
This is a repository copy of Nearly optimal communication and query complexity of
bipartite matching.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/200970/

Version: Accepted Version

Proceedings Paper:
Blikstad, J., Van Den Brand, J., Efron, Y. et al. (2 more authors) (2022) Nearly optimal
communication and query complexity of bipartite matching. In: 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS). 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), 31 Oct - 03 Nov 2022, Denver,
CO, USA. Institute of Electrical and Electronics Engineers (IEEE) , pp. 1174-1185. ISBN
9781665455206

https://doi.org/10.1109/focs54457.2022.00113

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

ar
X

iv
:2

20
8.

02
52

6v
1

 [
cs

.D
S]

 4
 A

ug
 2

02
2

Nearly Optimal Communication and Query Complexity of

Bipartite Matching

Joakim Blikstad∗ Jan van den Brand† Yuval Efron‡ Sagnik Mukhopadhyay§

Danupon Nanongkai¶

Abstract

We settle the complexities of the maximum-cardinality bipartite matching problem (BMM)
up to poly-logarithmic factors in five models of computation: the two-party communication,
AND query, OR query, XOR query, and quantum edge query models. Our results answer open
problems that have been raised repeatedly since at least three decades ago [Hajnal, Maass, and
Turan STOC’88; Ivanyos, Klauck, Lee, Santha, and de Wolf FSTTCS’12; Dobzinski, Nisan,
and Oren STOC’14; Nisan SODA’21] and tighten the lower bounds shown by Beniamini and
Nisan [STOC’21] and Zhang [ICALP’04]. We also settle the communication complexity of the
generalizations of BMM, such as maximum-cost bipartite b-matching and transshipment; and
the query complexity of unique bipartite perfect matching (answering an open question by
Beniamini [2022]). Our algorithms and lower bounds follow from simple applications of known
techniques such as cutting planes methods and set disjointness.

∗KTH Royal Institute of Technology, Sweden, blikstad@kth.se
†UC Berkeley & Simons Institute, USA, vdbrand@berkeley.edu
‡Columbia University, USA, ye2210@columbia.edu
§University of Sheffield, UK, s.mukhopadhyay@sheffield.ac.uk
¶University of Copenhagen, MPI-INF, and KTH, danupon@gmail.com

i

Contents

1 Introduction 1
1.1 Technical Overview . 4
1.2 Open problems . 5

2 Bipartite Matching Upper Bounds 7
2.1 OR-query decision algorithm . 8
2.2 OR-query optimization algorithm . 10
2.3 Applications . 11

2.3.1 Communication complexity . 11
2.3.2 Randomized XOR-query . 11
2.3.3 Independent set (IS) query . 12
2.3.4 ORk-query . 13
2.3.5 Quantum edge query (Q2) . 13

3 Weighted and Vertex-Capacitated Variants 14
3.1 Max-cost perfect b-matching → Max-cost b-matching 14
3.2 Cutting planes method for max-cost bipartite b-matching 15
3.3 Application: Unique Bipartite Perfect Matching . 16

4 Communication Lower Bounds 17

A Omitted proofs from Section 3 27

B Omitted proofs from Section 4 28

ii

1 Introduction

In the maximum-cardinality bipartite matching problem (BMM), we are given a bipartite graph
G = (L ∪ R,E) with n vertices on each side and m edges. The goal is to find a matching of
maximum size in G. This problem, along with its special case of bipartite perfect matching (BPM),
are central problems in graph theory, economics, and computer science. They have been studied
in various computational models such as the sequential, two-party communication, query, and
streaming settings [See [FF56, HK73, Lov79, KUW85, KVV90, MS04, Zha04, IKL+12, Mad13,
Mad16, GO16, GG17, BHR19, DNO19, AV20, AK20, JST20, BLN+20, Nis21, AR20b, CKP+21,
FGT21, AB21, ALT21, FGL+21, RSW22, CKL+22] and many more]. In this paper, we present
simple algorithms and lower bound arguments that settle (up to polylog factors) the complexities
of BMM and its generalizations (e.g. max-cost matching and transshipment) in at least five models
of computation. Our results answer open problems that have been raised repeatedly since at
least three decades ago (e.g. [HMT88, Zha04, IKL+12, DNO19, Nis21, Ben22a]); see Table 1 for a
summary of our results.

Communication complexity. To be concrete, we start with the two-party communication
model, where edges of the input graph G are partitioned between two players Alice and Bob.
The goal is for Alice and Bob to compute the value of the BMM or to decide if a BPM exists in G
by communicating as frugally as possible. Many fundamental graph problems have been studied in
this model since the 80s (e.g. [PS82, BFS86, HMT88, DP89]). For BMM and BPM, their communi-
cation complexities have been extensively studied from several angles and perspectives, including
exact solution protocols [BFS86, HMT88, IKL+12, DNO19], round restricted protocols [FKM+05,
GKK12, GO16, AKL17, AB19b, AR20b], multiparty protocols [GO16, HRVZ15, AKLY16, Kap21,
KMT21, HRVZ20], approximate solution protocols [Kap21, KKS14, KKS14, KMNT20, AB21], ma-
trix rank and polynomial representation [Ben22b, BN21], and economics and combinatorial auctions
[Rot82, Ten02, Ber09]. In particular, Hajnal, Maass, and Turán [HMT88] showed a lower bound of
Ω(n log n) for deterministic protocols1. For randomized and quantum protocols, the lower bounds
are Ω(n) [BFS86, IKL+12, Raz92]2. For an upper bound, Ivanyos, Klauck, Lee, Santha, and
de Wolf [IKL+12] implemented the Hopcroft-Karp algorithm [HK73] to get an O(n3/2 log n)-bit
deterministic protocol (see also [DNO19, Nis21]).

Closing the large gap between existing upper and lower bounds has been mentioned as an open
problem in, e.g., [HMT88, IKL+12, DNO19, Nis21]. Beniamini and Nisan [BN21] recently showed
that the rank of the communication matrix is 2O(n logn), suggesting that a better upper bound might
exist. On the other hand, Ω(n2) lower bounds for o(

√
log n)-round communication may suggest that

an Ω(n1+Ω(1)) communication lower bound may exist [FKM+05, GKK12, AR20b, CKP+21]. In
this paper, we resolve this open problem with an O(n log2 n) upper bound:

Theorem 1.1. The deterministic two-party communication complexity of BMM is O(n log2 n).

Note that our protocol can find the actual BMM (Alice and Bob know edges in the BMM in the
end) and not just its value. We can in fact solve a more general problem of min-cost bipartite perfect
b-matching which implies upper bounds for a large class of problems due to existing reductions (see
[BLN+20]).

1[HMT88] did, in fact, show this lower bound for st-connectivity, which, together with folklore reductions, imply
the same bound for BPM.

2 The Ω(n) lower bound follows by a simple reduction from set-disjointness. [HRVZ20] has shown a Ω(α2nk)
lower bound for k-party point-to-point communication model for α-approximation of BMM. [IKL+12] shows a Ω(n)
quantum communication lower bound by a reduction from inner-product in F2.

1

Models Previous papers This paper

Lower bounds Upper bounds

Two-party communication
Ω(n) Rand,

Ω(n log n) Det,
Footnote 1 and 2

Õ(n1.5)
[DNO19, IKL+12]

O(n log2 n), Det
Theorem 1.1

Quantum edge query
Ω(n1.5)

[Zha04, Ben22b]
O(n1.75)
[LL15]

Õ(n1.5)
Theorem 1.3

OR-query
Ω(n) Rand,

Ω(n log n) Det,
[BN21]

Õ(n1.5) Det,
[Nis21]

O(n log2 n), Det
Theorem 1.3

XOR-query
Ω(n) Rand

Ω(n2) Det [BN21]
Õ(n1.5) Rand

Lemma 2.14 and [Nis21]

O(n log2 n), Rand
Theorem 1.3

AND-query
Ω(n) Rand,

Ω(n2) Det [BN21]
O(n2)
Trivial

Ω(n2), Rand
Theorem 1.3

Table 1: The communication and query complexity bounds for BMM and BPM. All upper bounds
are stated for BMM and all lower bounds are stated for BPM.

Theorem 1.2. Given that all the weights/costs/capacities are integers polynomially large in n,
we can solve the following problems in the two-party edge-partition communication setting, us-
ing O(n log2 n) bits of communication: Maximum-cost bipartite perfect b-matching, Maximum-cost
bipartite b-matching, Vertex-capacitated minimum-cost (s, t)-flow, Transshipment (a.k.a. uncapac-
itated minimum-cost flow), Negative-weight single source shortest path, Minimum mean cycle and
Deterministic Markov Decision Process (MDP).

Query complexity. Besides the communication complexity, we also settle the query complexity
of BMM and BPM for several variants of the edge query model. In the standard edge query model,
the querier can ask whether an edge in the input graph G is present or not. The goal is to solve
the graph problem by making as few queries as possible. This query model, in both deterministic
and randomized settings, has been studied for almost half a century [Ros73, RV75, RV76, KSS84,
Haj91, CK07] for various graph problems. For BPM, Yao [Yao88] showed that n2 edge queries
are necessary in the deterministic setting and Dürr, Heiligman, Høyer, and Mhalla [DHHM06]
showed an Ω(n2) lower bounds for the randomized setting3 thereby completely characterizing (up
to constant factors) classical edge query complexity for BPM.

However, for several variants of the classical edge query complexity, there are known gaps
between the best known upper and lower bounds for BPM. For example, in the case of quantum
edge query protocols, Zhang [Zha04] showed a lower bound of Ω(n1.5) by using Ambainis’ adversary
method [Amb02] (see [Ben22b] for an alternative proof via approximate degree). The best upper
bound is, however, at O(n1.75) as shown by [LL15]. This upper bound is obtained by simulating
the Hopcroft-Karp algorithm using bomb queries and relating it to the quantum edge queries.

Another well-studied variant of the classical query protocols is the XOR-query protocols (other-
wise known as the parity decision trees) where the querier is allowed to ask the following question

3[Yao88] showed a stronger result: Any non-trivial monotone graph property needs n2 queries. [DHHM06] men-
tioned a Ω(n2) randomized query complexity for Connectivity. A similar construction (which is essentially a
reduction from the query complexity of ORn2) shows an Ω(n2) lower bound for (s, t)-Reachability which reduces
to BPM.

2

about the input graph G = (V,E): Given a set S of potential edges of G, is |S ∩ E| odd or
even? Similarly, AND-queries and OR-queries ask if S ⊆ E or not and if |S ∩ E| ≥ 1 or not,
respectively. Such query models have proven to be extremely important in the study of XOR-
functions, the log-rank conjecture and lifting theorems [KM93, MO09, CKLM18, HHL18, MS20].
As usual, these query models can be studied in deterministic, randomized and quantum models
as well. For graph problems, these query models have recently started to receive increasing at-
tention [BN21, Ben22a, ACK21]. For AND-query or XOR-query complexity, a recent result of
[BN21] showed that Ω(n2) queries are necessary to compute BPM deterministically4. For OR-query,
[BN21] also showed a deterministic lower bound of Ω(n log n). The upper bound of Õ(n1.5) for OR-
queries (and, thereby, randomized XOR-queries, see Lemma 2.14) can be achieved by simulating
the Hopcroft-Karp algorithm [Nis21].

From the above results, it remained open to close the polynomial gaps for quantum and OR-
queries (as mentioned in [Nis21, Ben22b]) and whether randomization helps for XOR-queries and
AND-queries. In this paper, we answer these questions: We provide upper bounds that are tight
up to polylogarithmic factors for quantum and OR-queries. Our upper bound result also shows
that randomization helps for XOR-queries. In contrast, for AND-queries we can show that an Ω(n2)
lower bound holds even for randomized algorithms. Our results are summarized below and in
Table 1. Note that our lower bound argument also gives simplified proofs of the lower bounds for
XOR-queries and OR-queries.

