequential setting [Karger STOC’96], there was
no efficient way for a distributed network to compute its own min-cut without limiting the
input structure or dropping the output quality: In the standard CONGEST model, existing
algorithms with nearly-optimal time (e.g. [Ghaffari, Kuhn, DISC’13; Nanongkai, Su, DISC’14])
can guarantee a solution that is (1+ ǫ)-approximation at best while the exact Õ(n0.8D0.2 +n0.9)-
time algorithm [Ghaffari, Nowicki, Thorup, SODA’20] works only on simple networks (no weights
and no parallel edges).1 For the weighted case, the best bound was Õ(n) [Daga, Henzinger,
Nanongkai, Saranurak, STOC’19].

In this paper, we provide an exact Õ(
√
n + D)-time algorithm for computing min-cut on

weighted networks. Our result improves even the previous algorithm that works only on simple
networks. Its time complexity matches the known lower bound up to polylogarithmic factors. At
the heart of our algorithm are a clever routing trick and two structural lemmas regarding the
structure of a minimum cut of a graph. These two structural lemmas considerably strengthen
and generalize the framework of Mukhopadhyay-Nanongkai [STOC’20] and can be of independent
interest.

∗
smichald@cs.technion.ac.il.

†
efronyuv@gmail.com. Most of this work was done while the author was affiliated with the Technion.

‡
sagnik@kth.se

§
danupon@kth.se

1Throughout, n and D denote the network’s number of vertices and hop-diameter, respectively.

i

ar
X

iv
:2

00
4.

09
12

9v
2

 [
cs

.D
S]

 1
6

N
ov

 2
02

0

Contents

1 Introduction 1

2 Overview of the algorithm 3
2.1 Basic notation: Cover values . 4
2.2 Simple example: Spider graph . 4
2.3 The algorithm for general graphs: Overview . 8
2.4 The algorithm for general graphs: More details . 11

3 Preliminaries 14
3.1 The model and assumptions . 14
3.2 2-respecting cuts & tree packing . 14
3.3 Cover values . 15
3.4 LCA labels . 16
3.5 Useful notation . 17

4 Tree decompositions 17
4.1 Fragment decomposition . 18
4.2 Layering decomposition . 20
4.3 Combining layering with fragment decomposition . 21
4.4 Information of edges . 22

5 Finding, bounding, and routing interesting paths 22
5.1 Interesting edges and paths . 23
5.2 Finding interesting paths . 25
5.3 Structural lemma for bounding number of interesting paths 26
5.4 Learning the interesting paths . 30
5.5 The highway pairing theorem . 32

6 Algorithms for short paths and routing trick 34
6.1 Preliminaries: Basic subroutines on a tree . 34
6.2 Simple cases where P ′ is a non-highway . 35
6.3 P ′ is a non-highway and P is a highway . 36
6.4 P ′ and P are highways . 39

7 Monotonicity and Partitioning 42
7.1 Monotonicity . 42
7.2 Partitioning . 43

8 Finding the min 2-respecting cut 46
8.1 1-respecting cut . 46
8.2 Simple cases with non-highways . 47
8.3 Exactly one cut edge in a highway . 47
8.4 Both cut edges in highways . 50
8.5 Both cut edges in same highway . 56

9 The min-cut algorithm 57
9.1 A schematic algorithm for minimum 2-respecting cut 57
9.2 The min-cut algorithm for weighted graphs . 60

ii

A Reduction to 2-respecting cut 62

B Missing proofs from Section 4 64
B.1 Fragment decomposition . 64
B.2 Layering decomposition . 68
B.3 Information of edges . 68

C The sampling procedure: Lemma 5.11 69

D Missing proofs from Section 5 71
D.1 Learning interesting paths . 72
D.2 Proof of highway pairing theorem. 74

E Missing proofs from Section 6 76
E.1 Basic subroutines on a tree . 76
E.2 Simple cases where P ′ is a non-highway . 76
E.3 P ′ is a non-highway and P is a highway . 77
E.4 P ′ and P are highways . 79
E.5 Both edges in the same highway . 81

F Missing proofs from Section 8 83
F.1 Simple cases with non-highways . 83
F.2 Proofs for non-highway highway case . 84

iii

1 Introduction

Min-cut. Minimum cut (min-cut) is a basic mathematical concept that is of great importance
from the network design perspective as it captures the connectivity of the network. Given a graph
with n vertices and m (possibly weighted) edges, a cut is a set of edges removing which disconnects
the graph, and the weight of the cut is the total weight of the edges participating in the cut.

In the sequential setting, a long line of work spanning over many decades since the 1950s
[EFS56, FF87] was concluded by the STOC’95 O(m log3 n)-time randomized algorithm of Karger
[Kar00] (see [MN20, GMW20] for recent improvements).

Distributed min-cut. Efficient sequential algorithms, however, do not necessarily lead to an
efficient way for a distributed network to compute the min-cut. The question of how a distributed
network can compute its own min-cut has been actively studied in the CONGEST model of
distributed networks (e.g. [PT11, GK13, NS14, GH16, GN18, DHNS19, Par19, GNT20]). In this
model, a network is represented by an n-vertex unweighted graph of diameter D. Each edge e is
associated with weight w(e) ∈ {1, 2, . . . , poly(n)} that does not affect the communication. In each
communication round each vertex sends a message of O(log n) bits to each of its neighbors which
arrives at the end of the round. The goal is to minimize the number of rounds to compute the value
of the min-cut or to make every vertex realize which edges incident to it are in the min-cut (our
and previous results can achieve both so we do not distinguish the two objectives in the discussion
below). Throughout, we use Õ and Ω̃ to hide poly log(n) factors.

Previous works. For many graph problems in the CONGEST model such as minimum cut,
minimum spanning tree, and single-source shortest paths, the ultimate goal is the Õ(

√
n + D)

round complexity. This is mainly because [DHK+11] showed in STOC’11 an Ω̃(
√
n + D) lower

bound for a number of fundamental graph problems, which holds even for poly(n)-approximation
algorithms (also see [EKNP14, KKP13, Elk06, PR00, GK13]). Since the work of [DHK+11], a lot
of effort has been put on to match that lower bound by devising efficient algorithms for all of these
problems, and for many of these problems, near-optimal upper bounds have been achieved (e.g.
[HKN16, BKKL17, Nan14, NS14, GK13, GKK+15]). For min-cut, the first algorithm towards this
goal was by Ghaffari and Kuhn [GK13] which (2 + ǫ)-approximates the min-cut in Õ(

√
n + D)

rounds. The approximation ratio was subsequently improved to (1+ ǫ) by Nanongkai and Su [NS14].
Obtaining efficient algorithms for the exact case remained wide open.

Towards designing an efficient distributed algorithm for exact min-cut, Daga, Henzinger,
Nanongkai, and Saranurak [DHNS19] in STOC’19 gave the first algorithm that is sublinear-time
(Õ(n1−ǫ +D)-time for some constant ǫ > 0). Their algorithm works on simple networks and guaran-
tees Õ(n1−1/353D1/353+n1−1/706) round complexity. This bound was recently improved in SODA’20
by Ghaffari, Nowicki and Thorup [GNT20] to Õ(n0.8D0.2+n0.9).2 We emphasize that the algorithms
of Daga-Henzinger-Nanongkai-Saranurak [DHNS19] and Ghaffari-Nowicki-Thorup [GNT20] crucially
exploit the fact that the network is simple, i.e. it is an unweighted graph without parallel edges. It
is very unclear how to extend their techniques to work on even unweighted graphs with parallel
edges. For exact min-cut on weighted graphs, the only known upper bound is an Õ(n) one which
follows from Daga-Henzinger-Nanongkai-Saranurak (see Theorem 5.1, [DHNS19]). To conclude, it
was widely open whether exact min-cut on weighted graphs can be computed in sublinear time in n,

2Prior to Daga-Henzinger-Nanongkai-Saranurak [DHNS19], O(D) bound was shown for finding min-cuts of values
at most two by Prichard and Thurimella [PT11] and, later, Õ(

√
n +D) bound was shown for finding min-cuts of

values O(poly log(n)) by Nanongkai and Su [NS14]. Parter [Par19] recently improved the round complexity to poly(D)
when the min-cut has value O(1), answering some open problems in [DHNS19]. Additionally, distributed min-cut has
been considered on fully-connected networks (congested clique) by Ghaffari and Nowicki [GN18].

1

Authors Variant Approximation Complexity

[DHK+11] weighted nc, c > 0 Ω̃(D +
√
n)

[GK13] weighted (2 + ǫ) Õ(D +
√
n)

[NS14] weighted (1 + ǫ) Õ(D +
√
n)

[DHNS19] unweighted, simple exact Õ(n1−1/353D1/353 + n1−1/706)

[DHNS19] weighted exact Õ(n)

[GNT20] unweighted, simple exact Õ(n0.8D0.2 + n0.9)

Here weighted exact Õ(D +
√
n)

Table 1: Our results for distributed min-cut and comparison with other works. The Õ(·) notation hides
polylogarithmic factors in n.

and even in the simpler case of simple graphs, there was still a wide gap of at least n0.4 between
known upper and lower bounds.

Our results. We present a randomized distributed algorithm that essentially resolves the distributed
weighted exact min-cut problem (naturally, we also improve the upper bound of Ghaffari-Nowicki-
Thorup [GNT20] for simple graphs):

Theorem 1.1. In the CONGEST model, a min-cut of a (possible weighted) graph with n vertices
and with diameter D can be found with high probability in Õ(

√
n+D) rounds.3

At the heart of our algorithm is an algorithm for the minimum 2-respecting cut problem. In this
problem, we are given a spanning tree T of the graph G, and the goal is to find a minimum cut in G
which contains at most two edges from T (such a cut is called a 2-respecting cut). The seminal work
of Karger [Kar00] showed that the min-cut problem can be reduced to solving the min 2-respecting
cut problem, this reduction also holds in the CONGEST model (see e.g. [DHNS19]). This approach
led to efficient algorithms for min-cut in various settings [Kar00, DHNS19, NS14, Tho07, MN20,
GMW20, GG18]. In the distributed setting, Nanongkai and Su [NS14] could solve in Õ(

√
n+D)

rounds the easier minimum 1-respecting cut problem, where the goal is to find the min-cut that
contains one tree edge, leading to their (1 + ǫ)-approximation result. The minimum 2-respecting
cut problem, however, turns out to be much more challenging to solve efficiently. Recently, Daga-
Henzinger-Nanongkai-Saranurak [DHNS19] devised an algorithm to solve this in Õ(n) rounds—this
was one of the main ingredients for Daga-Henzinger-Nanongkai-Saranurak [DHNS19] and Ghaffari-
Nowicki-Thorup [GNT20] for obtaining the aforementioned sublinear time exact algorithm on simple
graphs. Our main technical contribution is an efficient distributed algorithm for the minimum
2-respecting cut problem which is mentioned in the following theorem.

Theorem 1.2. In the CONGEST model, the 2-respecting cut problem can be solved with high
probability in Õ(

√
n+D) rounds.

Our result builds on the framework of Mukhopadhyay and Nanongkai [MN20]. In [MN20],
efficient minimum cut algorithms are presented in the sequential, streaming, and query settings.
These algorithms follow the same framework for solving the 2-respecting cut problem. Implementing
this framework in the distributed setting is however much more challenging, due to the locality and

3With high probability (w.h.p.) means with probability at least 1− 1/nc for an arbitrary constant c. “Finding the
min-cut” refers to the standard definition where after the algorithm finishes every vertex knows the min-cut value and
for every edge {u, v} both u and v know whether edge {u, v} is in the min-cut or not.

2

edge congestion. The key insights that allow us to overcome these challenges consist of one trick
and two structural lemmas:

• Interesting path counting lemma: Given a spanning tree T decomposed into paths P1, P2, . . .
(using some tree decomposition techniques), this lemma identifies a small (poly log(n)) number
of paths that each Pi is interested in; here, the notion of “interested in” is defined in such a
way that the minimum 2-respecting cut corresponds to two edges in two paths P and P ′ that
are interested in each other. This lemma allows us to reduce the 2-respecting cut problem
into the same problem over the pairs of paths in T that are interested in each other (where we
are allowed to cut only edges in the given pair of paths). It strengthens and helps simplify the
framework of [MN20]. It provides a novel observation on the structure of the minimum cut in
a given weighted graph, and we hope that it has applications beyond the scope of this work.

• Short-paths routing trick: This is a basic building block used in many subroutines of our
algorithm. Given two paths P and P ′ of length k in T , this trick implies that either there
is some edge nearby these paths that they can use to communicate Õ(k) bits of information
to each other, or they can simply broadcast a small message to the whole network to find
their min 2-respecting cut. This trick allows us to solve the 2-respecting cut problem on the
interesting pairs of short paths (in particular, when k = Õ(

√
n)). It exploits some simple

property of cuts that might be of independent interest.
• Path-partitioning lemma: This lemma together with a divide-and-conquer technique allows
us to solve the 2-respecting cut problem on the interesting pairs of long paths. Roughly, the
lemma states that to solve the problem above for path P and P ′, we can partition P into
sub-paths P1, P2, . . . and P ′ into sub-paths P ′

1, P
′
2, . . . so that we only have to solve the same

problem on each pair of paths (Pi, P
′
i). This lemma about the structure of the 2-respecting cut

problem might be of independent interest. To prove it, we exploit the monotonicity property
observed in [MN20] in a new way.

We describe these key insights more in the next section.

2 Overview of the algorithm

As discussed above, our goal is to solve the min 2-respecting cut problem, i.e., given a tree T find
two tree edges e, e′ such that the cut obtained by removing them from the tree is minimal. We
denote by Cut(e, e′) the cut value defined by e, e′. It is easy to show that if we fix two edges e, e′,
we can compute Cut(e, e′) in O(D) rounds by a simple computation over a BFS tree, where we sum
the costs of all edges that cross the cut.4 However, to find the two edges that define the minimum
2-respecting cut, we may need to go over all possible Ω(n2) pairs of tree edges. This requires Ω(n2)
time, which is clearly too expensive. To get a faster algorithm, our general approach is as follows:

1. Use strucutral properties of cuts to bound the number of values Cut(e, e′) we should compute.

2. Use a routing trick to efficiently route information in the graph, and avoid using global
communication over a BFS tree for all the computations.

Next, we elaborate on our approach. We start by discussing helpful notation. Then, we discuss
a simplified version of our algorithm for a spider graph that already allows us to present some
of the main ingredients of the algorithm. Finally, we discuss additional ingredients required for
extending the algorithm to a general graph. The main goal of this section is to give an overview of

4We use the tool of lowest common ancestors (LCA) labels to identify which edges cross the cut.

3

the algorithm which is, on one hand, informal so that the reader can understand the main techniques
and tools that are used; and, on the other hand, detailed enough so that the reader can convince
herself of the correctness of the algorithm before progressing to the dry technicalities of the later
sections.

2.1 Basic notation: Cover values

For a tree edge e, we denote by Cov(e) the value of the cut obtained by removing e from the tree
(see Figure 1), this is the sum of costs of all edges that cross the cut. The notation implies that the
edges crossing the cut cover e. Note that these are exactly the edges {u, v} such that e is in the
unique tree path between u and v. For two tree edges e, e′, we denote by Cov(e, e′) the sum of costs
of all edges that cover both e and e′ (see Figure 1). Note that the edges that cross the cut defined
by e, e′ are exactly all edges that cover exactly one of e, e′. This immediately gives the following
claim (see Section 3.3 for a formal proof).

𝑒1

2

4

3

𝐶𝑜𝑣 𝑒 = 10

𝑒1 𝑒2
𝑥2𝑥1

𝑥3
Figure 1: Illustration of cover values. Solid edges are tree edges, where dotted edges are non-tree edges.
The purple-blue cut on the left is the 1-respecting cut defined by e. The purple-blue cut on the right is the
2-respecting cut defined by e1, e2. The edge x1 is an example of an edge that covers e1 but not e2, the edge
x2 is an example of an edge that covers e2 but not e1 and the edge x3 is an example of an edge that covers
both e1, e2. The edges that cross the purple-blue cut are the edges that cover exactly one of e1, e2.

Claim 2.1. Cut(e, e′) = Cov(e) + Cov(e′)− 2Cov(e, e′).

Computing the values Cov(e) can be done in Õ(D +
√
n) time using standard techniques such

that each tree edge e knows the value Cov(e) (such computations are done, for example, in [NS14]).
Hence, the question of efficiently computing Cut(e, e′) boils down to the question of efficiently
computing the cover value Cov(e, e′) due to Claim 2.1. To this end, note that when we fix two edges
e, e′, we can compute Cov(e, e′) in O(D) rounds by summing the costs of edges that cover e and e′

where the communication happens over a BFS tree. The main challenge is to bound the number
of such computations needed, and to be able to parallelize the computations by diving them into
disjoint sets of local computations in order to avoid high congestion over the global BFS tree. Next,
we discuss the ingredients allowing us to do so.

2.2 Simple example: Spider graph

We start by discussing a simplified version of our algorithm where the tree T is a spider with the
following structure: T has a root r and attached to it are k =

√
n paths of length

√
n. We refer to

these paths as the legs of the spider.

4

(I) Short-paths routing trick for comparing two paths

The first observation is that if we fix two paths P, P ′ of the spider and want to find the minimum
2-respecting cut with one edge in P and one edge in P ′, we can do so in just O(

√
n) time, although

we have n different pairs of edges.

Claim 2.2. (Routing trick for spider graph) Fix two legs of the spider P, P ′. Finding the values
{e, e′,Cut(e, e′)} for a pair of edges e ∈ P, e′ ∈ P ′ that minimize the cut value, takes O(

√
n) time.

The proof can be divided into the following two cases.

1. There is an edge f between P and P ′. The main idea here is to use the edge f to
route information between P and P ′, and then compute the cut values locally via aggregate
computations inside P and P ′. This allows us to work in parallel in different paths. In
more detail, by Claim 2.1, for any pair of edges e ∈ P, e′ ∈ P ′, we have Cut(e, e′) = Cov(e) +
Cov(e′)−2Cov(e, e′). As discussed before, let us assume that the values {Cov(e)}e∈P are known
to edges in P , and the values {Cov(e′)}e′∈P ′ are known to edges in P ′. As the paths have
length O(

√
n), in O(

√
n) time we can route all these cover values to one of the paths, say

P , leading to a O(
√
n) congestion in the edge f . Now we only need to compute the values

Cov(e, e′). To this end, note that if we fix two edges e ∈ P, e′ ∈ P ′, the edges that cover both
of them are exactly all the edges that have one endpoint below e, and one endpoint below
e′, all these edges connect P and P ′. Hence, we can run aggregate computation inside P to
sum the costs of all such edges. In this computation we fix e′ ∈ P ′, and compute for each
edge e ∈ P , the cost Cov(e, e′). This requires Õ(1) congestion in the edges of P (the dilation,
however, is O(

√
n)). To compute these values for all e′ ∈ P ′, we use pipelining, which results

in O(
√
n) complexity (O(

√
n) congestion and dilation) for computing all cut values.

2. There is no edge between P and P ′. Here we do not have a direct edge for communication,
however it turns out that the structure of the minimum cut is actually much simpler in this case.
The crucial observation here is that if there is no edge between P and P ′, then Cov(e, e′) = 0
for any e ∈ P, e′ ∈ P ′. Then, from Claim 2.1, the question of minimizing Cut(e, e′) boils down
to finding two edges e ∈ P, e′ ∈ P ′ that minimize the cover values in P and P ′, respectively.
We can compute these values locally in the paths and then broadcast them to the whole graph.
Since we only need to broadcast O(1) pieces of information per path, we can compare all pairs
of paths with no edge between them by broadcasting O(

√
n) information to the whole graph.

To conclude, we are in a win-win situation. We either have an edge between the paths, in
which case we can use it for routing and compute the cut values by internal computations inside
P, P ′—this is helpful for running such computations in parallel in different paths. Or we do not
have an edge, in which case we need some global communication but we can actually limit the
amount of global communication significantly as the structure of the minimum cut becomes much
simpler. While we focus here on a spider graph, the same principles can be extended to work for a
more general setting, where we have two tree paths P, P ′ of size O(

√
n) we want to compare.

(II). Structural lemma for bounding interesting paths

While we showed that comparing two legs of the spider can be done in O(
√
n) time and that this

can be done in parallel for disjoint pairs of paths, if we want to use it to compare all pairs of legs of
the spider, it requires Ω(n) time. This follows, as comparing two legs P and P ′ is based on running
Ω(

√
n) aggregate computations in one of the paths, which leads to congestion Ω(

√
n). If we need to

compare the same leg to all
√
n legs, the total congestion is Ω(n). To overcome it, our main goal

now is to bound the number of pairs of paths we need to compare. For this, we define a notion of

5

interesting paths. We show that we only need to compare pairs of paths that are interested in each
other, and we prove a structural lemma that shows that each path is interested in O(log n) paths.
This structural lemma and the short-paths routing trick together lead to a complexity of Õ(

√
n) for

computing the min 2-respecting cut in a spider graph, as each leg of the spider only participates in
O(log n) computations that take O(

√
n) time. Next, we elaborate on the notion of interesting paths.

Interesting paths. The notion of interesting paths is an extension of [MN20] where they show the
following: for each edge e, there is only a small number of ancestor to descendant paths where the
edge e′ that minimizes Cut(e, e′) can be. We say that an edge e is interested in an edge e′ if

Cov(e, e′) > Cov(e)/2.

The crucial observation is the following (see the beginning of Section 5 for an explanation).

Claim 2.3. ([MN20]) If the pair {e, e′} participates in the min 2-respecting cut, then e and e′ are
interested in each other.

[MN20] defines the notion of edges being interested in each other. In this work, we generalize
this notion to paths. For simplicity of presentation, we focus here on the spider graph. We say that
an edge e is interested in a leg P of the spider if e is interested in at least one edge in P . As was
shown in [MN20], e can be only interested in one leg P where e 6∈ P . The reason is simple. If e is
interested in P , it follows that more than half of the edges that cover e go towards P . This can
only happen for one path.

Interesting path counting lemma. While the above discussion implies that each edge is
interested in one path, this is not enough in our case. The reason is that each edge of a path P
may be interested in a different leg of the spider, in which case we may need to apply Claim 2.2
on all pairs of paths to find the min 2-respecting cut, which is too expensive. To overcome it, we
show a stronger argument. We say that a path P is interested in a path P ′ if there is an edge in P
interested in P ′.

Lemma 2.4. (Interesting path counting lemma for spider graph) Each leg P of the spider is
interested in O(log n) legs.

The proof idea is as follows. If some edge e ∈ P is interested in some leg P1, it means that the
total weight of edges that cover e and some edge e′ ∈ P1 (and, hence, the total weight of such edges
that go towards P1) is at least half of the weight of edges that cover e. To find out which legs of
the spider P is interested in, let us start from the leaf of P and traverse towards to root: While
doing so, we count the total weight of non-tree edges that cover the current edge in P and end
somewhere outside. The crucial observation is the following: Each time we reach some edge e ∈ P
that is interested in some new leg Pi, we know that the total weight of such new non-tree edges that
cover e and go towards Pi has to be at least the total weight of non-tree edges that we have counted
so far—otherwise, e would not be interested in Pi. So, every time we encounter such an edge in
P while traversing from the leaf to the root, the total weight of the non-tree edges that we count
doubles. Since the total weight of edges is polynomially bounded, such edges in P can be found only
a logarithmic number of times, which shows that P can be only interested in O(log n) different legs.

We remark that the proof of the interesting path counting lemma that we just mentioned
crucially relies on the simple structure of the spider graph—in particular on the fact that the legs
of the spider are edge-disjoint.5 In a general graph, however, we cannot guarantee such structure
among the paths, and, hence, we can no longer show that each path is only interested in a small

5Even though edge-disjointness suffices to argue for the spider graph, we need a more restricted structure for
general spanning tree. See Section 2.3 and 5.3 for more details.

6

𝑒3𝑃 𝑃3𝑒1
𝑒2 𝑃1𝑃2

𝑥1
𝑥2 𝑥3 𝑤 𝑥1 = 1𝑤 𝑥2 = 2𝑤 𝑥3 = 4

𝑟

Figure 2: Illustration of the interesting path counting lemma. We have a path P , where the edge ei is
interested in the path Pi. Assume that the weights of all tree edges are 0. Note that since e3 is interested in
P3, we must have w(x3) > w(x1) + w(x2). Similarly, as e2 is interested in P2, we must have w(x2) > w(x1).

number of paths. To deal with it, we restrict our attention to paths that have a nice structure
and prove a variant of the interesting path counting lemma with respect to them. This is further
discussed in Section 2.3.

Finding interesting paths. Even though Lemma 2.4 bounds the number of legs of the spider
that each leg can be interested in, we are still left with the job of identifying such interesting legs in
order to complete the algorithm for this simple case of spider graph. One immediate approach is the
following: Since an edge e is interested in a path P only if more than half of the edges that cover e
go towards the path P , we can use sampling to identify the set of interesting legs w.r.t. an edge e.
However, because of the nature of the sampling, we will not be able to pinpoint the set of interesting
legs. Rather, we can obtain a set of legs which is a superset of the actually interesting legs. We
denote that e is potentially interested in each leg of this set. As it turns out, this is sufficient for
our purpose—we show that these paths still satisfy nice properties that allow us to prove that each
leg P of the spider is potentially interested in O(log n) legs. For simplicity of presentation, in this
section we refer to all these paths as paths e is interested in. Combining everything, it is easy to
see at this point how to implement the minimum 2-respecting cut algorithm in O(D +

√
n) time

complexity when the spanning tree is such a simple spider graph.

(III). Dealing with long paths via partitioning

As explained above, the short-paths routing trick and interesting path counting lemma allow us
to find the min 2-respecting cut in a spider with legs of length

√
n. However, Claim 2.2 relies on

such short length of the legs. We next ease this restriction on the spider graph and explain how to
handle a spider graph that may have longer legs using a partitioning technique.

For simplicity, we start with a spider graph that is identical to the previous one, but we add to
it one long leg of length n (now the number of vertices is 2n). The interesting path counting lemma
(Lemma 2.4) still holds for this case, as the legs of the spider are still edge-disjoint. The only issue
is that if we want to compare any leg of the spider to the new long leg, it requires time proportional
to the length of the long leg, which is too expensive.

Comparing a short and a long leg. Denote by Plong the long leg of the spider, and by P ′ some
leg we want to compare to Plong. If we want to compare P ′ and Plong naively using Claim 2.2, we
see that it requires Ω(n) time. To overcome it, a natural approach could be first to break Plong to

7

smaller sub-paths of length
√
n: denoted by P1, ..., Pk (see Figure 3), and then compare P ′ to each

one of the sub-paths Pi separately. In doing so, we can route information from P ′ to each one of the
sub-paths Pi separately, and then try to compute the cut values Cut(e′, e) for e′ ∈ P ′ and e ∈ Pi

internally inside Pi.
6 Unfortunately, we are faced with a delicate issue if we use this approach: Pi

alone does not have enough information to compute the cut values. To illustrate this, consider, for
example, a pair of edges e′ ∈ P ′, e ∈ Pi. Edges that cover e

′, e may have both endpoints outside Pi

(see the left side of Figure 3, where Pi = P2), and hence Pi cannot compute the value Cov(e′, e),
without additional information from P ′. More concretely, denote by Cov

extr(e′, Pi) the weight of the
edges that cover e′ ∈ P ′ and the whole path Pi, and have both endpoints outside Pi. If we want to
compare all edges e′ ∈ P ′ to all sub-paths Pi, we need to send all the values Covextr(e′, Pi) from P ′

to the sub-path Pi. Overall, since we have
√
n edges in P ′ and

√
n sub-paths Pi, we need to send

Ω(n) information from P ′ to all other sub-paths in total. This may create Ω(n) congestion in P ′ as
we may need to collect Ω(n) information in one vertex in P ′ before sending it—this is way more
than the congestion we can afford. To overcome this issue, we partition P ′.

Path-partitioning lemma. We show a path-partitioning lemma, that states that we can break
the path P ′ into sub-paths P ′

1, ..., P
′
k such that we only need to compare P ′

i to Pi (see the right side
of Figure 3 for illustration). Additionally, these sub-paths are almost disjoint. More concretely, we
show the following:

• We can break the path P ′ to subsets P ′
1, ..., P

′
k, such that

∑k
i=1 |P ′

i | = O(
√
n). Here |P ′

i | refers
to the number of edges in P ′

i .

• If {e, e′} define the min 2-respecting cut with e ∈ Plong and e′ ∈ P ′, then there is an index i
such that e ∈ Pi and e′ ∈ P ′

i . Hence, it is enough to solve the min 2-respecting cut problem
on the pairs {Pi, P

′
i}ki=1.

We prove the path-partitioning lemma using monotone structure of minimum cuts described in
[MN20] (see Section 7). Based on this lemma, we can now deal with comparing P ′ and Plong. As
explained above, our goal is to route information of the form Cov

extr(e′, Pi) from P ′ to each one of
the sub-paths Pi. The crucial observation is that after the partitioning, each edge of P ′ on average
should be compared only to O(1) sub-paths Pi, i.e, for each e′ ∈ P ′, we need to route Cov

extr(e′, Pi)
for constant many Pi. Hence, the total amount of information to collect and send from P ′ is now
proportional to the number of edges in P ′, O(

√
n), which leads to an efficient algorithm.

Dealing with two long paths. If the spider graph has two long paths, we can use a variant of
the path-partitioning lemma together with a divide-and-conquer approach described in [MN20] to
deal with comparing two long paths. We defer the elaboration on this case to the next section where
we discuss the algorithm for a general spanning tree.

2.3 The algorithm for general graphs: Overview

Up until now, we discussed 3 main ingredients that allow us to solve the spider example: a short-
paths routing trick, an interesting path counting lemma, and a path-partitioning lemma. Next, we
discuss variants of these tools that are useful for a general graph, as well as additional tools required
such as tree decomposition, a pairing theorem, and a divide-and-conquer approach. More details of
these tools are provided in the next subsection.

6We assume for simplicity that there is an edge between P ′ to each one of the sub-paths Pi, the case there is no
edge is simpler.

8

𝑃′ 𝑃𝑙𝑜𝑛𝑔
𝑃3

𝑃2

𝑃1

𝑃3′ 𝑃2′
𝑃1′

𝑃′ 𝑃𝑙𝑜𝑛𝑔

𝑃1

𝑒′ 𝑒 𝑃2

𝑃3

𝑥

Figure 3: Illustration of the partitioning. In the left, note that the edge x covers e′ and e but have both
endpoints outside P2. The right part illustrates the partitioning, we only need to compare edges in P ′

i to Pi.

(I). Interesting path counting lemma for a general graph

In a general graph, it is no longer true that each path P in the graph is only interested in a small
number of paths. However, we can show that if we restrict our attention to paths that have a certain
structure we can still bound the number of interesting paths. To this end, we define the following:
We say that two paths are pairwise orthogonal if the highest edges of each of these paths are on
different root to leaf paths. Also, by denoting a path P ′ to be completely above (or below) a path
P , we mean that all vertices of P ′ appear as ancestors (or descendants) of the top (or the bottom)
vertex of P (See Figure 11 for reference). For such paths, we show the following lemma:

Lemma 2.5. (Interesting path counting lemma for a general graph) A given path P can be interested
in at most O(log n) pairwise orthogonal paths that are either orthogonal to P or completely above or
completely below P .

(II). Fragment decomposition

Of course, not all the paths in the graph are above, below or orthogonal to P . Hence, to use the
interesting path counting lemma, we break all the paths in the graph into paths that satisfy some
nice structure. To do so, we bring to our construction a variant of a fragment decomposition from
[GP16, Dor18] (see Section 4.1). At a high-level, we decompose our tree into O(

√
n) edge-disjoint

fragments of size O(
√
n). Each fragment F has a very specific structure: it has one main path,

called the highway of the fragment, between two vertices that are called the root rF and descendant
dF of the fragment, and additional sub-trees attached to the highway that are contained inside the
fragment. The paths in these sub-trees are called non-highways. The only vertices that may be
connected directly to other fragments are rF and dF . The following properties are useful for us
later:

1. Non-highways have small length and are completely contained in one fragment.

2. We have O(
√
n) different highways.

9

While non-highways are contained in one fragment, highways can connect to highways in other
fragments and create long paths of highways. We sometimes refer to highways in a single fragment as
fragment highways, and long paths composed of highways as super-highways, to distinguish between
the two. One can think of fragment highways and super-highways as short and long legs in the
spider example, respectively.

Combining the interesting path counting lemma and fragment decomposition. The
importance of the fragment decomposition comes from the fact that paths in different fragments
do not intersect each other. We can use this structure of the fragments and the interesting path
counting lemma to prove that each non-highway or highway within a fragment is only interested in
a small number of ancestor to descendant paths outside their fragment. To deal with cuts that have
two edges in the same fragment, we exploit the small size of the fragments to compute the cuts
efficiently.

(III). Short-paths routing trick for a general graph

A very basic building block in comparing paths that are interested in each other is to compare
two sub-paths of length O(

√
n)—we informally denote these paths as short paths. We can extend

the routing trick (Claim 2.2) to deal with comparing two such short paths (See Section 6)—The
algorithm is divided into cases depending on whether these short paths are non-highways or fragment
highways.

