
This is a repository copy of Fixed-parameter approximations for k-Center problems in low
highway dimension graphs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/200961/

Version: Accepted Version

Article:

Feldmann, A.E. orcid.org/0000-0001-6229-5332 (2019) Fixed-parameter approximations
for k-Center problems in low highway dimension graphs. Algorithmica, 81 (3). pp. 1031-
1052. ISSN 0178-4617

https://doi.org/10.1007/s00453-018-0455-0

This version of the article has been accepted for publication, after peer review and is
subject to Springer Nature’s AM terms of use, but is not the Version of Record and does
not reflect post-acceptance improvements, or any corrections. The Version of Record is
available online at: http://dx.doi.org/10.1007/s00453-018-0455-0

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Fixed-Parameter Approximations for k-Center Problems

in Low Highway Dimension Graphs∗

Andreas Emil Feldmann

KAM, Charles University, Czechia
feldmann.a.e@gmail.com

Abstract

We consider the k-Center problem and some generalizations. For k-Center a set of k
center vertices needs to be found in a graph G with edge lengths, such that the distance from any
vertex of G to its nearest center is minimized. This problem naturally occurs in transportation
networks, and therefore we model the inputs as graphs with bounded highway dimension, as
proposed by Abraham et al. [SODA 2010].

We show both approximation and fixed-parameter hardness results, and how to overcome
them using fixed-parameter approximations, where the two paradigms are combined. In particular,
we prove that for any ε > 0 computing a (2− ε)-approximation is W[2]-hard for parameter k,
and NP-hard for graphs with highway dimension O(log2 n). The latter does not rule out fixed-
parameter (2− ε)-approximations for the highway dimension parameter h, but implies that such
an algorithm must have at least doubly exponential running time in h if it exists, unless ETH
fails. On the positive side, we show how to get below the approximation factor of 2 by combining
the parameters k and h: we develop a fixed-parameter 3/2-approximation with running time
2O(kh log h) · nO(1). Additionally we prove that, unless P=NP, our techniques cannot be used to
compute fixed-parameter (2− ε)-approximations for only the parameter h.

We also provide similar fixed-parameter approximations for the weighted k-Center and
(k,F)-Partition problems, which generalize k-Center.

1 Introduction

In this paper we consider the k-Center problem and some of its generalizations. For the problem,
k locations need to be found in a network, so that every node in the network is close to a location.
More formally, the input is specified by an integer k ∈ N and a graph G = (V,E) with positive
edge lengths. A feasible solution to the problem is a set C ⊆ V of centers such that |C| ≤ k. The
aim is to minimize the maximum distance between any vertex and its closest center. That is, let
distG(u, v) denote the shortest-path distance between two vertices u, v ∈ V of G according to the
edge lengths, and Bv(r) = {u ∈ V | distG(u, v) ≤ r} be the ball of radius r around v. We need
to minimize the cost of the solution C, which is the smallest value ρ for which

⋃

v∈C Bv(ρ) = V .

∗I would like to thank Jochen Könemann for reading an early draft of this paper. Also I would like to thank two
anonymous reviewers for their insightful remarks that helped to greatly improve the paper. A preliminary version
appeared at the 42nd International Colloquium on Automata, Languages, and Programming (ICALP 2015). This work
was supported by ERC Starting Grant PARAMTIGHT (No. 280152), project CE-ITI (GAČR no. P202/12/G061)
of the Czech Science Foundation, and by the Center for Foundations of Modern Computer Science (Charles Univ.
project UNCE/SCI/004).

1

ar
X

iv
:1

60
5.

02
53

0v
3

 [
cs

.D
S]

 2
6

A
pr

 2
01

9

We say that a center v ∈ C covers a vertex u ∈ V if u ∈ Bv(ρ). Hence we can see the problem as
finding k centers covering all vertices of G with balls of minimum radius.

The k-Center problem naturally arises in transportation networks, where, for instance, it
models the need to find locations for manufacturing plants, hospitals, police stations, or warehouses
under a budget constraint. Unfortunately it is NP-hard to solve the problem in general [29], and
the same holds true in various models for transportation networks, such as planar graphs [28]
and metrics using Euclidean (L2), Manhattan (L1), or Chebyshev (L∞) distance measures [14]. A
more recent model for transportation networks uses the highway dimension, which was introduced
as a graph parameter by Abraham et al. [1]. The intuition behind its definition comes from the
empirical observation [7, 8] that in a road network, starting from any point A and travelling to
a sufficiently far point B along the quickest route, one is bound to pass through some member
of a sparse set of “access points”. There are several formal definitions for the highway dimension
that differ slightly [1, 2, 3, 16]. All of them, however, imply the existence of locally sparse shortest
path covers. Therefore, in this paper we consider this as a generalization of the original highway
dimension definitions.

Definition 1. Given a graph G = (V,E) with edge lengths and a scale r ∈ R
+, let P(r,2r] ⊆ 2V

contain all vertex sets given by shortest paths in G of length more than r and at most 2r. A
shortest path cover spc(r) ⊆ V is a hitting set for the set system P(r,2r], i.e., P ∩ spc(r) 6= ∅ for
each P ∈ P(r,2r]. We call the vertices in spc(r) hubs. A hub set spc(r) is called locally h-sparse
if for every vertex v ∈ V the ball Bv(2r) of radius 2r around v contains at most h vertices from
spc(r). The highway dimension of G is the smallest integer h such that there is a locally h-sparse
shortest path cover spc(r) for every scale r ∈ R

+ in G.

Abraham et al. [1] introduced the highway dimension in order to explain the fast running times
of various shortest-path heuristics. However, they also note that “conceivably, better algorithms for
other [optimization] problems can be developed and analysed under the small highway dimension
assumption”. In this paper we investigate the k-Center problem and focus on graphs with low
highway dimension as a model for transportation networks. One advantage of using such graphs
is that they do not only capture road networks but also networks with transportation links given
by air-traffic or railroads. For instance, introducing connections due to airplane traffic will render
a network non-planar, while it can still be argued to have low highway dimension: longer flight
connections tend to be served by bigger but sparser airports, which act as hubs. This can, for
instance, be of interest in applications where warehouses need to be placed to store and redistribute
goods of globally operating enterprises. Unfortunately however, in this paper we show that the
k-Center problem also remains NP-hard on graphs with low highway dimension.