Theorem 1.3. The following query bounds hold for BMM:

• The quantum edge query complexity is O(n1.5 log2 n),
• The deterministic OR-query complexity is O(n log2 n),
• The randomized XOR-query complexity is O(n log2 n),

Moreover, the randomized AND-query complexity of BPM is Ω(n2).

Finally, our results also extend to the unique bipartite perfect matching problem (UBPM),
which has been studied in, e.g., the sequential and parallel settings [KVV85, GKT01, HMT06,
Ben22a]. Beniamini [Ben22a] recently show UBPM lower bounds similar to those for BMM and
BPM, i.e. Ω(n log n) communication complexity, Ω̃(n1.5) quantum edge query (under a believable
conjecture5), Ω(n log n) OR-queries, Ω(n2) XOR-queries, and Ω(n2) AND-queries. We complement
these lower bounds with tight upper bounds, i.e. O(n log2 n) deterministic communication protocol,
O(n1.5 log2 n) quantum edge query algorithm, O(n log2 n) deterministic OR-query and randomized
XOR-query algorithms, and Ω(n2) randomized AND-query lower bound. Our upper bounds answer
an open problem by Beniamini [Ben22a].

Update: After our paper was accepted in FOCS 2022, we observed that our technique also leads to a
O(n log2 n) deterministic protocol in the well-studied Indenpendent set (IS) query model [BHR+18,
AL21, RWZ20, AA05, ABK+04, AB19a]. In this model, a query consists of two disjoint subsets
of vertices X and Y , and the answer to the query is 1 iff there is an edge between X and Y (i.e.,
E ∩ (X × Y) 6= ∅).

Organization. In Section 1.1, we provide a brief technical overview of our upper and lower
bounds. In Section 1.2, we list a few open problems that naturally arise from our work. Section 2
details our various upper bounds, starting with OR-query protocols. In Section 2.3, we show the ap-
plications of the OR-query algorithm, namely two party communication complexity (Section 2.3.1),

4For XOR-queries, [BN21] showed that BPM is evasive, i.e., requires n2 queries.
5[Ben22a] conjectured that the approximate degree of UBPM is Ω(n1.5) (see Conjecture 1) which would imply a

similar lower bound for quantum edge query complexity.

3

randomized XOR-query (Section 2.3.2), Independent set query (Section 2.3.3), ORk-query (Sec-
tion 2.3.4) and quantum edge query (Section 2.3.5). We then list different variants of the bipartite
matching problem (Section 3) that our technique can solve as well. Finally, in Section 4, we provide
lower bounds for solving BPM in OR-, AND- and XOR-query settings.

1.1 Technical Overview

Upper bounds. Our algorithms follow an existing continuous optimization method. There are
many such methods and the question is: what is the right method? An intuitive idea would be
to implement some fast sequential algorithms for BMM and related problems (e.g. [DS08, Mad13,
LS14, Mad16, CMSV17, CLS19, Bra20, LS20, AMV20, BLSS20, BLN+20, BLL+21, CKL+22]),
which are based on central path methods. It is not clear, however, how to implement central path
methods efficiently in query or communication settings. They require polynomially many iterations
(e.g. Ω(

√
n)), each of which needs a large communication and query complexity (e.g. Ω(n) per

iteration). Another option is to use one of the cutting planes methods (e.g. the Ellipsoid method).
These methods are a framework for solving general convex optimization problems and thus are
rather slow for BMM in the sequential setting (e.g. Õ(mn) time [LSW15]) compared to more
specialized alternatives based on central path methods. However, it turns out that cutting planes
methods are the right framework for the communication and query settings! In particular, we can
implement a cutting planes method with a low number of iterations, such as the center-of-gravity
(CG) and volumetric center (VC) methods [Lev65, New65, Vai89], on the dual linear program,
i.e. the minimum vertex cover linear program6. (We cannot use the Ellipsoid method due to its
high number of iterations.) The CG and VC methods are not useful for solving BMM in the
sequential setting due to their high running time (the CG method even requires exponential time);
however, this high running time is hidden in the internal computation and thus does not affect the
communication/query complexities.

Using the cutting planes methods above, our algorithm is simply the following: We start with
an assignment p : V → R

+ on the vertices that is supposed to be a fractional vertex cover of value
F , i.e. for every edge (u, v), p(u) + p(v) ≥ 1 and

∑

v∈V (G) p(v) ≤ F . In each iteration, we need to
find a violated constraint, i.e. an edge (u, v) such that p(u) + p(v) < 1, or the value constraint if
∑

v∈V (G) p(v) > F . This violated constraint then allows us to compute a new assignment p : V →
R
+ (which is the center of gravity of some polytope) to be used in the next iteration. It can be

shown that this process needs to repeat only for Õ(n) times to construct a fractional vertex cover
of value at least F , or conclude no such cover exists.

This simple algorithm leads to efficient algorithms in many settings. For example, in the two-
party communication setting, Alice and Bob only need to communicate one violated constraint in
each iteration while they can compute the new assignment p : V → R

+ without any additional
communication (p : V → R

+ depends only on the discovered violated constraints and not on the
input graph). It is also not hard to implement this method in other settings. We note that in this
paper we use the CG method for simplicity. This method leads to exponential internal computation.
This can be made polynomial by using the VC method [Vai89] instead.

Lower bounds. For lower bounds, our goal is to prove a lower bound for BPM (which also implies
a lower bound for BMM). Let us start with our randomized AND-query lower bound of Ω(n2). A
typical approach to show this is proving an Ω(n2) communication complexity lower bound in the

6We thank an anonymous FOCS’22 reviewer for pointing out the result in [VWW20] that uses the cutting plane
method to solve general linear program in the multiparty model of communication. Our result is independent and
follows the same general cutting plane framework but we exploit that for our specific linear program, (i) cutting
planes have short description and (ii) we have a better bound on the number of iterations.

4

setting defined earlier; however, we have already shown in Theorem 1.1 that this is not possible.
[BN21] sidestepped this obstacle by considering the real polynomial associated with BPM. Known
connections between the monomial complexity of this polynomial and AND-query complexity yield
corresponding tight Ω(n2) deterministic AND-query complexity for BPM.

It turns out that we can prove a randomized AND-query lower bound (and simplifying the
lower bounds proofs of [BN21]) by revisiting the two-party communication lower bounds, but with
a slightly different definition. Our main observation here is that AND-queries can be simulated
cheaply by the following variant of the two-party communication model: Alice gets edge set EA ⊆ E,
Bob gets edge set EB ⊆ E, and they solve BPM (or any other graph function) in the graph
G∩ = (V,EA ∩ EB). Our AND-query lower bound now follows from a reduction from the set
disjointness problem.

Similarly, Beniamini and Nisan [BN21] use real polynomial techniques to prove deterministic
lower bounds for XOR-queries and OR-queries. We provide simple alternative proofs via the com-
munication complexity of BMM in the symmetric difference and union graphs G = (V,EA ⊕ EB)
and G = (V,EA ∪ EB); such lower bounds can be proved via a reduction from the equality and
st-reachability problems. Finally note that even though we simplify the query lower bounds proofs,
[BN21, Ben22b] showed something stronger, i.e., a complete characterization of the unique multilin-
ear polynomial over reals representing BPM which may have other interesting consequences beyond
query complexity.

1.2 Open problems

The communication complexity of BMM and BPM has been a bottleneck for many tasks. The fact
that it can be solved by a simple cutting planes method might be the gateway to solving many
other problems. Below we list some of these problems.

1. Demand query complexity of BMM. The demand query setting is equivalent to when
we can issue an OR-query only on the edges incident on a single left vertex (or, equivalently,
an IS-query where set X ⊆ L is singleton). Minimizing the number of demand queries used
to solve BMM and BPM is motivated by economic questions [Nis21, Ben22b]. Like in many
settings we consider, the best demand query upper and lower bounds for BMM and BPM

are O(n1.5) and Ω(n) respectively. Closing this gap remains open. Because of our efficient
IS-query protocol, we believe that a possible direction is to extend our approach to get a
better upper bound for demand query. For a better lower bound, our results suggest that
one might need a technique specialized for the demand query lower bound: the two known
approaches for proving a demand query lower bounds are via quantum and OR-queries (see,
e.g., Figure 7 in [Ben22b]) and our quantum and OR-query upper bounds show that these
approaches cannot be used.

2. Bounded communication rounds and streaming passes. Most graph problems, in-
cluding BMM and BPM, admit an Ω(n2) communication lower bound when only Alice can
send a message (i.e. the one-way communication setting) [FKM+05]. If Bob gets to speak
back once (the 2-round setting), some problems become much easier (e.g. the communication
complexity of global edge connectivity reduces from Ω(n2) to Õ(n)) [AD21]. Unfortunately,
such an efficient protocol for BPM does not exist even when we allow o(

√
log n) rounds

[CKP+21, AR20b]. More generally, r-round protocols are known to require n1+Ω(1/r) com-
munication [AR20b, GO16]. An important question is to get tight r-round communication
bounds for BMM and BPM. Our algorithm provides an Õ(n) communication bound for the
extreme case where r = n. One possible extension is to study bounded-iteration cutting planes

5

methods. For example, can we reduce the number of iterations if in each iteration we can iden-
tify more violating constraints? It will be exciting if a polylog(n)-round Õ(n)-communication
protocol exists. It will be even more exciting if this can be extended to a polylog(n)-passes
streaming algorithm (breaking [LSZ20, AJJ+22] and matching [GO16]).

3. Distributed Matching. The distributed CONGEST model is an important model to study
fundamental graph problems (e.g. minimum spanning tree, shortest paths, and minimum
cut) on distributed networks (e.g. [GHS83, KP98, Nan14, GL18, FN18, Elk20, BN19, AR20a,
GKK+18, HKN21, CM20, GNT20, NS14, DEMN21]). Compared to other graph problems,
computing BMM and BPM exactly in CONGEST is much less understood in this model.
This is despite the studies of their variants since the 80s [Lub86, II86, Gal16, AKO18, AK20].
The best lower bound for this problem is Ω̃(

√
n+D)[AKO18, DHK+12] (see also [HWZ21]).

The best upper bound is O(n log n) [AKO18]. For sparse graphs, the upper bound can be
improved to Õ(m3/7(

√
nD1/4 + D)) via continuous optimization [FGL+21]. (Better upper

bounds via fast matrix multiplication also exist on the special case of congested clique [Gal16].)
A major open problem is to close the gap between upper and lower bounds. Our results may
suggest a new approach for improving the known upper bounds for the problem. Past results
seem to suggest that graph problems with Õ(n) communication complexity usually admit
an Õ(

√
n +D) upper bound in CONGEST. (A recent example is the Õ(n) communication

complexity protocol of mincut [MN20] that was later extended to achieve an Õ(
√
n + D)

upper bound in CONGEST [DEMN21].) Proving that this is or is not the case for BMM and
BPM will be an exciting result.

4. General Matching. The maximum matching problem on general (i.e. not-necessarily-
bipartite) graphs is less understood than that on bipartite graphs. Unlike BMM, the linear
programming formulations for general matching is rather unwieldy, making it difficult to ap-
ply the cutting planes method approach. Settling the communication and query complexity
of general matching remain intriguing open problems. On one hand, there might be a hope to
show truly super-linear (i.e., Ω(n1+ǫ) for some constant ǫ > 0) communication lower bounds
in these models, thereby showing a gap between the bipartite and non-bipartite case. On
the other hand, an Õ(n) communication complexity upper bound for the general matching
problem would hopefully shed some light on the interplay between matchings on bipartite
versus general graphs.

5. Maxflow/mincut and Related Problems. Max (s, t)-flow, equivalently min (s, t)-cut, is
a powerful tool that can be used to solve BMM, BPM, and many other fundamental graph
problems. Efficiently solving this problem could only be a dream in the past in many computa-
tional models since even its special case of matching could not be solved efficiently. Our results
serve as a step toward this goal. Particularly interesting goals are solving (s, t)-max-flow/min-
cut in the communication7, distributed, cut query, and streaming settings (Bounded round
communication lower bounds in multiparty communication setting for (s, t)-max-flow/min-
cut have been studied in [ACK19].). Also, there are problems that were recently shown
to be solvable in max-flow time in the sequential setting such as Gomory-Hu tree, vertex
connectivity, Steiner cut, hypergraph global min-cut, and edge connectivity augmentation
[CGL+20, LP20, LP21, LNP+21, CQ21, MN21]. Can these problems be solved as efficiently
as max-flow in other settings, e.g. the communication, distributed, and streaming settings?