The simplest case is that the paths are non-highways: Here we can show that we have an edge
connecting any two non-highways interested in each other, and we can run an algorithm similar to
Case 1 in the proof of Claim 2.2 to compare such paths. When one or two of the sub-paths are
fragment highways, we may also be in a case that there is no edge connecting the two sub-paths
P ′, P we compare, but similarly to Case 2 in Claim 2.2, we show that we can exploit this, and divide
the computation to simple internal computations in each one of P and P ′ and broadcast of Õ(1)
pieces of information over a global BFS tree.

(IV). Path-partitioning lemma for a general graph

We use a variant of the path-partitioning lemma (See Section 7) to compare a short path of length
O(

√
n) (either non-highway or a fragment highway) to a long path composed of highways (or

super-highways). This technique also serves as a building block in comparing two super-highways.

(V). Pairing theorem and divide-and-conquer approach

Lastly, to compare two super-highways we need a few additional tools. To give an idea of the
technical bottleneck we face in this case, we mention one main difference from the spider case: In a
general graph, it is no longer true that each path is interested in a small number of paths (this only
holds when we limit the structure of the paths). This creates a problem when we want to compare
long paths of super-highways that are interested in each other.

To deal with it, we prove a pairing theorem that allows us to pair-up the super-highways into
pairs we need to compare such that, in each such pair, only some subset of highways are active.
We can show that each fragment highway is only active in poly log n pairs, and we show how to
compare them in a complexity that depends only on the number of active highways in each pair. To
compare each such pair of super-highways, we use a divide-and-conquer approach. We elaborate
more on this in the next section.

10

2.4 The algorithm for general graphs: More details

Here we discuss the algorithm for general graphs in more detail. From a high-level, the algorithm
works as follows.

1. We compute the fragment decomposition.

2. For each non-highway or fragment highway we compute the paths it is interested in.

3. We compare non-highways that are interested in each other by the short-paths
routing trick.

4. We compare non-highways and highways that are interested in each other via the
path-partitioning lemma.

5. We compare paths of highways (i.e., super-highways) that are interested in each
other via a pairing theorem and divide and conquer approach.

We next elaborate more on steps 3-5.

Step 3: Comparing non-highways. Here we use the short length of non-highways and the
interesting path counting lemma to get an efficient algorithm. The algorithm is similar to the spider
case with short legs, uses a variant of the short-paths routing trick (Claim 2.2) and is based on the
following ideas:

• Bounding the number of comparisons. From the interesting path counting lemma, we
only need to compare each non-highway to poly log n different non-highways in other fragments.

• Working locally. We can show that if a non-highway P is interested in a non-highway in
the fragment F there is an edge f between the sub-tree rooted at P and the fragment F (this
follows from the fact that many edges that cover P go towards F , and in particular there are
such edges). Hence, we can use the edge f to route information about cover values from F to
P and then run computations similarly to Case 1 in Claim 2.2 in P to compute the cut values.
This results in Õ(

√
n) complexity.

• Parallelizing the computations. Since we only used local computations inside P , we can
run such computations in parallel for orthogonal non-highways. Hence, for example, we can
do the computations in parallel for non-highways in different fragments. To work efficiently
in parallel in different non-highways in the same fragment, we use a certain layering of the
non-highway paths (see Section 4.2).

Step 4: Comparing non-highways and highways. The interesting path counting lemma
implies that each non-highway is interested in poly log n super-highways. We deal with this case in
a similar fashion as we dealt with short and long legs when the spanning tree is a spider graph. The
main ingredient is a variant of the path-partitioning lemma that allows us to break the non-highway
into smaller sub-paths that each one of them is only compared to one fragment highway in the
long path of highways. Similar to what we described in part (III) of the spider case, the property
of the path-partitioning that we use here is that each edge of the non-highway is needed to be
compared with only a small number (constant many) of fragment highways on average. Hence, for
each fragment highway, we need to route a small amount of information on average and we let them
compute the cut values locally. We next elaborate on two issues:

11

1. How to do many such computations in parallel?

2. What happens if a non-highway is interested in some fragment highway but there is no direct
edge between them?

Working in parallel. To deal with the first issue, we use the interesting path counting lemma
on the highways. Basically, it implies that each fragment highway is only interested in a small
number of non-highways in other fragments. Hence, even if there are many non-highways interested
in some fragment highway P , P only participates in computations with non-highways it is interested
in, which is enough for computing the min 2-respecting cut. This can be done efficiently, as each
fragment highway now only participates in a small number of computations.

The case there is no edge. For the second issue, we show that dealing with the case there is
no edge is actually easier (similarly to Case 2 in the short-paths routing trick). First, we broadcast
O(

√
n) pieces of information to the whole graph, about the minimum cover values of an edge in

each fragment highway. Then, based on this alone, each non-highway P ′ can compute internally in
O(

√
n) time the minimum 2-respecting cuts that have one edge in P ′ and one edge in any fragment

highway P where there is no edge between P ′ and the fragment of P .

Step 5: Comparing highways. The two main ingredients we use here are a pairing theorem and
divide-and-conquer approach.

Pairing theorem. While the interesting path counting lemma implies that each fragment
highway is interested in a small number of super-highways, this is not enough to get a fast algorithm.
One issue is that the same super-highway may need to participate in too many computations. To
deal with it we prove a pairing theorem, with the following guarantees.

• We partition all the highways in the graph to pairs of super-highways (PH , P ′
H), such that in

each pair of super-highways we denote a subset of fragment highways that are active.

• Each fragment highway is active in poly log n pairs.

• If the min 2-respecting cut has 2 edges in the fragment highways P, P ′, there is a pair of
super-highways (PH , P ′

H), such that P ∈ PH , P ′ ∈ P ′
H , and both P, P ′ are active in this pair.

This basically allows us to divide the computation into a series of comparisons between different
pairs of super-highways. Next, we explain how to compare two such super-highways.

Comparing two super-highways. The basic idea here is to use a variant of the path-
partitioning lemma, together with a divide-and-conquer approach from [MN20]. First, we show
that if we want to compare one fragment highway to a super-highway, we can do it efficiently
using a variant of the path-partitioning lemma. Next, we use it as a black-box to compare two
super-highways. For simplicity, we assume that all the fragment highways in the super-highways
we consider are active. The algorithm works as follows (see Figure 4). Let PH1

, PH2
be the two

super-highways we want to compare. We first compare the middle fragment highway P ∈ PH1
to the

super-highway PH2
. Say that the min 2-respecting cut we find has the second edge in the fragment

highway P ′ ∈ PH2
. We now use the black-box algorithm to compare P ′ to the super-highway PH1

.
After this, we either found the min 2-respecting cut of PH1

and PH2
, in case it has one edge in P or

P ′, or we can use a monotone structure of minimum 2-respecting cuts to break the problem to two
smaller disjoint problems we can solve in parallel (see Figure 4). We continue in the same manner
until we remain with disjoint problems where one of the sides has only one fragment, they can then
be solved directly using the black-box algorithm. Overall we have O(log n) iterations, each one
takes Õ(D +

√
n) time using the black-box algorithm, as we work on different disjoint problems in

12

PH1
PH2

P
t
H1

P
b
H1

P
t
H2

P
b
H2

P

P
′

Figure 4: Illustration of the highway-highway case. After one iteration, we are left with the disjoint red and
blue problems we can solve in parallel.

parallel.

Working in parallel. The algorithm for comparing super-highways boils down to many smaller
computations where we compare two fragment highways (using a variant of the short-paths routing
trick). Every time we compare two fragment highways P and P ′, the computation is divided to
a local part where we route information between them and do local computations inside their
fragments,7 and a global part, where global communication takes place in order to compute the
cost of edges that cover both P and P ′ and have edges outside their fragments.8 Hence, to get
an efficient algorithm we should bound the number of pairs of fragment highways we compare, as
for any such pair we need to use global communication of O(1) information. Note that since the
number of fragments is O(

√
n), there is a linear number of possible pairs. We show that we can

bound the amount of global communication by Õ(
√
n) using the following key ideas:

• We show that the amount of global communication required for comparing two super-highways
is linear in the number of active fragments in the pair.

• The pairing theorem guarantees that each fragment is only active in poly log n pairs. Hence,
comparing all pairs results in sending Õ(

√
n) global information.

Using these ideas we get a complexity of Õ(D +
√
n).

Organization. The paper is organized as follows. First, in Section 3, we give some useful notation
and claims. In Section 4, we discuss the fragment and layering decompositions. In Section 5, we
explain how we compute and bound the number of paths each path is interested in, and prove the

7In the case there is no edge between them, the computation is easier and we do not have this part.
8In the non-highway case, we didn’t have this part because any edge that covers a non-highway has at least one

endpoint in its fragment.

13

interesting path counting lemma. In Section 6, we show the short-paths routing trick for comparing
two short paths. In Section 7, we discuss the variants of the path-partitioning lemma we use in our
algorithm. Finally, in Section 8, we combine all the ingredients to obtain our algorithm for finding
the min 2-respecting cut. A schematic description of the algorithm appears in Section 9.

3 Preliminaries

3.1 The model and assumptions

Throughout the paper, we consider the CONGEST model of distributed computing. In this model,
one is given a network on n vertices in the form of a graph G = (V,E). Initially, each vertex knows
its own unique Id and the Id’s of its neighbors in G. Communication takes place in synchronous
rounds, i.e. in each round, each vertex can send a message of O(log n) bits to each of its neighbors.
The given graph may be equipped with a weight function w : E → N, in which case each vertex
knows also the weights of its incident edges. In case of the min cut problem, we assume that weights
are integers and polynomially bounded, hence the weight of any given edge can be represented using
O(log n) bits. At times, we refer to edges in the graph G as performing computations, this means
that one of the endpoints of a given edge is actually performing the computation. The specific
endpoint is clear through context or specifically mentioned.

3.2 2-respecting cuts & tree packing

First of all, we discuss the reduction from finding the minimum cut in a given weighted graph
G = (V,E,w) to finding the minimum 2-respecting or 1-respecting cut in a given rooted spanning
tree T of G. We now define the relevant notions.

For a given weighted graph G = (V,E,w), and a cut S ⊆ V , we denote the value of S by w(S)
and define it to be w(S) =

∑

e∈E(S,V \S)

w(e). We denote by E(S, V \S) the set of edges of G that

cross the cut defined by S, i.e. {(u, v) ∈ E | u ∈ S, v 6∈ S}.

Definition 3.1. Given a graph G = (V,E) and a spanning tree T = (V,ET) of G, we say that a
cut S ⊆ V k-respects T if it cuts at most k edges of T , i.e., |{e ∈ ET | e ∈ E(S, V \ S)}| ≤ k. The
minimum k-respecting cut is the cut S with minimal value w(S) among all k-respecting cuts.

In this paper, we are interested in 2-respecting cuts. Figure 5 illustrates some examples. As
mentioned in the introduction, the problem of finding a minimum cut of G can be reduced to finding
a 2-respecting cut w.r.t. a given spanning tree T . The seminal work of Karger [Kar00] showed
this reduction in the sequential setting. In this paper, we employ a theorem from [DHNS19] which
implements the reduction in the distributed setting for weighted graphs. More details about the
reduction from min cut to 2-min respecting cut can be found in Appendix A.

Theorem 3.2 (From [DHNS19]). Given a weighted graph G, in Õ(
√
n+D) rounds, we can find

a set of spanning trees T = {T1, ..., Tk} for some k = Θ(log2.2 n) such that w.h.p. there exists a
min-cut of G which 2-respects at least one spanning tree T ∈ T . Also, each node v knows which
edges incident to it are part of the spanning tree Ti, for 1 ≤ i ≤ k.

For a pair of tree edges (e′, e), we denote by CutSet(e, e′) the set of edges of G that takes part
in the 2-respecting cut defined by e′, e and Cut(e′, e) denotes the value of this 2-respecting cut, i.e.,
the total edge weight of the set CutSet(e, e′). See Figure 6 for examples.

14

𝑆

𝑉\S

𝑆

𝑉\S

𝑒 𝑒
𝑒′

Figure 5: Examples of 1 respecting cut of the edge e (Left), and 2-respecting cut of the edges e, e′ (Right),
with non-tree edges omitted.

3.3 Cover values

For a tree edge e, we say that an edge x = {u, v} covers e, if e is in the unique u− v path in the
tree (See Figure 6). In particular, e covers e, and all other edges that cover e are non-tree edges.
We denote by Cov(e) the total weight of edges that cover e, and we denote by CovSet(e) the set of
edges that cover e. For two tree edges (e′, e), we denote by Cov(e′, e) the total weight of edges that
cover both e′ and e, and we denote by CovSet(e, e′) the set of edges that cover both e and e′. We
denote by p(v) the parent of v in the tree. The following holds.

Claim 3.3. Let x be an edge that covers the tree edge e = {v, p(v)}, then x has exactly one endpoint
in the subtree Tv rooted at v.

Proof. This follows as removing e from the tree leaves Tv as one of the connected components. Any
tree path that contains e must have exactly one of its border vertices in this component, which
shows that any edge that covers e must have one endpoint in Tv.

We next show that the cut value can be expressed easily using the cover values of the related
edges, this would be later very useful in our algorithm, when we compute the cover values in order
to compute the cut value. The proof is based on showing that the edges that cross the cut defined
by two edges e, e′ are exactly the edges that cover exactly one of e, e′.

Claim 2.1. Cut(e, e′) = Cov(e) + Cov(e′)− 2Cov(e, e′).

Proof. In order to prove the claim, it suffices to show that CutSet(e, e′) = CovSet(e)△CovSet(e′).
Here △ represents the symmetric difference between the sets. First we show that CutSet(e, e′) ⊆
CovSet(e)△CovSet(e′). To this end, let x = {u, v} ∈ CutSet(e, e′) be any edge in the set CutSet(e, e′).
The unique path in T between u and v must cross the 2-respecting cut defined by (e, e′), and since
the only tree edges that cross said cut are e, e′, we can deduce that e or e′ are on the unique path
in T between u and v. Note that only one of e, e′ can be on this unique path, since otherwise one
would get that u, v are both on the same side of the cut. Thus, by definition of covering, the edge x
covers exactly one of e, e′, and thus x ∈ CovSet(e)△CovSet(e′).

15

𝑒2
𝑒2

𝑒1

𝑒1
𝑒1𝑒2

𝐶𝑜𝑣𝑆𝑒𝑡 𝑒1
𝐶𝑜𝑣𝑆𝑒𝑡 𝑒2

𝐶𝑜𝑣𝑆𝑒𝑡 𝑒1, 𝑒2
𝐶𝑢𝑡𝑆𝑒𝑡 𝑒1, 𝑒2

Figure 6: Examples of the notion of coverage, the tree T is the central path in each figure. Green edges are
non-tree edges. In each figure, the bold edges are the non-tree edges that cover the red tree edges. In the
bottom figure, the bold edges represent the edges of Cut(e1, e2), which are precisely edges that cover one of
e1, e2, but not both.

Next we show that CovSet(e)△CovSet(e′) ⊆ CutSet(e, e′). Let x ∈ CovSet(e)△CovSet(e′), w.l.o.g
assume that x ∈ CovSet(e), x 6∈ CovSet(e′). Denote x = {u, v}, since x ∈ CovSet(e), x 6∈ CovSet(e′),
we deduce that the unique path in T between u and v goes through e, but not through e′, thus this
path crosses the 2-respecting cut defined by e, e′ only once. From which we can deduce that u, v
are on different sides of the 2-respecting cut defined by e, e′. Thus x = {u, v} ∈ CutSet(e, e′) as
required.

We denote by Cut(e) the value of the 1-respecting cut defined by e, i.e., the cut obtained after
removing e from the tree. It is easy to see that Cut(e) = Cov(e).

Claim 3.4. Cut(e) = Cov(e).

Proof. Let e = {v, p(v)}. As discussed in the proof of Claim 3.3, removing e from the graph leaves
one component that is the subtree rooted at v, and the rest of the tree as the second component.
The edges that cross the cut are exactly the edges that have exactly one endpoint in each one of the
components. These are exactly all edges that cover e, as the tree paths defined by these edges move
between these components, hence they must include e.

3.4 LCA labels

We use the tool of lowest common ancestor (LCA) labels to check easily if a tree edge is covered by
some non-tree edge. We use the LCA labels from [Dor20, see Section 2.3.2] (See also section 5.2
in [CHD19]), which adapt the sequential labeling scheme of [AGKR04] to the distributed setting.
This allows to give any vertex in the graph a short label of O(log n) bits such that given the labels
of two vertices u, v, we can infer the label of their LCA just from the labels. During the algorithm,

16

when we send an edge, we always send its labels as well, which allows these computations. The time
for computing the labels is O(D +

√
n log∗ n) as shown in [Dor20, CHD19]. We next show that the

labels allow to determine if a non-tree edge covers a tree edge. This is also used in [CHD19, DG19].

Claim 3.5. In O(D +
√
n log∗ n) time, we can assign all the vertices in the graph short labels,

such that given the labels of a tree edge e and a non-tree edge x, we can learn whether x covers e.
Additionally, given the labels of two vertices u, v we can deduce LCA(u, v).

Proof. Let e = {v, p(v)} and x = {u,w}. From Claim 3.3, we know that x covers e iff x has exactly
one endpoint in the subtree Tv rooted at v. This can be easily checked using LCA labels. For any
vertex v′, v′ is in the subtree rooted at v iff LCA(v′, v) = v, as v is an ancestor of all vertices in Tv.
Hence, to determine if x covers e, we compute LCA(u, v),LCA(w, v) and check whether the answer
is v in exactly one of the cases.

LCA labels are also useful to infer which edges in the graph participate in a 2-respecting cut, as
we show next.

Observation 3.6. Given the labels of at most 2 edges e, e′ that define a 2-respecting cut, each vertex
can learn exactly which of its incident edges cross the cut. This does not require any communication.

Proof. This observation follows from LCA checks that v can do (Claim 3.5). First, consider the
simple case that the cut is defined by one edge e. Then, an edge e′ crosses the cut iff it covers e
which can be deduced from Claim 3.5.

We next focus on the case that there are two tree edges (e, e′) that the cut respects (i.e., when
the 2-respecting cut is an exact 2-respecting cut).

Consider any edge f = {u, v} which is incident on v. Note that, given (e, e′), v can do an LCA
check to find out which edges among e and e′ are covered by f . The edge f takes part in the cut
iff f covers exactly one edge among e and e′—this again can be computed inside v without any
communication using Claim 3.5. Hence v can infer which edges incident to it are in the cut by local
computation.

For two tree edges e = {p(v), v}, e′ = {p(v′), v′}, denote by LCA(e, e′) the vertex v∗ such that
v∗ = LCA(v, v′). Note that by Claim 3.5, given the labels of e, e′, one can deduce LCA(e, e′), since
the lemma allows one to deduce LCA(v, v′).

3.5 Useful notation

We next define a subtree T (P) related to a path P , this is later useful for our algorithm. We always
assume that the corresponding spanning tree is rooted at a root vertex which we denote as r. For a
path P between an ancestor rP and a descendant of it in the tree, we denote by T (P) the subtree
that includes the path P , and all the subtrees rooted at vertices in P \ rP , and we denote by T (P ↓)
the subtree T (P) \ rP . For a tree edge e = {u, v}, we denote by e↓ the tree rooted at v, where v is
the node farther from the root. In this work, whenever we mention a path P , we always assume that
it is an ancestor-to-descendant path, i.e., the path occurs as a subpath of a root-to-leaf path of T .

4 Tree decompositions

Before we present the algorithm, we discuss in this section two tree decompositions that are crucial
for our algorithm: a fragment decomposition and a layering decomposition.

17

𝐹
𝑟𝐹 𝑑𝐹

Figure 7: The internal topology of a single fragment. The path comprised of black nodes is the highway of
the fragment F . Orange edges denote highway edges. Blue edges denote non-highway edges. Empty nodes are
nodes that are adjacent to no highway edge. Dotted edges indicate arbitrarily long paths. Green undirected
edges correspond to possible non-tree edges in the graph G.

4.1 Fragment decomposition

Here we discuss a decomposition of a tree T into edge-disjoint components, each with small size.
This is a variant of a decomposition that appeared first in [GP16], and was refined and used also
in [Dor18, DG19]. In these works, the tree is decomposed into O(

√
n) edge-disjoint fragments of

diameter O(
√
n). In our variant, we also make sure that the size of each fragment is O(

√
n).

The fragment decomposition is defined by Nfrag = O(
√
n) many tuples, each of the form

tF = (rF , dF), with the following properties (see Figure 7):

1. Each tuple tF = (rF , dF) represents an edge-disjoint fragment (subtree) F of T rooted at rF
with diameter Dfrag = O(

√
n) and size Sfrag = O(

√
n). The vertex rF is an ancestor of all

vertices in the fragment F in T .

2. Each fragment F has a special vertex dF which is called the unique descendant of the fragment.
The unique path between rF and dF is called the highway of the fragment. Each fragment
has a single highway path. The vertices rF and dF are the only two vertices of the fragment
F which can occur in other fragments.

3. All edges that are not part of the highway, are called non-highway edges. Each non-highway
path is completely contained inside a single fragment.

4. Each edge of T takes part in exactly one fragment F .

We show in Lemma 4.1 how to compute the fragment decomposition employed in this paper.
We denote by F the set of fragments in the fragment decomposition. Given such a decomposition of
a tree T , we can associate a virtual skeleton tree TS naturally to the decomposition in the following
way (see Figure 8):

1. TS has Nfrag +1 many vertices: For each vertex that is either rF or dF in one of the fragments,
there is a vertex in TS ,

2. The edges in TS correspond to the highways of the fragments, i.e., there is an edge {u, v} ∈ TS

where u is a parent of v iff u = rF and v = dF for some fragment F .

In Appendix B, we prove the following lemma.

18

𝐹1

𝐹2
𝐹3 𝐹4

𝐹5

𝐹6
𝐹1

𝐹2
𝐹3 𝐹4 𝐹5

𝐹6

Figure 8: An example of a skeleton tree. Fragments are circled in green with non-highway edges and vertices
omitted. The skeleton tree has a unique vertex corresponding to each fragment, and two vertices of the
skeleton tree are connected by an edge if the corresponding fragments share a (highway) vertex.

Lemma 4.1. Given a graph G = (V,E) and a rooted spanning tree T of G, one can compute
in Õ(

√
n + D) rounds a fragment decomposition of G with Nfrag = Dfrag = Sfrag = O(

√
n). In

particular, each vertex v learns the following information about each fragment F it belongs to:

1. The identity (rF , dF) of the fragment F .

2. The complete structure of the skeleton tree TS.

3. All the edges of the unique path connecting v and rF , and also the edges of the unique path
connecting v and dF .

4. All the edges of the highway of the fragment F .

The full proof of this lemma can be found in Appendix B. On a high level, the construction is
divided into two main steps. First, we decompose the tree into O(

√
n) edge disjoint components each

of size O(
√
n). Then, we further breakdown each component to enhance them with the properties

depicted in bullets 2-4 at the beginning of the section, without forfeiting the size and number of
components guarantees. This second part follows [GP16, Dor18].

Routing Information. The following lemma shows an efficient way to route information from
non-tree edges to tree edges they cover. This allows for example to compute efficiently the value
Cov(e) for all edges e. For a proof see Claim 2.6 in [Dor20]. In addition, in [GP16, Dor18] this
lemma is proven for the special case where each tree edge wants to learn about the best edge that
covers it according to some criterion (see Section 4.2 in [GP16], and Section 3.1 (II) in [Dor18]). The
exact same argument works also for the more general case when each tree edge wants to compute
some commutative aggregate function of the edges that cover it (for example, the sum of their
weights). Denote by Ct ⊆ E the set of non-tree edges that cover a given tree edge t.

Lemma 4.2. ([Dor20]) Assume that each non-tree edge e has some information me of O(log n)
bits, and let f be a commutative function with output of O(log n) bits. In O(D +max{Dfrag, Nfrag})
rounds, each tree edge t, learns the output of f on the inputs {me}e∈Ct .

From this lemma, one can deduce the following claims.

Claim 4.3. All tree edges e can learn their cover values Cov(e). This is done simultaneously for all
edges in O(D +

√
n) rounds.

19

1

3
2

2
2

111111
1
11

1
11

222
3

Figure 9: Example of a layering decomposition on a given tree. Red edges are edges of layer 1, green edges
are of layer 2, and blue edges are of layer 3.

Proof. This follows from Lemma 4.2, where the information for non-tree edges is their weight, and
the function is sum. After applying the lemma, each tree edge learns the total cost of non-tree edges
that cover it. Adding to it to weight of e gives Cov(e).

Claim 4.4. Assume that for each tree edge e, there is a unique non-tree edge e′ ∈ CovSet(e) that
wants to send t bits of information to e. Then this routing can be done in parallel for all tree edges
in O((D +max{Dfrag, Nfrag}) · t

logn) rounds.

Proof. Each non-tree edge holding information will mark itself and the information, and the function
f will be the function that chooses arbitrarily (e.g. the first) marked input and outputs it. Since
each tree edge e has a unique edge e′ ∈ CovSet(e) that is marked, applying Lemma 4.2 t

logn times

suffices for e to learn the t bits of information that e′ holds.

4.2 Layering decomposition

Here, we present a decomposition of the edges of a given tree T into O(log n) layers. This is also
known as the bough decomposition in some literature [Kar00, GG18]. Such a decomposition was
previously employed in the context of distributed computing by [DG19]. We borrow the following
definition from Karger.

Definition 4.5 (Bough). A bough is a maximal path starting at a leaf and traveling upwards until
it reaches a vertex with more than one child, i.e., a junction vertex.

We are interested in the following layering algorithm. Given a graph G and a spanning tree T of
G rooted at a root vertex r, the layering algorithm can be described as follows:

Initialization: Start with T0 = T .

Round i description: In round i, do the following:

• Consider all boughs of Ti−1 and include all edges of such boughs in Ei.

• Contract these boughs of Ti−1 to obtain Ti.

Stop condition: Continue until Ti consists of only root vertex r.

20

For any given i, we call the edges in Ei the edges in layer i (See Figure 9). An immediate
observation from this procedure is as follows.

Observation 4.6. Given a tree edge e ∈ T , denote its layer by i. Then, all edges in e↓ are in
layer at most i. Furthermore, at most one edge adjacent to e which is in e↓ is in layer exactly i.
Furthermore, denote by j the highest layer of an edge in e↓ which is adjacent to e, then j = i iff
there is exactly one edge of layer j adjacent to e in e↓.

Next, we bound the number of layers in this decomposition.

Claim 4.7. The number of layers produced by the above procedure is L = O(log n).

Proof. Denote by ℓi the number of leaves in the tree Ti. A key observation is that for all 1 ≤ i ≤ L−1,
it holds that 2ℓi+1 ≤ ℓi. This is since each leaf v in Ti+1 is an ancestor of at least 2 leaves in Ti.
Since v was a junction in Ti. Now since ℓ1 ≤ n, and the fact that any tree has at least 2 leaves, we
deduce that after L = O(log n) rounds we are left with an empty graph, as required.

4.3 Combining layering with fragment decomposition

In our algorithm, we use two layering decompositions, one for non-highways and one for highways.
We next explain this in detail.

1. Layering for non-highways. We decompose the non-highways in each fragment to layers,
according to the layering algorithm described above. The union of all such layerings computed
is the layering for non-highways. I.e., edges in layer i include non-highway edges in layer i in
all different fragments.

2. Layering for highways. We decompose the highways into layers by simulating the layering
algorithm in the skeleton tree. Here, we ignore completely all non-highway edges, and just
run the layering algorithm in the skeleton tree that its edges correspond to highways. Since
all vertices know the complete structure of the skeleton tree this can be simulated locally by
each vertex without communication. As each fragment highway corresponds to one edge in
the skeleton tree, it follows that by the end of the computation each fragment highway has a
layer number.

The above description results in the following claim.

Lemma 4.8. We can compute a layering for the highways without communication. By the end of
the computation, all vertices know the layering.

The above Lemma holds simply because all vertices know the topology of the skeleton tree by
Lemma 4.1. We next state that we can compute the layering for the non-highways. The full of proof
of the following lemma is deferred to appendix B.

Lemma 4.9. We can compute a layering for the non-highways in O(Dfrag) time. By the end of the
computation all vertices know the layer numbers of non-highway edges adjacent to them.

This is achieved by a simple aggregate computation inside each fragment in parallel, along the
non-highway trees of each fragment from the leaves to the highway path.

We also define the notion of a maximal path of layer i.

Definition 4.10. Given a (non) highway path P in a tree T , we say that P is a maximal path of
layer i if the following holds.

1. P ⊆ Ei according to either the skeleton decomposition or the non-highway decomposition.

2. for all (non) highway paths P ′ such that P (P ′, it holds that P ′ 6⊆ Ei.

21

4.4 Information of edges

The goal of this section is to explain in detail, what is the information each edge in the tree holds.
Later, when we introduce the sampling procedure, and say that an edge e learns about an edge e′,
it learns not only the Id of e′, but also all the information that e′ holds about the fragment and
layer decompositions. Furthermore, e might need to spread said information to edges in its vicinity,
depending on the properties of e. All of these issues are addressed in detail in this section.

From a high level perspective, our algorithm requires each tree edge e to know whether e in
on a highway or not, the fragment of e, and its layer in it’s respective layering decomposition (see
Section 4.2). This is captured in the following definition.

Definition 4.11 (Information of edge). The information of a tree edge e, denoted by info(e), consists
of the following:

1. The id of the edge e.

2. The value Cov(e) and |CovSet(e)|.

3. Whether e is a highway edge, or a non-highway edge.

4. e’s layer in its respective layering decomposition (see Section 4.2).

5. The id of its own fragment.

For non-tree edge e = {u, v} ∈ E, one can associate the information info(e1) ∪ info(e2) ∪ {Id(e)}
where e1 = {p(v), v}, e2 = {p(u), u} with e. Here p(v), p(u) are the parent vertices of v, u in the tree.
Denote this information by info(e) for a non-tree edge. For any edge e, we denote by |info(e)| the
amount of bits required in order to store info(e).

More formally, our goal in this section is to prove the following theorem. In the following
theorem, Ei refers to the set of non-highway edges of layer i. (See Section 4.3, Lemma 4.9) The
proof of the following theorem is deferred to Appendix B.

Theorem 4.12. Consider a rooted tree T of a graph G, a layering decomposition E1, ..., Eℓ,
ℓ = O(log n), as described in Section 4.3, and a fragment decomposition with parameters Nfrag, Sfrag.
In Õ(Nfrag + Sfrag + D) rounds, each tree edge e can learn info(e). Furthermore, it holds that
|info(e)| = O(log n).

Observation 4.13. Each tree edge e knows the id and layers of all fragments in the path from the
root to it. In general, given a root to descendant path P that ends in the edge e′, every tree edge e
can deduce all the fragments that P intersects from knowing the fragment of e′.

Proof. Note that e knows the entire topology of the skeleton tree (See Lemma 4.1), and computed
the layering of it internally using Lemma 4.8, hence e knows the layers of all fragments that intersect
P , since it also knows it’s own fragment. The same argument holds for other root to descendant
paths, assuming e knows the fragment in which the path ends.

5 Finding, bounding, and routing interesting paths

Given a spanning tree T of G, a trivial way of finding a minimum 2-respecting cut is to compute
Cut(e, e′) for every pair of edges (e, e′) in T which requires O(n2) many comparisons. As observed
in [MN20], many of these comparisons are unnecessary, as many such pairs cannot possibly yield a
minimum 2-respecting cut. To this end, [MN20] has formulated a necessary condition for such pairs

22

to be a potential candidate for a minimum 2-respecting cut which we will recap briefly now. First,
note that Cut(e, e′) = Cov(e) + Cov(e′)− Cov(e, e′) as stated in Claim 2.1. Also assume that it is
easy to compute the values of Cov(e) for all e ∈ T . Note that Cov(e) actually represents the value
of a 1-respecting cut which cuts the tree edge e, as shown in Claim 3.4. For (e, e′) to be a minimum
exact-2-respecting cut (i.e., cut value smaller than any 1-respecting cut), it needs to happen that

Cut(e, e′) = Cov(e) + Cov(e′)− Cov(e, e′) < min{Cov(e),Cov(e′)}. (∗)

In other words, the 2-respecting cut defined by (e, e′) should be smaller than the cuts defined by e
and e′ individually. Reorganizing the previous inequality we get Cov(e, e′) > 1

2 ·max{Cov(e),Cov(e′)}.
This means that, for a tree edge e, the potential pairings (e, e′) which can yield a 2-respecting
cut smaller than Cov(e) are the pairing for which Cov(e, e′) > Cov(e)/2. We denote this event as
e being interested in the edge e′. In this section we expound the notion of interesting edges and
extend it to the notion of interesting paths. There are three main subsections in this section: In
the first part (in Section 5.2) an algorithm that finds for each edge a set of paths that includes the
path that edge is interested in. Then, in section 5.3, we prove our interesting path counting lemma
that shows that in fact, intuitively, the number of paths interested in one another is small, and
can be bounded from above by a poly-logarithmic factor in n. Then, in section 5.4, we show how
to turn the information obtained in section 5.2, into knowing the paths each edge needs to know
for the algorithm. Additionally in that section, we connect our combinatorial lemma of bounding
the number of paths interested in one another to the algorithmic building blocks we use in the
algorithm. Furthermore, we show how to route the paths that each vertex needs to know for the
algorithm to said vertex.