Two popular and well-studied ways of coping with NP-hard problems is to devise approxima-
tion [29, 30] and parameterized [11, 13] algorithms. For the former we demand polynomial running
times but allow the computed solution to deviate from the optimum cost. That is, we compute a
c-approximation, which is a feasible solution with a cost that is at most c times worse than the
best possible for the given instance. A problem that allows a polynomial-time c-approximation
for any input is c-approximable, and c is called the approximation factor of the corresponding
algorithm. The rationale behind parameterized algorithms is that some parameter p of the input is
small and we can therefore afford running times that are super-polynomial in p, while, however, we
demand optimum solutions. That is, we compute a solution with optimum cost in time f(p) · nO(1)

for some computable function f(·) that is independent of the input size n. A problem that has
a fixed-parameter algorithm for a parameter p is called fixed-parameter tractable (FPT) for p.
What however, if a problem is neither approximable nor FPT? In this case it may be possible to
overcome the complexity by combining these two paradigms. In particular, the objective becomes

2

to develop fixed-parameter c-approximation (c-FPA) algorithms that compute a c-approximation in
time f(p) · nO(1) for a parameter p.

The idea of combining the paradigms of approximation and fixed-parameter tractability has
been suggested before. However, only few results are known for this setting (cf. [26]). In this
paper we show that for the k-Center problem it is possible to overcome lower bounds for its
approximability and its fixed-parameter tractability using parameterized approximations. For many
different input classes, such as planar graphs [28], and L1- and L∞-metrics [14], the k-Center

problem is 2-approximable via the algorithm for general metrics of Hochbaum and Shmoys [19], but
not (2− ε)-approximable for any ε > 0, unless P=NP. We show that, unless FPT=W[2], for general
graphs there is no (2− ε)-FPA algorithm for the parameter k. Additionally, we prove that, unless
P=NP, k-Center is not (2− ε)-approximable on graphs with highway dimension O(log2 n). This
does not rule out (2− ε)-FPA algorithms for the highway dimension parameter, and we leave this
as an open problem. However, the result implies that if such an algorithm exists, then its running
time must be enormous. In particular, unless the exponential time hypothesis (ETH) [21, 22] fails,

there can be no (2− ε)-FPA algorithm with doubly exponential 22
o(

√
h)
· nO(1) running time in the

highway dimension h.
In face of these hardness results, it seems tough to beat the approximation factor of 2 for

k-Center, even when considering fixed-parameter approximations for either the parameter k or
the highway dimension. Our main result, however, is that we can obtain a significantly better
approximation factor for k-Center when combining these two parameters. Such an algorithm is
useful when aiming for high quality solutions, for instance, in a setting where only few warehouses
should be built in a transportation network, since warehouses are expensive or stored goods should
not be too dispersed for logistical reasons.

It is known [2] that locally O(h log h)-sparse shortest path covers can be computed for graphs
of highway dimension h in polynomial time, if each shortest path is unique. We will assume that
the latter is always the case, since we can slightly perturb the edge lengths. In particular, using
a folklore method we may distort distances such that any 3/2-approximation in the perturbed
instance also is a 3/2-approximation in the original instance. In the following theorem summarizing
our main result, the first given running time assumes approximate shortest path covers. In general
it is NP-hard to compute the highway dimension [16], but it is unknown whether this problem is
FPT. If this is the case and the running time is sufficiently small, this can be used as an oracle in
our algorithm.

Theorem 2. For any graph G with n vertices and highway dimension h, there is an algorithm
that computes a 3/2-approximation to the k-Center problem in time 2O(kh log h) · nO(1). If locally
h-sparse shortest path covers are given by an oracle, the running time is 3kh · nO(1).

We leave open whether approximation factors better than 3/2 can be obtained for the combined
parameter (k, h). It was recently proved [15] that k-Center is W[1]-hard for this parameter (k, h),
but no inapproximability is implied by this result. We note that a recent result by Becker et al. [10]
obtains a fixed-parameter approximation scheme for k-Center in low highway dimension graphs,
i.e., an algorithm computing a (1+ε)-approximation in time f(k, h, ε) ·nO(1) for any ε > 0. However,
this result needs a more restrictive definition of the highway dimension than used in this paper. In
particular, there are graphs that have bounded highway dimension due to Definition 1, but for which
the algorithm by Becker et al. [10] is not applicable (for a more detailed discussion on the relation
between different definitions of highway dimension we refer to [16, Section 9]). Although we also
leave open whether (2− ε)-FPA algorithms exist for the parameter h alone, we are able to prove
that the techniques we use for Theorem 2 cannot omit using both k and h as parameters. To obtain

3

a (2− ε)-FPA algorithm with running time f(h) · nO(1) for any function f(·) independent of n, a lot
more information of the input would need to be exploited than the algorithm of Theorem 2 does.
To explain this, we now turn to the used techniques.

1.1 Used techniques

Figure 1: Clusters (dashed circles)
are far from hubs (crosses). They have
small diameter and are far from each
other.

A crucial observation for our algorithm is that at any scale r, a
graph of low highway dimension is structured in the following
way (see Figure 1). We will prove that the vertices are either
at distance at most r from some hub, or they lie in clusters
of diameter at most r that are at distance more than 2r from
each other. Hence, for the cost ρ of the optimum k-Center

solution, at scale r = ρ/2 a center that resides in a cluster
cannot cover any vertices of some other cluster. In this sense
the clusters are “independent” of each other. At the same time
we are able to bound the number of hubs of scale ρ/2 in terms
of k and the highway dimension. Roughly, this is comparable
to graphs with small vertex cover, since the vertices that are
not part of a vertex cover form an independent set. In this
sense the highway dimension is a generalization of the vertex cover number (this is in fact the reason
why computing the highway dimension is NP-hard [16]).

At the same time the k-Center problem is a generalization of the Dominating Set problem.
This problem is W[2]-hard [13], which, as we will show, is also why k-Center is W[2]-hard to
approximate for parameter k. However, Dominating Set is FPT using the vertex cover number as
the parameter [5]. This is one of the reasons why combining the two parameters k and h yields
a 3/2-FPA algorithm for k-Center. In fact the similarity seems so striking at first that one is
tempted to reduce the problem of finding a 3/2-approximation for k-Center on low highway
dimension graphs to solving Dominating Set on a graph of low vertex cover number. However, it
is unclear how this can be made to work. Instead we devise an involved algorithm that is driven by
the intuition that the two problems are similar.