Other problems include (i) showing Ω(n log n) randomized communication lower bound for

7Here we expect Alice and Bob to know the flow values in their respective sets of edges. The decision version of
this problem where we ask if the total flow is at least a threshold k is also interesting.

6

connectivity or even just for BMM and min-cost flow, (ii) closing the log n factor gap between OR-
query upper and lower bounds, and (iii) settling the quantum OR-query and AND-query complexity
of BMM and BPM.

2 Bipartite Matching Upper Bounds

Our goal in this section is to present a simple OR-query algorithm based on the cutting planes
framework to find a maximum matching of a bipartite graph, i.e. to solve the BMM problem.
From there we show how our OR-query algorithm can be translated to several other information
theoretical models of computation. Formally, the following is the main theorem of the section.

Theorem 2.1. Given n, there are algorithms solving BMM in the following models.

1. Deterministic two-party edge-partition communication, with communication complexity O(n log2 n).

2. Deterministic OR-query, with query complexity O(n log2 n).

3. Randomized XOR-query, with query complexity O(n log2 n).

4. Quantum edge query, with query complexity O(n1.5 log2 n).

Overview. We employ a standard cutting planes framework to determine if a bipartite graph has
a vertex cover of a given size F or not. We show that this cutting planes method can be implemented
in O(n log n) iterations, where in each iteration we access the input graph a small number of times
(O(log n)) using OR-queries to find an edge that corresponds to a violated constraint (i.e. a cutting
plane), if one exists. Throughout this work, we use the following well known characterization of
the existence of a matching of a certain size in a bipartite graph.

Claim 2.2 (König’s Theorem). A bipartite graph G has a minimum vertex cover of size F if and
only if it does not have a matching of size F + 1.

The vertex cover linear program. For a bipartite graph G = (V,E) with V = L ∪ R, |L| =
|R| = n, the following linear program (PG) over x ∈ R

V describes the fractional minimum vertex
cover problem on G. Since G is bipartite, the constraint matrix is totally unimodular, and hence
(PG) is integral [KVKV11, Section 5], i.e. there exists an integer optimal solution to (PG).

minimize
∑

v∈V

xv

subject to xu + xv ≥ 1 ∀(u, v) ∈ E
0 ≤ xv ≤ 1 ∀v ∈ V

(PG)

Decision version. We first consider a decision version of our problem, namely given an integer
F we want to determine if G has a matching of size at least F + 1. Note that if we can solve this
decision version, then we can also—by binary-searching over F—solve the optimization version
(i.e. finding the minimum size of a vertex cover / maximum size of a bipartite matching) with an
overhead of O(log n). We start by focusing on solving the decision version (Section 2.1), and later
(in Section 2.2) we show how to, via a simple modification of the algorithm, actually solve the
optimization version without this extra O(log n) binary-search overhead.

By König’s Theorem (Claim 2.2), determining whether G has a matching of size at least F + 1
is equivalent to determining whether G (does not) have a vertex cover of size at most F . This

7

is equivalent to determining if (PG) has some feasible solution x with
∑

xv ≤ F . So we define
another polytope (PG

F) as follows:

∑

v∈V

xv ≤ F + 1
3

xu + xv ≥ 1 ∀(u, v) ∈ E
0 ≤ xv ≤ 1 ∀v ∈ V

(PG
F)

Our decision algorithm either finds a feasible point for the above polytope, or it finds a witness
of PG

F having no feasible points in the form of a set of edges that contains a matching of size F +1.
Note that we relax the constraint

∑

xv ≤ F a bit to
∑

xv ≤ F + 1
3 . This ensures that our

polytope has a significantly large volume if it is non-empty (see Lemma 2.3). Thus our cutting
planes methods can terminate and conclude that the polytope is empty whenever the volume is
too small. This relaxation does not impact the correctness of our algorithm: since (PG) is integral,
it has an integral optimal objective value, which means that if a feasible solution x of (PG

F) exists,
then there also exists a feasible solution x′ which achieves

∑

x′v ≤ F .

Lemma 2.3. For any bipartite graph G = (V,E), if F is an integer such that (PG
F) is non-empty,

then vol(PG
F) ≥

(

1
20n

)2n
.

Proof. Let x be an integral solution for (PG
F), of value F . Indeed, if (PG

F) is feasible, then such an x
must exist due to the integrality of (PG). Let I0 = {i ∈ [2n] | xi = 0} and I1 = {i ∈ [2n] | xi = 1}.
We argue that the hypercube [1

20n ,
1

10n]
I0 × [1− 1

20n , 1]
I1 is completely contained in (PG

F). That is,
if, for each xi with xi = 1 we replace it with any value in [1 − 1

20n , 1]; and for each xi with xi = 0
we replace it with with any value in [1

20n ,
1

10n]; the point remains feasible for (PG
F). We verify this

below.

• The 0 ≤ xv ≤ 1 constraints remain valid.

• Similarly, the
∑

xv ≤ F + 1
3 constraint remains valid, since we increase the value of xi by at

most 1
10n for each i, and there are 2n vertices in total (so we increase

∑

xv by at most 1
5).

• Lastly, the constraint xu + xv ≥ 1 (for an edge (u, v) ∈ E) also remains valid, as either (i)
both xu and xv were 1 before, in which case we now have xu + xv ≥ 2 − 1

10n ; or (ii) exactly
one of xu or xv was 1 before, in which case we increased the variable which was 0 by at least
1

20n and decreased the variable which was 1 by at most 1
20n .

Thus we have argued that a hypercube of volume
(

1
20n

)2n
is contained in (PG

F).

2.1 OR-query decision algorithm

In this section we describe our cutting planes based OR-query algorithm for solving the feasibility
problem on (PG

F). We begin with a verbal overview of the algorithm, followed by pseudocode in
Algorithm 1. The main lemma of this section is the following.

Lemma 2.4. Given an integer F , there is a deterministic algorithm (Algorithm 1) using O(n log2 n)
OR-queries which on an input bipartite graph G = (V,E) either finds a feasible point in (PG

F), or
else a witness, in the form of a matching of size F + 1, that (PG

F) is empty.

8

Center-of-gravity cutting planes method. We are now ready to introduce the cutting planes
framework [Lev65, New65]. The idea is that we start with the polyhedra P0 = {x ∈ [0, 1]V :

∑

xv ≤
F+ 1

3} (which contains (PG
F)), and repeatedly find “good” constraints “xu+xv ≥ 1” (corresponding

to edges (u, v) ∈ E) to add which reduce the volume sufficiently fast. Eventually, we either find a
(fractional) feasible solution to (PG

F), or have determined that no such feasible point exist.
We work in iterations, each iteration i is characterized by a polyhedron Pi ⊇ (PG

F). We
compute the center-of-gravity of Pi, denoted by pi = cg(Pi) ∈ Pi, and defined to be cg(Pi) =
(

∫

Pi
z dz

)

/
(

∫

Pi
dz
)

. Note that we know Pi, so our algorithm can compute8 pi = cg(Pi) without

using any queries.
Either pi is feasible for (PG

F), in which case the cutting planes algorithm reports this and
terminates. Otherwise there must exist some violated constraint “xu + xv ≥ 1” in (PG

F) but not in
Pi (i.e. pi does not satisfy this constraint, that is pui + pvi < 1). In this case, we want to find such a
violated constraint, and let Pi+1 = Pi ∩ {x ∈ R

V : xu + xv ≥ 1}, after which we continue with the
next iteration of the cutting planes method on Pi+1. We say that an edge (u, v) ∈ E is a violating
edge for iteration i if pui + pvi < 1. The process of finding a violating edge is the only part of the
algorithm which requires access to the input graph, and hence the only place where OR-queries are
being issued. Essentially, we need to implement a separation oracle FindViolatingEdge, which we
explain how to do with OR-queries in Claim 2.5. The full algorithm can be found in Algorithm 1.

Algorithm 1: OR-query algorithm for BMM

Input: OR-query access to G = (L ∪R,E), vertex set L ∪R, feasibility parameter F
Output: Whether (PG

F) is feasible

1 P0 ←
{

x ∈ [0, 1]2n
∣

∣

∣

∑

v∈V
xv ≤ F + 1

3

}

2 E′ ← ∅
3 i← 0

4 while vol(Pi) ≥
(

1
20n

)2n
do

5 pi ← cg(Pi)
6 (u, v)← FindViolatingEdge(E′, pi)
7 if no edge was found then
8 return “Feasible” // pi is feasible for (PG

F)

9 E′ ← E′ ∪ {(u, v)}
10 Pi+1 ← Pi ∩ {x ∈ R

2n | xu + xv ≥ 1}
11 i← i+ 1

12 return “Infeasible” // E′ contains a matching of size F + 1

Claim 2.5 (OR-implementation of FindViolatingEdge). Using O(log n) OR-queries we can find a
violating edge or else determine that none exist.

Proof. Given the center-of-gravity point pi, we let S = {(u, v) ∈ L×R | pui + pvi < 1} be the set of
pairs of vertices (u, v) which would be a violating edge if this pair was also an edge of the graph.
Our task is thus to find some edge e ∈ S ∩ E, or else determine that S ∩ E is empty. This can be
done by a binary-search (with OR-queries) over S.

8Finding the center-of-gravity in an n-dimensional polyhedron is NP-hard. However, all the considered models
in Theorem 2.1 are query models, and in particular are purely information-theoretical, and we can thus disregard
computational concerns. For ease of presentation, we work with center of gravity, but alternatively, one could use
other variants of cutting plane using more computationally efficient notions of “center” such as volumetric centers
[Vai89].

9

We now turn to prove several properties about our Algorithm 1.

Observation 2.6. Let i be some iteration of the execution of Algorithm 1, then Pi ⊇ PG
F .

Proof. For every i, the set of constraints defining Pi is, by the behaviour of the algorithm, a subset
of the constraints defining PG

F , thus the observation follows.

Lemma 2.7. The algorithm terminates after O(n log n) iterations of the cutting planes method.

Proof. We use the following well-known property of the center of gravity of a convex polytope.

Lemma 2.8 ([Grü60]). For any convex polytope P with center of gravity c and any halfspace
H = {x | 〈a, (x − c)〉 ≥ 0} passing through c, it holds that:

1

e
≤ vol(P ∩H)

vol(P)
≤

(

1− 1

e

)

.

This implies that, in our case, vol(Pi+1) ≤ (1− 1
e)vol(Pi). This means that in each iteration, we

either find a feasible solution to (PG
F), or cut down the volume by a constant fraction as we have

found a violating edge. Initially, vol(P0) ≤ 1, since it is contained in the unit-hypercube [0, 1]2n.

By Lemma 2.3 we can terminate when Pi has volume less than
(

1
20n

)2n
and conclude that (PG

F) is
empty in this case. This happens after at most O

(

log((20n)2n)
)

= O(n log n) iterations.

Lemma 2.9. Let imax denote the last iteration in the execution of the algorithm. Then either
pimax

∈ PG
F which serves as a witness that a vertex cover of size F exists, or PG

F = ∅ and the set
E′ ⊆ E (constructed by the algorithm) contains a matching of size F + 1.