5.1 Interesting edges and paths

We begin with basic definitions and observations. Most of the definitions and observations used in
this section are inspired by similar definitions previously stated in [MN20]. We, however, introduce
simpler notation and terminology for this work.

Definition 5.1 (Interesting edge). Given two tree edges e, e′ ∈ T , we say that e is interested in e′

if Cov(e, e′) > Cov(e)
2 .

This definition, along with the observation made previously in Equation (∗), immediately gives
the following claim.

Claim 5.2. A pair of tree edges (e, e′) is a candidate for exact-2-respecting min-cut (i.e., has cut
value smaller than all 1-respecting cuts) if e and e′ are interested in each other.

We now proceed to define what is meant by an edge e being interested in a path. But first, we
define the notion of orthogonality between edges of T and, subsequently, between paths of T .

Definition 5.3 (Orthogonal edges). Given two tree edges e, e′, we say that e, e′ are orthogonal if
they are not on the same root to leaf path, and we denote e ⊥ e′.

Combining Definition 5.1 and 5.3, we can make the following observation.

Observation 5.4. Given a tree edge e ∈ T , let e′, e′′ be tree edges such that there is no simple path
in the tree T in which e, e′, e′′ all take part, then it cannot hold that e is interested in both e′ and e′′.
Furthermore, CovSet(e, e′) ∩ CovSet(e, e′′) = ∅.

23

Proof. First of all, Observe that CovSet(e, e′)∩ CovSet(e, e′′) = CovSet(e)∩ CovSet(e′)∩ CovSet(e′′).
Now, if ECov(e) ∩ CovSet(e′) ∩ CovSet(e′′) 6= ∅, this means that for some non-tree edge e′ = (u, v),
the unique path in T from u to v includes all of e, e′, e′′. This is a contradiction, thus we deduce
that CovSet(e, e′) ∩ CovSet(e, e′′) = CovSet(e) ∩ CovSet(e′) ∩ CovSet(e′′) = ∅.

This means that Cov(e) ≥ Cov(e, e′) + Cov(e, e′′). Suppose e′, e′′ are such that e is interested in

both e and e′′, i.e., Cov(e, e′) > Cov(e)
2 , and Cov(e, e′′) > Cov(e)

2 . This means Cov(e, e′) +Cov(e, e′′) >
Cov(e) which is an immediate contradiction.

We extend the definition of orthogonal edges to orthogonal paths which we define below.

Definition 5.5 (Orthogonal paths). Given two ancestor to descendant paths P, P ′, we say that P
and P ′ are orthogonal and denote P ⊥ P ′ if for all pairs of edges e ∈ P, e′ ∈ P ′, it holds that e ⊥ e′.

Note that if e′′ is on the unique tree path between e and e′, then Cov(e, e′′) ≥ Cov(e, e′). This is
true since all edges that cover both e and e′, also cover e′′, by definition. Thus, one can make the
following observation

Observation 5.6. Given an edge e, if e is interested in some edge e′, Then e is interested in all
the edges in the tree path from e to e′.

We also make the following observation.

Observation 5.7. If P and P ′ are two orthogonal paths in the tree, then T (P) and T (P ′) are edge
disjoint, and T (P ↓) and T (P ′↓) are disjoint.

At this point we introduce another notation which is defined as follows.

Definition 5.8. Given a tree edge e and an ancestor-to-descendant path P which is either orthogonal
to e or completely above e in a root-to-leaf path which contains e or completely inside e↓, we define
CovSet(e, P) to be the set of edges f = {u, v} ∈ E(G) such that the unique u to v path in T contains
both P and e and Cov(e, P) to be the cumulative weight of the edges of the set CovSet(e, P).

Note that when P is orthogonal to e, then f covers both e and the lowest edge of P , whereas
when P occurs as an ancestor of e, f covers both e and the highest edge of P . Because of Observation
5.6, we extend Definition 5.1 to the following:

Definition 5.9 (Interesting path). Given a tree edge e, and some ancestor to descendant path P in
the tree as in Definition 5.8, we say that e is interested in P if Cov(e, P) > Cov(e)/2, and denote
the set of all such paths as Int(e). Given two ancestor to descendant paths P1, P2 in the tree, we
say that P1 is interested in P2 if there is an edge e ∈ P1 such that P2 ∈ Int(e). For an ancestor to
descendant path P in the tree, we denote by Int(P) the set of ancestor to descendant paths in the
tree that P is interested in.

Note that apart from the path above e, there is a unique maximal ancestor-to-descendant
path P in which e is interested in. The uniqueness comes from the fact that, for such path P ,
Cov(e, P) > Cov(e)/2. Having more than one such path will result in a contradiction because
Cov(e, P) of each such path P contributed more than half of the value of Cov(e). This means that
all edges e′ that e is interested in belong to the unique maximal path P that e is interested in.
Hence, similar to Claim 5.2, we can make the following claim.

Claim 5.10. A pair of tree edges (e, e′) is a candidate for exact-2-respecting min-cut (i.e., has cut
value smaller than all 1-respecting cuts) if e′ is in a path P ′ ∈ Int(e) and e is in a path P ∈ Int(e′).

Proof. If (e, e′) is a candidate for exact-2-respecting min-cut, then by Claim 5.2, it implies that e
and e′ are interested in each other. As discussed before, all edges which e is interested in belong to
a path P ′ ∈ Int(e) and similarly all edges e′ is interested in belong to a path P ∈ Int(e′). Hence the
claim follows.

24

5.2 Finding interesting paths

The main lemma of this section is the following sampling lemma in which each tree edge gets to know
a small set of paths, one of which is an interesting path w.r.t. e. 9 We will abuse definition and,
instead of a vertex knowing another vertex, we will denote a tree-edge knows another tree-edge (or
path in the tree) with the assumption that it is a vertex of the tree-edge which does the computation.
More formally, let the vertices agree on a total ordering of the set V apriori and let e = {u, v} be
an edge with u ≺ v in that ordering of V . Unless specified otherwise, any computation purportedly
done by e is actually done by u.

Lemma 5.11. There is a distributed sampling procedure which takes Õ(
√
n+D) rounds in which

every tree-edge e learns about a set of paths Intpot(e) such that with high probability:

1. Any path P with Cov(e, P) > Cov(e)/2 is in Intpot(e), and

2. Any path P ′ ∈ Intpot(e), has Cov(e, P ′) ≥ Cov(e)/6.

We give an overview of the sampling procedure here. For a more detailed proof of the lemma,
see Appendix C. The idea is simple: we treat every weighted edge e with weight w(e) to be w(e)
many parallel unweighted edges. This way, any weighted graph G is viewed as a unweighted graph
with multi-edges. Each edge e samples O(log n) distinct non-tree edges from the set CovSet(e),
denoted by CovSetsamp(e), and whose total weight is denoted by Covsamp(e). Then, each edge e
makes decisions about other interesting paths based on the sampled edges, i.e., e declares a path P
to be in Intpot(e) if at least 1/3 of the sampled edges by e also covers P . Moreover, e also puts the
path Pe that contains e into the set Intpot(e) as well. If e can sample these O(log n) edges uniformly
at random from CovSet(e), then by standard concentration argument both conditions of Lemma
5.11 hold. More formally, we define the set Intpot(e) in the following way, where Pe denotes that
path starting from the root to e.

Intpot(e) =

{

P | Covsamp(e, P) ≥ Covsamp(e)

3

}

∪ Pe.

The question now boils down to how each tree-edge e can sample O(log n) distinct non-tree
edges from CovSet(e). To this end, we assume that every tree edge e knows the value of Cov(e) by
Claim 4.3. The sampling procedure runs in O(log n) iterations. In iteration j, only tree-edges e
such that Cov(e) ∈ [2j−1+1, 2j] sample their corresponding set of non-tree edges—we call these tree
edges as active tree-edges in that iteration. The point to note here is that, if all active tree-edges
want to sample one non-tree edge each from the set of edges that they cover, they can uniformly
sample from those sets with probability 2−j simultaneously because of their similar cover-values.
More concretely, if every non-tree edges samples itself with probability 2−j in iteration j, then every
active tree-edge e has at least one sampled non-tree edge in the set CovSet(e) with high probability.
Moreover, because all active tree-edges have similar cover-value, for any such edge e, the sampled
non-tree edge in CovSet(e) is distributed uniformly in the set CovSet(e). The active tree-edges do
such sampling enough number of times to get O(log n) many distinct samples each, and then declare
the set of interesting paths based on what they have sampled (as outlined previously).

Of course, implementation of this procedure in the distributed setting has a few more additional
details. Note that the information about the sampled non-tree edges needs to reach the vertex of the

9Readers familiar with standard sampling techniques can draw some similarities with that of Karger [Kar99]. Our
sampling differs in two ways: (i) the sampling probability depends on the value of Cov(e) for different tree-edge e
where as Karger samples each edge with similar probability, and (ii) because this is a distributed implementation,
one needs to be careful about how the information of the sampled edges is routed to the vertices responsible for
computation.

25

Figure 10: The path P in the figure consists of the of the edges e1, ..., eℓ, where the vertex on the right from
eℓ is the root. The dotted orange path labeled by Pi represents an ancestor to descendant path in e↓i+1

. The
blue edges correspond to heavy (weight-wise) clusters of non-tree edges leaving each node to the respective
path, that cause the corresponding tree edge to be interested in said path. More formally, it can be the case
that ei is interested in Pi for each i ∈ [ℓ]. Thus the path P is interested in ℓ distinct ancestor to descendant
paths. The example is complete by noting that it is possible that ℓ = Ω(n).

corresponding active tree-edge e which is responsible for the computation. So we implement each
iteration in logarithmic many rounds where, in each round, the active tree-edges get information
of one sampled edge each from the sets CovSet(e). In each round, we use Lemma 4.2 to route the
information from the smallest sampled non-tree edge (w.r.t. some pre-agreed ordering) to the active
tree-edge. This information is small enough for us to apply Lemma 4.2.

Lastly, we prove the following claim, which is extensively used in our algorithm.

Claim 5.12. If P and P ′ are two paths between an ancestor to a descendant, not in the same root
to leaf path, and P ′ is potentially interested in P , then there is an edge between T (P ↓) and T (P ′↓).

Proof. Let e′ ∈ P ′ be some edge that is potentially interested in P . Thus some edge between T (P ↓)
and T (e′↓) was sampled, thus in particular there is an edge between T (P ↓) and T (P ′↓), as required.

5.3 Structural lemma for bounding number of interesting paths

So far, we have defined the notion of a potentially interesting edge and a potentially interesting
path, for a given tree edge and a given ancestor to descendant path. Our next goal will be to
bound the pairs of paths P1, P2 such that P1 is potentially interested in P2. Note that although
Property 2 of Lemma 5.11 gives us an upper bound on Intpot(e), i.e. the number of paths that the
tree edge e is potentially interested in, the best bound one can hope for on Intpot(P) for a given
ancestor to descendant path P is O(n). Figure 10 illustrates an example for when a given ancestor
to descendant path P can satisfy Intpot(P) = Ω(n).

However, if one restricts the discussed set of paths P to a set that satisfies a specific property,
one can bound Intpot(P) ∩ P very nicely. As Figure 11 suggests, the kind of paths P that we are
going to restrict ourselves to is a natural generalization of the set of paths considered in Definition
5.8. In the discussion that follows, we will denote a path P1 is an ancestor of another path P2 (or,
equivalently, P2 is a descendant of P1) if P1 is contained completely inside the path connecting the
root to P2.

Consider any path P in T , and let us count the number of paths P ′ such that either P ′ occurs
as a descendant or an ancestor of P , or P ′ is orthogonal to P (i.e., in the path from the root to
P ′, either P is present fully, or P is absent completely—See Figure 11; P ′ is any of P1, P2 and P3).
We denote P is non-splittable w.r.t. P ′. Note that non-splitability is a symmetric property, i.e., if
P is non-splittable w.r.t. P ′, then P ′ is non-splittable w.r.t. P . For a set of paths P, we say P is
non-splitable w.r.t. P if P is non-splitable w.r.t. every path in the set P. Among the paths w.r.t.
which P is non-splitable, we want to count the number of paths P ′ such that P is interested in P ′.
In the structural lemma that follows, we bound the number of such P ′s given a P . We actually

26

P1

P2

P3

e

P1

P2

P3

P

Figure 11: Left: P1, P2, P3 are the types of paths considered in Definition 5.8 for which we define the
notion of e being interested in Pi. Right: A generalization. Given P we are interested in non-splitting paths
P1, P2, P3. P occurs completely in the path from root to P3, and is absent completely from the path from
root to either P1 or P2.

show a stronger property: We show that even if we consider such P ′s such that P is only potentially
interested in P ′, the number of such P ′s is still bounded.

Lemma 5.13 (Interesting path counting lemma). Let P be some ancestor to descendant path in the
tree T and let P be set of paths such that (i) P is non-splittable w.r.t. P, (ii) all paths of P orthogonal
to and ancestor of P are pairwise orthogonal, and all paths of P descendant of P are pairwise

orthogonal as well. Then, w.h.p., it holds that Bpath
def
= |{P ′ ∈ P|P ′ ∈ Intpot(P)}| = O(log n).

Before going into the proof, let us provide some intuition for it. We focus on the case that the
paths in P are orthogonal to P . For simplicity, let us also assume that we want to count the number
of paths that P is interested in (instead of P being potentially interested in). This simplifies the
intuition, and going from interested to potentially interested is not hard.

At a high-level, if an edge e ∈ P is interested in some path Pi ∈ P, we have that Cov(e, Pi) ≥
Cov(e)/2. We would next go over the path P from the lowest vertex towards the highest vertex
and start counting the number of non-tree edges that start from the subtree rooted at the vertex
and end somewhere outside. We will actually count only the number of such edges that covers
some orthogonal path in P , and, depending on this number, will start populating the set Intpot(P).
The crucial observation here is the following: each time we reach some edge e = {u, v} that is
interested in some new path Pi in P (i.e., Pi is different from the paths in P that were already seen
to be in Intpot(P) and Cov(e, Pi) ≥ Cov(e)/2), we know that the total weight of such ‘new’ non-tree
edges that starts at the sub-tree rooted at v and covers Pi has to be at least the total weight of
non-tree edges we have counted so far—otherwise, e would not be interested in Pi. So, every time
we encounter such an edge e by traversing P from the lowest vertex to the highest vertex, the total
weight of non-edges that we count doubles. As the total weight of all non-tree edges are bounded by
some polynomial in n, this can happen only logarithmic many times. This means that the number of
paths in P that P is interested in can be at most logarithmic in n. More or less the same argument
holds for the case when P includes paths that are ancestor or descendant of P .

As mentioned before, this is a simplification and we want to bound the number of paths in
P that P is potentially interested in. We show next that the simple idea described above can be
modified to deal with this case as well.

27

e1

ej = ê2

Pi

Pj

ei = ê1

CovSet(ei, Pi)

CovSet(ej , Pj)

e1

ej = ê2

PiPj

ei = ê1

CovSet(ei, Pi)CovSet(ej , Pj)

Figure 12: Bounding the number of potentially interesting paths when P is orthogonal to P : P is the
central path with red vertices. Edge ei is interested in path Pi and edge ej is interested in path Pj . Left: P
is orthogonal to P . Right: P is descendant of P .

Proof. Let us first count the number of P ′ such that (i) P is potentially interested in P ′ and (ii)
P does not occur in the path from root to P ′ (i.e., P ′ is either an ancestor of or orthogonal to
P).10 For the rest of the proof, readers are advised to refer to Figure 12. Let us order the edges of
P from the lowest to the highest (i.e., from farthest from the root to the closest to the root) as
e1, ..., ez. Consider a path Pi from P that some edge in P is potentially intersted in. Note that
all edges that are ancestors of this particular edge are also potentially interested in Pi. Let ei be
the lowest such edge that is potentially interested in some path Pi. Denote by Cov(ei,P) the value
∑

P ∗∈P Cov(ei, P
∗). CovSet(ei,P) is defined similarly. Next we describe an argument that we repeat

several times during the claim.
Having fixed ei, we now go up in the path P , and focus on edges that are potentially interested

in different paths in P . Let ej1 be the closest edge to ei in P such that ej1 is potentially interested
in a path Pj1 ∈ P that no prior edge in the ordering is potentially interested in. This gives us, by

Claim C.3, that w.h.p, Cov(ej1 , Pj1) >
Cov(ej1)

6 . We make the following two observations at this
point.

Observation 5.14. CovSet(ei, Pi) ⊆ CovSet(ej1 ,P).

This follows from the following reasoning: Since ej1 is an ancestor of ei, and by non-splittability,
we deduce that CovSet(ei,P) ⊆ CovSet(ej1 ,P), which in turn gives us that Cov(ei,P) ≤ Cov(ej1 ,P),
and in particular gives us that CovSet(ei, Pi) ⊆ CovSet(ej1 ,P).

Observation 5.15. CovSet(ei, Pi) and CovSet(ej1 , Pj1) are disjoint.

The reason is as follows. We notice that since Pi, Pj1 are orthogonal, and since P is either
completely above these paths or orthogonal to them, the edges of P can not appear on the unique
tree paths between pairs of edges from Pi, Pj1 (See Observation 5.4). This allows us to deduce that
CovSet(ei, Pi,),CovSet(ej1 , Pj1) are disjoint.

10To be honest, we are not really interested in the case when P ′ is an ancestor of P because there cannot be more
than one such P ′ who are orthogonal to each other.

28

Now, from these two observations, we obtain that the following holds w.h.p.

Cov(ej1 ,P) ≥ Cov(ej1 , Pj1) + Cov(ei, Pi) ≥
Cov(ej1) + Cov(ei)

6

≥ Cov(ej1 ,P) + Cov(eiP)

6
≥ 2Cov(ei,P)

6
.

Had we been interested in paths in P that P is simply interested in, we would have got
Cov(ej1 ,P) ≥ Cov(ei,P). This would be enough to complete the argument as mentioned in the
overview of the proof. Unfortunately, we cannot have such strong claim when we are dealing with
potentially interested paths. Hence we have to consider 7 such edges ej1 , ..., ej7 . Formally, let us
consider ej1 , ..., ej7 with j7 > ... > j1 > i such that ej1 , ..., ej7 are the seven closest edges (by order)
to ei in P such that ejk , k ∈ {1, · · · , 7} are potentially interested in a different path Pjk ∈ P from
all previous paths considered (including all of Pi). If such edges don’t exist, the lemma follows
immediately. Otherwise, we make the following claim.

Claim 5.16. Cov(ej7 ,P) ≥ 7
6Cov(ei,P) holds w.h.p.

Let us first assume Claim 5.16, and prove the lemma. The total weight of edges that cover
ej7 and P is larger by a constant factor (more than 1) from the total weight of edges that cover
ei and P. We next repeat this argument as we traverse P from ej7 upwards. Note that the total
weight of edges cannot grow by such a multiplicative factor more than O(log n) times, as weights
are polynomially bounded. Hence we get a set of O(log n) many edges in P which are potentially
interested in new paths in P than what their descendants in P are interested in. Hence the lemma
follows.

The case where we consider P to be a set of orthogonal paths appearing completely below P
follows the same proof with a change in the ordering of the edge of P (See Figure 12), and replacing
‘ancestor’ with ‘descendant’. We want to order the edges in the opposite order such that the lowest
edge of P gets the smallest index, and we now take ei to be the highest edge that is potentially
interested in some path Pi ∈ P , and ej1 , ..., ej7 satisfy j7 < j6 < ... < j1 < i. This is because of the
way the set CovSet(ei, P

∗), P ∈ P is defined for this case: Any edge f ∈ CovSet(ei, P
∗) has one end

point as a descendant of P ∗ as before, but has the other end point outside the set of descendants of
ei, i.e., the unique tree path between the two end-point of f includes both ei and P ∗. Once we are
set with this change in ordering, rest of the proof is similar to the previous case and is omitted.

Now we prove Claim 5.16.

Proof of Claim 5.16. By definition of potentially interested and Property 2 of Lemma 5.11, that
w.h.p.,

Cov(ejk , Pjk) > Cov(ejk)/6.

As ej1 , ..., ej7 are ancestors of ei and by non-splittability, any edge e ∈ CovSet(ei, P
′) such that

P ′ ∈ P also covers ejk for all k ∈ {1, · · · , 7} i.e., CovSet(ei,P) ⊂ CovSet(ejk ,P). This immediately
gives the following observation:

Observation 5.17. Cov(ei,P) ≤ Cov(ejk ,P) for all k ∈ {1, · · · , 7}.
Note that Cov(ejk ,P) ≤ Cov(ejk) for all k ∈ {1, · · · , 7}. Now one can deduce the following

observation from the fact that Pi and Pjk , k ∈ {1, · · · , 7} are pairwise orthogonal, and the fact
that all edges of P are not on the unique paths in the tree between all pairs among Pi and
Pjk , k ∈ {1, · · · , 7} (See Observation 5.4).

Observation 5.18. CovSet(ei, Pi),CovSet(ejk , Pjk), k ∈ {1, · · · , 7} are pairwise disjoint.

29

Due to non-splittability, we also know that CovSet(ejk , Pjk) ⊆ CovSet(ej7 ,P). Combining these
observations we can deduce that w.h.p.

Cov(ej7 ,P) ≥
7

∑

k=1

Cov(ejk , Pjk) ≥
7

∑

k=1

Cov(ejk)

6
≥

7
∑

k=1

Cov(ejk ,P)

6
≥ 7

6
· Cov(ei,P).

5.4 Learning the interesting paths

In this section we explain how given the sampled edges by each edge e in the sampling procedure, e
can internally construct the set Intpot(e). Furthermore, we define the type of paths we work with in
the algorithm, and we prove that for each such path P , all of its edges can efficiently learn the set
Intpot(P). We start with the definition of knowing a path.

Definition 5.19 (Knowing a path). Given a tree edge e and some ancestor to descendant path P ′

which is either a highway path or a non-highway path, we say that e knows P if the following holds.

1. e knows whether P ′ contains non-highway edges.

2. e knows the lowest fragment F that intersects P (and immediately from using LCA computation,
the highest fragment as well).

Note, that since the id of each fragment is O(log n) bits, the information about each path is
O(log n) bits as well, since the first condition requires a single bit. Furthermore, from here on
in we identify each ancestor to descendant path with the lowest fragment F it intersects. We
interchangeably refer to paths using either the standard notion, or using the lowest fragment of the
path.

We now define the types of paths that we work with in the algorithm.

Definition 5.20. Given a highway path P , we call P a fragment highway if P = PF for some
fragment F . Here, PF is the highway path of the fragment F . We call a highway path P a super
highway if P is the union of two or more fragments highways. We call P a highway bough if P is a
super highway, and P is maximal with respect to the layering of the skeleton tree (See Lemma 4.8).

Now we address the issue of translating the sampled edges into knowing the paths that each
path is potentially interested. Specifically, the missing piece is how, given a tree edge e, one can
make e know each path in the set Intpot(e).

So far, we explained how e uses Lemma 4.2 in order to learn info(e∗) for all edges e∗ ∈
CovSetsamp(e). We now explain why this information suffices for e to construct internally without
further communication the set Intpot(e). We aim to prove the following lemma. Recall that for a
given tree edge e we have that

Intpot(e) =

{

P | Covsamp(e, P) ≥ Covsamp(e)

3

}

∪ Pe

Here, Pe is the path from the root to e. We next show that all non-highways and highways can
learn about the paths they are potentially interested in, the proof is deferred to Appendix D.

Lemma 5.21. All non-highway boughs, and all fragment highways can learn the paths (See definition
5.19) each of them is potentially interested in Õ(Dfrag) rounds. Furthermore, in Õ(Dfrag) rounds, all
non-highway boughs P can simultaneously send Intpot(P) to all vertices in T (P), and all fragment
highways P (of a fragment FP) can send Intpot(P) to all vertices in FP .

30

Note that the above lemma is far from trivial, in particular, there is no clear way to translate
the set CovSetsamp(e) for some given tree edge e into the set of potentially interesting paths. A
naive attempt might be to just take as our set of potentially interesting paths all fragments (which
represent paths) that contain some vertex incident to an edge in CovSetsamp(e). Note however that

this is problematic since this might put paths P in Intpot(e) whose weight fraction Cov(e,P)
Cov(e) is very

small (See Figure 12), since as far as we know, the only edge in CovSet(e, P) is the sampled edge
that included P in Intpot(e), and this edge can have very low weight. This is a problem since this
means that we are not potentially interested in P and thus we would not be able to apply the
interesting path counting lemma (See Section 5.3) later in the algorithm, which is crucial for the
algorithm’s fast running time.

Another naive attempt might be to just take as our set of potentially interesting paths all
fragments (which represent paths) that contain some vertex incident to an edge in CovSetsamp(e)
and e is potentially interested in the paths that the fragments represent. Note however that this
set might be empty. If one denotes by P a path that e is potentially interested in, it might be
that all edges in CovSetsamp(e) that have an incident vertex in T (P) sot not intersect P , but are
actually connected to some low vertices in T (P), which are in a different fragment than the one
that represents P . An example of this is depicted in Figure 13 In this case, how can we find the
fragment that represents P given only the edges CovSetsamp(e)?

LCA claim. To overcome this obstacle we prove a nice structural claim regarding the connection
between the edges in CovSetsamp(e) and the lowest vertices of the paths P that e is potentially
interested in. Intuitively, the claim says that for each path in Intpot(P), one can identify the lowest
vertex v by considering the LCAs of pairs of vertices which are incident to edges in CovSetsamp(e).
This claim allows us to deduce from CovSetsamp(e) the specific fragments that represent all paths
that e is potentially interested in.

𝑒1

𝑒′1
𝑒′2

𝑣1 𝑣2
𝑣3 𝑣4

Figure 13: In this figure we have the green edge e1, and the path P which consists of e′1, e
′
2, and satisfies

P ∈ Intpot(e). v1, v2, v3, v4 denote the vertices in T (P) that have incident edges in CovSetsamp(e1). Note that
there exists a pair of vertices (e.g. v1, v3) such that LCA(v1, v3) is exactly the lowest vertex of P .

Corollaries of interesting path counting lemma (Lemma 5.13) and Lemma 5.21). Lastly,

31

we present some corollaries of Lemma 5.13 and Lemma 5.21 , which are used later in the algorithm.
The following corollary stems from the fact that any 2 non-highway paths in different fragments

are orthogonal.

Corollary 5.22. For each 1 ≤ i ≤ L, where L is the number of layers in the layering decomposition
of the non-highways (See Section 4.3), the following holds: Consider a non-highway P which is
a bough path of layer i. Then P is potentially interested in at most Bpath non-highway paths
(represented by the ID of their respective fragments) which are not in the fragment of P .

Furthermore, for each non-highway bough P of layer i, all the vertices in T (P) know (See
definition 5.19) all of the Bpath non-highway paths (represented by the ID of their respective
fragments) which are not in the fragment of P , that P is potentially interested in.

The following corollary stems from the interesting path counting lemma since the considered
super highway paths set denoted by P in the lemma are orthogonal.

Corollary 5.23. Let P be some non-highway path P , and let P be some set of pairwise orthogonal
super highway paths. Then |Intpot(P) ∩ P| = Bpath.

Furthermore, for each non-highway bough P of layer i, all the vertices in T (P) know (See
definition 5.19) all of the Bpath super highway paths (represented by the ID of their lowest fragment)
which are not in the fragment of P , that P is potentially interested in.

The following corollary stems from the fact that any 2 non-highway paths in different fragments
are orthogonal.

Corollary 5.24. Let P be be some highway path contained in a single fragment F . Denote by F
the set of fragments F ′ that contain some non-highway path that is in Intpot(P). Then |Fi| = Bpath.

Furthermore, for such highway path P , all the vertices in F (the fragment of P) know (See
definition 5.19) all of the Bpath fragments that contain a non-highway that P is potentially interested
in.

5.5 The highway pairing theorem

We again begin with a corollary of Lemma 5.13.

Corollary 5.25. Let P be some highway path contained a single fragment F . Denote by P some
set of pairwise orthogonal highway paths that P is potentially interested in. Then |P| = Bpath.

Using this corollary, we also aim to prove the following important theorem, which is essential
to achieving an optimal running time for the algorithm. Before stating the theorem, we introduce
some relevant notation and definitions. Recall the definition of a bough highway path (Definition
5.20) to be a highway path that constitutes a maximal path in the skeleton tree with respect to
some layer i in the skeleton tree.

Observation 5.26. Given two bough highway paths P1, P2 of layer i, then P1 and P2 are orthogonal.

Proof. Consider the highest fragments in P1, P2, denoted by F1, F2 respectively. Denote by e1, e2
the corresponding edges of F1, F2 in the skeleton tree, since both are of layer i, then e1, e2 are
orthogonal. Thus F1, F2 are orthogonal, and this concludes the proof.

Denote by P the set of bough highway paths. Each bough highway path can be spread across
multiple fragments. For such a path P , we define by FP the set of corresponding fragments of P ,
i.e. FP = {F ∈ F | E(F) ∩ P 6= ∅}. For a fragment F ∈ FP , we denote the subpath of P contained
in F to be PF . Given a pair (P0, P1) of bough highway paths, for a fragment F ∈ FPi

, PF is called

32

𝐹1 𝐹2 𝐹3 𝐹4

𝐹5 𝐹6 𝐹7 𝐹8𝑃𝐻′

𝑃𝐻
Figure 14: Example of two highways, with the purple vertex being the root of the tree. Fragments are circled
in red. Dotted fragments are inactive with respect to this pair. Black lines represent a high amount of weight
in terms of edges going from the respective fragment to the respective subtree of the vertex on the right.

active, if PF is potentially interested in P1−i. We also abuse notation and say that PF ⊆ (P1, P2) if
PF ⊆ P1 or PF ⊆ P2.

At the end of the previous section, we presented corollaries that show that for non-highway
paths, their entire subtree can learn the paths that the paths are potentially interested in. This was
a valid option due to the small size of each fragment, and since for each non-highway path P , T (P)
is completely contained in the fragment of P .

Highways however, need a different treatment, more specifically our goal is to make sure that we
don’t compare too many pairs of fragment highways to one another, and also, we want to make the
pairs of fragment highways we need to compare during the algorithm global information. A naive
attempt for achieving that might be making the pairs of fragment highways that are potentially
interested in one another global information. This, however, can cause a lot of congestion since the
number of such pairs can be linear in n since each fragment highways can be potentially interested
in Ω(

√
n) other fragment highways. To circumvent this, we employ the interesting path counting

lemma (Lemma 5.13) as depicted in the corollary above, that each fragment highway P , can only be
potentially interested in at most O(log n) fragment highways that are pairwise orthogonal. Using
this corollary, instead of pairing up fragments, we employ the layer decomposition of the skeleton tree
(See Section 4.2) in order to pair up highway boughs that are potentially interested in one another.
The number of such pairs (P1, P2) is sufficiently small to make these pairs global information,
including the information on which fragments in P1, P2 are active with respect to this pair. Formally,
we prove the following theorem.

Theorem 5.27. Given the set of bough highways paths P as defined in Definition 5.20, one can
construct a set R ⊆ P × P such that the following holds.

1. If (P1, P2) ∈ R, then P1 is potentially interested in some highway sub-path of P2, and vice
versa.

2. For any fragment F , it holds that RF = |{(P1, P2) ∈ R | PF ⊆ (P1, P2);PF is active}| =
Bpath · log n.

3. If e1 ∈ P, e2 ∈ P ′ are highway edges on different bough highway paths P, P ′ that define the min
2-respecting cut of T , then w.h.p. (P, P ′) ∈ R. Furthermore, e1 is in the active fragments of

33

P , and e2 is in the active fragments of P ′.

4. All the vertices in the graph G can learn the set R in time Õ(D+
√
n). Furthermore, for each

pair (P1, P2) ∈ R, all the vertices of G know who are the active fragments in the pair (P1, P2).

5. For all (P1, P2) ∈ R, it holds that P1 and P2 don’t split one another (See Section 5.3).

The proof of the theorem is deferred to Appendix D. Here we give a short intuition to its
correctness.

In short, the proof goes as follows. We begin with the set of pairs of bough highwways (P1, P2)
such that P1 is potentially interested in P2 and vice versa. Already this pairing satisfies properties
1-4. Lemma 5.13 and its corollary stated at the beginning of the section are crucial for proving
the properties. Then, to make sure property 5 is satisfied, and careful trimming procedure is done
which does not hurt all of the other properties.

6 Algorithms for short paths and routing trick

During our algorithm, many times we consider two ancestor to a descendant sub-paths P ′, P of
length O(Dfrag), and find the min 2-respecting cut that has one edge in P ′, and one edge in P . In this
section, we describe how to compare two such sub-paths. The basic idea is to use an edge between
the paths for routing information between them, and then use internal aggregate computations. In
the case there is no edge, we use a routing trick to bound the amount of global communication. We
divide to cases according to whether P ′ and P are in a highway or not. In all our claims we assume
that each edge e knows the value Cov(e), which can be obtained from Claim 4.3. Before explaining
the algorithm, we start with some simple claims that are useful later.