The algorithm will guess the cost ρ of the optimum solution in order to exploit the structure
of the graph given by the locally h-sparse shortest path cover for scale r = ρ/2. In particular, the
shortest path covers of other scales do not need to be locally sparse in order for the algorithm to
succeed. We will show that there are graphs for which k-Center is not (2 − ε)-approximable,
unless P=NP, and for which the shortest path cover for scale ρ/2 is locally 46-sparse. Hence our
techniques, which only consider the shortest path cover of scale ρ/2, cannot yield a (2− ε)-FPA
algorithm for parameter h. The catch is though that the reduction produces graphs which do not
have locally sparse shortest path covers for scales significantly larger than ρ/2. Hence a (2− ε)-FPA
algorithm for parameter h might still exist. However, such an algorithm would have to take larger
scales into account than just ρ/2, and as mentioned above, it would have to have at least doubly
exponential running time in h.

Proving that no (2− ε)-FPA algorithm for parameter k exists for k-Center, unless FPT=W[2],
is straightforward given the original reduction of Hsu and Nemhauser [20] from the W[2]-hard
Dominating Set problem. For parameter h, however, we develop some more advanced techniques.
For the reduction we show how to construct a graph of low highway dimension given a metric of
low doubling dimension (see Section 4 for a formal definition), so that distances between vertices
are preserved by a (1 + ε) factor. The doubling dimension [18] is a parameter that captures the
bounded volume growth of metrics, such as given by Euclidean and Manhattan distances. Since

4

k-Center is not (2− ε)-approximable in L∞-metrics [14], unless P=NP, and these have constant
doubling dimension, we are able to conclude that the hardness translates to graphs of highway
dimension O(log2 n).

1.2 Generalizations

In addition to k-Center, in Section 5 we obtain similar positive results for two generalizations of
the problem by appropriately modifying our techniques. For the weighted k-Center problem,
the vertices have integer weights and the objective is to choose centers of total weight at most k to
cover all vertices with balls of minimum radius. This problem is 3-approximable [19, 29] and no
better approximation factor is known. However, we are able to modify our techniques to obtain a
2-FPA algorithm for the combined parameter (k, h).

An alternative way to define the k-Center problem is in terms of finding a star cover of size
k in a metric, where the cost of the solution is the longest of any star edge in the solution. More
generally, in their seminal work Hochbaum and Shmoys [19] defined the (k,F)-Partition problem.
Here a family of (unweighted) graphs F is given and the aim is to partition the vertices of a metric
into k sets and connect the vertices of each set by a graph from the family F . The solution cost is
measured by the “bottleneck”, which is the longest distance between any two vertices of the metric
that are connected by an edge in a graph from the family F . The case when F contains only stars
is exactly the k-Center problem, given the shortest-path metric as input. The (k,F)-Partition
problem is 2d-approximable [19], where d is the largest diameter of any graph in F . We show that
a 3δ-FPA algorithm for the combined parameter (k, h) exists, where δ is the largest radius of any
graph in F . Hence for graph families in which 3δ < 2d this improves on the general algorithm by
Hochbaum and Shmoys [19]. This is for example the case when F contains “stars of paths”, i.e.,
stars for which each edge is replaced by a path of length at most δ. The diameter of such a graph
can be 2δ, while the radius is at most δ, and hence 3δ < 2d = 4δ.

1.3 Related work

Given its applicability to various problems in transportation networks, but also in other contexts
such as image processing and data-compression, the k-Center problem has been extensively studied
in the past. We only mention closely related results here, that were not mentioned before. For
parameters clique-width and tree-width, Katsikarelis et al. [23] show that k-Center is W[1]-hard,
but they also give fixed-parameter approximation schemes for each of these parameters. For the
tree-depth parameter, they show that the problem is FPT. For unweighted planar and map graphs
the k-Center problem is FPT [12] for the combined parameter (k, ρ), where ρ is the cost of the
optimum solution. Note though that k and ρ are somewhat opposing parameters in the sense that
typically if k is small then ρ will be large, and vice versa. A very recent result [24] gives an efficient
polynomial-time approximation scheme (EPTAS) for k-Center on weighted planar graphs, which
approximates both the optimum cost ρ and the number of centers k. That is, in time f(ε) · nO(1)

the algorithm computes a (1 + ε)-approximation that uses at most (1 + ε)k centers, for any ε > 0.
Interestingly, this immediately implies a fixed-parameter approximation scheme for parameters
k and ε on weighted planar graphs: setting ε to a value smaller than 1/k forces the algorithm
to compute a solution with at most k centers (since k is an integer), while the cost is within an
(1 + ε)-factor of the optimum. Marx and Pilipczuk [27] prove that in planar graphs an optimum

k-Center solution can be computed in time nO(
√
k). On the other hand, a recent result [15] shows

that k-Center is W[1]-hard in planar graphs with constant doubling dimension, for the combined
parameter (k, h, t), where h is the highway dimension and t the treewidth of the input graph. Thus

5

this problem remains hard, even when assuming that it abides to all aforementioned models of
transportation networks at once. For any Lq metric an (1 + ε)-FPA algorithm for the combined
parameter (k, ε,D) can be obtained [4], where D is the dimension of the geometric space. This can
also be generalized [15] to an (1 + ε)-FPA algorithm for the combined parameter (k, ε, d), where d
is the doubling dimension.

Abraham et al. [1] introduced the highway dimension, and study it in several papers [1, 2, 3].
Their main interest is in explaining the good performance of various shortest-path heuristics assuming
low highway dimension. In [2] they show that a locally O(h log h)-sparse shortest path cover can be
computed in polynomial time for any scale if the highway dimension of the input graph is h, and each
shortest path is unique. Feldmann et al. [16] consider computing approximations for various other
problems that naturally arise in transportation networks. They show that quasi-polynomial time
approximation schemes can be obtained for problems such as Travelling Salesman, Steiner

Tree, or Facility Location, if the highway dimension is constant. For this however a more
restrictive definition of the highway dimension than used here is needed (see [16, Section 9] for more
details). The algorithms are obtained by probabilistically embedding a low highway dimension graph
into a bounded treewidth graph while introducing arbitrarily small distortions of distances. Known
algorithms to compute optimum solutions on low treewidth graphs then imply the approximation
schemes. It is interesting to note that this approach does not work for the k-Center problem since,
in contrast to the above mentioned problems, its objective function is not linear in the edge lengths.
As noted before however, a recent result by Becker et al. [10] obtains a fixed-parameter approximation
scheme for k-Center for combined parameter (h, k, ε) using a deterministic embedding, building on
the results in [16]. But again, for this the more restrictive definition of highway dimension also used
in [16] is needed. The only other theoretical results on the highway dimension that we are aware
of at this point are by Bauer et al. [9] and by Kosowski and Viennot [25]. Bauer et al. [9] show
that for any graph G there exist edge lengths such that the highway dimension is Ω(pw(G)/ log n),
where pw(G) is the pathwidth of G. Kosowski and Viennot [25] introduce the skeleton dimension
of a graph and compare it to the highway dimension in the context of shortest path heuristics.