Proof. In the case where we find a feasible point p in (PG
F), this point is a fractional vertex cover

of size at most F + 1
3 for our graph (and hence a non-constructive witness that there exists an

(integral) vertex cover of size F in the graph).
On the other hand, suppose we determined that (PG

F) is empty, which means we got to an

iteration imax where vol(Pi) <
(

1
20n

)2n
. We argue that this actually means that the polyhedron Pi

is empty. That is, we argue that we have found a set of edges E′ ⊆ E which contain a matching
of size F + 1 (E′ is the set of edges whose constraints we added to Pimax

during the cutting
planes method). If this was not the case, that is if the maximum matching size in E′ is at most
F , then it must be the case, by Claim 2.2, that a vertex cover of size F exists in the subgraph
G′ = (L∪R,E′), and hence that some integer point exists in our polyhedron Pimax

. We can deduce
that this is impossible, however, by simply noting that by the behaviour of the algorithm, it holds
that (PG′

F) = Pimax
, and thus we can apply Lemma 2.3 which then says that vol(Pi) ≥

(

1
20n

)2n
,

which is a contradiction.

By Claim 2.5 and Lemma 2.7 we see that the algorithm makes a total of O(n log2 n) OR-queries,
and Lemma 2.9 argues its correctness. This concludes the proof of Lemma 2.4.

2.2 OR-query optimization algorithm

In this section we describe a standard modification (see e.g. [Vai89, Section 4]) to our cutting planes
decision algorithm, so that it solves the optimization version with the same query-complexity.

Lemma 2.10. There is a deterministic algorithm using O(n log2 n) OR-queries which solves the
BMM problem. In particular, the algorithm finds a maximum matching M , together with a witness
that M is maximum in the form of a fractional vertex cover of size strictly less than |M |+ 1.

10

Proof. The idea is to run Algorithm 1 starting with F = 2n. Whenever the algorithm finds a feasible
point pi, instead of terminating, we lower the value of F instead. The point pi is a certificate that a
vertex cover of size ⌊∑v p

v
i ⌋ exists (since (PG) is integral). Hence we lower F to F ← ⌊∑v p

v
i ⌋ − 1,

by adding the constraint
∑

v xv ≤ F + 1
3 , and continue the cutting planes algorithm. Note that the

constraint
∑

v xv ≤ F + 1
3 forms a violating constraint for pi (and therefore cuts down the volume

by a constant fraction, see Lemma 2.8, and counts as an iteration of the cutting planes algorithm).
At the end, the algorithm must terminate by determining that (PG

F) is empty (for the current
value of F), in which case the found edges E′ contains a matching of size F + 1 (see Lemma 2.9).
On the other hand, the last time we lowered F , we had a fractional vertex cover pi of size strictly
less than F + 2.

2.3 Applications

The goal of this section is to complete the proof of Theorem 2.1. We prove the theorem by showing
how to simulate the OR-query cutting planes algorithm in the communication setting and the
different query models (randomized XOR, IS, ORk, and quantum edge query).

2.3.1 Communication complexity

We first consider the two-party edge-partition communication setting, where the edges E of the
graph are partitioned into sets EA and EB given to Alice and Bob respectively.

Claim 2.11. There is a communication protocol solving BMM in O(n log2 n) bits of communication.

A standard way of doing this is to simulate each OR-query S ⊆ L×R with 2 bits of communi-
cation: Alice and Bob check locally if S ∩ EA, respectively S ∩ EB , is non-empty and then share
this information with each-other.

Alternatively, Alice and Bob can implement the “FindViolatingEdge”-subroutine of Algorithm 1
directly by checking locally for a violating edge and sharing it, if they find one, to the other
party. This makes sure that E′ is mutually known throughout the protocol. Sending an edge
requires O(log n) bits of communication, and needs to be done O(n log n) times. So this alternative
approach achieves the same final communication complexity (although in slightly fewer rounds of
communication), and is also closer to our weighted matching algorithm in Section 3.2 (where the
query-settings are no longer compatible).

2.3.2 Randomized XOR-query

Now we turn to the XOR-query setting. [BN21] showed that solving BPM is evasive for the XOR-
query setting for any deterministic algorithm, meaning that any such algorithm needs to make n2

queries (that is, the trivial algorithm for querying every potential edge individually is optimal)!
Nevertheless, we show that randomized XOR-query algorithms are much more powerful, and can
achieve almost linear number of queries instead.

Claim 2.12. There is a randomized algorithm which makes O(n log2 n) XOR-queries and, w.h.p.9,
solves BMM.

In order to establish this result, we need the following folklore observation.

Observation 2.13. For any k, let x ∈ {0, 1}k be a binary string of length k, such that x 6= 0k. If

r ∈ {0, 1}k is picked uniformly at random, then Pr
[

(
∑k

i=1 xiri) is odd
]

= 1
2 .

9w.h.p. = with high probability ; meaning with probability at least 1− 1/nc for an arbitrarily large constant c.

11

Lemma 2.14. A single OR-query can be simulated, w.h.p., by issuing O(log n) randomized XOR-
queries.

Proof. If we want to simulate an OR-query over a subset S, we can sample S′ ⊆ S randomly
(independently keep every element with probability 1

2) and issue an XOR-query over S′. If the
answer to said OR-query was “YES”, then we have, by Observation 2.13, a constant probability of
realizing this with our XOR-query over S′. If we repeat O(log n) times, we can answer the OR-query
correctly w.h.p.

Proof of Claim 2.12. Just applying Lemma 2.14 to our OR-query algorithm would imply anO(n log3 n)
randomized XOR-query algorithm. An additional observation is required to bring the query com-
plexity down to O(n log2 n). We note that in each invocation of FindViolatingEdge, we need only
simulate the first OR-query, after which we, w.h.p., have in hand a concrete set S′ ⊆ S for which
XOR(S′) = 1 (or else determined that the answer to said OR-query should be “NO”). At this point
we can binary-search deterministically using an additional O(log n) XOR-queries to find a violating
edge in S′. Hence, each invocation of FindViolatingEdge can be simulated, w.h.p., via O(log n) XOR-
queries; and thus by Lemmas 2.7 and 2.9, the entire algorithm requires O(n log2 n) XOR-queries
and is correct w.h.p.

2.3.3 Independent set (IS) query

In this section we discuss a restricted version of the OR-query, namely the Independent Set (IS)
query, as studied by, for example, [BHR+18, AL21, RWZ20, AA05, ABK+04, AB19a]. An IS-query
consists of specifying two subsets X ⊆ L and Y ⊆ R and asking if there is any edge between some
vertex in X and some vertex in Y (or, conversely if X ∪ Y forms an independent set)10.

Claim 2.15. There is a deterministic algorithm which solves BMM with O(n log2 n) IS-queries.

Proof. In each iteration, the cutting plane method finds some fractional point p ∈ R
L∪R, and we

are asked to implement a separation oracle FindViolatingEdge for this point. That is we want to
determine if any edge in the set S = {(u, v) ∈ L×R | pu + pv < 1} exists (and if so find it). With
unrestricted OR-queries this is easy (see Claim 2.5), however it might not be the case that this set
S is structured like an IS-query. In the case when p is integral, we can define X = {v ∈ L : pv = 0}
and Y = {v ∈ R : pv = 0}, and note that S = X × Y . Hence, in the case of integral p, we can
implement FindViolatingEdge using IS-queries: first we binary search on X, and then on Y , to find
the violating edge if it exists.

We argue that there always exist an integral point p′ ∈ Z
L∪R which we can use instead of p

when calling the separation oracle FindViolatingEdge. The integral point p′ will satisfy the following
two properties:

(i) For all pairs (u, v) ∈ L×R, if pu + pv ≥ 1 then p′u + p′v ≥ 1 too. This means that if we found
a violating edge for p′, the same edge is also violating for p.

(ii)
∑

p′v ≤
∑

pv. This means that if there were no violating edges (i.e. p′ formed a vertex cover),
we have found a certificate that the maximum matching size is at most

∑

p′v ≤
∑

pv.

Indeed, consider the bipartite graph H with edge set {(u, v) ∈ L × R : pu + pv ≥ 1}. In H, p is
a (fractional) vertex cover of size

∑

pv. This means that there exists an integral vertex cover of
size ⌊∑ pv⌋ in H, since the minimum vertex cover linear program is integral for bipartite graphs.

10Generally, an Independent set query specifies only one subset of vertices whereas the Bipartite independent set
query specifies two disjoint sets of vertices as defined here. However, for bipartite graphs, these two types of queries
are equivalent.

12

Therefore, we pick p′ to be an arbitrary such integral vertex cover, and we note that by definition
it satisfies the above properties (i) and (ii).

2.3.4 ORk-query

Here we discuss the OR-query of limited width k, i.e. the ORk-query. That is, we are only allowed
to ask OR-queries over sets S ⊆ L × R of size |S| ≤ k. This model turns out to be useful as
an intermediary step towards proving tight upper bounds for the quantum edge query model (see
Section 2.3.5). Considering this model also helps to unveil the difficulty behind designing demand
query algorithms (see open problems in Section 1.2 for further discussion) for BPM, pointing to the
fact that the barrier is not the size of the query, but rather its locality.

Claim 2.16. There is a deterministic algorithm which solves BMM with O(n log2 n) ORn-queries.

In fact, we show, via an amortization argument, that any OR-query algorithm (for an arbitrary
graph problem) can be simulated with ORk-queries with an additive overhead dependent on k.

Lemma 2.17. Any OR-query algorithm A (for any graph problem) making q queries can be con-

verted to an ORk-algorithm making q + ⌊n2

k ⌋ queries.

Proof. The main idea of the proof is the following: Every time an OR-query answers “NO”, we know
that none of the queried edges are present in the graph G. This is an important piece of information
that helps us save queries in the future. More formally, we use the following amortization argument.

We keep track of a set Ec ⊆ L × R of pairs (u, v) which we know are not edges of G, that is
E ∩Ec = ∅. Whenever A issues an OR-query S ⊆ L×R we do the following. Let S1, S2, . . . , Sr be
a partition of S \ Ec so that |S1| = |S2| = . . . |Sr−1| = k, and |Sr| ≤ k. We issue the ORk-queries
S1, S2, . . . , Sr sequentially, in order, until we get a “YES” answer which we return to A (or else,
after we have received “NO” from all the sets we return a “NO” answer to A). For the last query
which we made (which was either a query to Sr, or a query which returned “YES”), we charge the
cost to A. In total, we thus charge at most q cost to A: one per OR-query A issues.

For all the queries to Si which got “NO” answers and for which i < r, we update Ec ← Ec ∪Si.
Hence, for each such “NO” answer we have increased the size of Ec by k. Note that this can happen
at most ⌊n2

k ⌋ times. So, other than the q queries charged to A, we have made at most ⌊n2

k ⌋ queries.
Hence, in total, we made q + ⌊n2

k ⌋ ORk-queries to simulate the q many OR-queries from A.

Plugging in our O(n log2 n) OR-query algorithm to the above lemma yields Claim 2.16.

2.3.5 Quantum edge query (Q2)

In this section we consider the quantum edge-query model. See [BdW02] for a formal definition
and [NC16] for a more extensive background on quantum computing.

Claim 2.18. The quantum edge query complexity of solving BMM is O(n
√
n log2 n).

We use our ORk-query algorithm (Lemma 2.17) together with a well known quantum result
(Lemma 2.19) regarding the quantum query complexity of the OR function.

Lemma 2.19 (Grover Search [Gro96]). There is quantum query algorithm that computes w.h.p.
the OR function over k bits with query complexity O(

√
k log k).

Proof of Claim 2.18. Consider the instance of Lemma 2.17 where we put k = n
log2 n

, then we obtain

an ORk-query algorithm for BMM with O(n log2 n) queries. Each such ORk-query can be simulated,
w.h.p., using O(

√
k log n) = O(

√
n) quantum edge queries, by Lemma 2.19.

13

3 Weighted and Vertex-Capacitated Variants

In this section we show that the cutting planes method is strong enough to be generalized to solve
weighted and (vertex-)capacitated problems, for example max-cost b-matching. As an application,
we also show how to solve unique bipartite perfect matching (UBPM) in Section 3.3. For the weighted
problems, we focus on the two-party edge-partition communication setting, since there is no natural
generalization of the OR-queries.

Theorem 3.1. Given that all the weights/costs/capacities are integers polynomially large in n,
we can solve the following problems11 in the two-party edge-partition communication setting, using
O(n log2 n) bits of communication.