6.1 Preliminaries: Basic subroutines on a tree

During our algorithm many times we run basic computations in trees, mostly in the trees T (P) of
non-highways, on the trees FP defined by fragments, and on a BFS tree of the graph. We next
discuss such computations and explain how to run many such computations in a pipelined manner.

Broadcast. In a broadcast computation, the root of the fragment has a message of size O(log n) to
pass to the whole tree. This requires time proportional to the diameter of the tree, as the root starts
by sending the message to its children, that in the next round pass it to their children, and so on.
Note that the computation requires sending only one message on each one of the edges of the tree.

Aggregate computation in a tree. In an aggregate computation in a tree T ′ (sometimes called
convergecast), we have an associative and commutative function f with inputs and output of size
O(log n) (for example, f can be sum or minimum). Each vertex v ∈ T ′ initially has some value
xv of O(log n) bits, and the goal of each vertex is to learn the output of f on the inputs {xv}v∈T ′

v
,

where T ′
v is the subtree rooted at v.

Computing an aggregate function is done easily, as follows. We start in the leaves, each one of
them v sends to its parent its value xv, each internal vertex applies f on its input and the inputs it
receives from its children, and passes the result to its parent. The time complexity is proportional
to the diameter of the tree. Moreover, the algorithm requires sending only one message on each one
of the tree edges, which allows to pipeline such computations easily. For a proof, see Appendix E.1.

Claim 6.1. Let T ′ be a tree of diameter DT ′, and assume we want to compute c1 broadcast
computations and c2 aggregate computations in T ′. Then, we can do all computations in O(DT ′ +
c1 + c2) time. Moreover, we can work in parallel in trees that are edge-disjoint.

34

Tree computations in a fragment FP . When we work on fragments FP during the algorithm,
we use aggregate computations in two different directions. Recall that each fragment FP , has a
highway P , which is a path between the root rP and descendant dP of the fragment, and additional
sub-trees attached to P that are contained entirely in the fragment. We will need to do standard
aggregate computations as described above, where rP is the root, but also computation in the reverse
direction, where we think about dP as the root and orient all edges in the fragment accordingly. See
Figure 15 for an illustration. 𝐹𝑃𝑟𝑃

𝑑𝑃

𝑟𝑃

𝑑𝑃

𝐹𝑃

Figure 15: Possible orientations of the fragment FP . On the left appears a standard orientation where rP
is the root, and on the right appears an orientation where dP is the root. Note that the only edges that
changed their orientation are highway edges.

We next show that we can pipeline aggregate computations in both directions and broadcast
computations efficiently. For a proof, see Appendix E.1.

Claim 6.2. Let FP be a fragment with its highway denoted by P , and assume we want to compute
c1 broadcast computations, c2 aggregate computations, and c3 aggregate computations in the reverse
direction in FP . Then, we can do all computations in O(Dfrag + c1 + c2 + c3) time. Moreover, we
can work in parallel in different fragments.

We next discuss additional notation and claims required. We denote by p(v) the parent of v.
For the algorithm, we first make sure that the highest and lowest edges in each highway are known
to all vertices, which takes O(D +Nfrag) time.

Claim 6.3. In O(D+Nfrag) time all vertices can learn the highest and lowest edges in each highway.

Proof. This requires collecting and sending O(1) information per fragment, which can be done in
O(D +Nfrag) time using upcast and broadcast in a BFS tree.

6.2 Simple cases where P
′ is a non-highway

We start with the following basic claim that is useful for cases involving a non-highway. We later
use it to compare a non-highway edge to other edges in its fragment, as well as to edges in another
fragment, assuming there is an edge between the fragments.

Claim 6.4. Let P ′ be a non-highway path, and let e be an edge outside T (P ′), such that {e,Cov(e)}
is known to all vertices in T (P ′). Then, using one aggregate computation in T (P ′), each edge e′ ∈ P ′

can compute the value Cut(e′, e). In addition, for different paths P ′ that are not in the same root to
leaf path, these computations can be done in parallel.

Proof. Let e′ ∈ P ′. By Claim 2.1, Cut(e′, e) = Cov(e′) + Cov(e)− 2Cov(e′, e). Also, e′ knows Cov(e)
and Cov(e′), hence to compute Cut(e′, e), the edge e′ should compute Cov(e′, e). As any edge that
covers a tree edge e′ = {v′, p(v′)} where p(v′) is the parent of v′, has one endpoint in the subtree of
v′ by Claim 3.3, it follows that the edges that cover e′ and e are exactly all the edges that cover
e and have exactly one endpoint in the subtree of v′. This subtree is contained in T (P ′). Note

35

that any edge x that covers e′ and e cannot have both endpoints in T (P ′), as otherwise the tree
path covered by x is contained entirely in T (P ′), but as e is outside T (P ′), x cannot cover e in this
case, which leads to a contradiction. Hence, to learn about the total cost of the edges that cover e
and e′ we need to do one aggregate computation in T (P ′): letting each vertex v′ ∈ T (P ′↓) learn
about the total cost of edges incident on the subtree of v′ that cover e. This can be done using a
convergecast in T (P ′), where each vertex sends to its parent the total cost of edges in its subtree
that cover e, this includes the sum of costs of edges it receives from its children and the cost of such
edges adjacent to it. To implement this efficiently we need an efficient way to determine for each
non-tree edge whether it covers a specific edge e, this can be done using Claim 3.5. Hence, all the
edges e′ ∈ P ′ can compute Cut(e′, e) using one aggregate computation in the subtree of P ′. Since
the whole computation was done in T (P ′), the same computation can be done in parallel for other
paths not in the same root to leaf path with P ′.

We can use Claim 6.4 to compare a non-highway path P ′ in the fragment FP ′ to the edges of a
fragment F 6= FP ′ , assuming there is an edge between T (P ′↓) and F . The time is proportional to
the size of the fragments Sfrag = O(

√
n). For a proof, see Appendix E.2,

Claim 6.5. Let P ′ be a non-highway in the fragment FP ′ and let F 6= FP ′ be another fragment.
Assume that there is an edge f between T (P ′↓) and F , that is known to all vertices in T (P ′). Also,
assume that at the beginning of the computation all vertices in F know all values {e,Cov(e)}e∈F .
Then, in O(Sfrag) time, all edges e′ ∈ P ′ can compute the values {e,Cut(e′, e)}e∈F . The computation
can be done in parallel for different paths P ′ not in the same root to leaf path.

Similar ideas allow us to compare the edges of a non-highway P ′ to all edges that are above or
orthogonal to them in the same fragment. This in particular allows to compare a non-highway to
all edges of the highway of the same fragment. For a proof, see Appendix E.2.

Claim 6.6. Let P ′ be a non-highway in the fragment FP ′ and assume that all vertices in T (P ′)
know the complete structure of P ′. In O(Sfrag) time, all edges e′ ∈ P ′, can compute the values
Cut(e′, e) for all edges e ∈ FP ′ that are either above or orthogonal to them in the fragment FP ′ . The
computation can be done in parallel for different paths P ′ not in the same root to leaf path.

6.3 P
′ is a non-highway and P is a highway

Here we focus on the case that we compare a non-highway P ′ to a fragment highway P in a different
fragment. The case that P is in the same fragment was already discussed in the previous section.
Let e′ ∈ P ′, e ∈ P , we next look at the value Cov(e′, e). See Figure 16 for an illustration. We need
the following definitions.

• CovF (e
′, e) is the cost of all edges that cover e′ and e and have one endpoint in T (P ′↓) and

one endpoint in the fragment FP of P .

• Cov
extr(e′, P) is the cost of all edges that cover e′ and the whole highway P , and have one

endpoint in T (P ′) and both endpoints outside FP .

We show that all all the edges that cover e′ and e are in one of the above categories. For a proof,
see Appendix E.3.

Claim 6.7. Let e′ ∈ P ′, e ∈ P where P ′ is a non-highway, and P is a highway in a different
fragment FP . Then Cov(e′, e) = CovF (e

′, e) + Cov
extr(e′, P).

36

𝑃′𝑒′ 𝑃
𝑟𝑃

𝑑𝑃
𝑒

𝑟

𝑥1
𝑥2

𝑃
𝑟𝑃

𝑑𝑃
𝑒

𝑃′𝑒′

𝑟

𝑦1

𝑦2

Figure 16: Examples of a non-highway P ′ and a highway P . On the left, P ′ and P are orthogonal, and on
the right, P is above P ′. The edges x1 and y1 are examples of edges counted in CovF (e

′, e), and the edges x2

and y2 are examples of edges counted in Cov
extr(e′, P).

In Appendix E.3 we explain how CovF (e
′, e) and Cov

extr(e′, P) are computed. Intuitively,
CovF (e

′, e) can be computed by an aggregate computation similar to the one described in the proof
of Claim 6.4, either inside T (P ′) or in FP . The value Cov

extr(e′, P) can be computed by an aggregate
computation inside T (P ′).

Claim 6.8. Let P ′ be a non-highway and let P be a highway of the fragment FP . Given an edge
e ∈ P , using an aggregate computation in T (P ′), all edges e′ ∈ P ′ can compute the value CovF (e

′, e).

Claim 6.9. Let P ′ be a non-highway and let P be the fragment highway of the fragment FP . Given
an edge e′ ∈ P ′, using an aggregate computation in FP , all edges e ∈ P can compute the value
CovF (e

′, e).

Claim 6.10. In O(Dfrag +Nfrag) time, all edges e′ in the non-highway P ′ can compute the values
Cov

extr(e′, P) for all highways P . Moreover, this computation can be done in all non-highways in
the same layer simultaneously.

Comparing two paths using a routing trick

We next explain how given a non-highway P0 and a highway P1 we compute the values {Cut(e′, e)}e′∈P0,e∈P1
.

There are 2 cases, either there is an edge f between T (P0) and FP1
. In this case, we use f to route

information between P0 and P1, and compute the cut values using aggregate computations inside
one of them. In the case there is no edge, we show a routing trick to limit the amount of global
communication. Basically we show that if we broadcast O(

√
n) cover values to the whole graph, it

is enough to deal with all pairs P0, P1 from this case.

37

Case 1: There are no edges between T (P0) and FP1
. Let P be a highway, we denote by

ePmin the edge e ∈ P such that Cov(e) is minimal. First, we make sure that the values Cov(ePmin) are
known to all vertices.

Claim 6.11. In O(D +Nfrag +Dfrag) time all vertices learn the values {ePmin,Cov(e
P
min)} for all

highways P .

Proof. First, in each highway, finding the edge ePmin requires an aggregate computation inside the
fragment, which takes O(Dfrag) time. Next we send this information to all vertices. As there is
only one edge ePmin per highway, and there are Nfrag highways, this only requires collecting and
broadcasting Nfrag information in a BFS tree, which takes O(D +Nfrag) time.

Lemma 6.12. Let P0 be a non-highway, and P1 be a highway in a different fragment, such
that there are no edges between T (P ↓

0) and FP1
. Then if each edge e′ ∈ P0 knows the values

Cov(e′),Covextr(e′, P1), as well as the values {eP1

min,Cov(e
P1

min)}, using one aggregate and broadcast
computations in P0, all vertices in P0 learn about the values {e′, e,Cut(e′, e)} for edges e′ ∈ P0, e ∈ P1

such that Cut(e′, e) is minimal.

Proof. Let e′ ∈ P0, e ∈ P1. From Claims 2.1 and 6.7, we have

Cut(e, e′) = Cov(e) + Cov(e′)− 2Cov(e, e′),

Cov(e′, e) = CovF (e
′, e) + Cov

extr(e′, P1).

Now if there are no edges between T (P ↓
0) and FP1

, from the definition CovF (e
′, e) = 0 for any pair

of edges e′ ∈ P0, e ∈ P1, as this is the sum of costs of edges with one endpoint in T (P ↓
0) and the

second in FP1
. Hence, in this case, we have

Cut(e, e′) = Cov(e) + Cov(e′)− 2Covextr(e′, P1).

Note that the expression Cov(e′)− 2Covextr(e′, P1) does not depend on the specific choice of e ∈ P1,
hence to minimize the expression Cut(e′, e) for a specific e′ ∈ P0, we just need to find an edge
e ∈ P1 where Cov(e) is minimal, this is the edge eP1

min. As each edge e′ ∈ P0 knows the values

eP1

min,Cov(e
P1

min),Cov(e
′),Covextr(e′, P1) it can compute Cut(e′, e) for an edge e ∈ P1 such that

Cut(e′, e) is minimal. To find the minimum over all choices of e′ we just need one aggregate
computation in P0 to find the minimum value computed, we can then broadcast the information to
let all vertices in P0 learn the values {e′, e,Cut(e′, e)} for edges e′ ∈ P0, e ∈ P1 such that Cut(e′, e)
is minimal.

Case 2: There is an edge between T (P0) and FP1
.

Lemma 6.13. Let P0 be a non-highway in the fragment FP0
and let P1 be the fragment highway of

a different fragment FP1
, and assume that there is an edge f between T (P ↓

0) and FP1
. Let E0 ⊆ P0

be a set of edges in P0 we compare to P1, and E1 ⊆ P1 be a set of edges in P1 that we compare to P0.
Additionally, assume that at the beginning of the computation the following information is known:

• All vertices in T (P0) know the identity of the edge f , The identity of all the edges in E0, and
for each edge e′ ∈ E0, the values Cov(e′),Covextr(e′, P1).

• All vertices in FP1
know the identity of the edge f , the identity of all the edges in E1, and for

each edge e ∈ P1, the value Cov(e).

38

We can compute the values {Cut(e′, e)}e′∈P0,e∈P1
in the following two ways.

1. In O(|E1|) aggregate and broadcast computations in T (P0), where at the end of the computation
each edge e′ ∈ E0 would know the values Cut(e′, e) for all edges e ∈ E1.

2. In O(|E0|) aggregate and broadcast computations in FP1
, where at the end of the computation

each edge e ∈ E1 would know the values Cut(e′, e) for all edges e′ ∈ E0.

Proof. We start by proving Case 1 where the computations are done in T (P0). First, we use the
edge f that has an endpoint in T (P0) and an endpoint in FP1

to pass information from FP1
to T (P0).

As f has an endpoint in FP1
it knows the values {e,Cov(e)}e∈E1

and can pass them to all vertices
in T (P0) using O(|E1|) aggregate and broadcast computations in T (P0). Let e

′ ∈ E0, e ∈ E1. From
Claims 2.1 and 6.7, we have

Cut(e, e′) = Cov(e) + Cov(e′)− 2Cov(e, e′),

Cov(e′, e) = CovF (e
′, e) + Cov

extr(e′, P1).

An edge e′ ∈ E0 already knows Cov(e′) and Cov
extr(e′, P1), and from the broadcast it also knows

the value Cov(e) for all edges e ∈ E1. Hence, to compute the value Cut(e′, e) for a specific edge
e ∈ E1, it only needs to compute CovF (e

′, e). By Claim 6.8, all edges e′ ∈ P0 can compute the value
Cut(e′, e) for a fixed e using one aggregate computation in T (P0). To compute this value for all
edges e ∈ E1, we pipeline |E1| such aggregate computations, which concludes the proof of Case 1.

We next discuss Case 2, where the computations are done in FP1
. Here we use f to pass the

information {e′,Cov(e′),Covextr(e′, P1)}e′∈E0
from T (P0) to FP1

, which requires O(|E0|) broadcast
and aggregate computation in FP1

. Now, after this each edge e ∈ E1 knows the value Cov(e) as
well as the values {e′,Cov(e′),Covextr(e′, P1)}e′∈E0

. As discussed in the proof of Case 1, the only
information missing to compute Cut(e′, e) is CovF (e

′, e). Given an edge e′ ∈ E0, all edges e ∈ P1

can compute Cut(e′, e) using one aggregate computation in FP1
by Claim 6.9. To do so for all edges

e′ ∈ E0, we pipeline |E0| such aggregate computations, which completes the proof.

6.4 P
′ and P are highways

Let e′ ∈ P ′, e ∈ P be two tree edges in the highways P ′, P such that FP ′ , FP are the fragments of
P ′ and P , respectively. The value Cov(e′, e) is broken up to the following different parts. See Figure
17 for an illustration.

1. The cost of edges that cover entirely the highways P and P ′, with endpoints outside FP ′ ∪FP :
Cov

extr(P ′, P).

2. The cost of edges with one endpoint in FP ′ and one endpoint outside FP ′ ∪ FP that cover e′

and the whole highway P : Covextr(e′, P).

3. The cost of edges with one endpoint in FP and one endpoint outside FP ′ ∪ FP that cover e
and the whole highway P ′: Covextr(e, P ′).

4. The cost of edges that cover e′, e and have endpoints in both FP and FP ′ : CovF (e
′, e).

To see that these are all the options we use the structure of the decomposition.
In Appendix E.4, we show that these are indeed all options.

Claim 6.14. Let e′ ∈ P ′, e ∈ P be two tree edges in the highways P ′, P . Then,

Cov(e′, e) = Cov
extr(P ′, P) + Cov

extr(e′, P) + Cov
extr(e, P ′) + CovF (e

′, e).

39

𝑃

𝑥2

𝑥1

𝑒𝑃′𝑒′

𝑥3

𝑥4

Figure 17: Example of two highways P ′ and P , for the special case that the tree is a path, and P and P ′ are
subpaths of it. The edges x1, x2, x3, x4 are counted in Cov

extr(P ′, P),Covextr(e′, P),Covextr(e, P ′),CovF (e
′, e),

respectively.

In Appendix E.4, we explain how we compute the different ingredients in the expression Cov(e, e′).
Intuitively, CovF (e

′, e) can be computed by an aggregate computation in FP or FP ′ , Covextr(e′, P)
can be computed by an aggregate computation inside FP ′ , and Cov

extr(e, P ′) can be computed using
an aggregate computation inside FP . The value Cov

extr(P, P ′) on the other hand is computed using
an aggregate computation over a BFS tree. Note that this requires global communication, as the
edges counted here are not known to vertices in FP ∪ FP ′ . Hence, to get an efficient algorithm,
in our final algorithm we need to make sure not to compare too many different pairs of fragment
highways.

Claim 6.15. Let P, P ′ be two highways. Using one aggregate and one broadcast computation in
a BFS tree, all vertices can learn Cov

extr(P, P ′). Computing this value for k different pairs takes
O(D + k) time.

Claim 6.16. Let P, P ′ be highways of the fragments FP and FP ′ , respectively, and let e ∈ P . Using
one aggregate computation in FP ′, all edges e′ ∈ P ′ can compute the value CovF (e

′, e).

Claim 6.17. In O(Dfrag +Nfrag) time, all edges e that are in a highway can compute the values
Cov

extr(e, P) for all highways P .

Comparing two paths using a routing trick

We next explain how given two highways P0, P1, we compute Cut(e′, e) for edges e′ ∈ P0, e ∈ P1.
Again, we break into two cases according to the existence of an edge between FP0

and FP1
. In the

case there is no edge, we prove that the cut value can be broken up to two parts, one only depends
on information known to P0 and one only depends on information known to P1, we exploit it to
limit the amount of global communication required.

Case 1: there is no edge between FP0
and FP1

.

Lemma 6.18. Let P0, P1 be two disjoint highways, and assume that there is no edge between FP0

and FP1
. Then, given the values Cov

extr(P0, P1), using one aggregate computation in FP0
and in

FP1
, and by communicating O(log n) information over a BFS tree, all vertices learn the values

e′, e,Cut(e′, e) for edges e′ ∈ P0, e ∈ P1 such that Cut(e′, e) is minimal.

40

Proof. Let e′ ∈ P0, e ∈ P1. By Claim 2.1, we have Cut(e, e′) = Cov(e) + Cov(e′)− 2Cov(e, e′). Also,
by Claim 6.14, Cov(e′, e) = Cov

extr(P0, P1) + Cov
extr(e, P0) + Cov

extr(e′, P1) + CovF (e
′, e). Now since

there are no edges between FP0
and FP1

, by definition CovF (e
′, e) = 0 as this is the sum of costs

of edges between FP0
and FP1

that cover e′ and e. Also, Covextr(P0, P1) does not depend on the
specific choice of e′ and e. Hence, if we want to minimize the expression Cut(e, e′), it is equivalent
to minimizing the expression (Cov(e)− 2Covextr(e, P0)) + (Cov(e′)− 2Covextr(e′, P1)). Note that the
expression Cov(e)−2Covextr(e, P0) does not depend on e′, and the expression Cov(e′)−2Covextr(e′, P1)
does not depend on e. Hence, minimizing the whole expression is equivalent to minimizing each one
of the expressions separately. We next show that we can find e ∈ P1 such that Cov(e)−2Covextr(e, P0)
is minimal, as well as compute this value using one aggregate computation in P1. Similarly, we
can find e′ ∈ P0 such that Cov(e′) − 2Covextr(e′, P1) is minimal using one aggregate computation
in P0. Then, if P0 sends the message P0, e

′,Cov(e′) − 2Covextr(e′, P1), and P1 sends the message
P1, e,Cov(e)−2Covextr(e, P0), for the minimal edges found, using a BFS tree, all vertices can compute
the values e′, e,Cut(e′, e) for the edges e′ ∈ P0, e ∈ P1 such that Cut(e′, e) is minimal. As discussed
above, this value equals to (Cov(e)− 2Covextr(e, P0))+ (Cov(e′)− 2Covextr(e′, P1))− 2Covextr(P0, P1),
and we assume that Covextr(P0, P1) is known.

Hence, to complete the proof, we explain how to compute Cov(e) − 2Covextr(e, P0) in P1 (the
equivalent computation in P0 is done in the same way). From Claim 6.17, all edges e ∈ P1 know
the value Cov

extr(e, P0), and they also know Cov(e). Hence, each edge e ∈ P1 knows the value
Cov(e)− 2Covextr(e, P0). To find the edge e that minimizes this expression, we only need to run one
aggregate computation in P1 for finding the minimum.

Case 2: there is an edge between FP0
and FP1

.

Lemma 6.19. Let P0, P1 be two disjoint highways, and assume that there is an edge f between FP0

and FP1
. Let E0 ⊆ P0 be a set of edges in P0 we compare to P1, and E1 ⊆ P1 be a set of edges

in P1 that we compare to P0. For i ∈ {0, 1}, at the beginning of the computation, the following
information is known by all vertices in FPi

:

1. The identity of all the edges Ei.

2. For each edge e ∈ Ei, the values Cov(e),Covextr(e, P1−i).

3. The value Cov
extr(P0, P1).

4. The identity of the edge f .

We can compute the values {Cut(e′, e)}e′∈P0,e∈P1
in the following two ways.

1. In O(|E1|) aggregate and broadcast computations in FP0
, where at the end of the computation

each edge e′ ∈ E0 would know the values Cut(e′, e) for all edges e ∈ E1.

2. In O(|E0|) aggregate and broadcast computations in FP1
, where at the end of the computation

each edge e′ ∈ E1 would know the values Cut(e′, e) for all edges e ∈ E0.

Proof. We focus on the case where the computations are done in FP1
, the second case is symmetric.

We work as follows. First, we use the edge f to pass information from FP0
to FP1

. Note that
all vertices in FP0

, know all the values {Cov(e),Covextr(e, P1)}e∈E0
. Since f has one endpoint

in FP0
it knows this information and can pass it to all vertices in FP1

using O(|E0|) aggregate
and broadcast computations. Now, for each edge e ∈ E0, we run one aggregate computation in
FP1

, that allows each edge e′ ∈ P1 compute Cut(e, e′). This is done as follows. First, by Claim
2.1, we know that Cut(e, e′) = Cov(e) + Cov(e′) − 2Cov(e, e′). Also, by Claim 6.14, Cov(e′, e) =

41

Cov
extr(P0, P1) + Cov

extr(e′, P0) + Cov
extr(e, P1) + CovF (e

′, e). Now, for e′ ∈ E1, it already knows
Cov(e′),Covextr(e′, P0),Cov

extr(P0, P1) at the beginning of the computation. Also, it learns the values
Cov(e),Covextr(e, P1) as f passed this information to FP1

. Hence, the only thing missing to complete
the computation is computing CovF (e

′, e) which requires one aggregate computation in FP1
per

edge e ∈ E0 by Claim 6.16. To compute the values Cut(e′, e) for all e ∈ E0, we pipeline O(|E0|)
such computations, which completes the proof.

Both edges in the same highway. We can deal with the case that both edges are in the same
fragment highway using similar ideas, the details are deferred to Appendix E.5.

7 Monotonicity and Partitioning

7.1 Monotonicity

We next discuss another crucial building block for our algorithm, monotonicity. This property shows
that the minimum 2-respecting cuts in the graph behave in a certain monotone structure, which
can be exploited to obtain a fast algorithm. We start with describing the property in Claim 7.1,
and later explain how to exploit it to obtain a certain partitioning. This property is also discussed
in [MN20], where it is phrased in a slightly different manner related to relevant matrices (see Claim
3.6 in [MN20]). For completeness, we next provide a self-contained proof that fits our description of
the property.

Claim 7.1. Let P0, P1 be two ancestor to descendant paths in the tree, such that P0 and P1 are
either orthogonal or one of them is strictly above the other in the tree. Let v0 ∈ P0 be the endpoint
in P0 that is closest to P1, and v1 ∈ P1 be the endpoint of P1 that is closest to P0, and let t be some
vertex in the tree path between v0 and v1. Let E0 ⊆ P0, E1 ⊆ P1 be subsets of edges. The following
holds. Let e01, e

0
2 be edges in E0, where e02 is closer to t. Denote by e11, e

1
2 the edges in E1 such that

Cut(e01, e
1
1) is minimal and Cut(e02, e

1
2) is minimal, taking the edges closest to t if there is more than

one option. Then either e12 = e11 or e12 is closer to t compared to e11.

𝑃1

𝑥1

𝑃0𝑒10 𝑡
𝑥2

𝑒20 𝑒11𝑒21 𝑒

Figure 18: An illustration for monotonicity. If e02 is closer to t compared to e01, then e12 is closer to t compared
to e11. The edge x1 is an example of an edge that covers e and e02 and also covers e01, and the edge x2 is an
example of an edge that covers e and e02 but not e01. Note that any edge that covers e and e02 also covers any
edge in P1 closer to t compared to e.

Proof. Let e ∈ E1. By Claim 2.1, Cut(e01, e) = Cov(e01) + Cov(e)− 2Cov(e01, e). Since Cut(e01, e
1
1) is

minimal, it follows that Cov(e11) − 2Cov(e01, e
1
1) ≤ Cov(e) − 2Cov(e01, e) for all e ∈ E1. Similarly,

42

for e ∈ E1, we have Cut(e02, e) = Cov(e02) + Cov(e) − 2Cov(e02, e). To find an edge e ∈ E1 that
minimizes this expression, we need to minimize Cov(e)− 2Cov(e02, e). We write it as C1(e) + C2(e),
where C1(e) = Cov(e)− 2Cov(e01, e), C2(e) = −2Cov(e02, e) + 2Cov(e01, e). From the discussion above,
we have that C1(e

1
1) ≤ C1(e) for all e ∈ E1. We next take a closer look at C2(e). Note that

Cov(e02, e) − Cov(e01, e) is the cost of all edges that cover e02 and e but do not cover e01 (since e02
is closer to t than e01, we have that any edge that covers e01 and e also covers e02 as it is on the
path between e01 and e, but there may be additional edges that cover e02 and e). This expression is
monotonic in the following sense. If e′, e ∈ E1 where e′ is closer to t, any edge that covers e02 and
e also covers e′ as its on the path between e02 and e, hence this expression increases when we go
towards t. As C2(e) = −2(Cov(e02, e)− Cov(e01, e)), we have that C2(e) is monotonically decreasing
when we go towards t. To sum up, if we look at the sum C1(e) + C2(e) that we want to minimize,
for all edges e that are farther from t compared to e11, we have that C1(e

1
1)+C2(e

1
1) ≤ C1(e)+C2(e).

As we want to find the edge e12 that minimizes the expression and is closest to t, it follows that e12 is
either equal to e11 or closer to t compared to it. This completes the proof.

7.2 Partitioning

Here we use monotonicity to obtain a certain partitioning. This partitioning is useful for the
case that we have one short path P ′ of length O(Dfrag), and we should compare it to a long path
composed of highways, that may have length Ω(n). This would be later crucial for the algorithm
where we look for the min 2-respecting cut that has at least one edge in a highway.

We start by discussing the case that the short path P ′ is a non-highway, and later discuss
the case it is a highway. Let P ′ be a non-highway that we want to compare to a long path PH

composed of highways. For our algorithm, we need to look at two cases, that PH is either completely
orthogonal to P ′ or completely above P ′. While we can compare P ′ to a specific highway P ∈ PH

in O(Dfrag) time using an algorithm comparing two short paths, the challenge here is that we want
to do many such computations efficiently. If we want to compare each edge of P ′ to each edge in
PH (that may have linear size), the total amount of information if too high. The goal of this section
is to use monotonicity to break P ′ to smaller parts, such that in average we compare each edge of
P ′ only to a constant number of highways in PH , which is crucial for obtaining a small complexity.
We next discuss the partitioning. We prove the following. See Figure 19 for an illustration.

Lemma 7.2. Let P ′ be a non-highway, and let PH be a path of highways, such that PH is completely
orthogonal to P ′ or completely above P ′. Denote by P1, ..., Pk the different highways in PH going
from the lowest to highest in the tree. Then, we can break the edges of P ′ to (not necessarily disjoint)
subsets E′

1, ..., E
′
k, such that the following holds.

1.
∑k

i=1 |E′
i| = O(Dfrag + k).

2. It is enough to solve the min 2-respecting cut problem on the pairs {Pi, E
′
i}ki=1. More formally,

if we denote by {ei, e′i} the two edges ei ∈ Pi, e
′
i ∈ E′

i such that Cut(ei, e
′
i) is minimal, and denote

by j an index such that Cut(ej , e
′
j) ≤ Cut(ei, e

′
i) for all 1 ≤ i ≤ k, then Cut(ej , e

′
j) = Cut(e, e′),

where e ∈ PH , e′ ∈ P ′ are edges such that Cut(e, e′) is minimal.

3. Assume that all vertices know the values {e,Cov(e)}, for all edges e that are highest or lowest
in some highway. Then, we can compute the sets E′

i in O(Dfrag + k) time. At the end of
the computation all the vertices in T (P ′) know the identity of all edges in the set E′

i, for all
1 ≤ i ≤ k. This can be done in different orthogonal non-highways simultaneously.

The proof of Lemma 7.2 breaks down to three claims. We start by defining the sets E′
i, and then

show they satisfy the required properties. Recall that P1, ..., Pk are the different highways in PH

43

going from the lowest to highest in the tree. We denote by ei,1, ei,2 the lowest and highest edges in
the highway Pi, respectively. For b ∈ {1, 2}, we denote by e′i,b the edge in P ′ such that Cut(e′i,b, ei,b)
is minimal, taking the highest such edge if there is more than one option. We denote by E′

i all the
edges in P ′ between e′i,1 to e′i,2. Using monotonicity, we have the following.

Claim 7.3.
∑k

i=1 |E′
i| = O(Dfrag + k).

Proof. We next use Claim 7.1 to show that the different sets E′
i are almost disjoint. The set E′

i

includes all edges between e′i,1 and e′i,2. As P
′ is either orthogonal or below PH , the highest vertex in

P ′ is the closest to PH , we denote it by t. From Claim 7.1, we have that e′i,2 is closer to t compared
to e′i,1. Moreover, as all paths Pj for j > i are closer to t compared to Pi, it follows from Claim 7.1
that all the edges e′j,b for j > i, b ∈ {1, 2} are either closer to t than e′i,2 or equal to e′i,2. Similarly,
as Pi is closer to t than the paths Pj for j < i, we have that all the edges e′j,b for j < i, b ∈ {1, 2}
are either equal to e′i,1 or below it. To summarize, all edges e′j,b for j 6= i are either equal to one of
e′i,1, e

′
i,2 or strictly above or below the whole set E′

i. It follows that all the edges in E′
i except maybe

two, are not contained in any of the sets E′
j for j 6= i (as both edges e′j,1, e

′
j,2 are either strictly

above or strictly below internal edges of E′
i).

This gives
∑k

i=1 |E′
i| = O(Dfrag + k). The O(Dfrag) term counts internal edges in the sets E′

i

that are only contained in one of the sets E′
i, their number is bounded by the length of P ′, which is

O(Dfrag). The second term O(k) counts the edges {e′i,1, e′i,2}1≤i≤k. Note that such an edge may be
included in more than one set (for example, we may have e′i,1 = e′j,1), however per set E

′
i we only

have two such edges, that sums to 2k in total.

We next show that it is enough to focus on the sub-problems defined by the pairs {Pi, E
′
i}ki=1.

Claim 7.4. Let
(e′, e) = arg min

{e′∈P ′,e∈PH}
Cut(e′, e),

(e′i, ei) = arg min
{e′∈E′

i,e∈Pi}
Cut(e′, e).