2 k-Center and highway dimension versus Dominating Set and

vertex covers

We begin by observing that the vertices of a low highway dimension graph are highly structured for
any scale r: the vertices that are far from any hub of a shortest path cover for scale r are clustered
into sets of small diameter and large inter-cluster distance (see Figure 1). A similar observation
was already made in [16], where clusters were called towns. We need a slightly different definition
of clusters than in [16] however, which is why we do not use the same terminology here. For a
set S ⊆ V let distG(u, S) = minv∈S distG(u, v) be the shortest-path distance from u to the closest
vertex in S.

Definition 3. Fix r ∈ R
+ and a shortest path cover spc(r) ⊆ V for scale r in a graph G = (V,E).

We call an inclusion-wise maximal set T ⊆ {v ∈ V | distG(v, spc(r)) > r} with distG(u,w) ≤ r for
all u,w ∈ T a cluster, and we denote the set of all clusters by T . The non-cluster vertices are those
which are not contained in any cluster of T .

Note that the set T is specific for the scale r and the hub set spc(r). The following lemma
summarizes the structure of the clusters and non-cluster vertices. Here we let distG(S, S

′) =
minv∈S distG(v, S

′) be the minimum distance between vertices of two sets S and S′.

6

Lemma 4. Let T be the cluster set for a scale r and a shortest path cover spc(r). For each
non-cluster vertex v, distG(v, spc(r)) ≤ r. The diameter of any cluster T ∈ T is at most r, and
distG(T, T

′) > 2r for any distinct pair of clusters T, T ′ ∈ T .

Proof. The first two claims follow immediately from the definition of the clusters. For the third
claim let W = {v ∈ V | distG(v, spc(r)) > r}, such that any cluster T ∈ T is a subset of W . We
first argue that there are no vertices u,w ∈W for which distG(u,w) ∈ (r, 2r]. If these existed, by
Definition 1 there would be a hub x ∈ spc(r) hitting the shortest path between them. However, this
path would have length distG(u, x) + distG(w, x) > 2r since u and w are at distance more than r
from spc(r), contradicting our assumption that distG(u,w) ≤ 2r.

As a consequence, for any three vertices u, v, w ∈ W with distG(u, v) ≤ r and distG(v, w) ≤ r
we have distG(u,w) ≤ distG(u, v) + distG(v, w) ≤ 2r, and since we know that distG(u,w) /∈ (r, 2r],
this implies that in fact distG(u,w) ≤ r. Hence the relation of being at distance at most r in W
is transitive, and it is obviously also symmetric and reflexive, i.e., it is an equivalence relation
on W . Moreover, any two vertices u,w ∈ W that do not belong to the same equivalence class,
i.e. distG(u,w) > r, must be at distance more than 2r, as distG(u,w) /∈ (r, 2r]. By Definition 3
the clusters are exactly the equivalence classes of W , and so distG(T, T

′) > 2r for any two distinct
clusters T, T ′ ∈ T .

A vertex cover W is a subset of vertices such that every edge is incident to some vertex of W . In
particular, if all edges have unit length, then a shortest path cover for scale r = 1/2 is a vertex cover.
Hence shortest path covers are generalizations of vertex covers. A dominating set D is a subset of
vertices such that every vertex is adjacent to some vertex of D. In a graph with unit edge lengths,
a feasible k-Center solution of cost 1 is a dominating set. In this sense the k-Center problem is
a generalization of the Dominating Set problem, for which a dominating set of minimum size
needs to be found. The Dominating Set problem is W [2]-hard [13] for its canonical parameter
(i.e., the size of the optimum dominating set), but it is FPT [5] for the parameter given by the
vertex cover number, which is the size of the smallest vertex cover of a given graph. As the following
simple lemma shows, if ρ is the cost of the optimum k-Center solution, the number of hubs of
the shortest path cover spc(ρ/2) is bounded in k and the local sparsity of spc(ρ/2). Thus our
setting generalizes the Dominating Set problem on graphs with bounded vertex cover number. It
is interesting to note that in contrast to the Dominating Set problem being FPT for the vertex
cover number [5], our more general setting is W[1]-hard [15].

Lemma 5. Let ρ be the optimum cost of the k-Center problem in a given instance G. If a shortest
path cover spc(ρ/2) of G for scale ρ/2 is locally s-sparse, then | spc(ρ/2)| ≤ ks.

Proof. The optimum k-Center solution covers the whole graph G with k balls of radius ρ each.
By Definition 1 there are at most s hubs of spc(ρ/2) in each ball.

We are able to exploit this intuition for our algorithm in Section 3. On a high level, our algorithm
follows the lines of the following simple procedure to solve Dominating Set on graphs with bounded
vertex cover number. As a subroutine we will solve an instance of the Set Cover problem, for
which a collection S ⊆ 2U of subsets of a universe U is given together with a subset U ′ ⊆ U of the
universe.1 A set cover for U ′ is a collection S ′ ⊆ S of the sets in S covering U ′, i.e.,

⋃

S∈S′ S ⊇ U ′.
The aim is to compute a minimum-sized set cover for the set system (U ′,S). Given an input graph
G = (V,E) and a vertex cover W ⊆ V of small size (which can, for instance, be an approximation),
we perform the following three steps, in each of which we find a respective subset Di, i ∈ {1, 2, 3},
of the optimum dominating set D ⊆ V of G.

1Usually U
′ = U but for convenience we define the problem slightly more general here.

7

1. Guess the subset D1 = W ∩D of vertices in the vertex cover W that belong to the dominating
set D.

2. Since the vertices not in the vertex cover W form an independent set, any vertex of V \W ,
which is not adjacent to a vertex in D1 must be in D. Thus we can let D2 consist of all such
vertices from V \W .