(i) Maximum-cost bipartite perfect b-matching.

(ii) Maximum-cost bipartite b-matching.

(iii) Vertex-capacitated minimum-cost (s, t)-flow.

(iv) Transshipment (a.k.a. uncapacitated minimum-cost flow).

(v) Negative-weight single source shortest path.12

(vi) Minimum mean cycle.

(vii) Deterministic Markov Decision Process (MDP).

Reductions. Problems (i), (ii), (iii), (iv) are equivalent, and problems (v), (vi), (vii) can all be
reduced to, for example, (i). All these reduction are shown in [BLN+20] (and can be verified as
rectangular reductions, i.e., compatible with the two-party communication setting), except that (ii)
(i.e. max-cost, not-necessarily-perfect, bipartite b-matching) can solve any of (actually really all of):
(i), (iii), (iv); which we show in Section 3.1.

These reductions allow us to focus on a single one of these problems. We pick item (ii), that
is max-cost (not-necessarily-perfect)13 bipartite b-matching, which is the one which most closely
resembles the unweighted bipartite matching problem. In Section 3.2 we show how the cutting
planes framework can be generalized to work with the costs c and demand vector b.

Definition 3.2 (b-matching). Given a graph G = (V,E), a demand vector b ∈ Z
V
≥0, and edge-costs

c ∈ Z
E, we call a vector y ∈ Z

E
≥0 a b-matching (or a fractional b-matching if we allow y ∈ R

E
≥0) if

∑

e∈δ(v) ye ≤ bv for all v ∈ V (where δ(v) is the set of edges incident to v). If
∑

e∈δ(v) ye = bv for
all v ∈ V , then y is a perfect b-matching. The cost (or weight) of y is

∑

e∈E ceye.

3.1 Max-cost perfect b-matching → Max-cost b-matching

We can reduce the perfect variant to the not-necessarily-perfect one. Suppose we are given an
instance (G = (V,E), b ∈ Z

V
≥0, c ∈ Z

E) of the perfect variant which we wish to solve. Firstly, we
may assume that the costs are non-negative, since adding a constant W to all costs will increase

the cost of a perfect b-matching by exactly W
∑

v∈V
bv

2 .

11See [BLN+20, Section 8.6 (full version)] for a more extensive discussion of these variants.
12Although the reduction shown in [BLN+20] is randomized, we note that it can be made deterministic by noticing

that both parties in the end will know all the edges of a shortest path tree.
13Some of the other problems, e.g. perfect b-matching, can have unbounded dual linear programs which make them

trickier to work with in the cutting planes framework.

14

If we just solve max-cost b-matching, we in general do not obtain a perfect b-matching, since
matchings of smaller cardinality might have higher cost. To encourage the max-cost b-matching
to prioritize perfect matchings over non-perfect matchings, we simply add a large integer W to all
the the costs. That is we use the cost function c′e = ce +W instead (again, we can do this since
we know exactly how this will affect the cost of a perfect b-matching). If W is sufficiently large (in
particular set W := 1+ |V | ·max ce), any max-cost b-matching will also be a perfect b-matching (if
one exist).

If it was not, suppose M is a non-perfect b-matching and of maximum cost for c′, in a graph
which allows a perfect b-matching. Then there must exist an augmenting path in M of length
2ℓ + 1 ≤ |V | (where we add ℓ + 1 edges and remove ℓ). The total cost (w.r.t. c′) of the added
edges is now at least (ℓ + 1)W , while the cost of the removed edges is at most ℓ(W + max ce) ≤
ℓW + |V |max ce < ℓW + W = (ℓ + 1)W . That is we added more cost than we removed, hence
contradicting that M was of maximum cost.

3.2 Cutting planes method for max-cost bipartite b-matching

In this section we briefly explain how the cutting planes algorithm can solve the max-cost bipartite
b-matching, and hence prove Theorem 1.2. The details are postponed to Appendix A. The main
result of this section is the following:

Lemma 3.3. Max-cost bipartite b-matching can be solved using O(n log2(nW)) communication,
where W := max{max |ce|,max bv} is the largest number in the input.

Let G = (V,E) (bipartite with |V | = n), b ∈ Z
V
≥0 and c ∈ Z

E be an instance of the max-cost
bipartite b-matching problem. We assume the edges (together with their costs) are partitioned
between two parties Alice and Bob, say Alice owns EA (together with ce for e ∈ EA) and Bob EB

(together with ce for e ∈ EB). We assume both players know the demands b (otherwise it can be
communicated in O(n logW) bits).

Dual linear program. Similarly as for the unweighted bipartite matching problem, we run a
cutting planes algorithm on the dual linear program (P(G,b,c)) (refer to the constraints of Defini-
tion 3.2 for the primal linear program). We can think of x ∈ (P(G,b,c)) as a generalized version of a
vertex cover, and an optimal solution would be one of minimum cost (w.r.t. costs bv). Similarly to
the uncapacitated and unweighted case, since the graph is bipartite, (P(G,b,c)) is integral, and thus
has an integral optimal solution.

min
∑

v∈V

bvxv

s.t. xu + xv ≥ cuv ∀(u, v) ∈ E
xv ≥ 0 ∀v ∈ V

(P(G,b,c))

Claim 3.4. Any optimal solution x∗ to (P(G,b,c)) has x∗v ≤W for all v ∈ V .

Proof. If this is not the case, we can decrease x∗v without violating any of the constraints, and the
objective value

∑

bvxv becomes smaller.

This motivates the following feasibility polytope (P(G,b,c)
F), which can be used to check if

(P(G,b,c)) has a solution with objective value at most F , for any integer F ∈ Z.

∑

v∈V

bvxv ≤ F + 1
3

xu + xv ≥ cuv ∀(u, v) ∈ E
0 ≤ xv ≤W + 1 ∀v ∈ V

(P(G,b,c)
F)

15

Modifications to the algorithm. Like for the unweighted and uncapacitated case, we can show
that if this polytope is non-empty, then it has significantly large volume (Lemma 3.5, whose proof is
in Appendix A). This means that the cutting plane algorithm can terminate whenever the volume
becomes too small. The only modifications we need to make to Algorithm 1 are thus the following:

• We start with a larger initial polytope P0 = [0,W + 1]V ∩ {x ∈ R
V :

∑

bvxv ≤ F + 1
3}.

• When we check for (and add) violating constraints we also use the edge-cost cuv. That is
an edge (u, v, cuv) is violating if pui + pvi < cuv, and the corresponding constraint we add is
“xu + xv ≥ cuv”.

• We terminate when the volume is less than (1
20nW)n (see Lemma 3.5).

Lemma 3.5 (Generalization of Lemma 2.3). If (P(G,b,c)
F) is non-empty, then vol(P(G,b,c)

F) ≥
(

1
20nW

)n
.

Observation 3.6 (Generalization of Claim 2.5). We can communicate a single violated constraint
with 2 log(n) + log(W) + 1 = O(log(nW)) bits of communication.

Total communication. The generalized algorithm will start with initial polytope P0 ⊆ [0,W +
1]n, and terminate whenever vol(Pi) becomes smaller than

(

1
20nW

)n
(Lemma 3.5). In each iteration

the volume is cut down by a constant fraction (Lemma 2.8). Hence we needO
(

log
(

W n/
(

1
20nW

)n))
=

O(n log(nW)) iterations. Each iteration needs O(log(nW)) bits of communication, for a total of
O(n log2(nW)) bits of communication (Observation 3.6), proving Lemma 3.3. We also note that
the same standard trick to convert the decision version to the optimization version (Section 2.2)
works here as well.

3.3 Application: Unique Bipartite Perfect Matching

In the unique bipartite matching problem, or UBPM for short, we are asked to determine if an
(unweighted) bipartite graph has a unique perfect matching. The interplay between UBPM and
BPM is quite subtle, by some measures, e.g. certificate complexity, the former is known to be strictly
harder than the latter, in other settings, such as sequential, simple near linear time algorithms for
UBPM have been known since the turn of the century [GKT01]. While for BPM, only a very
recent line of work, employing heavy machinery from continuous optimization and dynamic data
structures culminated in a near linear time algorithm for BPM [CKL+22]. In this section, we show
that our upper bounds also hold for the UBPM problem, both for the communication and query
models.

Theorem 3.7. The UBPM problem can be solved in:

• O(n log2 n) bits of communication in the deterministic two-party edge-partition communica-
tion model.

• O(n log2 n) deterministic OR-queries.

• O(n log2 n) randomized XOR-queries, w.h.p.

• Õ(n
√
n) quantum edge queries.

Proof sketch. (Formal proof can in Appendix A).
Our main idea on how to solve UBPM can be summarized in two stages:

(1) First find a perfect matching M (see Theorem 2.1).

16

(2) Assign weights to the edges as follows: ce = 1 if e ∈M , and ce = 2 otherwise. After this, we
find a max-cost perfect matching M ′ (see Theorem 3.1).

If M ′ 6= M , we have proved that the perfect matching is not unique. Conversely, if M ′ = M , then
M must be the unique perfect matching, since any other perfect matching (if they would exist) has
higher cost. In the communication setting, this argument suffices. For the query models, however,
one needs to be a bit more careful since we have not defined what, for example, an OR-query
means in the max-cost setting. The formal proof of this—which is straightforward, although a bit
technical—can be found in Appendix A. The other query-models follow from similar reductions as
those in Section 2.3.

Remark 3.8. We also note that there are alternative ways to solve UBPM after one has solved
BPM. Instead of solving max-cost matching as the second step, one can instead determine if an
alternating cycle (that is a cycle in G where every other edge is in M) exist. The perfect matching
M is unique if and only if no such cycle exist. Note that finding such a cycle can easily be done
in, for example, O(n log n) OR-queries by running depth-first-searches to detect a directed cycle in
the directed residual graph (edges in M go from R→ L, other edges from L→ R).

4 Communication Lower Bounds

In this section we discuss three communication problems related to OR-queries, AND-queries, and
XOR-queries respectively. We show simple lower bounds on the communication complexity of these
three problems, and argue that this implies corresponding query lower bounds.

We summarize our obtained query lower bounds below in Theorem 4.1. Note that our lower
bounds are asymptotically the same as those obtained in [BN21]. However, while [BN21] employs
rather sophisticated mathematical machinery in order to obtain these lower bounds, we obtain
them via simple communication complexity reductions from well known functions. In addition to
the already known lower bounds of [BN21], our technique also shows one new result: namely that
the Ω(n2) AND-query lower bound even holds for randomized algorithms.

Theorem 4.1. To solve the bipartite perfect matching (BPM) problem one needs to use:

• Ω(n log n) OR-queries (deterministic).

• Ω(n2) AND-queries (deterministic or randomized).

• Ω(n2) XOR-queries (deterministic).

In this section we give an overview of the main ideas—which are all relatively simple—but we
postpone the formal proofs to Appendix B.

Problem setup. We consider a two-party communication setting between two players Alice and
Bob. Alice is given a graph GA = (V,EA) and Bob a graph GB = (V,EB) on the same set of
vertices V = L∪R (where |L| = |R| = n). They wish to solve BPM on an aggregate of their graphs.
We consider three different types of aggregate graphs (and hence get three different communication
problems), naturally corresponding to OR / AND / XOR:

• Union graph G∪ = (V,EA ∪ EB).

• Intersection graph G∩ = (V,EA ∩ EB).

• Symmetric difference graph G⊕ = (V,EA ⊕ EB).

17

It is not difficult to see that any OR / AND / XOR query algorithms can be simulated in an
communication protocol for G∪ / G∩ / G⊕ respectively. As an example, to answer an AND-query
over S ⊆ (L × R) in G∩, Alice and Bob check locally if S ⊆ EA, respectively if S ⊆ EB , and
exchange this information with each-other. This gives the following Lemma 4.2, which we formally
prove in Appendix B.