Let j be an index such that Cut(e′j , ej) ≤ Cut(e′i, ei) for all 1 ≤ i ≤ k, then Cut(e′j , ej) = Cut(e′, e).

Proof. Let Pi ∈ PH be the highway such that e ∈ Pi. If e = ei,b for b ∈ {1, 2}, the edge e′i,b ∈ E′
i

is an edge in P ′ such that Cut(ei,b, e
′
i,b) is minimal, hence Cut(e′i, ei) = Cut(e′, e), and we are done.

Otherwise, since e is in the tree path between ei,1 to ei,2, from Claim 7.1, it follows that there is
an edge e′ ∈ P ′ in the path between e′i,1 to e′i,2 such that Cut(e, e′) is minimal. In more detail, we
again denote by t the highest vertex in P ′, which is the vertex in P ′ closest to PH . As ei,2 is the
highest edge in Pi, it is closer to t compared to e, which means that the edge e′i,2 is equal or closer
to t than the edge e′ ∈ P ′ such that Cut(e′, e) is minimal. Similarly, e is closer to t compared to ei,1,
which means that e′ is equal or closer to t compared to e′i,1. To sum up, e′ is between the edges e′i,1
to e′i,2, hence by definition e′ ∈ E′

i, which gives Cut(e′i, ei) = Cut(e′, e), as needed.

We next explain how to compute the sets E′
i.

Claim 7.5. Assume that all vertices know the values {e,Cov(e)}, for all edges e that are highest or
lowest in some highway. Then, we can compute the sets E′

i in O(Dfrag + k) time. At the end of the
computation all the vertices in T (P ′) know the identity of all edges in the set E′

i, for all 1 ≤ i ≤ k.
This can be done in different non-highways that are not in the same root to leaf path simultaneously.

Proof. First, we let all vertices in T (P ′) learn the complete structure of P ′, since P ′ has length
O(Dfrag), this can be done in O(Dfrag) time using upcast and broadcast in T (P ′). Next, we compute

44

P1

P2

PH

r

PkE
′

k

E
′

1

E
′

2

P
′

Figure 19: An illustration of the partitioning.
P ′ is partitioned in almost disjoint E′

1, · · · , E′
k

w.r.t. P1, · · · , Pk which are highways of PH .

FP

P

E1

E2

E3

P1

P2

P3

inactive

PH

r

active

active

active

Figure 20: Partitioning highway P w.r.t. active
highways in PH . P1, P2, P3 are active highways
in PH , and P is partitioned in almost disjoint
E1, E2, E3 w.r.t. them.

the edges e′i,b for 1 ≤ i ≤ k, b ∈ {1, 2}. Recall that e′i,b is the edge in P ′ such that Cut(e′i,b, ei,b) is
minimal. Since all vertices know the values {ei,b,Cov(ei,b)} (as the edges ei,b are the highest or
lowest in the highway Pi), we can use Claim 6.4, to compute these edges. In more detail, if we
fix an edge e = ei,b, using one aggregate computation all edges e′ ∈ P ′, learn the value Cut(e′, e).
To let all vertices in T (P ′) learn the highest edge e′ = e′i,b such that Cut(e′, e) is minimal, we use
convergecast and broadcast in T (P ′). Using pipelining, all vertices in T (P ′) can learn all the edges
e′i,b, which requires O(k) aggregate and broadcast computations, this takes O(Dfrag + k) time. Since
all vertices in T (P ′) know the complete structure of P ′, they can deduce the sets E′

i, as E
′
i is the

set of all edges in P ′ between e′i,1 to e′i,2. As the whole computation was done inside T (P ′), we can
work simultaneously in different non-highways not in the same root to leaf path, as their trees T (P ′)
are edge-disjoint.

We will also show a similar claim when P is a highway inside a fragment. The only change here
is the time required to compute the partition.

Lemma 7.6. Let P be a highway in a fragment, and let PH be a highway path such that P is
non-splittable w.r.t. P (i.e., PH is either orthogonal to P , or an ancestor of a descendant of P).
Among the highways in PH , denote by P1, ..., Pk the different highways in PH which are labeled
active (i.e., each such Pi is potentially interested in P). Then, we can break the edges of P to (not
necessarily disjoint) subsets E1, ..., Ek, such that the following holds.

1.
∑k

i=1 |Ei| = O(Dfrag + k).

2. It is enough to solve the min 2-respecting cut problem on the pairs {Pi, Ei}ki=1.

3. Assume that all vertices know the values {e′,Cov(e′)}, for all edges e′ that are highest or lowest
in some highway. Then, we can compute the sets Ei in O(Dfrag + k +D) time. At the end

45

of the computation all the vertices in FP know the identity of all edges in the set Ei, for all
1 ≤ i ≤ k.

Proof. Property 1 and 2 can be proven exactly as in Lemma 7.2. Note that here we are considering
only the active highways in PH , but that does not change much. As before, let ei,1 and ei,2 are
the two extremal edges of Pi: If PH is orthogonal or ancestor of P , then they are the lowest and
the highest edges of Pi, otherwise of PH is a descendant of P , then they are the highest and the
lowest edges respectively. We find e′i,1 and e′i,2 on P as before, but this time w.r.t. only the active
highways of PH , and a similar argument shows Property 1 and 2 (See Figure 20 for a clearer idea).
We will show how to achieve Property 3 next.

As in Lemma 7.2, the computation boils down to finding the edges e′i,b for 1 ≤ i ≤ k and
b ∈ {1, 2}. Fix an edge e = ei,b. We will show how every edge e′ ∈ P learns the value Cut(e′, e). We
have assumed that every edge e′ knows the value {e,Cov(e)} because e is either the highest or the
lowest in the highway Pi. Also, e

′ knows the value Cov(e′). So it remains for e′ to know the value
Cov(e′, e). Note that Cov(e′, e) = CovF (e

′, e)+Cov
extr(e, P)+Cov

extr(e′, Pi)+Cov
extr(P, Pi) by Claim

6.14. The value Cov
extr(e, P) can be calculated inside Pi by an aggregate computation and can be

broadcast over a BFS tree of G. Similarly, the value Covextr(P, Pi) can be calculated by one aggregate
computation over a BFS tree of G and can be broadcast. Each of these two operation requires
O(1) bits of aggregate and broadcast and takes time O(D). The term CovF (e

′, e) + Cov
extr(e′, Pi)

can be computed similar to that in Lemma 7.2—We use one single aggregate computation inside
FP for every edge e′ ∈ P learn the value of CovF (e

′, e). At this point, each edge e′ ∈ P can
compute Cut(e′, e). To let all the vertices of FP know the identity of e′i,b for which Cut(e′i,b, e) is the
smallest, we just need to do convergecast and broadcast inside FP . In total, this requires O(1) bits
of aggregate and broadcast inside FP . Hence, this can be computed for every ei,b in a pipelined
fashion which takes time O(D+ k) for aggregate and broadcast on a BFS tree of G and O(Dfrag + k)
for aggregate and broadcast over FP . Hence the total round complexity is O(Dfrag + k +D).

Remark 7.7. A major difference between Lemma 7.2 and 7.6 is the following: Computing the E′
i’s

for different non-highway paths can be done simultaneously in Lemma 7.2 because the computation
happens entirely within E′

i. In Lemma 7.6, however, k many additional aggregate computation
over the BFS tree is needed for each highway. Later when we have to do it over many highways
parallelly, we will see that we have to perform Õ(Nfrag) many aggregate computations. When we
pipeline them, the complexity of aggregate computation will be Õ(D +Nfrag) and the total rounds
complexity will be Õ(Dfrag +Nfrag +D).

8 Finding the min 2-respecting cut

We will next explain how to find the 2 tree edges e, e′ that define the minimum cut. We divide to
cases depending if the edges e, e′ are part of a highway or a non-highway. We start by explaining
how we deal with the simple case that the cut is defined by one tree edge, and then focus on the
case that the cut is defined by two edges.

8.1 1-respecting cut

From Claim 3.4, for each tree edge e, the value of the 1-respecting cut defined by e is Cov(e), and is
known to e, by Claim 4.3. Thus, in O(D) rounds, all the network can know the value min

e∈E
Cov(e) of

the min 1-respecting cut, as well as the edge e minimizing this expression. From here on we assume
that the the min cut is attained as the 2-respecting cut of some pair of tree edges.

46

8.2 Simple cases with non-highways

We show how to compare all non-highway edges to all the edges in their fragment, as well as to all
non-highways they are potentially interested in in other fragments. The general idea is simple. From
Claim 6.6, we can compare the edges of a non-highway path P ′ to the edges of the fragment FP ′ in
O(Sfrag) time. Similarly, we can compare P ′ to all edges of a different fragment in O(Sfrag) time.
From Corollary 5.22, we know that we only need to compare a non-highway P ′ to non-highways in
O(log n) different fragments, and these fragments are known to all vertices in T (P ′). Hence, overall,
we can compare P ′ to all these fragments in Õ(Sfrag) time. Moreover, the computations can be
done in parallel for different orthogonal non-highways P ′. As non-highways in the same layer are
orthogonal, we process the graph according to the O(log n) layers, and in iteration i, in Õ(Sfrag)
time, take care of all non-highways in layer i. This gives the following, for a full proof see Appendix
F.1.

Claim 8.1. Let e, e′ be a pair of edges that minimize Cut(e, e′) such that e, e′ are either two non-
highway edges in different fragments, or two edges in the same fragment where at least one of
them is a non-highway edge. In Õ(D + Sfrag) time all the vertices in the graph learn the values
{f, f ′,Cut(f, f ′)} for a pair of edges such that Cut(f, f ′) ≤ Cut(e, e′).

8.3 Exactly one cut edge in a highway

Here we discuss the case that the 2-respecting cut is defined by two edges e′, e such that e′ is in a
non-highway P ′, and e is in a highway P in different fragment. The case that e is in a highway in
the same fragment was already discussed in Section 8.2. We will deal separately with the case that
there is an edge between T (P ′) and the fragment FP of P , and the case there is no such edge. To
do so, we first show the following.

Claim 8.2. In Õ(Dfrag +Nfrag) time, for all non-highways P ′, all vertices in T (P ′) know for each
fragment F whether there is an edge between T (P ′↓) and F , and the identity of an edge between
T (P ′↓) and F if exists.

Proof. We work in O(log n) iterations according to the layers. In iteration i, we take care of non-
highways P ′ in layer i. We work as follows. Given a fragment F , we run an aggregate computation
in T (P ′) to learn the identity of the first edge between T (P ′↓) and F if exists (for this, we use the
fact that both endpoints of an edge can learn the fragments these endpoints belong to), then we
broadcast the information to T (P ′). To do so for all fragments, we run O(Nfrag) aggregate and
broadcast computations, which takes O(Dfrag +Nfrag) time using pipelining. This can be done in
parallel for all non-highways P ′ in the same layer, as their trees T (P ′) are edge-disjoint. Computing
this for all layers, results in Õ(Dfrag +Nfrag) time.

Next, we deal with the case that there is no edge between a non-highway and a highway. The
main idea is that since there is no edge between the paths, one can employ Lemma 6.12 in order to
obtain the necessary information to compute the min 2-respecting cut between these paths.

Claim 8.3. In Õ(D +Dfrag +Nfrag) time, all vertices learn the values {e′, e,Cut(e′, e)} for edges
e′, e that minimize the expression Cut(e′, e), where e′ is in a non-highway P ′, and e is in a highway
P , such that there is no edge between T (P ′↓) and the fragment FP of P .

Proof. We work in O(log n) iterations according to the layers. In iteration i, we take care of all non-
highways P ′ in layer i. We first let all edges e′ ∈ P ′ learn the values Covextr(e′, P) for all highways P ,
this takes O(Dfrag +Nfrag) time using Claim 6.10, and can be done in all non-highways in the same
layer simultaneously. Then, we let all vertices learn the values {ePmin,Cov(e

P
min)} for all highways P ,

47

where ePmin is the edge e ∈ P such that Cov(e) is minimal. This takes O(D +Nfrag +Dfrag) time by
Claim 6.11.

We next use this information to find the min 2-respecting cuts that have one edge in P ′ and one
edge in a highway P such that there is no edge between T (P ′↓) and the fragment FP of P . Note
that all vertices in T (P ′) know exactly the identity of all such highways from Claim 8.2. We next fix
such highway P . We can use Lemma 6.12, to let all edges in P ′, learn the values {e′, e,Cut(e′, e)}
for edges e′ ∈ P ′, e ∈ P such that Cut(e′, e) is minimal. This requires one aggregate and broadcast
computations in P ′. To do so for all such highways P , we do O(Nfrag) computations, which takes
O(Dfrag +Nfrag) time, and can be done in parallel in different non-highways in layer i. To take care
of non-highways in all layers, we have O(log n) iterations, which overall takes Õ(Dfrag +Nfrag) time.

After this, for each pair of a non-highway P ′ and a highway P , where there is no edge between
T (P ′↓) and FP , the vertices in P ′ know the values e′, e,Cut(e′, e) for edges e′ ∈ P ′, e ∈ P that
minimize this expression. To learn the minimum such value over all pairs, we use convergecast and
broadcast in a BFS tree, which takes O(D) time.

We next discuss the case there is an edge between a non-highway and a highway. Here, we use
the partitioning described in Section 7.2, and bounds on the number of paths each path is potentially
interested in from Section 5.3 to obtain a fast algorithm. Note that it is enough to compare a
non-highway and a highway that are potentially interested in each other, as if e′ ∈ P ′, e ∈ P define
the minimum 2-respecting cut, it holds that P ′ and P are potentially interested in each other. The
proof idea is as follows. First, we know that each non-highway is only potentially interested in
poly(log n) super-highways. To compare one non-highway P ′ to a super-highway PH we use the
path-partitioning lemma (Lemma 7.2). After the partitioning, we route information from P ′ to the
fragment highways of PH , which compute the relevant cut values. A fragment highway P ∈ PH only
participates in the computation if it is potentially interested in a non-highway in the fragment FP ′ ,
which bounds the total amount of computation. The full proof of the claim is deferred to Appendix
F.

Claim 8.4. In Õ(D + Sfrag +Nfrag) time, all vertices learn the values {e′, e,Cut(e′, e)} for edges
e′, e that minimize the expression Cut(e′, e), where e′ is in a non-highway P ′, and e is in a highway
P , such that there is an edge between T (P ′↓) and the fragment FP of P , and such that P ′ and P
are potentially interested in each other.

A schematic description of the algorithm for the non-highway-highway case appears in Algorithm
8.5.

48

Algorithm 8.5 Schematic algorithm when exactly one edge is in a highway

Require: From Corollary 5.23, for each non-highway bough P ′ in layer 1 ≤ i ≤
L, all vertices in T (P ′) know a set of super-highways PH ∈ Intpot(P

′). Each
such super-highway is either completely above or completely orthogonal to
the fragment of P ′.

Require: From Corollary 5.24, for each fragment highway P in a fragment
FP , all vertices in the fragment FP know the set of O(log n) fragments that
contain non-highway paths that P is potentially interested in, not including
FP .

1: For each non-highway P ′ in layer 1 ≤ i ≤ L and all fragments F , all vertices
in T (P ′) learn if there is an edge between T (P ′↓) and the fragment F , and
if so, the identity of such edge.

⊲ See Claim 8.2
2: for every layer 1 ≤ i ≤ L do
3: for Every non-highway P ′ in layer i in parallel do
4: for Every fragment highway P where there is no edge between T (P ′↓)

and FP do
5: Compute {e′, e,Cut(e′, e)} for e′ ∈ P ′, e ∈ P that minimize this

expression.
⊲ See Claim 8.3

6: for every layer 1 ≤ i ≤ L do
7: for Every non-highway P ′ in layer i in parallel do
8: for Every super-highway PH ∈ Intpot(P

′) (Represented by lowest
fragment) do

9: Let P1, ..., Pk be the fragment highways of PH .
10: Partition the edges of P ′ into sets E′

1, ..., E
′
k such that we only

need to compare E′
i to Pi.

⊲ Use Lemma 7.2
11: for Each fragment highway Pj where there in edge f between

T (P ′↓) and FPj
in parallel do

12: Use f to route the information
{e′,Cov(e′),Covextr(e′, Pj)}e′∈E′

j
from P ′ to Pj .

13: The cut values would be computed by the fragment highways
Pj that are potentially interested in P ′, as described next. If Pj is not
potentially interested in P ′ there is no need to compute the values.

⊲ See Claim 8.4
14: for every fragment highway P do
15: for every fragment F with set of edges EF that contains a non-

highway path that P is potentially interested in do
16: Compute the values {Cut(e′, e)}e′∈EF ,e∈P for all edges e′ where

the values {e′,Cov(e′),Covextr(e′, P)} were received from vertices in F , and
specifically from the non-highway paths in F that are potentially interested
in P .

⊲ See Claim 8.4 and Lemma 6.13
17: Communicate over a BFS tree to let all vertices learn the values

{e′, e,Cut(e′, e)} for edges e′, e in the above cases that minimize Cut(e′, e).

49

8.4 Both cut edges in highways

Now we turn to discussing the case of 2-respecting cuts when both cut edges e and e′ are in different
highway paths. The case when both edges are in the same highway will be discussed after that. We
first show a claim analogous to Claim 8.2.

Claim 8.6. In Õ(Dfrag + Nfrag) time, for all highways P ′ (inside different fragments FP ′), all
vertices in FP ′ know for each fragment F whether there is an edge between FP ′ and F , and the
identity of an edge between FP ′ and F if exists.

Proof. The proof is similar to that of Claim 8.2 as well. We run an aggregate computation inside
FP ′ to learn the identity of the first edge between FP ′ and F , and if such an edge exist, we broadcast
this information inside FP ′ . This requires O(Dfrag) rounds. As there are Nfrag many fragments F ,
doing so for all fragments requires Õ(Dfrag + Nfrag) rounds. We can do it for all short highways
simultaneously as the fragments FP ′ ’s are disjoint for different short highways.

The next will be a two step argument, each step requiring the monotonicity property as presented
in Claim 7.1: In the first step, we compute the complexity of comparing a highway path inside a
fragment and a long highway path. This is where we use the path-partitioning trick on the short
highway path to come up with an efficient algorithm—similar to what we have already seen in the
previous section when we compared a non-highway path (which, by definition, is contained inside
a fragment) and a long highway path. In the second step, we use this algorithm as a subroutine
to come up with a divide and conquer technique for comparing a long highway to a long highway.
This step also uses the monotonicity property of the minimum 2-respecting cut. Recall that, when
we compare two long highway paths PH1

and PH2
, a highway P inside a fragment F in either of

the long highway paths is active if P is potentially interested in the other long highway path. In
both steps mentioned before, the complexity is in terms of the number of active highways in the
computation, and not in terms of the number of total highways in the computation. This is crucial
because this will help us bound the complexity when we compare many pairs of long highway paths
simultaneously—we will use Theorem 5.27 which bounds the number of pairs an active highway
takes part in is O(log2 n). Next, we start with assuming the complexity of the first step, and show
how to implement the second step. We then prove the complexity of the first step.

Claim 8.7. Let P ′ be a highway completely contained in a fragment and PH be a highway path
spread across many fragments P1, · · · , Pk such that P ′ is non-splittable w.r.t. PH . Let ℓ many
highways in PH are labelled as ‘active’.

1. In time Õ(ℓ+D +Dfrag) all vertices learn the value {e, e′,Cut(e, e′)} for edges e and e′ that
minimize Cut(e, e′) where e is in one of the ‘active’ highways of PH and e′ ∈ P ′.

2. The computation is done inside P ′ and the active components of PH which is Õ(ℓ +Dfrag)
bits of aggregate computation and, in addition, a broadcast of Õ(ℓ) bits of communication over
the BFS tree of G is performed.

An algorithm for two highway paths. We will now show, assuming Claim 8.7, how to compare
different pairs of highways efficiently. To this end, we first focus on one pair of highway paths for
now—this will showcase the divide and conquer technique that we want to employ. Later we show
how to take care of all pairs of highways in parallel using Theorem 5.27. Consider two highways
PH1

and PH2
where PH1

has ℓ1 many active short highways w.r.t. PH2
and PH2

has ℓ2 many active
short highways w.r.t. PH1

. We make the following claim.

50

Claim 8.8. Consider two highway paths PH1
and PH2

where PH1
has ℓ1 many active highways

w.r.t. PH2
and PH2

has ℓ2 many active highways w.r.t. PH1
. Also, assume that all vertices in PH1

and PH2
know the set of these active highways.

Then there is an algorithm such that the minimum 2-respecting cut, where one edge from PH1

and another tree edge from PH2
is included, can be found in time Õ(ℓ1 + ℓ2 + Dfrag + D). This

computation requires Õ(ℓ1 + ℓ2) bits of broadcast computation and at most (ℓ1 + ℓ2 +Dfrag) bits of
aggregate computation inside a fragment corresponds to an active highway.

Proof. Let us order the active components in PH1
as P 1

H1
, · · · , P ℓ1

H1
, and similarly the active com-

ponents of PH2
are P 1

H2
, · · · , P ℓ2

H2
such that P 1

H1
is the closest highway in PH1

to P 1
H2

and vice
versa (where the distance is measure via the unique path between PH1

and PH2
, see Figure 21 for

reference). We first do the following two comparisons, each between a short highway and a long
highway:

1. First P
ℓ1/2
H1

runs the algorithm from Claim 8.7 with PH2
but only with the active highways of

PH2
. Let the tree edge from PH2

taking part in this minimum 2-respecting cut is in component
ℓi for PH2

. As we have learnt from Claim 8.7, this requires O(ℓ2 +Dfrag +D) rounds.

2. Then P ℓi
H2

runs the algorithm from Claim 8.7 with PH1
. This requires O(ℓ1 + Dfrag + D)

rounds.

In total, these two comparisons require O(ℓ1 + ℓ2 +Dfrag +D) rounds when run one after the other.
This gives rise to two disjoint subproblems (See Figure 21 for reference):

(i) Comparing the prefix of PH1
starting from P 1

H1
till (but not including) highway ℓ1/2 (which

we denote as P t
H1

) with the prefix of PH2
starting from P 1

H2
till (but not including) highway

ℓi (which we denote as P t
H2

); and,

(ii) Comparing the suffix of PH1
from (but not including) highway ℓ1/2 to P ℓ1

H1
(which we denote

as P b
H1

) with the suffix of PH2
from (but not including) highway ℓi to P ℓ2

H2
(which we denote

as P b
H2

).

Note that, because of the guarantee of Claim 8.7, all edges of PH1
and PH2

know which
subproblem they are included. Let the number of active components in P t

H1
, P b

H1
, P t

H2
and P b

H2
be

ℓt1, ℓ
b
1, ℓ

t
2, ℓ

b
2 respectively. Note that ℓt1 + ℓb1 = ℓ1 − 1, and ℓt2 + ℓb2 = ℓ2 − 1. We recurse parallelly

in these two sub-problems by again choosing middle components in P t
H1

and P b
H1

. The point to

note over here is the following: Because comparing P t
H1

with P t
H2

and comparing P b
H1

with P b
H2

are
disjoint subproblems, the computations within the fragments of the active highways for these two
subproblems can be done parallelly. The total number of bits that need to be broadcast is O(ℓt1+ ℓt2)
for the first subproblem, and O(ℓb1 + ℓb2) for the second subproblems, which can be pipelined: This
requires O(ℓb1 + ℓb2 + ℓt1 + ℓt2 +D) rounds, i.e, O(ℓ1 + ℓ2 +D) rounds. Hence, total number of rounds
required in this iteration is O(ℓ1 + ℓ2 +Dfrag +D).

This argument extends in all levels of recursion, i.e., each level of recursion can be done in
time O(ℓ1 + ℓ2 + Dfrag + D). At the end, the algorithm compares many disjoint pairs of active
highway and highway path in parallel such that the total number of active highways in all these
pairs (including those in the highway paths) is O(ℓ1 + ℓ2) (i.e., the leaves of the recursion tree
correspond to comparing an active highway and a highway path). Using Claim 8.7, this can be
done in time O(ℓ1 + ℓ2 +Dfrag +D) as well. Note that there are log ℓ1 levels of recursion—this is
because, in each level of recursion, the number of active highways in P t

H becomes half of what it
was before. Hence the total time taken is O(ℓ1 + ℓ2 +Dfrag +D) log ℓ1 = Õ(ℓ1 + ℓ2 +Dfrag +D).

51

PH1
PH2

P ℓi
H2

P
ℓ1/2
H1

P t
H1

P b
H1

P t
H2

P b
H2

P 1

H1

P ℓ1
H1

P 1

H2

P ℓ2
H2

Figure 21: Recursion step of the algorithm for Claim 8.8

Correctness. To argue the correctness, we need to argue that when we break a problem of
comparing two highway paths into two disjoint subproblems (as is done in every recursion step), it
is enough to solve these two subproblems to get the minimum 2-respecting cuts. We show that this
holds for the first recursion call—similar argument extends to all recursion calls. We know that the

minimum 2-respecting cut which has one tree-edge in P
ℓ1/2
H1

has another tree-edge in P ℓi
H2

. We just
need to show, at this point, that the minimum 2-respecting cut, which has one tree-edge in P t

H1

must have another edge in P t
H2

◦ P ℓi
H2

, and the minimum 2-respecting cut, which has one tree-edge

in P b
H1

must have another edge in P ℓi
H2

◦ P b
H2

(◦ denotes concatenation). This follows immediately

from the monotonicity of minimum 2-respecting cut (Claim 7.1). Because we compare P ℓi
H2

with

PH1
to find out the minimum 2-respecting cut which has one edge in P ℓi

H2
and another edge in PH1

,
it is now enough to consider the two disjoint subproblems. Hence the correctness follows.

Dealing with many pairs of highway paths. Now we consider the set P as discussed in
Theorem 5.27. A high level schematic algorithm is given as Algorithm 8.9. There are going to be
log n many levels of recursion as before: It is instructive to keep in mind the algorithm from Claim
8.8. We will run this algorithm for each pair from R ⊆ P × P (as in Theorem 5.27) in parallel,
each of which will have O(log n) many levels of recursion. In level j of recursion, we will complete
the corresponding levels in all these instantiations of the algorithm before we move on to the next
iteration. Let us denote set of highway pairs that we solve for in level j as R(j), and we start with
R(1) = R. From Theorem 5.27, we know that every highway component takes part in Bpath · log n

52

many pairs in P where it is active. We will maintain this invariant in all R(j).
In the first iteration, we compare all pairs of R(1) simultaneously: The broadcast computation

required for these computations are pipelined over a BFS tree of G, and the aggregate computations
inside each fragment due to its participation in Bpath · log n many such pairs from R are pipelines
inside the fragment. Let us now try to compute the round complexity of each iteration: We compute
how many bits are broadcast in total and how many bits are aggregated inside any fragment in
total. By Claim 8.8, each pair PH1

and PH2
requires time (ℓ1 + ℓ2 + Dfrag + D) time of which

Õ(ℓ1 + ℓ2) bits are broadcast over G. Note that each highway inside a fragment takes part in
Bpath · log n = O(log2 n) many pairs as active highway. So the total number of bits that are broadcast
can be upper bounded by

∑

(Pi,Pj)∈R

(ℓi + ℓj) =
∑

P :component

(# of pairs from R where P is active) = O(Nfrag · log2 n),

which can be broadcast in time O(Nfrag · log2 n+D). For the internal computation within active
components, we know that the total amount of bits aggregated inside an active fragment is at most
Õ(ℓ1+ ℓ2+Dfrag)-bits. Hence, by a similar calculation as above, the number of bits to be aggregated
inside a fragment F in total over all pairs of highway paths where F appears as an active fragment
is Õ(Nfrag +Dfrag) bits which can be done in time Õ(Nfrag +Dfrag) in pipelined fashion. Hence the
total round complexity of the first iteration is Õ(Nfrag +Dfrag +D).

In the second iteration, we have the following situation: R(2) is derived from R(1) in the following
way. Each pair (PH1

, PH2
) ∈ R(1) now gives rise to at most two pairs as in Claim 8.8, namely

(P t
H1

, P t
H2

) and (P b
H1

, P b
H2

). These pairs are included in R(2). Note that each edge of highway paths

in R(1) knows which highway paths in R(2) it participates in. Also, because this decomposition is
disjoint, each component takes part in log3 n many pairs as active component as before—this is
the invariant we wanted to maintain. The algorithm for this iteration is similar to that of the first
iteration, except this time we perform on pairs coming from R(2). Hence, by a similar calculation as
before we see that this iteration can be completed in time Õ(Nfrag +Dfrag +D).

This concludes the following: As the invariant is maintained in each level of recursion, each level
can be performed in time Õ(Nfrag +Dfrag +D). The number of levels of recursion is O(log n), and
hence the total time required is Õ(Nfrag +Dfrag +D) as well.

53

Algorithm 8.9 Schematic algorithm for super highways

Require: A set R of non-splittable pairs of super highways (PH1
, PH2

) that every
vertex v knows about.

1: procedure SuperHighwayCompare(R)
2: for all pairs (PH1

, PH2
) ∈ R do

3: Let PH1
has ℓ1 many active fragments, and PH2

has ℓ2 many active
fragments.

4: if ℓ1 = 1 or ℓ2 = 1 then
5: Compare PH1

with PH2
. ⊲ Algorithm 8.10.

6: Compare P
ℓ1/2
H1

with active fragments of PH2
. Let the respected edge

in PH2
in P ℓi

H2
. ⊲ Algorithm 8.10.

7: Compare P ℓi
H2

with active fragments of PH1
. ⊲ Algorithm 8.10.

8: Remove (PH1
, PH2

) from R and add (P t
H1

, P t
H2

) and (P b
H1

, P b
H2

).

9: Run SuperHighwayCompare on R.
10: procedure SuperHighwaySelfCompare(R)
11: for every PH ∈ R do
12: if ℓ = 1 then
13: Find min 2-respecting cut when both tree edges are from PH .

⊲ Run algorithm from Lemma E.5 on PH .

14: Initialize R′ = ∅.
15: PH has ℓ many fragments. Break P t

H = P1, · · · , P⌊ℓ/2⌋, and P b
H =

P⌊ℓ/2⌋+1, · · · , Pℓ.

16: Include P t
H and P b

H in R′.
17: Run SuperHighwayCompare(R′).
18: Remove PH from R and include P t

H and P b
H .

19: Run SuperHighwaySelfCompare on R.

Proof of Claim 8.7

The idea is to use Lemma 6.19 and 6.20 in parallel with highway partitioning. A high level schematic
algorithm is provided in Algorithm 8.10. The readers are encouraged to notice the similarity of this
proof to that of Section 8.3. Unfortunately, we cannot show an analogous claim as that of Claim
8.3 for highways—this will invariably increase the round complexity. Instead, we focus on only the
highways inside a fragment and the highway paths in consideration. Let the active highways in PH

be P1, · · · , Pℓ. We first look at the case when there is no edge between FP ′ and FPi
for any i ∈ [ℓ].

The idea is to use Lemma 6.18 instead of Lemma 6.12. We need to make sure we can compute all
the necessary information needed to apply Lemma 6.18. Clearly, we can use Claim 6.15 to know the
value of Covextr(P ′, Pi) which is a broadcast of O(1) bits. If we do it for all pairs (P ′, Pi) where Pi is
an active component of PH , then the number of bits to be broadcast is O(ℓ) where ℓ is the number
of active components of PH , and hence requires O(D+ ℓ) rounds. At this point, we will use Lemma
6.18 for all pairs (P ′, Pi). Again, each of these instantiation of Lemma 6.18 requires O(1) many
aggregate computations inside FP ′ and FPi

and O(1) bits of broadcast communication. By pipelining
these computations for different (P ′, Pi) pairs, we get round complexity of O(D +Dfrag + ℓ).

Once we are done with these computations, we turn to the case when there is an edge between
FP ′ and FPi

. Wlog assume all active highways in PH are such that there is an edge between FP ′

and FPi
(the case when there is no such edge has already been dealt with). Note that, by Claim

8.6, vertices in FP also know of one edge between FP and each component FPi
. First we invoke

54

Lemma 7.6 to partition P in E1, · · · , Eℓ corresponding to P1, · · · , Pℓ which are different active
highways of PH . This can be done in time O(Dfrag + ℓ) where, at the end, all vertices in T (P ′) know
the sets E1, · · · , Eℓ—the computation is entirely inside T (P ′) and requires O(ℓ) bits of aggregate
and broadcast computation. At this point, it is sufficient to compare the pairs (Ei, Pi) for all i ∈ [ℓ].