3. By our choice of D2, if there are any vertices left in V that are not adjacent to D1 ∪D2, they
must be in W . Furthermore these vertices must be adjacent to some vertices in D contained
in V \W , by our choice of D1. We can thus solve an instance of Set Cover, where U ′ is
given by the subset of vertices in W that are not adjacent to D1 ∪D2, and the set system S
is given by the neighbourhoods of vertices in V \W restricted to W . The remaining set
D3 = D \ (D1 ∪D2) consists of the vertices in V \W whose neighbourhoods form the smallest
solution of this Set Cover instance.

For the first step of the above algorithm there are 2|W | possible guesses for D1. For each such
guess, the second step can be performed in polynomial time. For the third step we need to solve Set
Cover for an instance with a small universe U . This can be done in 2|U | · (|U |+ |S|)O(1) time using
the algorithm of Fomin et al. [17]. Since in our case U = W and |S| ≤ |V \W |, this amounts to a
running time of 2|W | ·nO(1). This Set Cover algorithm is based on dynamic programming. During
its execution the smallest set cover for every subset U ′ of the universe U is computed, and these
optimum solutions are stored in a table. Therefore, instead of running an algorithm for Set Cover

for each guess of D1 in the third step above, we may run the algorithm of Fomin et al. [17] only once
beforehand: we set the universe to all of W , and the set system will contain all neighbourhood sets of
vertices in V \W . This way the needed optimum solution for the corresponding subset U ′ of U can
be retrieved in constant time in the third step of our procedure. As we need to retrieve an optimum
set cover for every guess of D1, this improves the overall running time, which is now 2|W | · nO(1).

In our k-Center algorithm we will use the same method of pre-computing a table containing
all optimum Set Cover solutions for subsets of a universe. We summarize the properties of the
needed Set Cover algorithm in the following.

Theorem 6 ([11, 17]). Given a set system (U,S) we can compute a table T, which for any subset
U ′ ⊆ U contains the smallest set cover for (U ′,S) in the entry T[U ′]. For any subset U ′ ⊆ U ,
the optimum set cover for U ′ can be retrieved in constant time from T, and T can be computed in
2|U | · (|U |+ |S|)O(1) time.

3 The fixed-parameter approximation algorithm

We begin with a brief high-level description of the algorithm. As observed in Section 2, we can think
of solving k-Center in a low highway dimension graph as a generalization of solving Dominating

Set in a graph with bounded vertex cover number. Our algorithm (see Algorithm 1) is driven by
this intuition. After guessing the optimum k-Center cost ρ and computing spc(ρ/2) together
with its cluster set T , we will see how the algorithm computes three approximate center sets C1,
C2, and C3 (analogous to the three respective sets D1, D2, D3 for Dominating Set). For the
first set C1 the algorithm guesses a subset of the hubs of spc(ρ/2) that are close to the optimum
center set. This can be done in time exponential in k and the local sparsity of the hub set, because
there are at most that many hubs for scale ρ/2 by Lemma 5. We will observe that by Lemma 4 an
optimum center lying in a cluster cannot cover any vertices that are part of another cluster. This
makes it easy to determine a second set C2 of approximate centers, each of which will lie in a cluster
that must contain an optimum center. The third set of centers C3 will consist of cluster vertices
that cover the remaining vertices not yet covered by C1 and C2. These remaining uncovered vertices

8

will all be non-cluster vertices, and we find C3 by solving a Set Cover instance, similar to the
third step in our procedure for Dominating Set.

More concretely, consider an input graph G = (V,E) with an optimum k-Center solution
C∗ of cost ρ. In line 2 to line 4 of Algorithm 1 we try scales r in increasing order, to guess the
correct value for which r = ρ/2. For each guessed value of r the algorithm computes a shortest path
cover spc(r) together with its cluster set T in line 5. By [2], locally O(h log h)-sparse shortest path
covers are computable in polynomial time if the input graph has highway dimension h. In line 1 we
therefore set s to the bound of the local sparsity guaranteed in [2] (if locally h-sparse shortest path
covers are given by an oracle, we may at this point set s = h). In order to keep the running time
low, the algorithm checks that the number of hubs is not too large in line 6: since by Lemma 5 we
have | spc(ρ/2)| ≤ ks, we can dismiss any shortest path cover containing more hubs.

Assume that r = ρ/2 was found. In the following, for an index i ∈ {1, 2, 3} we denote by
R∗

i =
⋃

v∈C∗
i

Bv(ρ) and Ri =
⋃

v∈Ci
Bv(

3
2ρ) the regions covered by some set of optimum centers

C∗
i ⊆ C∗ (with balls of radius ρ) and approximate centers Ci ⊆ V (with balls of radius 3

2ρ),
respectively. In line 10 the algorithm guesses a minimum-sized set H of hubs in spc(ρ/2), such
that the balls of radius ρ/2 around hubs in H cover all optimum non-cluster centers. That is, if
C∗
1 ⊆ C∗ denotes the set of optimum non-cluster centers, each of which is at distance at most ρ/2

from some hub in spc(ρ/2), then C∗
1 ⊆

⋃

v∈H Bv(ρ/2) and H ⊆ spc(ρ/2) is a minimum-sized such
set. We choose this set of hubs H as the first set of centers C1 for our approximate solution in
line 11. Note that due to the minimality of H we have |C1| ≤ |C

∗
1 |. Also R∗

1 ⊆ R1 since for any
center in C∗

1 there is a center (i.e., a hub) at distance at most ρ/2 in C1.
The next step is to compute a set of centers so that all clusters of the cluster set T of spc(ρ/2)

are covered. Some of the clusters are already covered by the first set of centers C1, and thus
in this step we want to take care of all remaining uncovered clusters, i.e., those contained in
U = {T ∈ T | T \R1 6= ∅}. By the definition of C∗

1 , any remaining optimum center in C∗ \C∗
1 must

lie in a cluster. Furthermore, the distance between clusters of spc(ρ/2) is more than ρ by Lemma 4,
so that a center of C∗ \C∗

1 in a cluster T cannot cover any vertices of another cluster T ′ 6= T . Hence
if we guessed H correctly, we can be sure that each cluster T ∈ U must contain a center of C∗ \ C∗

1 .
For each (remaining) cluster T ∈ U we thus pick an arbitrary vertex v ∈ T in line 16 and declare it
a center of the second set C2 for our approximate solution. Hence if the optimum set of centers for
U is C∗

2 = {v ∈ C∗ | ∃T ∈ U : v ∈ T}, we have |C2| ≤ |C
∗
2 | (if some cluster of U contains more than

one optimum center in order to cover different parts of the non-cluster vertices, C∗
2 may be larger

than C2). Moreover, since the diameter of each cluster is at most ρ/2 by Lemma 4, we get R∗
2 ⊆ R2.