Lemma 4.2. If there is a query-algorithm A solving the bipartite-perfect-matching problems using
q many OR / AND / XOR queries, then there is a communication protocol which solve the bipartite-
perfect-matching problem on G∪ / G∩ / G⊕ respectively, using 2q bits of communication. If A is
deterministic, then so is the communication protocol.

s t

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

z1

z2

z3

z4

z5

w1

w2

w3

w4

w5

Figure 1: An example of our graph construction for G∩. The blue edges are known to both parties
to be in the aggregate graph G∩. Between the v and w layers, Alice owns the red edges and Bob
the green. The graph G∩ has a perfect matching if and only if it has an edge between some vi and
wj .

Intersection Graph (AND). We construct a difficult instance for solving BPM onG∩ by reducing
from Set-Disjointness on Θ(n2) bits. Our construction can be seen in Figure 1, where determining if
G∩ has a perfect matching boils down to determining if there exists any edge between some vertex
vi and some vertex wj in G∩. This is exactly a Set-Disjointness problem of size Θ(n2).

Since Set-Disjointness is known to require linear communication in the number of bits [KN97]
(both for deterministic and randomized algorithms), we obtain the following Claim 4.3 whose formal
proof can be found in Appendix B.

Claim 4.3. Solving BPM (or UBPM) on G∩ requires Ω(n2) bits of communication, even if public
randomness is allowed.

Symmetric Difference Graph (XOR). Our communication lower bound of G⊕ is very similar
to the lower bound on G∩. We use the same graph-structure (Figure 1), but determining if there
is any (vi, wj) edge in G⊕ now corresponds to solving the Equality problem (again on Θ(n2) bits)
instead of the Set-Disjointness problem. This is since an edge (vi, wj) exists if and only if exactly
one of Alice or Bob have it, which is if and only if the set of Alice’s edges does not equal the set of
Bob’s edges.

It is well known that Equality exhibits a large gap between its deterministic and randomized
communication complexity. While the former is known to be Ω(n), the latter requires only O(1)
bits of communication in the presence of shared randomness (with error probability < 1

3) [KN97].
This might also provide some intuition why we, in the case of XOR-queries, obtain the separation
of Õ(n) randomized upper bound (Claim 2.12) vs Ω(n2) deterministic lower bound. The full proof
of Claim 4.4 can be found in Appendix B.

18

Claim 4.4. Solving BPM on G⊕ requires Ω(n2) bits of communication for any deterministic pro-
tocol.

Union Graph (OR). Our lower bound for G∪ follows a similar vein, but the graph construction
is a bit different. By a standard reduction, the (s, t)-reachability problem on a (not-necessarily-
bipartite) n-vertex graph can be solved by solving bipartite perfect-matching on a graph on 2n
vertices. The (s, t)-reachability problem, in the edge-partition setting, is known to need Ω(n log n)
bits of communication for any deterministic protocol [HMT88]. Proving any super-linear random-
ized lower bound still remains open. The full proof of Claim 4.5 can be found in Appendix B.

Claim 4.5. Solving BPM on G∪ requires Ω(n log n) bits of communication for any deterministic
protocol.

Acknowledgement

Jan van den Brand is partially funded by ONR BRC grant N00014-18-1-2562 and by the Simons
Institute for the Theory of Computing through a Simons-Berkeley Postdoctoral Fellowship.

This project has received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreement No 715672.
Nanongkai was also partially supported by the Swedish Research Council (Reg. No. 2019-05622).

The authors would like to thank Gal Beniamini for fruitful discussions and anonymous reviewers
of FOCS 2022 for their useful suggestions.

References

[AA05] Noga Alon and Vera Asodi. Learning a hidden subgraph. SIAM J. Discret. Math.,
18(4):697–712, 2005.

[AB19a] Hasan Abasi and Nader H. Bshouty. On learning graphs with edge-detecting queries.
In ALT, volume 98 of Proceedings of Machine Learning Research, pages 3–30. PMLR,
2019.

[AB19b] Sepehr Assadi and Aaron Bernstein. Towards a unified theory of sparsification for
matching problems. In SOSA, volume 69 of OASIcs, pages 11:1–11:20. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2019.

[AB21] Sepehr Assadi and Soheil Behnezhad. On the robust communication complexity of
bipartite matching. In APPROX-RANDOM, volume 207 of LIPIcs, pages 48:1–48:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[ABK+04] Noga Alon, Richard Beigel, Simon Kasif, Steven Rudich, and Benny Sudakov. Learning
a hidden matching. SIAM J. Comput., 33(2):487–501, 2004.

[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Polynomial pass lower bounds for graph
streaming algorithms. In STOC, pages 265–276. ACM, 2019.

[ACK21] Sepehr Assadi, Deeparnab Chakrabarty, and Sanjeev Khanna. Graph connectivity and
single element recovery via linear and OR queries. In ESA, volume 204 of LIPIcs, pages
7:1–7:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

19

[AD21] Sepehr Assadi and Aditi Dudeja. A simple semi-streaming algorithm for global mini-
mum cuts. In SOSA, pages 172–180. SIAM, 2021.

[AJJ+22] Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Semi-
streaming bipartite matching in fewer passes and optimal space. In SODA, pages
627–669. SIAM, 2022.

[AK20] Mohamad Ahmadi and Fabian Kuhn. Distributed maximum matching verification in
CONGEST. In DISC, volume 179 of LIPIcs, pages 37:1–37:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

[AKL17] Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size
in graph streams. In SODA, pages 1723–1742. SIAM, 2017.

[AKLY16] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum match-
ings in dynamic graph streams and the simultaneous communication model. In SODA,
pages 1345–1364. SIAM, 2016.

[AKO18] Mohamad Ahmadi, Fabian Kuhn, and Rotem Oshman. Distributed approximate maxi-
mummatching in the CONGESTmodel. InDISC, volume 121 of LIPIcs, pages 6:1–6:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[AL21] Arinta Auza and Troy Lee. On the query complexity of connectivity with global queries.
CoRR, abs/2109.02115, 2021.

[ALT21] Sepehr Assadi, S. Cliff Liu, and Robert E. Tarjan. An auction algorithm for bipartite
matching in streaming and massively parallel computation models. In SOSA, pages
165–171. SIAM, 2021.

[Amb02] Andris Ambainis. Quantum lower bounds by quantum arguments. J. Comput. Syst.
Sci., 64(4):750–767, 2002.

[AMV20] Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. Circulation control for faster
minimum cost flow in unit-capacity graphs. In FOCS, pages 93–104. IEEE, 2020.

[AR20a] Udit Agarwal and Vijaya Ramachandran. Faster deterministic all pairs shortest paths
in congest model. In SPAA, pages 11–21. ACM, 2020.

[AR20b] Sepehr Assadi and Ran Raz. Near-quadratic lower bounds for two-pass graph streaming
algorithms. In FOCS, pages 342–353. IEEE, 2020.

[AV20] Nima Anari and Vijay V. Vazirani. Matching is as easy as the decision problem, in
the NC model. In ITCS, volume 151 of LIPIcs, pages 54:1–54:25. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complex-
ity: a survey. Theor. Comput. Sci., 288(1):21–43, 2002.

[Ben22a] Gal Beniamini. Algebraic representations of unique bipartite perfect matching. CoRR,
abs/2203.01071, 2022.

[Ben22b] Gal Beniamini. The approximate degree of bipartite perfect matching. CoRR,
abs/2004:14318, 2022.

20

[Ber09] Dimitri P. Bertsekas. Auction algorithms. In Encyclopedia of Optimization, pages
128–132. Springer, 2009.

[BFS86] László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication
complexity theory (preliminary version). In FOCS, pages 337–347. IEEE Computer
Society, 1986.

[BHR+18] Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus
Rashtchian, and Makrand Sinha. Edge estimation with independent set oracles. In
ITCS, volume 94 of LIPIcs, pages 38:1–38:21. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018.

[BHR19] Aaron Bernstein, Jacob Holm, and Eva Rotenberg. Online bipartite matching with

amortized O(log 2 n) replacements. J. ACM, 66(5):37:1–37:23, 2019.

[BLL+21] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. Minimum cost flows, MDPs, and ℓ1-regression in nearly
linear time for dense instances. In STOC, pages 859–869. ACM, 2021.

[BLN+20] Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol
Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-
linear time on moderately dense graphs. In FOCS, pages 919–930. IEEE, 2020.

[BLSS20] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense
linear programs in nearly linear time. In STOC, pages 775–788. ACM, 2020.

[BN19] Aaron Bernstein and Danupon Nanongkai. Distributed exact weighted all-pairs shortest
paths in near-linear time. In STOC, pages 334–342. ACM, 2019.

[BN21] Gal Beniamini and Noam Nisan. Bipartite perfect matching as a real polynomial. In
STOC, pages 1118–1131. ACM, 2021.

[Bra20] Jan van den Brand. A deterministic linear program solver in current matrix multipli-
cation time. In SODA, pages 259–278. SIAM, 2020.

[CGL+20] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol
Saranurak. A deterministic algorithm for balanced cut with applications to dynamic
connectivity, flows, and beyond. In FOCS, pages 1158–1167. IEEE, 2020.

[CK07] Amit Chakrabarti and Subhash Khot. Improved lower bounds on the randomized
complexity of graph properties. Random Struct. Algorithms, 30(3):427–440, 2007.

[CKL+22] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time.
CoRR, abs/2203.00671, 2022.

[CKLM18] Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay. Sim-
ulation beats richness: new data-structure lower bounds. In STOC, pages 1013–1020.
ACM, 2018.

[CKP+21] Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and
Huacheng Yu. Almost optimal super-constant-pass streaming lower bounds for reacha-
bility. In STOC, pages 570–583. ACM, 2021.

21

[CLS19] Michael B. Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current
matrix multiplication time. In STOC, pages 938–942. ACM, 2019.

[CM20] Shiri Chechik and Doron Mukhtar. Single-source shortest paths in the CONGEST
model with improved bound. In PODC ’20: ACM Symposium on Principles of Dis-
tributed Computing, Virtual Event, Italy, August 3-7, 2020, pages 464–473. ACM, 2020.

[CMSV17] Michael B Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. Negative-
weight shortest paths and unit capacity minimum cost flow in O(m10/7 logW) time. In
SODA, pages 752–771. SIAM, 2017.

[CQ21] Chandra Chekuri and Kent Quanrud. Isolating cuts, (bi-)submodularity, and faster
algorithms for connectivity. In ICALP, volume 198 of LIPIcs, pages 50:1–50:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[DEMN21] Michal Dory, Yuval Efron, Sagnik Mukhopadhyay, and Danupon Nanongkai. Dis-
tributed weighted min-cut in nearly-optimal time. In STOC, pages 1144–1153. ACM,
2021.

[DHHM06] Christoph Dürr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla. Quantum query
complexity of some graph problems. SIAM J. Comput., 35(6):1310–1328, 2006.

[DHK+12] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,
Gopal Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification
and hardness of distributed approximation. SIAM J. Comput., 41(5):1235–1265, 2012.

[DNO19] Shahar Dobzinski, Noam Nisan, and Sigal Oren. Economic efficiency requires interac-
tion. Games Econ. Behav., 118:589–608, 2019.

[DP89] Pavol Duris and Pavel Pudlák. On the communication complexity of planarity. In FCT,
volume 380 of Lecture Notes in Computer Science, pages 145–147. Springer, 1989.

[DS08] Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy generalized flow
via interior point algorithms. In STOC, pages 451–460. ACM, 2008.

[Elk20] Michael Elkin. Distributed exact shortest paths in sublinear time. J. ACM, 67(3):15:1–
15:36, 2020.

[FF56] Lester Randolph Ford and Delbert R Fulkerson. Maximal flow through a network.
Canadian journal of Mathematics, 8:399–404, 1956.

[FGL+21] Sebastian Forster, Gramoz Goranci, Yang P. Liu, Richard Peng, Xiaorui Sun, and
Mingquan Ye. Minor sparsifiers and the distributed laplacian paradigm. In FOCS,
pages 989–999. IEEE, 2021.