The idea is similar to that of Claim 8.4, but we would like to replace the algorithm of Lemma
6.13 with Lemma 6.19. For this, we need to check whether we can satisfy the premise of Lemma
6.19. This is also almost identical to that of Lemma 6.13—we simply have to use the claims for
highway instead of non-highway. For completeness, we provide this argument here. All vertices in
T (P ′) should learn the values {Cov(e),Covextr(e, Pi)}e∈Ei

for all 1 ≤ i ≤ ℓ. To do so, we first let
all edges e ∈ P ′ learn the values Covextr(e, P) for all highways P , this takes O(Dfrag +Nfrag) time
using Claim 6.17, and can be done in all highways simultaneously. Note that, after this step, the
edges e ∈ Pi also know the value Cov

extr(e, P ′). Then, the information {Cov(e),Covextr(e, Pi)}e∈Ei

is known to the edge e. To let all vertices in T (P ′) learn it we use pipelined upcast and broadcast
(similar to Claim F.1) within T (P ′). As we have

∑k
i=1 |Ei| = O(Dfrag + ℓ)—which is the number

of pairs {Cov(e),Covextr(e, Pi)}, and hence the number of bits, that needs to be distributed inside
TF (P)—this takes O(Dfrag + ℓ) time. From Lemma 7.6, we also have that all vertices in T (P ′) know
the identity of all edges in the sets Ei. The only additional information that Lemma 6.19 requires
in its premise is for the vertices of T (P ′) and FPi

to know the value Cov
extr(P ′, Pi). We use Claim

6.15 where O(ℓ) many aggregate and broadcast computations over a BFS tree on G are required.
This takes time O(D + ℓ). This information is known to every vertex of the graph. We next discuss
the information known in Pi. First, using upcast and broadcast in the fragment FPi

of Pi, we can
make sure that all vertices in the fragment know all the values {Cov(e)}e∈Pi

, they can also learn the
identity of the edge f between T (P ′) and FPi

, as follows. As vertices in T (P ′) know the identity of
f , then f has an endpoint that knows about it, and can inform the second endpoint in FPi

. Then,
the information can be broadcast in FPi

. This is only done if Pi is potentially interested in P ′, hence
only Bpath times for P ′ (from Theorem 5.27; as we have seen in Claim 8.8, P ′ is an active highway
inside a highway path orthogonal to PH). This shows that vertices in TF (P) and FPi

have all the
information needed for applying Lemma 6.19.

55

Algorithm 8.10 Schematic algorithm for a fragment highway and a super
highway

Input: A fragment highway P and a super highway PH with active frag-
ments P1, · · · , Pℓ.

Output: A minimum 2-respecting cut CP = Cut(e, e′) where e ∈ P and
e′ ∈ PH .

1: for every i ∈ [ℓ] do parallelly
2: Compute Cov

extr(P, Pi). ⊲ Claim 6.15.

3: for every i ∈ [ℓ] such that there is no edge between FP and FPi
do parallelly

4: Compare (P, Pi). ⊲ Lemma 6.18.

5: Let active fragments P1, · · · , Pk are such that there is an edge between FP

and FPi
for all such Pi.

6: Partition P into E1, · · · , Ek w.r.t. P1, · · · , Pk.
⊲ Lemma 7.6.

7: for every pair (Ei, Pi) do parallelly
8: Let the edge between FP and FPi

be f .
9: Use f to route the information {e,Cov(e),Covextr(e, Pi)}e∈Ei

from P to
Pi.

10: The cut values is computed by the fragment highways Pi (which is an
active fragment). Compute the values {Cut(e, e′)}e∈P,e′∈Pi

for all edges
e ∈ Ei where the values {e,Cov(e),Covextr(e, Pi)}e∈Ei

were received from P .
⊲ Lemma 6.19.

11: Communicate over a BFS tree to let all vertices learn the values
{e, e′,Cut(e, e′)} for edges e, e′ in the above cases that minimize Cut(e, e′).

8.5 Both cut edges in same highway

Note the if both cut edges are in the same highway and in the same fragment, then it is already
dealt with in E.5. So we are only interested in the case when the cut edges are in different fragments
of the same highway path. Recall that these highway paths are actually maximal highway paths
in some layer. We will use Claim 8.8 in a divide and conquer fashion—a similar technique was
used in Algorithm 3.3 in [MN20]. The idea is simple: We know how to efficiently compare two
disjoint highway paths. Given a highway path PH consisting of (not necessarily active11) highways
P1, · · · , Pℓ, we will employ a divide and conquer technique which will run for O(log ℓ) rounds. In
round i, we will work on the set of highways P(i) which we will define below. Initially, in the first
round, P(1) = P (See The set discussed in Theorem 5.27). We will also maintain the invariant that
the highways in P(i) are disjoint. To start with, by construction, the highways of P are disjoint.

– In the first rounds, we will compare the highway composed of P1, · · · , P⌊ℓ/2⌋ (denote it as P 1
H)

with the highway composed of P⌊ℓ/2⌋+1, · · · , Pℓ (denote it as P 2
H) for every PH ∈ P(1). Using

Claim 8.8, we can do it in O(ℓ+Dfrag +D) rounds (out of which O(ℓ+D) rounds are needed
for broadcasting O(ℓ) bits of information and the rest of the computation is local). We will do
it for all highways in the set P in parallel. As the highways in P are disjoint and the number
of fragments is Nfrag, it is easy to see that this can be done in O(Nfrag +Dfrag +D) rounds.
At the end, all vertices know the tuples {e, e′,Cut(e, e′)} for each pair (P 1

H , P 2
H) where e ∈ P 1

H

and e′ ∈ P 2
H and (e, e′) minimizes such Cut(e, e′).

11We do not need to consider active highways here, because by construction every highway takes part in exactly one
computation in each iteration of the algorithm contrary to Bpath many computations as is the case in comparing two
highway paths.

56

– In the second round, we construct the set P(2) by putting P 1
H and P 2

H of all highways PH ∈ P(1).
Note that, because the vertices know the set P(1), they can locally compute the set P(2). We
follow the same procedure as in the first round, i.e., we divide the highway paths in P(2) and
compare them. Note that the highways of P(2) are disjoint as well—this is the invariant we
wanted to maintain. Hence this step can also be performed in O(Nfrag +Dfrag +D) rounds.

– We continue this divide and conquer procedure for O(log n) steps until each PH ∈ P(i) are left
with only 2 components. This case can be solved in O(Dfrag +D) time. As before, note that
every such component takes part in exactly one comparison. Hence, pipelining the broadcast
computation, this round can be completed in O(Nfrag +Dfrag +D) time.

Hence total round complexity of Õ(Nfrag + Dfrag + D). At the end, all vertices know a pair
(e, e′) for each P(i) and for each super highway PH ∈ P(i) which minimized Cut(e, e′) for that super
highway PH where e ∈ P t

H and e′ ∈ P b
H . The vertices can choose the minimum among them by

local comparison.

Correctness. We need to argue that if the minimum 2-respecting cut include edge e from highway
Pi and edge e′ in highway Pj , then Pi and Pj are compared (possibly as a highway in a highway
path) in one of the iterations of the divide and conquer algorithm. This follows from the following
observation: At the k-th iteration, if the k-th significant bit of the binary representation of i and j
are different, then they are compared. Hence the correctness follows.

9 The min-cut algorithm

This section provides the schematic algorithm for finding min-cut of a weighted graph in Õ(
√
n+D)

time which proves Theorem 1.1. We first start with the schematic algorithm for minimum 2-respecting
cut, proving Theorem 1.2. In every sense, Algorithm 9.1 is the heart of this work.

9.1 A schematic algorithm for minimum 2-respecting cut

In this section, we give a schematic algorithm for finding minimum 2-respecting cut in CONGEST
model where, at the end of the algorithm, every vertex v knows the following information:

1. The value of the cut,

2. The tree-edges (at most two) which the cut respects, and

3. The edges incident to it that cross the cut.

We next provide the schematic algorithm for minimum 2-respecting cut. Note that this is a
high-level overview—the details of each step can be found in corresponding section mentioned in
the comment. Also, at the end of the algorithm, every vertex knows (1) and (2). By applying
Observation 3.6, it is immediate that the vertices will also know (3).

Very high-level description of Algorithm 9.1. The algorithm is divided into mainly four parts,
each is labeled properly in the schematic description for easy reference. These are as follows:

Tree decompositions. The first step is to perform fragment decomposition on the spanning tree
T followed by layering decompositions. See Section 4.1 and 4.2 for details. The vertices also
assign LCA labels to edges such that it is easy to find out whether a non-tree edge covers a
tree edge. See Section 3.4.

57

Minimum 1-respecting cut. In the next step, the algorithm computes the minimum 1-respecting
cut using Claim 4.3. Also see Section 8.1.

Sampling. The next step is do the sampling procedure to compute the set Intpot(e), the set of paths
which e is potentially interested in, for each tree edge e, where each such path is represented by
the id of the lowest fragment that intersects the path (See Section 5.2 for a definition). This
lets the vertices know the necessary information to perform the algorithm for the non-highway
non-highway case discussed in Section 8.2, and Algorithms 8.5 and 8.9. See Section 5 for
details regarding the implementation of this sampling procedure and the routing of necessary
information across the graph.

Minimum exact 2-respecting cut. Finally, the vertices run the algorithm from section 8.2, and
Algorithms 8.5 and 8.9 one after the other. The vertices compare the minimum 2-respecting
cut found in each algorithm. The vertices output the minimum among the minimum exact
2-respecting cut and the minimum 1-respecting cut.

Because each step here can be performed in time Õ(
√
n+D) (See relevant theorem mentioned

in the schematic description), the total time complexity of Õ(
√
n+D). This proves Theorem 1.2.

58

Algorithm 9.1 Schematic algorithm for distributed minimum 2-respecting cut

Input:

1. Weighted graph G = (V,E,w), where every vertex v ∈ V knows the set of incident
edges on it along with their weights,

2. A spanning tree T of G where every vertex v ∈ V knows the set of incident edges of
T on it.

Output: Every vertex v ∈ V knows the edges incident on it which take part in a
minimum 2-respecting cut CT w.r.t. T , and the value of the cut.

Tree decompositions. (Section 4)

1: Perform a fragment decomposition with parameters Nfrag = Dfrag = Sfrag = O(
√
n).

At the end, each vertex v knows the information detailed in Lemma 4.1.
⊲ See Section 4.1.

2: Perform a layering decomposition on the highways as in Lemma 4.8 and on the non-
highways as in Lemma 4.9. ⊲ See Sections 4.2 and
4.3.

Computing the minimum 1-respecting cut.

3: Find out the minimum 1-respecting cut. ⊲ See Claim 4.3 and Section 8.1

Sampling and routing. (Section 5)

4: Each edge e ∈ T finds a set of potentially interesting paths Intpot(e).
⊲ See Lemma 5.11, and Lemma 5.21.

5: Each non-highway bough P ′ in layer i routes information to T (P ′) which consists of
all ids of fragments F that contain a non-highway path which is in Intpot(P

′).
⊲ See Lemma 5.21 and Corollary 5.22.

6: Each non highway bough P routes the relevant information about super highways in
Intpot(P) which are completely above or completely orthogonal to the fragment of P .

⊲ See Lemma 5.21, and Corollary 5.23.
7: Each fragment highway P , routes the relevant information to FP about ids of fragments

F that contain non-highway paths in Intpot(P), not including FP .
⊲ See Lemma 5.21 and Corollary 5.24

8: Each vertex v learns the set R of pairs of super highways potentially interested in one
another.

⊲ See Theorem 5.27.

Computing the minimum exact 2-respecting cut. (Section 8)

9: Run the algorithm from Claim 8.1. Record the minimum cut.
10: Run Algorithm 8.5. Record the minimum cut.
11: Run Algorithm 8.9 on R. Record the minimum cut.
12: Output the minimum cut among what is recorded in Line 3, 9, 10 and 11.

59

9.2 The min-cut algorithm for weighted graphs

Now we are ready to give a schematic description of minimum cut on a weighted graph. Note that
this algorithm calls Algorithm 9.1 as a subroutine. As discussed before, at the end of Algorithm 9.1,
every vertex knows the value of a minimum 2-respecting cut w.r.t. a spanning tree T along with
the edges participating in the cut which are incident on it.

Algorithm 9.2 Schematic algorithm for distributed min-cut

Input: Weighted graph G = (V,E,w), where every vertex v ∈ V knows
the set of incident edges on it along with their weights.

Output: Every vertex v ∈ V knows the edges incident on it which take
part in the minimum cut along with the value of that min-cut.

1: Perform a greedy tree packing on G to obtain T = {T1, ..., Tk}, where
k = O(log2.1 n).

⊲ See Theorem 3.2
2: for each T ∈ T do
3: Perform minimum 2-respecting cut algorithm w.r.t. T (Algorithm 9.1).

Let the cut obtained be CT . ⊲ See Theorem 1.2
4: Every vertex v ∈ V knows the value of CT and the edges incident on v

which take part in CT .

5: Every vertex v ∈ V chooses the CT which has minimum total weight.

The greedy tree-packing can be performed in time Õ(
√
n+D) as mentioned in Theorem 3.2.

We also know that Algorithm 9.1 takes time Õ(
√
n+D). Hence, computing Algorithm 9.1 for each

T ∈ T takes time |T | × Õ(
√
n+D) = Õ(

√
n+D). Hence the total time complexity of Algorithm

9.2 is Õ(
√
n+D). This proves Theorem 1.1.

Acknowledgment

We would like to thank Keren Censor-Hillel for many valuable discussions. This project has received
funding from the European Research Council (ERC) under the European Unions Horizon 2020
research and innovation programme under grant agreement No 715672 and 755839. Danupon
Nanongkai and Sagnik Mukhopadhyay are also partially supported by the Swedish Research Council
(Reg. No. 2015-04659 and 2019-05622). Michal Dory and Yuval Efron are supported in part by the
Israel Science Foundation (grant no. 1696/14).

References

[AGKR04] Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. Nearest common
ancestors: A survey and a new algorithm for a distributed environment. Theory of
Computing Systems, 37(3):441–456, 2004.

[BKKL17] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-
optimal approximate shortest paths and transshipment in distributed and streaming
models. In DISC, volume 91, pages 7:1–7:16, 2017.

[CHD19] Keren Censor-Hillel and Michal Dory. Fast distributed approximation for tap and
2-edge-connectivity. Distributed Computing, pages 1–24, 2019.

60

[DG19] Michal Dory and Mohsen Ghaffari. Improved distributed approximations for minimum-
weight two-edge-connected spanning subgraph. In PODC, pages 521–530, 2019.

[DHK+11] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,
Gopal Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and
hardness of distributed approximation. In STOC, pages 363–372, 2011.

[DHNS19] Mohit Daga, Monika Henzinger, Danupon Nanongkai, and Thatchaphol Saranurak.
Distributed edge connectivity in sublinear time. In STOC, pages 343–354. ACM, 2019.

[Dor18] Michal Dory. Distributed approximation of minimum k-edge-connected spanning sub-
graphs. In PODC, pages 149–158. ACM, 2018.

[Dor20] Michal Dory. Distributed Network Design. PhD thesis, Technion, 2020. http://www.cs.
technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2020/PHD/PHD-2020-07.

[EFS56] Peter Elias, Amiel Feinstein, and Claude E. Shannon. A note on the maximum flow
through a network. IRE Trans. Information Theory, 2(4):117–119, 1956.

[EKNP14] Michael Elkin, Hartmut Klauck, Danupon Nanongkai, and Gopal Pandurangan. Can
quantum communication speed up distributed computation? In PODC, pages 166–175.
ACM, 2014.

[Elk06] Michael Elkin. An unconditional lower bound on the time-approximation trade-off for
the distributed minimum spanning tree problem. SIAM J. Comput., 36(2):433–456,
2006.

[FF87] L. R. Ford and D. R. Fulkerson. Maximal Flow Through a Network, pages 243–248.
Birkhäuser Boston, Boston, MA, 1987.

[GG18] Barbara Geissmann and Lukas Gianinazzi. Parallel minimum cuts in near-linear work
and low depth. In SPAA, pages 1–11, 2018.

[GH16] Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II:
low-congestion shortcuts, mst, and min-cut. In SODA, pages 202–219. SIAM, 2016.

[GK13] Mohsen Ghaffari and Fabian Kuhn. Distributed minimum cut approximation. In
Proceedings of the 27th DISC, pages 1–15, 2013.

[GKK+15] Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz
Patt-Shamir. Near-optimal distributed maximum flow: Extended abstract. In PODC,
pages 81–90, 2015.

[GMW20] Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in o(m log2 n)
time. In ICALP 2020, pages 57:1–57:15, 2020.

[GN18] Mohsen Ghaffari and Krzysztof Nowicki. Congested clique algorithms for the minimum
cut problem. In PODC, pages 357–366. ACM, 2018.

[GNT20] Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge
connectivity via random 2-out contractions. In SODA, pages 1260–1279. SIAM, 2020.

[GP16] Mohsen Ghaffari and Merav Parter. Near-optimal distributed algorithms for fault-tolerant
tree structures. In SPAA, pages 387–396, 2016.

61

[HKN16] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic
almost-tight distributed algorithm for approximating single-source shortest paths. In
STOC, pages 489–498, 2016.

[Kar99] David R Karger. Random sampling in cut, flow, and network design problems. Mathe-
matics of Operations Research, 24(2):383–413, 1999.

[Kar00] David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000.

[KKP13] Liah Kor, Amos Korman, and David Peleg. Tight bounds for distributed minimum-weight
spanning tree verification. Theory Comput. Syst., 53(2):318–340, 2013.

[KP98] Shay Kutten and David Peleg. Fast distributed construction of small k-dominating sets
and applications. Journal of Algorithms, 28(1):40–66, 1998. Announced at PODC’95.

[MN20] Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: Sequential, cut-
query and streaming algorithms. In STOC, 2020.

[Nan14] Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths.
In Symposium on Theory of Computing (STOC), pages 565–573, 2014.

[NS14] Danupon Nanongkai and Hsin-Hao Su. Almost-tight distributed minimum cut algorithms.
In DISC, pages 439–453, 2014.

[Par19] Merav Parter. Small cuts and connectivity certificates: A fault tolerant approach. 2019.

[PR00] David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity of
distributed minimum-weight spanning tree construction. SIAM J. Comput., 30(5):1427–
1442, 2000.

[PT11] David Pritchard and Ramakrishna Thurimella. Fast computation of small cuts via cycle
space sampling. ACM Trans. Algorithms, 7(4):46:1–46:30, 2011.

[Tho07] Mikkel Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91–127, 2007. Announced
at STOC’01.

A Reduction to 2-respecting cut

In this section, we highlight key ideas from the proof of Theorem 3.2, which is proved in [DHNS19].
In this section, we treat edges of weight w in the graph G as w multi-edges. We begin some
definitions and notations.

Definition A.1. Let T be some set of spanning trees of a given multi-graph G. Denote the load of
an edge e by LT (e) = |{T ∈ T | e ∈ T}|. Furthermore, a set T = {T1, ..., , Tk} of spanning trees is
called a greedy tree packing if for all 1 ≤ i ≤ k it holds that Ti is a minimum spanning tree with the
respect to the load given by LTi−1

(e). Here Ti−1 = {T1, ..., Ti−1}.

Next, we state the following known results.

Lemma A.2 ([Tho07]). Let C be any cut of a multi-graph G with at most 1.1 ·OPT many edges
and T be a greedy tree packing with OPT · lnm many trees. Then C 2-respects at least 1/3 fraction
of trees in T .

62

Note that thus if one implements a greedy tree packing for sufficiently many iterations, one
obtains a greedy tree packing T such that 1

3 fraction of the trees in T 2-respect the minimum cut
in G. However, one needs to obtain a greedy tree packing with ω(OPT log n) trees. This can be
problematic since it might be the case that OPT = Ω(n). To circumvent this obstacle, we employ
a sampling idea from [Kar99] which will reduce the value of OPT in the graph we consider to be
O(log n), while preserving the minimum cut.

Lemma A.3 ([Kar99]). Let 0 < p < 1 and let H = Gp be a random subgraph of G resulting from
keeping each edge of G with probability p, and removing it with probability 1− p. Let OPTH be the
value of the min cut in H. If p·OPT = ω(log n), then it holds w.h.p. that OPTH = (1±o(1))p·OPT .
Moreover, w.h.p., min cuts of G are near-minimal in H and vice versa, in the following sense. A min
cut C of G has (1± o(1))OPTH edges crossing it in H, and a min cut CH in H has (1± o(1))OPT
edges crossing it in G.

We restate Theorem 3.2 here for quick reference, a proof of which appears in [DHNS19]. We
include it here for completeness.

Theorem (Theorem 3.2 restated). Given a weighted graph G, in Õ(
√
n+D) rounds, we can find

a set of spanning trees T = {T1, · · · , Tk} for some k = Θ(log2.2 n) such that w.h.p. there exists a
min-cut of G which 2-respects at least one spanning tree T ∈ T . Also, each node v knows which
edges incident to it are part of the spanning tree Ti, for 1 ≤ i ≤ k.

Proof of Theorem 3.2. To prove Theorem 3.2 using the Lemma A.3, we would like to have p ·OPT =
Θ(log1.1 n), so that we can construct a greedy tree packing in G with Θ(log2.1 n) trees. A-priori we
do not know the value of OPT , hence we do not know the sampling probability p as well. We solve
it by doing the following: We run a (1 + ε)-algorithm for min-cut by Nanongkai and Su [NS14] in
Õ(D +

√
n) time at the end of which every vertex knows a (1 + ε) approximation of the min-cut.

Let us call this value as ÕPT . Next we set p̃ = 2 · O(log1.1 n/ÕPT). It is easy to see from the

approximation guarantee of ÕPT that p ≤ p̃ ≤ 2p. We use p̃ as the sampling probability.
As a side-note, notice that the quantity p̃ = 2 · O(log1.1 n/ÕPT) needs to be at most 1

which implies that the following sampling process works only when ÕPT = Ω(log1.1 n). When

ÕPT = o(log1.1 n), we skip the sampling altogether and proceed to tree packing.
The sampling procedure itself is fairly simple. As mentioned before, the weighted edges are

treated as multi-edges and the idea is to sample the unweighted edges uniformly and independently
with probability p̃. To this end, given a weighted edge e = {u, v} with weight w(e), where u ≺ v in
some global ordering of the vertices that they agree up on, u samples unweighted edges uniformly
and independently from w(e) many unweighted edges corresponding to e, and sends across this
number of sampled edges to v. This does not cause congestion as the number of bits needed to
be transferred to v is O(log n). Once this is done, the pair (u, v) can order the sampled edges by
themselves using some global ordering.

Once the sampling is done, all that is left is constructing a greedy tree packing in G (viewed as
a multi-graph) with Θ(log2.1 n) trees. This can be done in Õ(

√
n+D) rounds since constructing an

MST in a given graph has complexity Õ(
√
n+D) [KP98]. To start with, each vertex assumes all

edges incident on it has load 0. For each MST computation, each vertex pair (u, v) consider only
the edge between them which has the smallest load—if there only one edge between them, then
they consider that edge. This does not affect the computation because an MST will always include
the edge with the smallest load from a set of parallel edges. If there are multiple edges between u
and v with smallest load, they break tie arbitrarily. After each MST computation, u and v increase
the load of this edge depending on whether this edge in included in the MST or not. An important
point to note here is that the sampled edges between u and v can be distinguished by u and v by

63

their load; if two such edges have same load, then they can be used interchangeably and it does not
cause a problem in the execution of this algorithm. Hence, the vertices u and v can be in sync in all
executions of the MST algorithm.

B Missing proofs from Section 4

B.1 Fragment decomposition

Lemma 4.1. Given a graph G = (V,E) and a rooted spanning tree T of G, one can compute
in Õ(

√
n + D) rounds a fragment decomposition of G with Nfrag = Dfrag = Sfrag = O(

√
n). In

particular, each vertex v learns the following information about each fragment F it belongs to:

1. The identity (rF , dF) of the fragment F .

2. The complete structure of the skeleton tree TS.

3. All the edges of the unique path connecting v and rF , and also the edges of the unique path
connecting v and dF .

4. All the edges of the highway of the fragment F .

Proof. The proof is divided into two main steps: Decomposing T into O(
√
n) components of size

O(
√
n), and modifying these components to satisfy properties 2-4 depicted in the beginning of

Section 4.1.

Breaking down T . Our goal here is breaking down T into connected components S1, ..., Sk with
the following properties.

1. k = O(
√
n).

2. For all i ∈ [k], |Si| = O(
√
n).

3. For all i, j ∈ [k], i 6= j, it holds that |Si∩Sj | ≤ 1. Furthermore, if |Si∩Sj | = 1, then v ∈ Si∩Sj

is the root of both of these connected components. In particular, all components are edge
disjoint.

We start with running the MST algorithm of Kutten and Peleg [KP98]. This algorithm
decomposes T into O(

√
n) vertex disjoint components of diameter O(

√
n) in Õ(

√
n+D) rounds.

Denote these components by C1, ..., Cm.
We now describe a procedure that breaks down these components further into components of

size at most O(
√
n), while maintaining the number of components at most O(

√
n) as well.

Let Ci, i ∈ [m] be some connected component, and denote the highest (closest to the root)
vertex in Ci by r, and denote by Li the set of lowest vertices in Ci, i.e. all vertices in Ci whose all
descendants are not in Ci.

Using standard aggregation on T ∩Ci, the vertices in Ci can learn |Ci|. If Ci < 10
√
n, then this

component is marked good and does not perform the rest of algorithm.
From here on in we assume that |Ci| > 10

√
n. Denote the parent vertex in T of a given vertex

v by p(v). Denote by Di(v) the set of descendants of v in T which are in Ci. Denote by Ti(v)
the tree T (v) ∩ Ci where T (v) is the subtree of T rooted at v. We now perform an aggregate
computation that starts at each vertex of Li and ends in r. Each vertex v ∈ Ci holds a variable
count(v) initialized to zero and each vertex v performs the following. Conceptually, we do a single
scan of the tree from the leaves to the root and a single scan of the tree from the root to the leaves.
The first involves an aggregate computation of the number of descendants in the subtree rooted at
each given vertex, the latter assigns vertices to their respective new components.

64

1. If v ∈ Li, v sends 1 to p(v)

2. v waits to receive a message mu from each immediate descendant u ∈ Di(v), then v sets
counter(v) =

∑

u∈Di
mu + 1.

3. If
√
n ≤ counter(v) ≤ 5

√
n, v creates a new component composing of vertices in Ti(v) who

were not yet assigned to any other new component in the following way. v broadcasts its own
id as the id of the new component down the tree Ti(v) and tells p(v) that v started a new
component as well and 0 as the message mv. Furthermore in this case, if v receives from p(v)
a message that it was added to a new component (i.e., the id of some ancestor vertex of v), it
ignores it and does not forward it down the tree. Any vertex in Ti(v) that received the id of v
and wasn’t yet assigned to any other component joins the component of v whose id is the id
of v.

4. If counter(v) > 5
√
n, v does the following. v goes over the messages mu it received from each

of its immediate descendants u in some order and starts summing up their messages mu up to
the point where z satisfies

√
n ≤ z ≤ 5

√
n. Denote the set of descendants whose message were

summed up to this point by A. A now defines a new component (which is created in the same
manner as the previous bullet point) which contains the trees Ti(u) for each u ∈ A, except the
vertices who were already assigned to a new component previously, v is included in the new
component as well. Then v initializes z to 0 and resumes this component from the next vertex
in the initial order. v continues creating components in such a manner, giving the id (v, i) to
the i-th component created, until all of its descendants are in new components or until the
last iteration, in which the summation of messages mu of the remaining descendants did not
exceed

√
n. If the latter is the case, denote these remaining descendants by A∗, denote by j

the current iteration of the described procedure in this bullet. All vertices in Ti(u), u ∈ A∗

who were not yet assigned to a component are assigned to the component whose id is (v, j− 1).

Note that v is being included in all of these components created in the procedure above, and
is the only vertex in the intersection of any two of these new components..

5. If counter(v) <
√
n, v sends counter(v) as the message mv to its parent p(v).

6. If v = r and satisfies the previous bullet point, then r starts a new component in the same
manner as described in bullet point 3, with all the vertices that were not assigned yet a
component. This is done by broadcasting the id of that component, which is r down the tree
until this forwarding halts at vertices that were already assigned to other new components.

Note that this procedure an be done in parallel in each of the original connected components
since they are vertex disjoint.

Since the diameter of each component in O(
√
n), and an MST can be computed in Θ̃(

√
n+D)

rounds, the round complexity of this procedure is Θ̃(
√
n+D).

For correctness, note that each newly created component, apart from the one rooted at the root
of the component r, has size at least

√
n and at most O(

√
n). Thus there are at most 2

√
n new

components (at most an additional
√
n smaller new components rooted at the roots of components).

Furthermore, there are at most O(
√
n) good components, thus in total there at most O(

√
n)

components.
The property that for all i ∈ [k], |Si| = O(

√
n) follows from the behavior of the algorithm, since

every new component has size at most O(
√
n).

The property that for all i, j ∈ [k], i 6= it holds that |Si ∩ Sj | ≤ 1, and if |Si ∩ Sj | = 1 then
v ∈ Si ∩ Sj is the root of both components holds by the explanations in bullet point 4 above.

65

Denote the newly created components by S1, ..., Sk. Note that each node can identify its
component by the ID that was broadcast to it from the root of the component, using an additional
O(

√
n) rounds for broadcasting that ID down the tree. Note that this part of the procedure in

implemented in parallel as all components are edge disjoint

Modifying and creating structure. Now, our goal is to modify S1, ..., Sk to have properties 1-4
in the statement of the lemma depicted in the start of this appendix section, while maintaining the
fact that the amount of components and the size of each component is O(

√
n).

This part of the algorithm follows the lines of [GP16], in which a similar decomposition is
constructed, but with diameter instead of size guarantees, as explained in the beginning of the
section. Later works such as [Dor20] employed this procedure as well and proved additional claims
regarding its final properties, which we use later.

Marking vertices. Now, with S1, ..., Sk, we do the following. Let A ⊆ V be the set of vertices
which are in more than a single component. Clearly |A| = O(

√
n) since each two components can

intersect at at most one vertex, and there are O(
√
n) components. Furthermore, let B ⊆ E(T) be

the set of tree edges connecting vertices which are in different components and neither of them are
on more than one component. Again, |B| = O(

√
n) since k = O(

√
n). Thus, using a BFS tree, all

the vertices in the graph can learn the sets A and B.
We now proceed to describe the marking procedure. First of all, all vertices in A are marked,

all vertices that have an incident edge in B are marked, and the root r of the tree T is marked.
Furthermore, for each two marked vertices v, u we mark LCA(v, u) in the following way. We scan
each component from the leaves to the root of the component, a leaf v sends to his parent its ID if
it’s marked or ∅ otherwise. An internal vertex v waits to receive messages from all its descendants,
if it received exactly one ID, it forwards it to p(v). If it received 2 IDs, it marks itself and forwards
one of the IDs arbitrarily to p(v). Otherwise, it sends ∅ to p(v).

Clearly this procedure takes O(
√
n) rounds since all communication is done internally in the

components and there is no congestion since components are edge disjoint.
In [Dor20, Lemma 2.7] the following claim is proven about this marking procedure. The

properties of the components are a bit different, but the proof is exactly the same.

Claim B.1. The set of marked vertices satisfies the following properties.

1. The root r is marked, and each other vertex v has a marked ancestor of distance at most
O(

√
n).

2. For each two marked vertices v, u, LCA(v, u) is also marked.

3. There are O(
√
n) marked vertices.

Lastly, using an aggregate computation over the tree inside of each component, each component
makes sure that there is at least a single leaf of that component that is marked. If there was
previously a marked leaf, the component does nothing. Otherwise, the leaf with the lowest id is
marked. Note that this still maintains the number of marked vertices at O(

√
n) since there are

O(
√
n) components.

Defining fragments. Lastly, we define the final fragments and highway paths in our final
decomposition. For each marked vertex dF 6= r, the path from dF to its closest marked ancestor
(rF) defines the highway path of the fragment F . Note that by definition no vertex on the path
between rF and dF is marked, and no other descendant (except dF) of any internal vertex on that
path is marked as well, since otherwise, the vertex itself is marked as well. The fragment F thus
includes the path between rF and dF , and all the descendants (not in the direction of dF) of the
internal vertices on that path. Now, if v is a marked vertex, denote by NM(v) all of v’s descendants

66

that are not included yet in any fragment. In other words, these are exactly the descendants of
v that have no marked descendants themselves. If v is already the root of some fragment F , and
v is not the root of any component, then all of NM(v) are added to F as non highway vertices
and edges. If v is a root of both a fragment and a component, remember that v can be the root of
several components. Note that for each such component, S, there is already a fragment FS rooted at
v which is contained in S. This is true since each component, including S, has at least one marked
leaf. Thus we can take the set NM(v) and partition its elements (vertices) between the fragments
rooted at v such that each fragment is completely contained inside some component.

Proof of properties. We now turn to proving the listed properties in the statement of the lemma
about the resulting decomposition. We restate these properties for the sake of clarity.

1. Each tuple tF = (rF , dF) represents an edge-disjoint fragment (subtree) F of T rooted at
rF with diameter Dfrag = O(

√
n) and size Sfrag = O(

√
n). The vertex rF is an ancestor of

all vertices in the fragment F in T . It is important to note that no fragment has an empty
highway that consists of a single vertex, thus each fragment in our decomposition has a unique
identifier.

2. Each fragment F has a special vertex dF which is called the unique descendant of the fragment.
The unique path between rF and dF is called the highway of the fragment. Each fragment
has a single highway path. The vertices rF and dF are the only two vertices of the fragment
F which can occur in other fragments.

3. All edges that are not part of the highway, are called non-highway edges. Each non-highway
path is completely contained inside a single fragment.