At this time we know that all clusters in T are covered by the region R1 ∪ R2. Hence if any
uncovered vertices remain in V \ (R1 ∪ R2) for our current approximate solution, they must be
non-cluster vertices. Just as C∗

2 , by our definition of C∗
1 , every remaining optimum center in

C∗
3 = C∗ \ (C∗

1 ∪ C∗
2) lies in some cluster. Since R∗

1 ⊆ R1 and R∗
2 ⊆ R2, any remaining uncovered

vertex of V \ (R1 ∪ R2) must be in the region R∗
3 covered by centers in C∗

3 . Next we show how
to compute a set C3 such that the region R3 includes all remaining vertices of the graph and
|C3| ≤ |C

∗
3 |. Note that the latter means that the number of centers in C1 ∪ C2 ∪ C3 is at most k,

since C∗
1 , C

∗
2 , and C∗

3 are disjoint.
To control the size of C3 we will compute the smallest number of centers that cover parts of R∗

3

with balls of radius ρ. In particular, in line 18 we guess the set of hubs H ′ ⊆ spc(ρ/2) \H that lie
in the region R∗

3 (note that we exclude hubs of H from this set). We then compute a center set C3

of minimum size such that H ′ ⊆
⋃

v∈C3
Bv(ρ). For this we reduce the problem of computing centers

covering H ′ to the Set Cover problem with fixed universe size, as shown in line 7 to line 9. This
reduction is performed before entering the loops guessing H and H ′ to optimize the running time.

9

The universe U of the Set Cover instance consists of all hubs in the shortest path cover spc(r),
while the set system S of the instance is obtained by restricting the balls Bv(ρ) of radius ρ around
cluster vertices v to the hubs. By Theorem 6 there is an algorithm that computes the optimum Set

Cover solution for every subset of the universe. This algorithm is called in line 9 of Algorithm 1 to
fill a lookup table T with these optima. We can thus retrieve the optimum Set Cover solution
for the subset H ′ ⊆ spc(r) in line 19, and let C3 contain each cluster vertex v for which the set of
hubs contained in the ball Bv(ρ) is part of the optimum solution covering H ′, which is stored in the
entry T[H ′] of the table. As the next lemma shows, we obtain the required properties for C3.

Lemma 7. Assume the algorithm guessed the correct scale r = ρ/2 and the correct sets H and H ′.
The set C3 = {v ∈

⋃

T∈T T | Bv(ρ)∩ spc(r) ∈ T[H ′]} is of size at most |C∗
3 | and H ′ ⊆

⋃

v∈C3
Bv(ρ).

Proof. The second property clearly follows since the sets Bv(ρ) ∩ spc(r) in T[H ′] form a set cover
for H ′, such that every hub in H ′ is at distance at most ρ from some v ∈ C3. To see that |C3| ≤ |C

∗
3 |,

it suffices to show that the vertices in C∗
3 correspond to a feasible Set Cover solution for H ′. If H ′

was guessed correctly, this set contains only hubs in the region R∗
3. As R∗

3 is covered by balls of
radius ρ around the centers in C∗

3 , the union
⋃

v∈C∗
3
Bv(ρ)∩spc(r) contains H

′. Moreover, these sets

Bv(ρ)∩ spc(r) are contained in the set system S, since all centers of C∗
3 are contained in clusters by

definition of C∗
1 . Thus the sets Bv(ρ)∩spc(r) form a set cover for H ′ in the instance (spc(r),S).

It remains to show that the three computed center sets C1, C2, and C3 cover all vertices of G,
which we do in the following lemma. In particular, the union C1 ∪ C2 ∪ C3 will pass the feasibility
test in line 22 of the algorithm.

Lemma 8. Assume the algorithm guessed the correct scale r = ρ/2 and the correct sets H and H ′.
The approximate center sets C1, C2, and C3 cover all vertices of G, i.e., R1 ∪R2 ∪R3 = V .

Proof. The proof is by contradiction: assume there is a v ∈ V \ (R1 ∪R2 ∪R3) that is not covered
by the computed approximate center sets. The idea is to identify a hub y ∈ spc(ρ/2) on the shortest
path between v and an optimum center w ∈ C∗ covering v. We will show that this hub y must
however be in H ′ and therefore v is in fact in R3, since v also turns out to be close to y.

To show the existence of y, we begin by arguing that the closest hub x ∈ spc(ρ/2) to v is
neither in H nor in H ′. We know that each cluster of T is in R1 ∪ R2, so that v /∈ R1 ∪ R2

must be a non-cluster vertex. Thus by Lemma 4, distG(v, x) ≤ ρ/2. The region R1 in particular
contains all vertices that are at distance at most ρ/2 from any hub in H = C1. Since v /∈ R1 and
distG(v, x) ≤ ρ/2, this means that x /∈ H . From v /∈ R3 we can also conclude that x /∈ H ′ as follows.
By Lemma 7, C3 covers all hubs of H ′ with balls of radius ρ. Hence if x ∈ H ′ then v would be at
distance at most 3

2ρ from a center of C3, i.e., v ∈ R3.
From x /∈ H ∪H ′ we can conclude the existence of y as follows. Consider an optimum center

w ∈ C∗ that covers v, i.e., v ∈ Bw(ρ). Recall that R
∗
1 ⊆ R1 and R∗

2 ⊆ R2. Since v /∈ R1 ∪R2, this
means that w is neither in C∗

1 nor in C∗
2 so that w ∈ C∗

3 . By definition of H ′, any hub at distance at
most ρ from a center in C∗

3 is in H ′, unless it is in H . Hence, as x /∈ H ∪H ′, the distance between x
and w must be more than ρ. Since distG(v, x) ≤ ρ/2, we get distG(v, w) > ρ/2. We also know that
distG(v, w) ≤ ρ, because w covers v. Hence the shortest path cover spc(ρ/2) must contain a hub y
that lies on the shortest path between v and w. In particular, distG(v, y) ≤ ρ and distG(y, w) ≤ ρ.
Analogous to the argument used for x above, R1 in particular contains all vertices at distance at
most ρ from H, so that y /∈ H since v /∈ R1. However, then the distance bound for y and w yields
y ∈ H ′, as w ∈ C∗

3 .
Since C∗

1 contains all non-cluster centers but w /∈ C∗
1 , by Lemma 4 we get distG(y, w) > ρ/2,

which implies distG(v, y) < ρ/2. But then v is contained in the ball By(ρ/2), which we know is part

10

of the third region R3 since y ∈ H ′. This contradicts the assumption that v was not covered by the
approximate center set.