[FGT21] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is
in quasi-nc. SIAM J. Comput., 50(3), 2021.

[FKM+05] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-
3):207–216, 2005.

[FN18] Sebastian Forster and Danupon Nanongkai. A faster distributed single-source shortest
paths algorithm. In FOCS, pages 686–697. IEEE Computer Society, 2018.

22

[Gal16] François Le Gall. Further algebraic algorithms in the congested clique model and
applications to graph-theoretic problems. In DISC, volume 9888 of Lecture Notes in
Computer Science, pages 57–70. Springer, 2016.

[GG17] Shafi Goldwasser and Ofer Grossman. Bipartite perfect matching in pseudo-
deterministic NC. In ICALP, volume 80 of LIPIcs, pages 87:1–87:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017.

[GHS83] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algorithm
for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst., 5(1):66–77,
1983.

[GKK12] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and
streaming complexity of maximum bipartite matching. In SODA, pages 468–485. SIAM,
2012.

[GKK+18] Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz
Patt-Shamir. Near-optimal distributed maximum flow. SIAM J. Comput., 47(6):2078–
2117, 2018.

[GKT01] Harold N. Gabow, Haim Kaplan, and Robert Endre Tarjan. Unique maximum matching
algorithms. J. Algorithms, 40(2):159–183, 2001.

[GL18] Mohsen Ghaffari and Jason Li. Improved distributed algorithms for exact shortest
paths. In STOC, pages 431–444. ACM, 2018.

[GNT20] Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge
connectivity via random 2-out contractions. In SODA, pages 1260–1279. SIAM, 2020.

[GO16] Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass
graph processing. Algorithmica, 76(3):654–683, 2016.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In STOC,
pages 212–219. ACM, 1996.

[Grü60] Branko Grünbaum. Partitions of mass-distributions and of convex bodies by hyper-
planes. Pacific Journal of Mathematics, 10:1257–1261, 1960.

[Haj91] Péter Hajnal. An omega(n4/3) lower bound on the randomized complexity of graph
properties. Comb., 11(2):131–143, 1991.

[HHL18] Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of protocols for XOR
functions. SIAM J. Comput., 47(1):208–217, 2018.

[HK73] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[HKN21] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A determinis-
tic almost-tight distributed algorithm for approximating single-source shortest paths.
SIAM J. Comput., 50(3), 2021.

[HMT88] András Hajnal, Wolfgang Maass, and György Turán. On the communication complexity
of graph properties. In STOC, pages 186–191. ACM, 1988.

23

[HMT06] Thanh Minh Hoang, Meena Mahajan, and Thomas Thierauf. On the bipartite unique
perfect matching problem. In ICALP, volume 4051 of Lecture Notes in Computer
Science, pages 453–464. Springer, 2006.

[HRVZ15] Zengfeng Huang, Bozidar Radunovic, Milan Vojnovic, and Qin Zhang. Communication
complexity of approximate matching in distributed graphs. In STACS, volume 30 of
LIPIcs, pages 460–473. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

[HRVZ20] Zengfeng Huang, Bozidar Radunovic, Milan Vojnovic, and Qin Zhang. Communication
complexity of approximate maximum matching in the message-passing model. Dis-
tributed Comput., 33(6):515–531, 2020.

[HWZ21] Bernhard Haeupler, David Wajc, and Goran Zuzic. Universally-optimal distributed
algorithms for known topologies. In STOC, pages 1166–1179. ACM, 2021.

[II86] Amos Israeli and Alon Itai. A fast and simple randomized parallel algorithm for maxi-
mal matching. Inf. Process. Lett., 22(2):77–80, 1986.

[IKL+12] Gábor Ivanyos, Hartmut Klauck, Troy Lee, Miklos Santha, and Ronald de Wolf. New
bounds on the classical and quantum communication complexity of some graph prop-
erties. In FSTTCS, volume 18 of LIPIcs, pages 148–159. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2012.

[JST20] Yujia Jin, Aaron Sidford, and Kevin Tian. Semi-streaming bipartite matching in fewer
passes and less space. CoRR, abs/2011.03495, 2020.

[Kap21] Michael Kapralov. Space lower bounds for approximating maximum matching in the
edge arrival model. In SODA, pages 1874–1893. SIAM, 2021.

[KKS14] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size
from random streams. In SODA, pages 734–751. SIAM, 2014.

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spec-
trum. SIAM J. Comput., 22(6):1331–1348, 1993.

[KMNT20] Michael Kapralov, Slobodan Mitrovic, Ashkan Norouzi-Fard, and Jakab Tardos. Space
efficient approximation to maximum matching size from uniform edge samples. In
SODA, pages 1753–1772. SIAM, 2020.

[KMT21] Michael Kapralov, Gilbert Maystre, and Jakab Tardos. Communication efficient core-
sets for maximum matching. In 4th Symposium on Simplicity in Algorithms, SOSA
2021, Virtual Conference, January 11-12, 2021, pages 156–164. SIAM, 2021.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

[KP98] Shay Kutten and David Peleg. Fast distributed construction of small k -dominating sets
and applications. J. Algorithms, 28(1):40–66, 1998.

[KSS84] Jeff Kahn, Michael E. Saks, and Dean Sturtevant. A topological approach to evasiveness.
Comb., 4(4):297–306, 1984.

[KUW85] Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is
in random NC. In STOC, pages 22–32. ACM, 1985.

24

[KVKV11] Bernhard H Korte, Jens Vygen, B Korte, and J Vygen. Combinatorial optimization,
volume 1. Springer, 2011.

[KVV85] Dexter Kozen, Umesh V. Vazirani, and Vijay V. Vazirani. NC algorithms for compa-
rability graphs, interval gaphs, and testing for unique perfect matching. In FSTTCS,
volume 206 of Lecture Notes in Computer Science, pages 496–503. Springer, 1985.

[KVV90] Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm
for on-line bipartite matching. In STOC, pages 352–358. ACM, 1990.

[Lev65] A. Y. Levin. On an algorithm for the minimization of convex functions over convex
functions. Soviet Mathematics Doklady, 160:1244–1247, 1965.

[LL15] Cedric Yen-Yu Lin and Han-Hsuan Lin. Upper bounds on quantum query complexity
inspired by the elitzur-vaidman bomb tester. In Computational Complexity Conference,
volume 33 of LIPIcs, pages 537–566. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2015.

[LNP+21] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and Sor-
rachai Yingchareonthawornchai. Vertex connectivity in poly-logarithmic max-flows. In
STOC, pages 317–329. ACM, 2021.

[Lov79] László Lovász. On determinants, matchings, and random algorithms. In FCT, pages
565–574. Akademie-Verlag, Berlin, 1979.

[LP20] Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-flows.
In FOCS, pages 85–92. IEEE, 2020.

[LP21] Jason Li and Debmalya Panigrahi. Approximate gomory-hu tree is faster than n - 1
max-flows. In STOC, pages 1738–1748. ACM, 2021.

[LS14] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving
linear programs in õ(sqrt(rank)) iterations and faster algorithms for maximum flow. In
FOCS, pages 424–433, 2014.

[LS20] Yang P. Liu and Aaron Sidford. Faster energy maximization for faster maximum flow.
In STOC, pages 803–814. ACM, 2020.

[LSW15] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method
and its implications for combinatorial and convex optimization. In FOCS, pages 1049–
1065. IEEE Computer Society, 2015.

[LSZ20] S. Cliff Liu, Zhao Song, and Hengjie Zhang. Breaking the n-pass barrier: A streaming
algorithm for maximum weight bipartite matching. CoRR, abs/2009.06106, 2020.

[Lub86] Michael Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput., 15(4):1036–1053, 1986.

[Mad13] Aleksander Madry. Navigating central path with electrical flows: From flows to match-
ings, and back. In FOCS, pages 253–262. IEEE Computer Society, 2013.

[Mad16] Aleksander Madry. Computing maximum flow with augmenting electrical flows. In
FOCS, pages 593–602. IEEE, 2016.

25

[MN20] Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-
query, and streaming algorithms. In STOC, pages 496–509. ACM, 2020.

[MN21] Sagnik Mukhopadhyay and Danupon Nanongkai. A note on isolating cut lemma for
submodular function minimization. CoRR, abs/2103.15724, 2021.

[MO09] Ashley Montanaro and Tobias Osborne. On the communication complexity of XOR
functions. CoRR, abs/0909.3392, 2009.

[MS04] Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian elimination. In
FOCS, pages 248–255. IEEE Computer Society, 2004.

[MS20] Nikhil S. Mande and Swagato Sanyal. On parity decision trees for fourier-sparse boolean
functions. In FSTTCS, volume 182 of LIPIcs, pages 29:1–29:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

[Nan14] Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths.
In STOC, pages 565–573. ACM, 2014.

[NC16] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation (10th Anniversary edition). Cambridge University Press, 2016.

[New65] Donald J Newman. Location of the maximum on unimodal surfaces. Journal of the
ACM (JACM), 12(3):395–398, 1965.

[Nis21] Noam Nisan. The demand query model for bipartite matching. In SODA, pages 592–
599. SIAM, 2021.

[NS14] Danupon Nanongkai and Hsin-Hao Su. Almost-tight distributed minimum cut algo-
rithms. In DISC, volume 8784 of Lecture Notes in Computer Science, pages 439–453.
Springer, 2014.

[PS82] Christos H. Papadimitriou and Michael Sipser. Communication complexity. In STOC,
pages 196–200. ACM, 1982.

[Raz92] Alexander A. Razborov. On the distributional complexity of disjointness. Theor. Com-
put. Sci., 106(2):385–390, 1992.

[Ros73] Arnold L. Rosenberg. On the time required to recognize properties of graphs: a problem.
SIGACT News, 5(4):15–16, 1973.

[Rot82] Alvin E. Roth. The economics of matching: Stability and incentives. Math. Oper. Res.,
7(4):617–628, 1982.

[RSW22] Mohammad Roghani, Amin Saberi, and David Wajc. Beating the folklore algorithm
for dynamic matching. In ITCS, volume 215 of LIPIcs, pages 111:1–111:23. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[RV75] Ronald L. Rivest and Jean Vuillemin. A generalization and proof of the aanderaa-
rosenberg conjecture. In STOC, pages 6–11. ACM, 1975.

[RV76] Ronald L. Rivest and Jean Vuillemin. On recognizing graph properties from adjacency
matrices. Theor. Comput. Sci., 3(3):371–384, 1976.

26

[RWZ20] Cyrus Rashtchian, David P. Woodruff, and Hanlin Zhu. Vector-matrix-vector queries
for solving linear algebra, statistics, and graph problems. In APPROX-RANDOM,
volume 176 of LIPIcs, pages 26:1–26:20. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2020.

[Ten02] Moshe Tennenholtz. Tractable combinatorial auctions and b-matching. Artif. Intell.,
140(1/2):231–243, 2002.

[Vai89] Pravin M. Vaidya. A new algorithm for minimizing convex functions over convex sets
(extended abstract). In FOCS, pages 338–343. IEEE Computer Society, 1989.

[VWW20] Santosh S. Vempala, Ruosong Wang, and David P. Woodruff. The communication
complexity of optimization. In SODA, pages 1733–1752. SIAM, 2020.

[Yao88] Andrew Chi-Chih Yao. Monotone bipartite graph properties are evasive. SIAM J.
Comput., 17(3):517–520, 1988.

[Zha04] Shengyu Zhang. On the power of ambainis’s lower bounds. In ICALP, volume 3142 of
Lecture Notes in Computer Science, pages 1238–1250. Springer, 2004.

A Omitted proofs from Section 3

Lemma 3.5 (Generalization of Lemma 2.3). If (P(G,b,c)
F) is non-empty, then vol(P(G,b,c)

F) ≥
(

1
20nW

)n
.