4. Each edge of T takes part in exactly one fragment F .

The properties regarding the id, the highway path and non-highway edges of each fragment are
satisfied by construction.

Number of fragments. Since there are O(
√
n) marked vertices, and each of them is the most

bottom highway vertex of exactly one fragment, there are O(
√
n) edge disjoint final fragments in

total.
Size bound. A key observation is that each fragment is completely contained inside the original

component S whose vertices belong to, and since the size of each original component is O(
√
n), so

is the size of each fragment.
Learning the skeleton tree. There are O(

√
n) vertices that are the start and end of the

highways of fragments (rF , dF), thus all the vertices in the graph can learn the IDs of these vertices
along with the ID of the fragment each pair belongs to in O(

√
n +D) rounds using a BFS tree.

Using this information each vertex can immediately learn the topology of the skeleton tree.
Lastly, we prove the 4 conditions stated in the lemma regarding the information each vertex v

holds about the fragment F it belongs to it holds that each vertex v knows the following information
about the fragment F it belongs to:

1. The identity (rF , dF) of the fragment F .

2. The complete structure of the skeleton tree TS .

3. All the edges of the highway of the fragment F .

4. All the edges of the unique path connecting v and rF , and also the edges of the unique path
connecting v and dF .

67

Each node can know the id of its fragment by two standard broadcasts in the fragment, of the
highest and lowest vertices on the highway.

Each vertex can also know the complete topology of the skeleton tree by using aggregate
computations over a BFS tree of the graph and pipe-lining, and thus learning in O(

√
n+D) (Since

there are O(
√
n) components) round the ids of all fragments in the graph, from which he can deduce

the topology of the skeleton tree. The two last properties follow wince Sfrag = O(
√
n) and thus each

node can learn the complete topology of its fragment in O(
√
n) rounds.

This completes the proof of the lemma.

B.2 Layering decomposition

Lemma 4.9. We can compute a layering for the non-highways in O(Dfrag) time. By the end of the
computation all vertices know the layer numbers of non-highway edges adjacent to them.

Proof. We fix one fragment F and describe the computation in the fragment. As the computation
is completely inside the fragment, we can work simultaneously in all different fragments. In each
fragment F , we work on the subtree TF of the fragment, and run an aggregate computation from
the leaves to the root. As we only consider non-highways, we stop the computation each time we
reach a vertex in the highway. By the end of the computation, all non-highway edges have a layer
number.

We next show that we can perform the layering on TF in O(Dfrag) rounds, using only communi-
cation on the edges of TF . Each edge e in TF holds a number ℓe initialized to 0. Now, each edge e
does the following. If e is connected to a leaf, e sets ℓe = 1, and sends its layer to its parent edge
in TF . Otherwise, denote by e1, ..., em the descendants of e in TF . e waits to receive ℓe1 , ..., ℓem .
Then, denote by ℓmax = max

i=1,...,m
ℓei . If there are i 6= j such that ℓei = ℓej = ℓmax, then e sets

ℓe = ℓmax + 1, otherwise, e sets ℓe = ℓmax. In both cases, e sends to its parent edge the value ℓe.
This process terminates when we reach the edges adjacent to the highway after O(Dfrag) rounds
since the diameter of TF is O(Dfrag), and we are performing a single aggregate computation over the
tree TF , and communicating only over the edges of TF . Correctness is implied from the definition of
the layer decomposition and Observation 4.6.

B.3 Information of edges

Theorem 4.12. Consider a rooted tree T of a graph G, a layering decomposition E1, ..., Eℓ,
ℓ = O(log n), as described in Section 4.3, and a fragment decomposition with parameters Nfrag, Sfrag.
In Õ(Nfrag + Sfrag + D) rounds, each tree edge e can learn info(e). Furthermore, it holds that
|info(e)| = O(log n).

Proof. Note that for each tree edge e, it holds that |info(e)| = O(log n). This is true since:

1. Whether e is a highway edge edge or a non-highway edge is O(1) information. Also the
information regarding the fragment of e and the values Cov(e), |CovSet(e)| are O(log n) bits.

Since info(e′) for a non-tree edge e′ is comprised of info(e) of exactly two tree edges, one can
deduce that |info(e′)| = O(log n) as well. Note that, it suffices to prove the theorem for tree
edges alone, since given a non-tree edge e′ = {v, u}, if v holds info(e′1), e

′
1 = {p(v), v} and u holds

info(e′2), e
′
2 = {p(u), u}, then in O(log n) rounds, both u, v can learn info(e′).

The information about whether an edge e is a highway, or a non-highway edge, and the id of the
fragment of e is known by e due to the fragment decomposition properties, proved in Lemma 4.1,
since an edge e in fragment F can check whether the path from e to rF and the path from e to dF

68

are vertex disjoint, and if so, e marks itself as a highway edge, and otherwise, as a non-highway
edge.

Now for the second bullet of the theorem, we employ Lemma 4.2, in the following way. To learn
|CovSet(e)|, f is the addition function and the information of each edge in the graph is simply the
integer 1. After the computation is done e adds 1 to count itself as well.

Similarly, as explained in Claim 4.3, e knows Cov(e).

C The sampling procedure: Lemma 5.11

Here we prove Lemma 5.11 which we restate for ease of reference.

Lemma 5.11. There is a distributed sampling procedure which takes Õ(
√
n+D) rounds in which

every tree-edge e learns about a set of paths Intpot(e) such that with high probability:

1. Any path P with Cov(e, P) > Cov(e)/2 is in Intpot(e), and

2. Any path P ′ ∈ Intpot(e), has Cov(e, P ′) ≥ Cov(e)/6.

Before proving Lemma 5.11 in its full generality, we first argue the same for unweighted graphs
for ease of presentation. Readers may chose to skip the following ‘warm-up’ section.

Warm-up: Unweighted graph. We first prove Lemma 5.11 for the case of unweighted graph.

The idea is simple: Each edge e should sample O(log n) edges from the set CovSet(e), and make
decisions about other interesting edges based on the sampled edges.

We assume Claim 4.3 such that every tree edge e knows the value of Cov(e). The sampling
procedure runs in O(log n) iterations. We divide the tree edges into classes according to the values
of Cov(e), as follows. We put a tree edge e in class Cj if Cov(e) ∈ [2j−1 + 1, 2j]. Note that the
number of classes is bounded by O(log n). Now, there are O(log n) many iterations, one for each
class Cj . We describe iteration j next:

Iteration j. Each edge e′ first generates a unique identifier of length O(log n), denoted by Ide,
for this iteration. This can be done by sampling identifiers randomly from a range of size
n5 which each edge can do locally, and with high probability, the identifiers will be unique.
Then, each edge e′ samples itself independently with probability 1

2j
. Now, each tree edge

e ∈ Cj uses Claim 4.4 to learn about info(e∗) (which has a poly log n bit representation; see
Theorem 4.12 and Claim 4.4) of the minimal Id edge sampled e∗ that covers e. This process is
repeated β = log2 n times. Denote by CovSetsamp(e) the set of edges from CovSet(e) that were
learned by e.12 A simple concentration bound shows that the number of distinct edges sampled
from the set CovSet(e) is Covsamp(e) = |CovSetsamp(e)| = Ω(log n).13 We keep O(log n)-many
elements in CovSetsamp(e) and discard the rest.

We denote by CovSetsamp(e, P) ⊆ CovSet(e, P) for some tree edge e and some ancestor to
descendant path P as follows: CovSetsamp(e, P) = CovSetsamp(e) ∩ CovSet(e, P) = {e′′ ∈

12Note that, for making the elements sampled in CovSetsamp(e) i.i.d., we needed the random Ide generated in the
beginning. Each edge in the set CovSetsamp(e) is a random edge from a set of i.i.d. sampled edges because each such
edge has the minimum Ide w.r.t. a random ordering of those i.i.d. sampled edges. It is to be noted that similar
argument cannot be made if we fixed a global ordering of the edges apriori, such as, fixing an ordering of V and using
the induced ordering on the edge set.

13This is only true when Cov(e) = ω(log n). For the case when Cov(e) = O(log n), we do the same sampling
procedure—in this case the set CovSetsamp(e) is a multiset which w.h.p. will cover the set CovSet(e) completely. We
can do exact calculation for such cases, but this does not affect the probabilistic calculation presented next.

69

CovSetsamp(e) | e′′ ∈ CovSet(e, P)}, and Covsamp(e, P) = |CovSetsamp(e, P)|. Now we define for
each tree edge e the set of potentially interested paths as follows. Here, Pe denotes the path
from the root to e.

Intpot(e) =

{

P | Covsamp(e, P) ≥ Covsamp(e)

3

}

∪ Pe.

We need to verify that property 1 and 2 of Lemma 5.11 hold for such a sampling procedure which
is done next in Claim C.2 and C.3 respectively. But, first, we quickly check the round complexity of
the sampling algorithm.

Claim C.1. The sampling algorithm for unweighted graph can be performed in Õ(D+
√
n) rounds at

the end of which each tree edge e (and the vertices in e) knows the set {info(e′) | e′ ∈ CovSetsamp(e)}.

Proof. The communication happens only in two parts of the algorithm:

(i) The unique identifier of each edge is sent across from one end-point of the edge to the other
end-point simultaneously on all edges. As mentioned before, this can be done in one round
as there is no congestion on any edge. As there are O(log n) iterations, the total number of
rounds for this operation is also O(log n).

(ii) In each iteration, each tree edge e active in that iteration (i.e., Cov(e) falls in the range
corresponding to that iteration) uses Claim 4.4 to learn about of info(e′) of O(log n) many
(possibly distinct) edges e′ which covers e. Each invocation of Claim 4.4 requires O(D +

√
n)

rounds. As there are O(log n) many such invocations in each iteration and as there are O(log n)
many iterations, the total round complexity is Õ(D +

√
n).

Hence the round complexity of the sampling algorithm is Õ(D +
√
n).

Now we turn to verify Property 1 and 2 of Lemma 5.11.

Claim C.2. W.h.p, given a tree edge e and an ancestor to descendant path P ∗ such that P ∗ ∈ Int(e),

we have Covsamp(e, P
∗) ≥ Covsamp(e)

3 .

Proof. By definition of interesting paths, we know that Cov(e, e′) > Cov(e)
2 . Let j be the index such

that e ∈ Cj (i.e., Cov(e) ∈ [2j−1 + 1, 2j] and let us observe sub iteration j. It is easy to see that,
on expectation, the value of Covsamp(e, P

∗) > Covsamp(e)/2. Hence, by an application of Chernoff
bound, we see

Pr[Covsamp(e, P
∗) > Covsamp(e)/3] ≥ 1− o(1).

This means that, w.h.p., P ∗ ∈ Intpot(e) which verifies Property 1 of Lemma 5.11.

Using union bound, we see that such inequality holds for every tree-edge w.h.p. We actually
achieve something stronger by this random process, as mentioned in the following claim.

Claim C.3. For every path P ∈ Intpot(e), Cov(e, P) ≥ Cov(e)/6 w.h.p.

Proof. Suppose not. This means that there is a path P such that Covsamp(e, P) ≥ Covsamp(e)/3 (i.e.,
P ∈ Intpot(e)) but Cov(e, P) = ε · Cov(e) where ε < 1/6. As before, we see that E [Covsamp(e, P)] =

ε ·Covsamp(e), and by an application of Chernoff bound, we have Pr[Covsamp(e, P) ≤ 2ε ·Covsamp(e) <
Covsamp(e)/3] ≥ 1− o(1) which is a contradiction. This verifies Property 2 of Lemma 5.11.

70

Proof of Lemma 5.11. To prove Lemma 5.11, we have to do similar argument as above for weighted
graphs. The argument is actually very similar to the unweighted case—we treat every weighted edge
e with weight w(e) to be w(e) many parallel unweighted edges. As before, the sampling procedure
runs in O(log n) iterations, one of each class Cj . We next point out the difference in iteration j
from the case of unweighted graphs. In the rest of the proof, an unweighted edge represents an edge
from the purported multi-edge description of a weighted edge. So it is instructive to view the graph
as an unweighted graph where multi-edges are allowed.

Iteration j. We first mention one of the main differences from the unweighted sampling procedure.
In the case of unweighted sampling, we assumed that for an edge e = {u, v} one of the vertices
(say u assuming u ≺ v in the total ordering of V) will sample the unique id Ide for e and
send it across to v. This can happen for all edges simultaneously with no congestion, and
requires one additional round of communication. We cannot afford to do exactly that when
the edges are weighted, because in this case u will generate w(e) many unique identifiers, one
for each of its unweighted edges in its representation of unweighted multi-edge, for the edge e.
Sending this across to v using the edge e can potentially incur considerable congestion which
we cannot afford. We avoid congestion in the following way. The following sampling is done
entirely by u. For each weighted edge e = {u, v}, u samples each of the w(e) many identifiers
corresponding to e independently with probability 1/2j . At this point, for each edge e, one of
its end-points holds a set of sampled identifiers. Now, for every edge e, the end-point which
holds this set of identifier will send across the minimum identifier to the other end-point using
the edge e. This does not cause any congestion. From this point onward, we identify every
weighted edge e by the minimum identifier Id′(e) that is sampled by the sampling procedure
just mentioned (If there is no such minimum identifier for an edge e, we ignore that edge).
The rest of the sampling procedure remains similar to that of the unweighted case: Each tree e
learns about info(e∗) of the edge e∗ with minimum Id′(e∗) that covers e′ using Claim 4.4. This
process is repeated β = log2 n times and thus each tree edge e′ samples O(log n) many distinct
identifiers uniformly from the set of identifiers corresponding to the set of weighted edges
CovSet(e). If we imagine each weighted edge as a set of parallel unweighted edges, each with
unique identifier, this set of sampled identifiers corresponds to the set of such unweighted edges
which are sampled—we denote this set as CovSetsamp(e). We also denote by Covsamp(e, P) the
number of such unweighted edges that covers both e and P . Again, as before, each tree edge e
defines Intpot(e) = {P | Covsamp(e, P) ≥ Covsamp(e)/3}. It is not hard to see the following: (a)
Each identifier in the set CovSetsamp(e) is included in the set independently and with identical
probability (i.e., with probability 1/2j) from the set of identifiers corresponding to the set of
weighted edges CovSet(e) and (ii) the number of distinct identifiers in the set CovSetsamp(e) is
at least log n. Hence C.2 and C.3 hold for this case as well by similar calculation.

We now analyze the round complexity of this sampling algorithm. We make a similar claim as
Claim C.1. The proof is also similar and hence skipped.

Claim C.4. The sampling algorithm for weighted graph can be performed in O(D +
√
n) rounds at

the end of which each tree edge e (and the vertices in e) knows the set {info(e′) | e′ ∈ CovSetsamp(e)}.

D Missing proofs from Section 5

Below we prove Lemma 5.21 in Section D.1, and Theorem 5.27 in Section D.2.

71

D.1 Learning interesting paths

Lemma 5.21. All non-highway boughs, and all fragment highways can learn the paths (See definition
5.19) each of them is potentially interested in Õ(Dfrag) rounds. Furthermore, in Õ(Dfrag) rounds, all
non-highway boughs P can simultaneously send Intpot(P) to all vertices in T (P), and all fragment
highways P (of a fragment FP) can send Intpot(P) to all vertices in FP .

For proving the above lemma, we first require some useful claims.

Claim D.1. For each tree edge e, given info(e′) for each e′ ∈ CovSetsamp(e), e can construct
internally the set Intpot(e).

Before diving deeper into the proof, we prove the following useful claim. Intuitively, in graph
theoretic terms, we prove here that given any set A of vertices in a tree, the set of LCA’s of any
subset S ⊆ A of these vertices is contained in the set of LCA’s of pairs of vertices from A (See
Figure 22 for an illustration). The notation in the formal statement of the claim adds information
that is useful for the way we employ the claim.

𝑒1

𝑒′1
𝑒′2

𝑣1 𝑣2
𝑣3 𝑣4

Figure 22: In this figure we have the green edge e1, and the path P which consists of e′1, e
′
2, and satisfies

P ∈ Intpot(e). v1, v2, v3, v4 denote the vertices in T (P) that have incident edges in CovSetsamp(e1). Note that
there exists a pair of vertices (e.g. v1, v3) such that LCA(v1, v3) is exactly the lowest vertex of P .

Claim D.2 (LCA claim). Let e be some tree edge, and let P be some root to descendant path such
that e is potentially interested in P , i.e. P ∈ Intpot(e). Denote by v the lowest vertex of P , and by
ev the lowest edge of P . Furthermore, P is maximal in the sense that e is not potentially interested
in any ancestor to descendant path that strictly contains P . For each e′ ∈ CovSetsamp(e), denote by
e′1, e

′
2 its respective tree edges. Denote by D = {e′i | e′ ∈ CovSetsamp(e, P), i = 1, 2}.
Then, there exists e1, e2 ∈ D such that LCA(e1, e2) = v.

Proof. Since e is potentially interested in P , there is some edge e′ ∈ D such that e′ has an endpoint

in e↓v, this is since Covsamp(e, P) ≥ Covsamp(e)
3 , and every edge that covers P has an endpoint in e↓v.

Now that we know that D is not empty, let e′ ∈ D be some edge, and denote by v∗ the highest
vertex in the set {LCA(e′, e∗) | e∗ ∈ D}. Note that such a vertex exists since D is not empty and

72

each vertex in the aforementioned set is an ancestor of e′, so there is a well defined order on these
vertices, in terms of closeness to the root.

Our goal will be to prove that v∗ = v, and this will conclude the proof. For that, we first show
that {LCA(e1, e2) | e1, e2 ∈ D} ⊆ v↓∗ , i.e., v

∗ is the highest vertex among all local common ancestors
of all pairs of edges in D. Assume towards a contradiction that this does not hold and denote
by e1, e2 ∈ D edges that satisfy LCA(e1, e2) 6∈ v↓∗. Now, since both LCA(e′, e1),LCA(e

′, e2) are
ancestors of e′, one of these vertices is higher than the other, assume w.l.o.g. it is LCA(e′, e1), it

must hold also that LCA(e′, e1) 6∈ v↓∗, since otherwise we get that both e1, e2 ∈ v↓∗, then so is their
LCA, which is a contradiction. But since LCA(e′, e1) is an ancestor of e′, it is either a descendant of

v∗, or an ancestor of it. the former contradicts LCA(e′, e1) 6∈ v↓∗, and the latter contradicts the fact
that v∗ the highest vertex in the set {LCA(e′, e∗) | e∗ ∈ D}. Either way, we arrive at a contradiction.

Thus {LCA(e1, e2) | e1, e2 ∈ D} ⊆ v↓∗, as desired.
Now in order to show that v∗ = v, we note that basically all edges in D are by definition exactly

all the edges adjacent to edges in CovSetsamp(e, P). Thus we proved that Covsamp(e, Pv∗) ≥ Covsamp(e)
3 ,

where Pv∗ is the path from LCA(e, v∗) to v∗. Thus e is potentially interested in Pv∗ , and since P is
maximal with respect to that, we deduce that v∗ = v as required.

Proof of Claim D.1. Let e′ = {u, v} ∈ CovSetsamp(e) where v ∈ e↓. Denote by e1, e2 the edges
e1 = {p(u), u}, e2 = {p(v), v}. info(e′) contains info(e1), info(e2), i.e.

• Whether e1, e2 are highway/non-highway edges.

• The id of the fragments of e1, e2. From this, using Observation 4.13, e can deduce the set of
fragments F that satisfy F ∩ Pe1 6= ∅ or F ∩ Pe2 6= ∅.

Now, with the LCA claim proven, in order to figure out the root to descendant paths that
are in Intpot(e), it suffices for e does the following internally. Denote by S the set {e′i | e′ ∈
CovSetsamp(e), i = 1, 2}. For each pair e1, e2 ∈ S, e computes v = LCA(e1, e2), and then computes
z = LCA(u, v) (u represents the lower vertex of e) and then computes Covsamp(e, P

z
v) in the following

way (P z
v is the ancestor to descendant path from z to v). e computed z, and based on that divides

into two cases:

1. If z = u, then for each edge e′ = {v′, u′} ∈ CovSetsamp(e), e computes LCA(v, v′),LCA(v, u′), if
neither of these equal v, e moves on to the next edge. Otherwise, assume w.l.o.g LCA(v, v′) = v.
e checks whether LCA(u, u′) 6= u, and if so concludes that e′ ∈ CovSetsamp(e, P

z
v) and adds

w(e′) to Covsamp(e, Pv). Otherwise, e moves on to the next edge.

2. If z 6= u, then for each edge e′ = {v′, u′} ∈ CovSetsamp(e), e computes LCA(v, v′),LCA(v, u′), if
neither of these equal v, e moves on to the next edge. Otherwise, assume w.l.o.g LCA(v, v′) = v.
e checks whether LCA(u, u′) = u, and if so concludes that e′ ∈ CovSetsamp(e, Pv) and adds
w(e′) to Covsamp(e, P

z
v). Otherwise, e moves on to the next edge.

e then keeps all paths that satisfy Covsamp(e, P) ≥ Covsamp(e)
3 . Note that for all such paths e

knows the path P (See definition 5.19). This is true since for each e′ ∈ CovSetsamp(e, P), info(e)
contains all the relevant information about P (See 4.12 and discussion afterwards about non-tree
edges), and e knows the ending vertex v of P , and the starting vertex z of P . Note that e can
also know whether v is the bottom end of a non-highway edge using LCA computations, i.e. if P
contains non-highway edges. Furthermore note that e can know the fragments of v, z by the fact
that e knows both the skeleton tree (See Lemma 4.1) and the fragments of all nodes with incident
edges in CovSetsamp(e) (See definition 4.4). Thus e knows all the necessary information about all
paths in Intpot(e). The resulting set of paths is Intpot(e), up to two modifications. e always includes

73

the path from the root to e, Pe in Intpot(e), e knows this path by the information gathered by e in
Theorem 4.12.

Lastly, e discards from Intpot(e) any path P that is not maximal, i.e. such that there exists a
path P ′ ∈ Intpot(e) that satisfies P (P ′. The resulting set is precisely Intpot(e) as constructed in
Lemma 5.11.

Proof of Lemma 5.21. Now that we showed that an edge e can internally construct its own set
potentially interested paths Intpot(e), the lemma follows by using standard routing techniques. The
length of any fragment highway and any non-highway path is Õ(Dfrag). For each edge e it holds that
|Intpot(e)| = O(log n) , and the representation of each path is O(log n) bits, thus each such path P
can upcast Intpot(e) for each of its edges up to the highest vertex, and then broadcast it down the
path in Õ(Dfrag) rounds. This can be done in parallel since all non-highway boughs and all fragment
highways are edge disjoint. Now, the last part of the lemma follows since any non-highway ancestor
to descendant path is of length at most Õ(Dfrag), thus each non-highway edge e can broadcast
down its tree the set Intpot(e) along with its layer in the layer decomposition to allow edges below
to distinguish between different paths, and using pipe-lining the desired statement in achieved in
Õ(Dfrag) rounds. Furthermore, given a highway path P of a fragment F , The vertices of P can in
O(Dfrag) send Intpot(P) to the root of F . Then, again in O(Dfrag) rounds, the root of F can send
Intpot(P) to all the vertices of F , as required.

Note that since each path in Intpot(e) for every e is represented by some fragment F (the lowest
fragment of the path), each edge now holds a set of fragments that exactly represent the set of
paths that e’s respective path is potentially interested in. Each edge e in a path P also knows for
each of these fragments whether P is potentially interested in a non-highway path in that fragment
or not (see Definition 5.19). Thus, each edge e can discard from the resulting set of fragments those
fragments that are both not the lowest and P is not potentially interested in a non-highway path
in F (i.e. fragments F in the set Intpot(P) such that there is a descendant fragment F ′ of F in
Intpot(P) and P is not potentially interested in a non-highway path in F). Note that this can be
done internally in each tree edge e, since each tree edge knows the skeleton tree (See Lemma 4.1).

The resulting set accurately represents Intpot(P) for a given bough non-highway or fragment
highway P .

D.2 Proof of highway pairing theorem.

Theorem 5.27. Given the set of bough highways paths P as defined in Definition 5.20, one can
construct a set R ⊆ P × P such that the following holds.

1. If (P1, P2) ∈ R, then P1 is potentially interested in some highway sub-path of P2, and vice
versa.

2. For any fragment F , it holds that RF = |{(P1, P2) ∈ R | PF ⊆ (P1, P2);PF is active}| =
Bpath · log n.

3. If e1 ∈ P, e2 ∈ P ′ are highway edges on different bough highway paths P, P ′ that define the min
2-respecting cut of T , then w.h.p. (P, P ′) ∈ R. Furthermore, e1 is in the active fragments of
P , and e2 is in the active fragments of P ′.

4. All the vertices in the graph G can learn the set R in time Õ(D+
√
n). Furthermore, for each

pair (P1, P2) ∈ R, all the vertices of G know who are the active fragments in the pair (P1, P2).

5. For all (P1, P2) ∈ R, it holds that P1 and P2 don’t split one another (See Section 5.3).

74

Proof. Define the following initial pairing

R∗ = {(P1, P2) ∈ P × P |
P1 is potentially interested in P2 and vice versa}

We first prove that R∗ satisfies all requirements of the theorem, except for maybe the last one,
and then we modify R∗ to meet all requirements. Clearly R∗ satisfies condition 1 of the theorem.
Now, for the other requirements.

Requirement 2. Consider some fragment F in some bough highway path P , and the set RF .
Now, By Observation 5.26 and by Corollary 5.25, we know that PF is potentially interested in at
most Bpath highway paths of any given layer. Thus, since the number of layers is O(log n), PF is
potentially interested in at most Bpath · log n highway paths of a given layer. Thus there can be at
most O(Bpath · log n) pairs (P, P ′) ∈ R∗ s.t. PF is active with respect to that pair. This concludes
requirement 2 of the theorem.

Requirement 3. For the third requirement, assume e1, e2 are such edges and P1, P2 their respective
bough highway paths (Each path is represented by its lowest and highest fragment). Now, by
Lemma 5.11, and Lemma 5.21 and discussion right afterwards, we know that w.h.p P ′

1 ∈ Intpot(e2)
and P ′

2 ∈ Intpot(e1) for some paths P ′
1 ⊆ P1, P

′
2 ⊆ P2. Thus by definition of R∗, we can deduce that

(P, P ′) ∈ R∗.

Requirement 4. Now, for the fourth requirement. Consider a fragment F , each bough highway
path that PF is potentially interested in is known to some vertex in PF . This is true by definition 5.9
interesting paths and Claim 5.21. Furthermore, since there are Nfrag = O(

√
n) fragments, and each

highway path contained in a single fragment is active in at most O(Bpath · log n) pairs (P, P ′) ∈ R,
one can deduce that |R∗| = O(

√
n ·Bpath · log n). Thus, using a BFS tree of the network, the network

can elect some leader vertex v0, and upcast towards it the elements of R, where each vertex v sends
the pairs of which it is participating in and its fragment is active along with the Id of the fragment
F that v is contained in (and thus F is active in all these pairs). Again, this can be done since each
bough highway path that PF is potentially is known to some vertex in PF . Thus all pairs in R∗

in which PF is active are known to vertices in PF . Then, v0 broadcasts these pairs along with the
active fragments for each pair back to all other nodes. Using pipe-lining, both of these procedures
can be completed in Õ(D +

√
n) rounds, as required. This is true since the total amount of Ids of

active fragments that v0 needs to send is O(Nfrag ·Bpath · log n).
Requirement 5. Now, each vertex v does the following internally. v goes over all pairs (P1, P2) ∈ R∗,
if P1, P2 don’t split one another, v does nothing and continues to the next pair. Otherwise, v
removes the pair (P1, P2) from R∗ and does the following. Assume w.l.o.g that P1 splits P2, v knows
both paths P1, P2, and therefore v knows the fragment in which P1, P2 intersect, denote it by F
(It is a part of P2, but not P1). v splits the path P2 into 2 paths, P ′

2, P
′′
2 . Here, P

′
2 is the sub-path

of P2 which includes all edges of all fragments higher than F , and P ′′
2 includes all the rest of the

edges. Note that Both P ′
2, P

′′
2 are super highways. Now v considers the pairs (P1, P

′
2), (P1, P

′′
2), note

that both of these pairs do not split each other. Now, since v knows the active fragments of P2

with respect to the pair (P1, P2), v knows whether P ′
2, P

′′
2 are potentially interested in P1, and if

so, knows the active fragments in the pairs (P1, P
′
2), (P1, P

′′
2). If one of P ′

2, P
′′
2 is not potentially

interested in P1, v discards the appropriate pair. Then, v adds to R∗ the pair (P1, P
′
2) if it wasn’t

discarded, and the pair (P1, P
′′
2) if it wasn’t discarded.

Denote the resulting set by R.
The first criteria of the theorem holds. for the second criteria, since the number of pairs each

fragment is active in in the transition from R∗ to R doubled at most, this criteria holds as well.

75

Since each vertex knows R∗, and each vertex constructs R without any further communication,
the third criteria also holds.

The fifth criteria holds since by the modification we made to R∗, every pair of paths in R don’t
split one another. This concludes the proof.

E Missing proofs from Section 6

E.1 Basic subroutines on a tree

Claim 6.1. Let T ′ be a tree of diameter DT ′, and assume we want to compute c1 broadcast
computations and c2 aggregate computations in T ′. Then, we can do all computations in O(DT ′ +
c1 + c2) time. Moreover, we can work in parallel in trees that are edge-disjoint.

Proof. As explained above, each broadcast or aggregate computation requires O(DT ′) time, and the
computation requires only communication on edges of the tree. To complete the proof, we explain
how to pipeline the computations efficiently. By the description, each broadcast requires sending
only one message from each vertex to each one of its children, when we go over the tree from the root
to the leaves, hence clearly we can pipeline such computations. Similarly, an aggregate computation
requires sending one message from each vertex to its parent, when we go over the tree from the
leaves to the root, which can also be pipelined easily. Since the two types of computations send
messages in opposite directions, they do not interfere with one another, and we can run broadcast
and aggregate computations in the same time, which results in a complexity of O(DT ′ + c1 + c2)
time.

Claim 6.2. Let FP be a fragment with its highway denoted by P , and assume we want to compute
c1 broadcast computations, c2 aggregate computations, and c3 aggregate computations in the reverse
direction in FP . Then, we can do all computations in O(Dfrag + c1 + c2 + c3) time. Moreover, we
can work in parallel in different fragments.

Proof. Pipelining of broadcast and aggregate computations is already discussed in the proof of
Claim 6.1. We next explain how we pipeline also aggregate computations where dP is the root. To
pipeline aggregate computations in two different directions (where rP and dP are the roots in the
two computations), we work as follows. Note that orienting edges towards dP only changes the
orientation of highway edges (see Figure 15 for an illustration), hence in all subtrees attached to the
highway, the communication pattern in the two computations is identical, and we can just pipeline
them as before. On highway edges, we send messages in opposite directions in both computations,
hence they do not interfere and we can run them on the same time. To pipeline a broadcast (from
rP) and an aggregate computation with root dP , we work as follows. On the subtrees attached to
the highway, we send messages on opposite directions in these computations, hence they do not
interfere. On highway edges, we send messages on the same direction, from rP towards dP , since
both computations send one message per edge in the same direction, we can just pipeline them, as
we would pipeline two broadcast computations. This completes the proof.

E.2 Simple cases where P
′ is a non-highway

Claim 6.5. Let P ′ be a non-highway in the fragment FP ′ and let F 6= FP ′ be another fragment.
Assume that there is an edge f between T (P ′↓) and F , that is known to all vertices in T (P ′). Also,
assume that at the beginning of the computation all vertices in F know all values {e,Cov(e)}e∈F .
Then, in O(Sfrag) time, all edges e′ ∈ P ′ can compute the values {e,Cut(e′, e)}e∈F . The computation
can be done in parallel for different paths P ′ not in the same root to leaf path.

76

Proof. As all vertices in F know the values {e,Cov(e)}e∈F , and the edge f has an endpoint in F
and an endpoint in T (P ′), it knows this information, and can pass it to all vertices in T (P ′) using
O(Sfrag) aggregate and broadcast computations in T (P ′). Note that since the subtrees T (P ′↓) are
disjoint for non-highways not in the same root to leaf path, the edge f = {u, v} where u ∈ P ′, v ∈ F
cannot be used by other paths in the fragment of P ′, which allows working in parallel as needed.
As F and P ′ are in different fragments, and P ′ is a non-highway, we have that all edges e ∈ F are
not in T (P ′), hence we can use Claim 6.4 to let all edges e′ ∈ P ′ learn the values {e,Cut(e′, e)}, this
takes O(Sfrag) time using pipelining, and can be done in parallel for different non-highways P ′ not
in the same root to leaf path.

Claim 6.6. Let P ′ be a non-highway in the fragment FP ′ and assume that all vertices in T (P ′)
know the complete structure of P ′. In O(Sfrag) time, all edges e′ ∈ P ′, can compute the values
Cut(e′, e) for all edges e ∈ FP ′ that are either above or orthogonal to them in the fragment FP ′ . The
computation can be done in parallel for different paths P ′ not in the same root to leaf path.