Note that the proof of Lemma 8 does not imply that R∗
3 ⊆ R3, as was the case for R1 and R2.

It suffices though to establish the correctness of the algorithm. Finally, we conclude the proof of
Theorem 2 by analysing the runtime of the algorithm.

Proof of Theorem 2. By Lemma 4 and Lemma 7, if Algorithm 1 correctly guesses the cost ρ and
the two hub sets H and H ′, then |C1 ∪ C2 ∪ C3| ≤ k and R1 ∪ R2 ∪ R3 = V . By Lemma 5,

Algorithm 1: FPA algorithm for k-Center in low highway dimension graphs

Input: Graph G = (V,E) of highway dimension h with optimum k-Center cost ρ
Output: k-Center set C of cost at most 3

2ρ

1 s← O(h log h) // local sparsity of efficiently computable shortest path cover

2 A← sort({distG(u, v) | u, v ∈ V }) // sort distances and store them in array A

3 for i← 0 to
(

n
2

)

− 1 do // consider distances in increasing order

4 r ← A[i]/2 // guess r = ρ/2

5 Compute locally s-sparse spc(r) with cluster set T
6 if | spc(r)| > ks then continue // too many hubs means r 6= ρ/2

// prepare the Set Cover lookup table

7 V (T)←
⋃

T∈T T
8 S ←

⋃

v∈V (T){Bv(ρ) ∩ spc(r)} // the set system is given by hubs in balls of

radius ρ around cluster vertices

9 T← SetCoverDP(spc(r),S) // lookup table T contains an optimum set cover

for every subset of the universe spc(r)

// guess minimum-sized set of hubs covering non-cluster centers

10 foreach H ⊆ spc(r) do
11 C1 ← H // these hubs form the 1st set of centers

// cover all clusters not covered by balls around H:

12 R1 ←
⋃

v∈C1
Bv(3r) // the region covered so far

13 U ← {T ∈ T | T \R1 6= ∅} // the clusters that still need to be covered

14 C2 ← ∅
15 foreach T ∈ U do

16 v ∈ T // select arbitrary vertex in T
17 C2 ← C2 ∪ {v} // the 2nd set of centers

// cover rest of non-cluster vertices by reducing to Set Cover:

18 foreach H ′ ⊆ spc(r) \H do // guess hubs covered by centers in clusters

19 C3 ← {v ∈ V (T) | Bv(ρ) ∩ spc(r) ∈ T[H ′]} // the 3rd set of centers is

given by cluster vertices whose balls of radius ρ cover H ′

// check whether the solution is feasible:

20 C ← C1 ∪ C2 ∪ C3

21 R←
⋃

v∈C Bv(3r) // the covered region

22 if |C| ≤ k and R = V then return C // a feasible solution was found

11

| spc(ρ/2)| ≤ ks so that the correct value for r will not be skipped in line 6. Hence by trying all
possible values for ρ in increasing order, Algorithm 1 will terminate with a feasible solution that
covers all vertices with balls of radius 3

2ρ, due to line 22. To prove Theorem 2 it remains to bound
the running time.

There are at most
(

n
2

)

possible values for ρ that need to be tried by the outermost loop, one for
every pair of vertices. Hence the only steps of Algorithm 1 that incur exponential running times
are when guessing H and H ′ and when filling the table T of the dynamic program for the Set

Cover problem. These steps are only performed for shortest path covers of size at most ks due to
line 6. Since we explicitly exclude the hubs in H when choosing H ′, each hub of a shortest path
cover can either be in H, in H ′, or in none of them when trying all possibilities. Hence this gives
3ks possible outcomes. Filling the table T takes O(2ks · nO(1)) time according to Theorem 6, while
retrieving an optimum solution for H ′ in line 19 can be done in constant time. Thus the total
running time to compute a 3/2-approximation is O(3ks · nO(1)). If the input graph has highway
dimension h, Abraham et al. [2] show how to compute O(log h)-approximations of shortest path
covers in polynomial time if shortest paths have unique lengths. The latter can be assumed by
slightly perturbing the edge lengths in such a way that any 3/2-approximation in the perturbed
instance also is a 3/2-approximation in the original instance. Therefore we can set s = O(h log h)
during the execution of our algorithm. If there is an oracle that gives locally h-sparse shortest path
covers for each scale, then we can set s = h instead. Thus the claimed running times follow.

4 Hardness results

We begin by observing that the original reduction of Hsu and Nemhauser [20] for k-Center also
implies that there are no (2− ε)-FPA algorithms.

Theorem 9. It is W[2]-hard for parameter k to compute a (2− ε)-approximation to the k-Center

problem for any ε > 0.

Proof (cf. [20, 29]). The reduction is from the Dominating Set problem, which is W[2]-hard [13]
for the standard parameter, i.e., the size of the smallest dominating set D of the input graph G.
The reduction simply introduces unit lengths for each edge of G, guesses the size of D, and sets
k = |D|. Any feasible center set of cost 1 corresponds to a dominating set, and vice versa. On the
other hand, a center set has cost at least 2 if and only if it is not a dominating set. Hence if the
size of D is guessed in increasing order starting from 1, k must be equal to |D| the first time a
(2− ε)-approximation of cost 1 is obtained by an algorithm for k-Center. By guessing the size of
D in increasing order, this would result in an f(|D|) ·nO(1) time algorithm to compute the optimum
dominating set if there was a (2− ε)-FPA algorithm for parameter k for k-Center.