Proof. Similarly to Lemma 2.3, let x be some integral feasible solution to (P(G,b,c)
F), we know such a

solution exists since (P(G,b,c)) has an optimal integer solution, and by assumption that (P(G,b,c)
F) is

not empty, we can deduce that its value is at most F + 1
3 , which is at most F since it is integer. For

the same reason, we can also, by Claim 3.4, assume w.l.o.g. that xv ≤W for all v ∈ V . Our goal is

to prove that (P(G,b,c)
F) contains a cube of dimensions 1

20nW , thus concluding the proof. Note that
for each v ∈ V we can independently increase the value of xv by any value in the range [0, 1

20nW]

while maintaining the feasibility of the resulting point w.r.t. (P(G,b,c)
F). This is due to the following

observations.

• The constraint
∑

v∈V
bvxv ≤ F + 1

3 remains valid as as x has value F , and we increase each

coordinate by at most 1
20nW , as there are 2n vertices and bv ≤W for all v ∈ V , it means that

we increase the value of the solution by at most 1
10 , which is less than 1

3 .

• All edge constrains xv + xu ≥ cuv for all (u, v) ∈ E clearly remain valid as we are only
increasing the value of variables.

• As 3.4 allows us to assume that xv ≤ W for all v ∈ V for the original x, the constraints
0 ≤ xv ≤ W + 1 for all v ∈ V remain valid as well as each entry is increased by at most
(

1
20nW

)

.

Theorem 3.7. The UBPM problem can be solved in:

• O(n log2 n) bits of communication in the deterministic two-party edge-partition communica-
tion model.

• O(n log2 n) deterministic OR-queries.

27

• O(n log2 n) randomized XOR-queries, w.h.p.

• Õ(n
√
n) quantum edge queries.

Proof. Here we give the formal proof that we can determine if an unweighted bipartite graph
G = (V,E) (with V = L ∪ R, |L| = |R| = n) has a unique bipartite matching in all our different
models. We show that O(n log2 n) OR-queries suffices, and the other models follows similarly as in
Section 2.3.

We start by obtaining a maximum matching M of G, by Lemma 2.4. If M is not a perfect
matching, G admits no perfect matching, and we are done. From now on assume that M is a
perfect matching.

We now construct an instance of a weighted matching. Let ce = 10n if e ∈M and ce = 10n+1
otherwise. We wish to solve the max-cost matching problem with edge costs c. We will soon explain
how to do this with OR-queries, but first we show how doing this completes the proof.

Let M ′ be a max-cost matching in G with respect to the costs c. Note that M has cost 10n2,
so we know that M ′ has cost at least 10n2 too. First we argue that M ′ must be a perfect matching
of G. This is because any non-perfect matching has weight at most (n− 1)(10n + 1) < 10n2.

• If M ′ 6= M , we have found two perfect matchings of the graph, and are done (G does not
have a unique perfect matching).

• If M ′ = M , we conclude that M is the unique perfect matching in the graph. This is since
any other perfect matching of G, if they would exist, would have had strictly larger cost.

Now we return to explaining how to solve the max-cost (w.r.t. the cost c) matching using only
OR-queries. Note that we already know the weights of all (potential) edges (either 10n if they are
in M , which we know; or 10n+1 otherwise), and this is not something which needs to be found out
using OR-queries. By the above discussion, it suffices to check if any matching of weight strictly

more than 10n2 exist or not. Hence we use a version of (P(G,b,c)
F) with c being our costs, b the

all-ones vector, and F = 10n2, to obtain the following polytope (PUBPM):

∑

v∈V

xv ≤ 10n2 + 1
3

xu + xv ≥ 10n ∀(u, v) ∈M
xu + xv ≥ 10n + 1 ∀(u, v) ∈ E \M
0 ≤ xv ≤ 10n + 2 ∀v ∈ V

(PUBPM)

If this polytope is feasible, then M must be the unique perfect matching, and if it is feasible,
another perfect matching M ′ of higher cost exist.

We note that in the above polytope (which is a special case of the (P(G,b,c)
F) polytope from

Section 3.2), we know all the constraints initially except the “xu + xv ≥ 10n for (u, v) ∈ E \
M” constraints. Hence, when running the cutting planes algorithm we may start with all other
constraints in our initial polytope. Now, to implement the FindViolatingEdge-subroutine (a.k.a. the
separation oracle) given a point pi, we binary search (with OR-queries) over the set of potentially
violated edges, i.e. the set S = {(u, v) ∈ L×R | pui + pvi < 10n + 1, (u, v) 6∈M} (like in Claim 2.5,
but now this set S is a bit different for our problem). Otherwise, the cutting planes algorithm is
exactly the same as for the max-cost b-matching in Section 3.2.

B Omitted proofs from Section 4

Lemma 4.2. If there is a query-algorithm A solving the bipartite-perfect-matching problems using
q many OR / AND / XOR queries, then there is a communication protocol which solve the bipartite-

28

perfect-matching problem on G∪ / G∩ / G⊕ respectively, using 2q bits of communication. If A is
deterministic, then so is the communication protocol.

Proof. Alice and Bob can simulate a query on the aggregate graph with a single bit sent in each
direction as follows:

• An OR-query S ⊆ L×R can be simulated on G∪: Alice and Bob locally check if |S∩EA| > 0,
respectively |S ∩ EB | > 0, and communicates this to the other party.

• An AND-query S ⊆ L×R can be simulated on G∩: Alice and Bob locally check if |S ∩EA| =
|S|, respectively |S ∩ EB | = |S|, and communicates this to the other party.

• An XOR-query S ⊆ L×R can be simulated on G⊕: Alice and Bob locally compute the parity
of |S ∩EA|, respectively |S ∩EB|, and communicates this to the other party. If they have the
same parity, then the parity of |S ∩ (EB ⊕ EA)| is even, otherwise it is odd.

Claim 4.3. Solving BPM (or UBPM) on G∩ requires Ω(n2) bits of communication, even if public
randomness is allowed.

Proof. Let k be an integer and suppose Alice and Bob are tasked to solve a Set-Disjointness problem
on k2 bits. That is, suppose Alice is given a subset A ⊆ [k] × [k] and Bob is given a subset
B ⊆ [k]× [k], and they want to determine if A∩B is empty or not. This is known to require Ω(k2)
bits of communication, even if public randomness is allowed [Raz92].

We now proceed by setting up two bipartite graphs GA = (L ∪ R,EA) and GB = (L ∪ R,EB)
such that the graph G∩ = (L ∪R,EA ∩ EB) has a perfect matching if and only if A ∩ B 6= ∅. For
an illustration, see Figure 1.

The graph will have 4k + 2 vertices. Let L = {s, v1, v2, . . . , vk, z1, z2, . . . , zk} and R =
{t, u1, u2, . . . , uk, w1, w2, . . . , wk}. The edges (s, ui), (ui, vi), (wi, zi) and (zi, t) (for all i ∈ [k])
will be in both Alice’s and Bob’s graphs. Note that the edges (ui, vi) and (wi, zi) form an almost-
perfect-matching in G∩: all vertices except s and t are matched. Hence, a perfect-matching exists
in G∩ if and only if there is an augmenting path (with respect to the almost-perfect-matching)
between s and t in the graph.

Additionally, for every (i, j) ∈ A we add the edge (vi, wj) to Alice’s edges, and similarly for
every edge (i, j) ∈ B we add the edge (vi, wj) to Bob’s edges.

• If (i, j) ∈ A ∩ B exists, then (vi, wj) is an edge of G∩, and G∩ has a perfect matching:
(s, ui, vi, wj , zj , t) forms the desired (s, t)-augmenting path.

• On the other hand, if A ∩ B = ∅, then G∩ has no perfect matching since s and t are in
different components in the graph and hence no augmenting path between them exists.

Note that the version of Set-Disjointness where we are promised that |A∩B| ≤ 1 is still difficult
(i.e. also has an Ω(n2) communication lower bound) [Raz92]. This means that our lower bound
also holds for the unique bipartite matching problem (UBPM), as there can never be more than
one perfect matching in this promise version.

Claim 4.4. Solving BPM on G⊕ requires Ω(n2) bits of communication for any deterministic pro-
tocol.

Proof. Let k be an integer and suppose Alice and Bob are tasked to solve a Equality problem on k2

bits. That is, suppose Alice is given a subset A ⊆ [k]× [k] and Bob is given a subset B ⊆ [k]× [k],
and they want to determine if A = B (this is equivalent to determine if A⊕B = ∅). This is known
to require Ω(k2) bits of communication for any deterministic algorithm.

29

We use a similar graph construction on 4k + 2 vertices as in the G∩-query setting (again, for
an illustration, see Figure 1). The edges (s, ui), (ui, vi), (wi, zi) and (zi, t) (for all i ∈ [k]) will
be in be in Alice’s graph, but not Bob’s (so that all these edges will be G⊕). Again, note that
a perfect-matching exists in G⊕ if and only if there is an augmenting path (with respect to the
almost-perfect-matching {(ui, vi), (wi, zi) : i ∈ [k]}) between s and t in the graph.

Additionally, we add the edge (vi, wj) to Alice’s graph if (i, j) ∈ A, and similarly add the edge
(vi, wj) to Bob’s graph if (i, j) ∈ B. That is the edge (vi, wj) is in G⊕ if and only if (i, j) ∈ A⊕B.

• If (i, j) ∈ A ⊕ B exist, then then (vi, wj) is an edge of G⊕, and G⊕ has a perfect matching:
(s, ui, vi, wj , zj , t) forms the desired (s, t)-augmenting path.

• On the other hand, if A ⊕ B = ∅, then G⊕ has no perfect matching since s and t are in
different components in the graph and hence no augmenting path between them exists.

Claim 4.5. Solving BPM on G∪ requires Ω(n log n) bits of communication for any deterministic
protocol.

Proof. Suppose the two parties are given an instance of (s, t)-connectivity. That is Alice is given
edges FA and Bob FB in a k-vertex (not-necessarily-bipartite) graph H = (V, FA ∪ FB). They are
also both given two vertices s, t ∈ V and want to determine if s and t are in the same connected
component in H. This is known to require Ω(n log n) bits of communication.

We proceed by constructing bipartite graphs GA = (L ∪ R,EA) and GB = (L ∪ R,EB) for
Alice and Bob, such that G∪ = (L ∪R,EA ∪EB) has a perfect matching if and only if s and t are
connected in H.

We let L = {v : v ∈ V \ {s}} and R = {v′ : v ∈ V \ {t}}. Note that |L| = |R| = k − 1. Let the
edge (v, v′) be in both EA and EB (and thus also an edge of G∪) for all v ∈ V \ {s, t}. These edges
form an almost-perfect matching of size k − 2: all vertices except s and t′ are matched. Again,
G∪ has a perfect matching if and only if there is an augmenting path (with respect to this partial
almost-perfect matching) between s and t in the graph.

For each edge (v, u) ∈ FA, we add (v, u′) (unless v = t) and (v′, u) (unless v = s) to Alice’s
edges EA. We do the same for Bob.

Now there is an (s, t)-path in H if and only if there is an augmenting path (w.r.t. the almost-
perfect matching {(v, v′) : v ∈ V \{s, t}}) between s and t in G∪. Indeed, a path (s, v1, v2, . . . , vr, t)
in H corresponds to the augmenting path (s, v′1, v1, v

′
2, v2, . . . , v

′
r, vr, t) in G∪.

30

	1 Introduction
	1.1 Technical Overview
	1.2 Open problems

	2 Bipartite Matching Upper Bounds
	2.1 OR-query decision algorithm
	2.2 OR-query optimization algorithm
	2.3 Applications
	2.3.1 Communication complexity
	2.3.2 Randomized XOR-query
	2.3.3 Independent set (IS) query
	2.3.4 ORk-query
	2.3.5 Quantum edge query (Q2)

	3 Weighted and Vertex-Capacitated Variants
	3.1 Max-cost perfect b-matching Max-cost b-matching
	3.2 Cutting planes method for max-cost bipartite b-matching
	3.3 Application: Unique Bipartite Perfect Matching

	4 Communication Lower Bounds
	A Omitted proofs from sec:weighted
	B Omitted proofs from sec:communication-lower-bounds