Proof. First, in O(Sfrag) time, all edges e′ in FP ′ can learn the values {e,Cov(e)} for all edges e ∈ FP ′

by aggregate and broadcast computations in the fragment. This can be done for all fragments
simultaneously.

We can now use Claim 6.4 to compare the edges of P ′ to all edges outside T (P ′) in the fragment
FP ′ . This takes O(Sfrag) time using pipelining, and can be done in parallel for different paths not
in the same root to leaf path. After this, each edge e′ ∈ P ′, knows the values Cut(e′, e) for all
e ∈ FP ′ \ T (P ′).

To complete the proof, we show how to compare pairs of edges in T (P ′). We show that any edge
e′ ∈ T (P ′) can compute the values Cut(e′, e) for edges e ∈ T (P ′) that are above or orthogonal to
e′. To compute it, we fix an edge e = {v, p(v)} ∈ T (P ′) and run an aggregate computation inside
T (P ′) as described in the proof of Claim 6.4, with the difference that we stop it when we reach any
vertex that is equal to v or an ancestor of v. This computation only reaches edges that are below or
orthogonal to e, and hence e is not in the subtree below them which is enough for the correctness of
the computation. By the end, all edges e′ that are below or orthogonal to e in T (P ′), know the
value Cut(e′, e), as needed. Using pipelining we can run such computations for all edges e ∈ T (P ′)
in O(Sfrag) time. As the computations are inside T (P ′), it can be done in parallel for other paths
not in the same root to leaf path.

E.3 P
′ is a non-highway and P is a highway

Claim 6.7. Let e′ ∈ P ′, e ∈ P where P ′ is a non-highway, and P is a highway in a different
fragment FP . Then Cov(e′, e) = CovF (e

′, e) + Cov
extr(e′, P).

Proof. First note that by Claim 3.3, any edge x that covers e′ has one endpoint in the subtree
T (P ′↓) which is inside the fragment FP ′ of P ′. Now the edges that cover e′ and e are all the edges
with one endpoint in T (P ′) that cover e′ and e. If the second endpoint of the edge is in the fragment
FP , these edges are counted in CovF (e

′, e). To complete the proof, we need to show that any edge
x that covers e′ and e and has both endpoints outside FP , must cover the whole highway P . If
x = {u, v} covers both e′ and e with both endpoints outside FP and u ∈ T (P ′), the unique u− v
path in the tree starts in the fragment FP ′ , and then enters and leaves the fragment FP . From
the structure of the decomposition, the only two vertices in FP that are connected by an edge to
vertices outside the fragment are the ancestor rP and descendant dP of the fragment, hence any
path that enters and leaves FP must include rP and dP and the whole path between them, which is
the highway P . Hence, x must cover the whole highway P as needed.

Computing CovF (e
′, e).

77

Claim 6.8. Let P ′ be a non-highway and let P be a highway of the fragment FP . Given an edge
e ∈ P , using an aggregate computation in T (P ′), all edges e′ ∈ P ′ can compute the value CovF (e

′, e).

Proof. The proof is similar to the proof of Claim 6.4. When we fix an edge e ∈ P , computing
CovF (e

′, e) for all edges e′ ∈ P ′ is an aggregate computation in T (P ′). This follows as the edges
counted in CovF (e

′, e) for e′ = {v′, p(v′)} are all the edges with one endpoint in the subtree of v′

(which is contained in T (P ′)) and one endpoint in FP that cover e′ and e. To compute the cost of
those we just run an aggregate computation in T (P ′). Note that for each edge x with an endpoint
v in T (P ′), v knows if the second endpoint is in FP , and also can deduce from the LCA labels using
Claim 3.5 whether x covers e and e′, which allows computing the aggregate function. At the end of
the computation, each vertex v′ ∈ T (P ′) knows exactly the cost of edges in its subtree that cover e′

and e with the second endpoint in FP , which is exactly CovF (e
′, e) for e′ = {v′, p(v′)}.

Claim 6.9. Let P ′ be a non-highway and let P be the fragment highway of the fragment FP . Given
an edge e′ ∈ P ′, using an aggregate computation in FP , all edges e ∈ P can compute the value
CovF (e

′, e).

Proof. Here we break into cases according to the connection between P ′ and P . One case is that
they are orthogonal, and one case is that P is a highway above P ′. Note that from the structure of
the decomposition, there are no other cases, as any path in the tree between a descendant and an
ancestor starts with a non-highway and highways above it, so we cannot have P ′ above P . Note
also that all vertices know the complete structure of the skeleton tree, and can deduce accordingly
in which one of the two cases we are.

Case 1: P ′ and P are orthogonal. Here we know that T (P ′) and T (P) are disjoint, hence from
Claim 3.3 it follows that all edges that cover e′ ∈ P and e ∈ P have one endpoint in T (P ′) and one
endpoint in T (P). Note that T (P) is not necessarily contained in FP , but since we are interested
only in computing CovF (e

′, e), we are only interested in edges with one endpoint in T (P ′) and one
endpoint in T (P) ∩ FP that cover e′ and e. Computing the total cost of these edges requires one
aggregate computation in T (P) ∩ FP , and follows exactly the computation described in the proof of
Claim 6.8.

Case 2: P is above P ′. Here we need to do an aggregate computation in the reverse direction,
to explain this we first take a closer look on edges that cover e′ and e in this case. Since e′ is below
e in the tree, any tree path that contains both of them must include the whole tree path between
them, which in particular includes a part between the descendent dP of the fragment FP to e ∈ P.
Hence, we need to sum the cost of edges that cover e′ and e and also the whole path between e and
dP . To compute it, it would be helpful to reverse the orientation in the fragment FP , such that now
dP is the root of the fragment. Now if e = {v, d(v)} where d(v) is the vertex closer to dP , all edges
that cover e′ and the path between e and dP and have an endpoint in FP , must have an endpoint
in the subtree of v according to the new orientation (the subtree that includes everything below
v when we think about dP as the root). Hence, to compute the total cost of edges that cover e′

and e and have one endpoint in FP , we just do one aggregate computation in FP in the reverse
direction to sum the costs of these edges. At the end of the computation, the vertex v such that
e = {v, d(v)} knows exactly CovF (e

′, e). Similarly, for each edge e ∈ P , one of its endpoints knows
CovF (e

′, e) as needed.

Computing Cov
extr(e′, P).

Claim 6.10. In O(Dfrag +Nfrag) time, all edges e′ in the non-highway P ′ can compute the values
Cov

extr(e′, P) for all highways P . Moreover, this computation can be done in all non-highways in
the same layer simultaneously.

78

Proof. Let e′ = {v′, p(v′)} ∈ P ′, and fix a highway P . The edges that cover e′ have one endpoint in
T (P ′) ⊆ FP ′ by Claim 3.3. Hence, to compute the total cost of edges that cover e′ and the whole
highway P we just need to do one aggregate computation in T (P ′). To implement the computation,
we need to explain how given an edge x we know if it covers the whole highway P and if both its
endpoints are outside FP . The second is immediate. For the first, note that x covers the whole
highway P iff it covers the highest and lowest edges in the highway, since in this case it must cover
the whole path between them which is the highway. As the highest and lowest edges in the highway
are known to all vertices by Claim 6.3, and since we can use LCA labels of edges to learn if x covers
some edge by Claim 3.5, we can compute the aggregate function. At the end of the computation,
each vertex v′ ∈ P ′ knows the total cost of edges in its subtree that cover the whole highway P and
have both endpoints outside FP , this is exactly Cov

extr(e′, P) for the edge {v′, p(v′)}. This requires
one aggregate computation. To compute the values Covextr(e′, P) for all highways we run O(Nfrag)
such computations, which results in O(Dfrag +Nfrag) time as we pipeline the computations. As the
whole computation was inside T (P ′), we can run in parallel in disjoint subtrees, and in particular
we can run the computations in parallel for all non-highways P ′ in the same layer.

E.4 P
′ and P are highways

Claim 6.14. Let e′ ∈ P ′, e ∈ P be two tree edges in the highways P ′, P . Then,

Cov(e′, e) = Cov
extr(P ′, P) + Cov

extr(e′, P) + Cov
extr(e, P ′) + CovF (e

′, e).

Proof. First, if x = {u, v} is an edge that covers e ∈ P , then the unique tree path between u and v
contains e. As the the only vertices in FP that are connected by an edge to a vertex outside FP are
the root rP and unique descendant dP of the fragment, any path in the tree that contains e and
have both endpoints outside the fragment, must also contain the whole highway between rP and dP
(as otherwise, at least one of the endpoints would be inside the fragment). Hence, if both endpoints
of x are outside FP , it covers the whole highway P .

Now any edge x that covers e′ and e, has the following options.

1. x has both endpoints outside FP ′ and FP , in this case it follows that x must cover the whole
highways P ′ and P , which is exactly counted by Cov

extr(P ′, P).

2. x has one endpoint in FP ′ but two endpoints outside FP , in this case x must cover the whole
highway P , which is exactly counted in Cov

extr(e′, P).

3. x has one endpoint in FP but two endpoints outside FP ′ , in this case x must cover the whole
highway P ′, which is exactly counted in Cov

extr(e, P ′).

4. x has two endpoints in FP ′ ∪ FP , in this case it must be the case that x has one endpoint
in FP ′ and one endpoint in FP , as otherwise the unique tree path defined by x is contained
entirely in one of the fragments and cannot cover both edges e′ ∈ P ′, e ∈ P . This is counted
by CovF (e

′, e).

Computing Cov
extr(P, P ′).

Claim 6.15. Let P, P ′ be two highways. Using one aggregate and one broadcast computation in
a BFS tree, all vertices can learn Cov

extr(P, P ′). Computing this value for k different pairs takes
O(D + k) time.

79

Proof. Given some edge x = {u, v}, it knows if its endpoints are outside FP ∪ FP ′ . In addition, it
can learn if it covers the highway P as follows. An edge x covers the whole highway P iff it covers
both the highest and lowest edges in P : e1, e2, because in this case it follows that the unique tree
path between u and v contains the unique tree path between e1 and e2 which is the highway P .
Using the LCA labels of edges and Claim 3.5, x can learn if it covers e1, e2. Similarly, x can learn
if it covers the whole highway P ′, and then deduce if it covers both P and P ′. Now to compute
Cov

extr(P, P ′) we sum the cost of all edges that cover both P and P ′ and have both endpoints
outside FP ∪ FP ′ , this is a sum of values that can be computed using an aggregate computation
in a BFS tree. For each edge x outside FP ∪ FP ′ that covers both P and P ′, one of its endpoints
represents x in the computation, and adds its cost to the sum computed. To let all vertices learn
the value Cov

extr(P, P ′) we use a broadcast in the BFS tree. If we have k different pairs, we pipeline
the computations to get a complexity of O(D + k).

Computing CovF (e
′, e).

Claim 6.16. Let P, P ′ be highways of the fragments FP and FP ′ , respectively, and let e ∈ P . Using
one aggregate computation in FP ′, all edges e′ ∈ P ′ can compute the value CovF (e

′, e).

Proof. If we look at the highways P and P ′, there are several cases:

1. P and P ′ are orthogonal.

2. P and P ′ are in the same root to leaf path with P ′ below P .

3. P and P ′ are in the same root to leaf path with P below P ′.

Note that all vertices know the complete structure of the skeleton tree, hence they can distinguish
between the cases. We start with the first two cases.

Cases 1 and 2. In these cases, we show that any edge x that covers e ∈ P and some edge
e′ = {v′, p(v′)} ∈ P ′ and has endpoint in FP ′ has an endpoint in the subtree of v′ in FP ′ . This is
justified as follows. We know that any edge x that covers e′ has an endpoint u in the subtree rooted
at v′ by Claim 3.3. Assume to the contrary that u 6∈ FP ′ , but rather the second endpoint of x, u′, is
in FP ′ . Now the path between u and u′ has a part in FP ′ , and a part below it, as u is in the subtree
rooted at v′ ∈ P ′. This path can only cover edges in FP ′ or below it, but we are in the case that P
is orthogonal to P ′ or above it, hence it does not have any edge in FP ′ or below it, which means
that x cannot cover e ∈ P , a contradiction.

Hence, we know that any edge that covers e ∈ P and e′ ∈ P ′ and also has an endpoint in FP ′

has an endpoint in T (P ′) ∩ FP ′ . Hence, given an edge e ∈ P , computing the values CovF (e
′, e) for

all edges e′ ∈ P ′ requires one aggregate computation in FP ′ , in which every vertex v′ ∈ FP ′ learns
the total cost of edges adjacent to its subtree in FP ′ that cover also e, and have the second endpoint
in FP . As explained in the proof of Claim 6.4 this is an aggregate computation in the subtree, and
it can be computed as for each non-tree edge x we can deduce it it covers e using its LCA labels (see
Claim 3.5). At the end of the computation, the vertex v′ such that e′ = {v′, p(v′)} knows exactly
the value CovF (e

′, e).
Case 3. In this case P and P ′ are in the same root to leaf path with P below P ′. Let

e′ ∈ P ′, e ∈ P , we start by analysing the structure of edges that cover e′ and e in this case. Since P
is below P ′, any edge x that covers e′ and e covers the whole path between e′ and e. In particular,
it covers the whole path between e′ ∈ P ′ to the unique descendant dP ′ of the fragment FP ′ . Hence,
we need to sum the costs of edges that cover e′ and e, have endpoints in FP ′ and FP , and also
cover the whole path between e′ and dP . To compute the cost of these edges, it would be helpful to
change the orientation in the fragment FP ′ , such that now dP ′ is the root. We write e′ = {v, d(v)}

80

where d(v) is the vertex closer to dP ′ (this is the reverse orientation compared to the previous cases).
Now, given an edge e ∈ P , we want to compute the total cost of edges adjacent to the subtree of v
in FP ′ that cover e, e′ and have the second endpoint in FP , where the subtree is with respect to
the new orientation (having dP ′ as the new root). This gives exactly CovF (e

′, e). Again, this is an
aggregate computation in the fragment FP ′ .

Note that the aggregate computation in Case 3 is in a different direction than the aggregate
computations in Cases 1 and 2. However, since all vertices know the structure of the skeleton tree,
they all know in which case we are, and can change the orientation accordingly, which only requires
changing the orientation for highway edges, as discussed in Section 6.1.

Computing Cov
extr(e, P).

Claim 6.17. In O(Dfrag +Nfrag) time, all edges e that are in a highway can compute the values
Cov

extr(e, P) for all highways P .

Proof. First, we fix two highways P ′, P , and show how all edges e′ ∈ P ′ compute Cov
extr(e′, P). The

edges that cover e′ and the whole highway P are exactly the edges that cover e′ and the highest and
lowest edges in P : e1, e2. To compute Cov

extr(e′, P), which is the sum of all such edges that have
one endpoint in FP ′ and one endpoint outside FP ′ ∪ FP we use an aggregate computation in FP ′ .
This aggregate computation is very similar to the computation done in the proof of Claim 6.16,
with the difference that now instead of summing the cost of edges that cover e′ and a specific edge
e, we sum the cost of edges that cover e′ and e1, e2, and also make sure that the second endpoint is
not in FP ′ ∪ FP , the computation can be done in the same manner. For each highway we have one
aggregate computation to compute Cov

extr(e′, P) for all edges e′ ∈ P ′. To do so for all highways P ,
we need Nfrag such computations. Since the whole computation was done inside FP ′ , we can do the
same computation in all fragments simultaneously, the overall complexity is O(Dfrag +Nfrag).

E.5 Both edges in the same highway

Here we also cover the case when both edges defining the cut are in the same highway P inside a
fragment. Let e1 and e2 be the two edges in a highway P inside a fragment F where e1 is closer to
the root than e2. Let us also denote the top edge of P (closest to the root of G) inside F to be er
and the bottom edge of P (farthest from the root of G) inside F to be ed. As before, we look at the
Cov(e1, e2). We see that Cov(e1, e2) can be broken up into the following parts (See Figure 23)14:

• The cost of edges that cover e1, e2 and have both end-points inside FP : CovF (e1, e2),

• The cost of edges with one end point in FP and the other end-point is a descendant of ed
outside FP (i.e., occurs below ed): Cov

extr(e1, ed),

• The cost of edges with one end point in FP and the other end-point is an ancestor of er outside
FP (i.e., occurs above er): Cov

extr(e2, er), and

• The cost of edges that cover P and both end-points outside FP : Cov
extr(P).

We make the following observation.

Observation E.1. Let e1 and e2 be two edges on a fragment highway P inside a fragment F . Then,

Cov(e1, e2) = CovF (e1, e2) + Cov
extr(e1, ed) + Cov

extr(er, e2) + Cov
extr(P).

14This is a slight abuse of notation of Cov(·) but is clear from the context.

81

e1 e2er ed

FP

CovF (e1, e2)

Cov
extr(e1, ed)Cov

extr(er, e2)

Cov
extr(P)

Figure 23: Example of both cut edges e1 and e2 in the same fragment highway in the fragment FP .

Computing CovF (e1, e2).

Claim E.2. Let P be the fragment highway of a fragment FP . Using two aggregate computation in
time O(Dfrag) all edges e ∈ P can compute the value CovF (e, e

′) where e′ is any other edge in P .
Moreover, this can be done in all fragments parallely.

Proof. This is similar to the proof of Claim 6.6, but we have to perform both forward and reverse
aggregate computation inside the fragment F (as in Claim 6.2). Fix e1 ∈ P . For any e ∈ P below
e1, e can find out the total weight of the edges that covers e1 and e and have both end-points in F
by one forward aggregate computation as follows: Any edge x which has one end point in F on a
descendant vertex of e can find out whether it covers e1 and have other end-point inside F by an
LCA comparison (as in Claim 3.5). Hence, by a forward aggregate computation inside F , starting
from the leaf nodes T (FP) (i.e., T restricted to FP) and aggregating the weight of such non-tree
edges, every e below e1 can learn CovF (e1, e). The aggregate computation takes time O(Dfrag).
Moreover, this can be done for all e1 in a pipe-lined fashion. As there are O(Dfrag) many edges in
P , this takes O(Dfrag)-rounds in total. For edges e ∈ P above e1, we do the exact same aggregate
computation but in reverse direction on T (FP) (See Claim 6.2). This also takes O(Dfrag) times.
Moreover, as these are aggregate computations inside F , this can be done simultaneously in all
fragments.

Computing Cov
extr(e, ed) and Cov

extr(er, e).

Claim E.3. Let P be the fragment highway of a fragment FP . Also, let all vertices in FP know
the identity of er and ed. Then, by two aggregate computation in time O(Dfrag), each edge e ∈ P
know the value of Covextr(e, ed) and Cov

extr(e, er). Moreover, this can be done in different fragments
parallelly.

Proof. As in Claim 6.10, any edge x which has one end point inside F and covers e ∈ P will know
whether it covers the last edge of P . Similarly any edge y which has one end point inside F and
covers e will know whether it covers the first edge of P . Hence, by an aggregate computation
inside fragment F , each edge e will know the value of Covextr(e, er) by aggregating all edges which
covers e and have one end-point below e and the other end-point outside F covering er (can be
found using LCA labels, see Claim 3.5). Similarly, using another aggregate computation inside F in
reverse direction (see Claim 6.2), each edge e will know the value of Covextr(e, ed). By Claim 6.2,
this can be done in time O(Dfrag). As these are aggregate computations inside F , this can be done
simultaneously in all fragments.

Computing Cov
extr(P).

82

Claim E.4. Let P be the fragment highway of FP . Using one aggregate and one broadcast compu-
tation over a BFS tree of G, every vertex will know the value of Covextr(P). For k many fragments,
this can be done in time O(k +D).

Proof. This can be done similar to Claim 6.15. Every edge knows whether it covers both er and
ed or not, and also whether both of its endpoints outside FP or not. Now, by using one aggregate
computation over a BFS tree of G, we can compute the total weight of such edges, and then by
using the same BFS tree, this information can be broadcasted to all vertices. This takes O(D)
rounds of communication. For different fragments, this computation can be pipelined, and hence
can be performed in O(k +D) time.

An algorithm for a highway path. We now explain how we can compute Cut(e, e′) when both
e and e′ belong to a fragment highway path P of a fragment F .

Lemma E.5. Let P be a fragment highway of a fragment F . Also, let every edge e know the value
of (i) Cov(e), (ii) CovF (e, e

′) for all other edges e′ ∈ P , (iii) Cov
extr(e, er) and Cov

extr(e, ed), and
(iv) Cov

extr(P). Then, in O(Dfrag) rounds, each pair of edges (e, e′) in P can compute the value of
Cut(e, e′). Moreover, this can be done parallelly in all fragments F .

Proof. Fix a pair of such edges (e, e′) where e is above e′. For e and e′ to know the value of Cut(e, e′),
e needs to know the value of Covextr(e′, er) which is with e′ and e′ needs to know the value of
Cov

extr(e, ed) which is with e. To this end, each edge e broadcasts the values Cov
extr(e, er) and

Cov
extr(e, ed) inside the fragment F . This is, in total, Õ(Dfrag) bits of information broadcasted over

a BFS tree of depth O(Dfrag) (because of the guarantee that the diameter of F is O(Dfrag)), hence
can be done in time Õ(Dfrag) in pipelined fashion. As the broadcast is happening inside F , this can
be done parallelly for all fragments F .

F Missing proofs from Section 8

F.1 Simple cases with non-highways

In this section, we prove the following.

Claim 8.1. Let e, e′ be a pair of edges that minimize Cut(e, e′) such that e, e′ are either two non-
highway edges in different fragments, or two edges in the same fragment where at least one of
them is a non-highway edge. In Õ(D + Sfrag) time all the vertices in the graph learn the values
{f, f ′,Cut(f, f ′)} for a pair of edges such that Cut(f, f ′) ≤ Cut(e, e′).

We first show that it is efficient to broadcast information inside all non-highway paths in the
same layer.

Claim F.1. Fix a layer j, and assume that for each non-highway path P in layer j there are k
pieces of information of size O(log n) where initially each one of them is known by some vertex in
T (P). In O(Dfrag + k) rounds, all the vertices in T (P) can learn all the k pieces of information. In
addition, this computation can be done in all non-highway paths P in layer j in parallel.

Proof. Note that since P is a non-highway path, the entire subtree T (P) is in the fragment of P
and has diameter Dfrag. To solve the task, we use pipelined upcast and broadcast in the subtree
T (P). First, we collect all k pieces of information in the root rP , and then broadcast them to the
whole tree T (P), using pipelining this takes O(Dfrag + k) rounds. Additionally, as the different trees
T (P) of paths P in layer j are edge disjoint by Observation 5.7, the computation can be done in
parallel for all non-highway paths in layer j.

83

Additionally we make sure that all vertices in a fragment F know all values {e,Cov(e)}e∈F , this
can be done in O(Sfrag) time by broadcast in the fragment F . Note that the value Cov(e) is initially
known by e from Claim 4.3.

Claim F.2. In O(Sfrag) time, for all fragments F , all vertices in F learn the values {e,Cov(e)}e∈F .

Claim F.2 in particular makes sure that all vertices in T (P ′) for a non-highway P ′ in layer i
know the complete structure of P ′, they just look at the unique tree path of layer i with edges
above them in the fragment, if exists. We now prove Claim 8.1.

Proof of Claim 8.1. We work in O(log n) iterations according to the layers. We next fix an iteration
i and a non-highway path P ′ in layer i, all the computations we discuss can be done in parallel for
all non-highways in the same layer.

We first use Claim 6.6 to compare all edges of P ′ to all edges above them or orthogonal to them
in the same fragment in O(Sfrag) time. Note that eventually we apply this computation for all
non-highways, which guarantees that for each pair of edges e, e′ in the same fragment where at least
one of them is a non-highway, one of the edges learns Cut(e, e′). If they are orthogonal both learn
the cut value, and if one is above the other, the lower edge learns it.

Next we use Claim 6.5 to compare P ′ to non-highways in other fragments that P ′ is potentially
interested in. First, we know that there are only O(log n) fragments F such that P ′ is potentially
interested in the fragment F , and all vertices in T (P ′) know these fragments by Corollary 5.22.
Additionally, if P ′ is potentially interested in a non-highway P in the fragment F there must be an
edge between T ↓(P ′) and F from Claim 5.12. Using aggregate computations in T (P ′) we can find
such edges f to all relevant fragments F in O(Dfrag + log n) time. We also know that all vertices in
the fragment F know all the values {e,Cov(e)}e∈F . Hence, all the requirements of Claim 6.5 are
satisfied, and we can use it to let all edges e′ ∈ P ′ learn all the values Cut(e′, e) for all e ∈ F in
O(Sfrag) time, for a fragment F that has a non-highway that P ′ is potentially interested in. Doing
so for all fragments F that P ′ is potentially interested in takes Õ(Sfrag) time.

All the claims we use work also if we work in all the paths of the same layer simultaneously.
Since we have O(log n) layers, we compute all cut values in Õ(Sfrag) time. Finally, we can let all
vertices in the graph learn the values {e, e′,Cut(e, e′)} for the min 2-respecting cut we found in
O(D) time using minimum computation on a BFS tree. Since we compared all non-highways that
are potentially interested in each other, as well as all pairs of edges in the same fragment where at
least one edge is a non-highway, the claim follows. Note that in our computation we also computed
some additional cuts (since we compare P ′ to the complete fragment F and not just to a specific
non-highway), which can only decrease the value of the min 2-respecting cut we find.

F.2 Proofs for non-highway highway case

Claim 8.4. In Õ(D + Sfrag +Nfrag) time, all vertices learn the values {e′, e,Cut(e′, e)} for edges
e′, e that minimize the expression Cut(e′, e), where e′ is in a non-highway P ′, and e is in a highway
P , such that there is an edge between T (P ′↓) and the fragment FP of P , and such that P ′ and P
are potentially interested in each other.

Proof. We start by fixing a non-highway path P ′ of layer j and a long path composed of highways
PH that P ′ is potentially interested in, and describe the computation needed to compare P ′ and PH .
Later, we explain how to do many such computations in parallel. Note that from Corollary 5.23,
and by iterating over all layers of the skeleton tree, one can deduce that each non-highway path P ′

is only potentially interested in O(log2 n) such paths PH , that is because each edge keeps bough
highway paths in its set of potentially interested paths (Namely, P ′ knows the lowest fragment of
each of these paths). Also, from Lemma 5.21, all vertices in T (P ′) know exactly the identity of all

84

such paths PH . Also, from the structure of the decomposition, any path PH composed of highways,
that does not contain the highway in the fragment of P ′ is either completely orthogonal to P ′ or
completely above P ′.

Let P1, ..., Pk be the different highways in PH going from the lowest to highest in the tree. We
use Lemma 7.2 to break the edges of P ′ to subsets E′

1, ..., E
′
k, such that it is enough to solve the

problems defined by the pairs (Pi, E
′
i), i.e., compare only the edges E′

i to Pi (see Lemma 7.2 for
the exact statement). To do so, all vertices should know the values {e,Cov(e)}, for all edges e that
are highest or lowest in some highway, this can be obtained in O(D +Nfrag) time using Claim 6.3.
Applying Lemma 7.2 takes O(Dfrag + k) time, and the computation can be done in parallel for

different non-highways in layer i. The Lemma guarantees that
∑k

i=1 |E′
i| = O(Dfrag + k).

Now we would like to compare E′
i to Pi for all 1 ≤ i ≤ k. If there is no edge between T (P ′↓) and

Pi, the minimum 2-respecting cut with one edge in P ′ and one edge in Pi was already computed in
Claim 8.3, so we only need to take care of highways Pi such that there is an edge f between T (P ′↓)
and FPi

. Also, all vertices in T (P ′) already know about the edge f from Claim 8.2. Moreover, we
only need to consider highways Pi that are potentially interested in the path P ′. From Corollary
5.24 and Lemma 5.21, each highway Pi is only potentially interested in O(log n) non-highways P ′

which are in different fragments, and all the vertices in the fragment of Pi know the list of fragments
that contain non-highway paths that Pi is potentially interested in. Hence, by communicating on
the edge f we can learn whether Pi is potentially interested in the fragment of P ′. Note that this is
a different edge for different pairs P ′, Pi, as the subtrees T (P ′↓) are disjoint, and also the different
fragments are disjoint.

For the highways Pi left after the above discussion, we use Lemma 6.13 to compare E′
i to Pi.

For this, all vertices in T (P ′) should learn the values {Cov(e′),Covextr(e′, Pi)}e′∈E′

i
for all 1 ≤ i ≤ k.

To do so, we first let all edges e′ ∈ P ′ learn the values Covextr(e′, P) for all highways P , this takes
O(Dfrag + Nfrag) time using Claim 6.10, and can be done in all non-highways in the same layer
simultaneously. Then, the information {Cov(e′),Covextr(e′, Pi)}e′∈E′

i
is known to the edge e′. To let

all vertices in T (P ′) learn it we use Claim F.1. As we have
∑k

i=1 |E′
i| = O(Dfrag + k), this takes

O(Dfrag + k) time. From Lemma 7.2, we also have that all vertices in T (P ′) know the identity of
all edges in the sets E′

i. We next discuss the information known in Pi. First, using upcast and
broadcast in the fragment FPi

of Pi, we can make sure that all vertices in the fragment know all
the values {Cov(e)}e∈Pi

, they can also learn the identity of the edge f between T (P ′↓) and FPi
, as

follows. As vertices in T (P ′↓) know the identity of f , then f has an endpoint that knows about it,
and can inform the second endpoint in FPi

. Then, the information can be broadcast in FPi
. This

is only done if Pi is potentially interested in the fragment of P ′, hence only for O(log n) different
fragments of non-highways P ′ in layer j. This shows that vertices in T (P ′) and FPi

have all the
information needed for applying Lemma 6.13.

From Lemma 6.13, using O(|E′
i|) aggregate and broadcast computations in FPi

, each edge
e ∈ FPi

would know the values Cut(e′, e) for all edges e′ ∈ E′
i. As Pi is potentially interested

in non-highways in O(log n) different fragments, participating in all computations takes at most
Õ(Sfrag) time. Moreover, the computation was inside FPi

, hence we can work in parallel in different
fragments. This allows comparing E′

i to Pi for all 1 ≤ i ≤ k in parallel. This concludes the
description of comparing P ′ to PH . To compare P ′ to all O(log2 n) long highway paths PH that P ′

is potentially interested in, we repeat this computation O(log2 n) times (the partitioning requires
O(Dfrag + k) time for each of these computations separately, the parts within different highways
can be done in parallel). Also, as discussed throughout, this computation can be done for all
non-highways in layer j in parallel (this results in Õ(Sfrag) time inside each highway as explained
above). To take care of non-highways of all layers, we have O(log n) such iterations. The overall
complexity is Õ(D + Sfrag +Nfrag).

85

At the end of the computation, for each pair of a non-highway P ′ and a highway P that have an
edge between them, and are also potentially interested in each other, we have a vertex that knows
the values e′, e,Cut(e′, e) for e′ ∈ P ′, e ∈ P that minimize Cut(e′, e). To learn the minimum value
over all such pairs, we use broadcast and convergecast in a BFS tree which takes O(D) time.

86

	1 Introduction
	2 Overview of the algorithm
	2.1 Basic notation: Cover values
	2.2 Simple example: Spider graph
	2.3 The algorithm for general graphs: Overview
	2.4 The algorithm for general graphs: More details

	3 Preliminaries
	3.1 The model and assumptions
	3.2 2-respecting cuts & tree packing
	3.3 Cover values
	3.4 LCA labels
	3.5 Useful notation

	4 Tree decompositions
	4.1 Fragment decomposition
	4.2 Layering decomposition
	4.3 Combining layering with fragment decomposition
	4.4 Information of edges

	5 Finding, bounding, and routing interesting paths
	5.1 Interesting edges and paths
	5.2 Finding interesting paths
	5.3 Structural lemma for bounding number of interesting paths
	5.4 Learning the interesting paths
	5.5 The highway pairing theorem

	6 Algorithms for short paths and routing trick
	6.1 Preliminaries: Basic subroutines on a tree
	6.2 Simple cases where P' is a non-highway
	6.3 P' is a non-highway and P is a highway
	6.4 P' and P are highways

	7 Monotonicity and Partitioning
	7.1 Monotonicity
	7.2 Partitioning

	8 Finding the min 2-respecting cut
	8.1 1-respecting cut
	8.2 Simple cases with non-highways
	8.3 Exactly one cut edge in a highway
	8.4 Both cut edges in highways
	8.5 Both cut edges in same highway

	9 The min-cut algorithm
	9.1 A schematic algorithm for minimum 2-respecting cut
	9.2 The min-cut algorithm for weighted graphs

	A Reduction to 2-respecting cut
	B Missing proofs from Section 4
	B.1 Fragment decomposition
	B.2 Layering decomposition
	B.3 Information of edges

	C The sampling procedure: Lemma 5.11
	D Missing proofs from Section 5
	D.1 Learning interesting paths
	D.2 Proof of highway pairing theorem.

	E Missing proofs from Section 6
	E.1 Basic subroutines on a tree
	E.2 Simple cases where P' is a non-highway
	E.3 P' is a non-highway and P is a highway
	E.4 P' and P are highways
	E.5 Both edges in the same highway

	F Missing proofs from Section 8
	F.1 Simple cases with non-highways
	F.2 Proofs for non-highway highway case