We now turn to proving that (2− ε)-approximations are hard to compute on graphs with low
highway dimension. For this we introduce a general reduction from low doubling metrics to low
highway dimension graphs in the next lemma. A metric (X, distX) has doubling dimension d if
for every r ∈ R

+, each set S ⊆ X of diameter 2r is the union of at most 2d sets of diameter r.
The aspect ratio α of a metric (X, distX) is the maximum distance between any two vertices of X

divided by the minimum distance, i.e., α = max{ distX(s,t)
distX(u,v) | s, t, u, v ∈ X ∧ u 6= v}.

Lemma 10. Given any metric (X, distX) with constant doubling dimension d and aspect ratio α,
for any 0 < ε < 1 there is a graph G = (X,E) of highway dimension O((log(α)/ε)d) on the same
vertex set such that for all u, v ∈ X, distX(u, v) ≤ distG(u, v) ≤ (1 + ε) distX(u, v). Furthermore, G
can be computed in polynomial time from the metric.

12

Proof. First off, by scaling we may assume w.l.o.g. that the minimum distance of the given metric
is 2

1+ε
. In particular this means that the maximum distance is 2α

1+ε
. A fundamental property [18] of

low doubling dimension metrics is that for any set of points Y ⊆ X with aspect ratio α′, the number
of points |Y | can be at most 2d⌈log2 α

′⌉. The proof of this property is a simple recursive application
of the doubling dimension definition. For each scale 2i where i ∈ {0, 1, . . . , ⌈log2 α⌉} we will identify
a sparse set Yi, which in any ball of radius 2i+1 has aspect ratio O(log(α)/ε). The idea is to use the
vertices of Yi as hubs in a shortest path cover for scale 2i, which then are locally sparse in any such
ball. We will make sure that there is an index i with a hub set Yi for any possible distance between
vertex pairs in the resulting graph G. We need to make sure though that the shortest path for any
pair of vertices passes through a corresponding hub of some Yi. We achieve this by adding edges
between the hubs in Yi, which act as shortcuts. That is, the edges of G will be slightly longer than
the distances in the metric given by distX , and we will make the distances shorter with increasing
scales in order to guarantee that the shortest paths pass through corresponding hubs.

More concretely, consider any set Z ⊆ X of vertices. A subset Y ⊆ Z is a ρ-cover of Z if for
every v ∈ Z there is a u ∈ Y such that distX(u, v) ≤ ρ, and Y is a ρ-packing of Z if distX(u, v) > ρ
for all distinct u, v ∈ Y . A ρ-net of Z is a set Y ⊆ Z that is a ρ-cover and a ρ-packing of Z. It
is easy to see that such a net can be computed greedily in O(n2) time. We will use sets Yi that

form a hierarchy Yi ⊆ Yi−1 of nets as hubs. In particular, Y0 = X and Yi is a
ε2i−3

(1+ε)2L
-net of Yi−1

for each i ≥ 1, where L = ⌈log2 α⌉ is the index of the largest scale. Note that due to the triangle
inequality of the metric, each Yi is a 2 ε2i−3

(1+ε)2L
-cover of X.

InG, for each i we connect two vertices u, v ∈ Yi by an edge uv of length (1+ε(1−i/L)) distX(u, v).
If a vertex pair is contained in several sets Yi of different scales, we only add the shortest edge
according to the above rule, i.e., the edge for the largest index i. Hence the distance in G between
any u, v ∈ Yi is at most (1+ε(1− i/L)) distX(u, v). In particular, distG(u, v) ≤ (1+ε) distX(u, v) for
any u, v ∈ X since X = Y0. Note also that 1 + ε(1− i/L) ≥ 1 and hence distX(u, v) ≤ distG(u, v).

To bound the highway dimension of G, consider any pair u, v ∈ X, and let i ∈ {0, 1, . . . , L} be
such that distG(u, v) ∈ (2i, 2i+1]. Recall that the minimum distance according to distX is 2

1+ε
> 1

(as ε < 1), while the maximum distance is 2α
1+ε

. Accordingly, in G all distances lie in (1, 2α] so the
index i exists. We show that the shortest path between u and v passes through a hub of Yi. We
do this by upper bounding distG(u, v) in terms of distX(u, v) using a path that contains vertices
of Yi. Then we lower bound the length of any path that does not pass through Yi and show that it
is longer than the shortest path.

Let x ∈ Yi be the closest hub to u and let y ∈ Yi be the closest hub to v. We begin by determining
some distance bounds for these vertices. Since Yi is a 2 ε2i−3

(1+ε)2L
-cover of X in the metric according

to distX , the distances in G from u to x and from v to y are at most 2(1 + ε) ε2i−3

(1+ε)2L
= ε2i−2

(1+ε)L each.
It also means that distX(x, y) ≤ distX(u, v) + 2 · ε2i−2

(1+ε)2L
, since we can get from x to y through u

and v in the metric. We know that distG(u, v) > 2i and thus we have 2i

1+ε
< distX(u, v). Using

13

these bounds we get

distG(u, v) ≤ distG(u, x) + distG(x, y) + distG(y, v)

≤

[

1 + ε

(

1−
i

L

)]

distX(x, y) + 2 ·
ε2i−2

(1 + ε)L

<

[

1 + ε

(

1−
i

L

)](

distX(u, v) + 2 ·
ε2i−2

(1 + ε)2L

)

+
ε

2L
distX(u, v)

<

[

1 + ε

(

1−
i

L

)

+

(

1 + ε

(

1−
i

L

))

ε

2(1 + ε)L
+

ε

2L

]

distX(u, v)

≤

[

1 + ε

(

1−
i

L

)

+ (1 + ε)
ε

2(1 + ε)L
+

ε

2L

]

distX(u, v)

=

[

1 + ε

(

1−
i− 1

L

)]

distX(u, v).

We now show that every path P that does not use any hub of Yi is longer than distG(u, v). Since
the hub sets of different scales form a hierarchy, any hub of scale 2j with j > i is also a hub for
scale 2i. Hence if P does not pass through any hub of Yi, it also cannot contain any vertex of Yj
where j > i. Thus, if P = (w0, . . . , wl) where w0 = u and wl = v, any edge wjwj+1 on P will be

of length at least (1 + ε(1− (i− 1)/L)) distX(wj , wj+1). The sum
∑l−1

j=0 distX(wj , wj+1) of all the
distances in the metric over the path P is an upper bound on distX(u, v), and thus the length of P
is at least (1 + ε(1− (i− 1)/L)) distX(u, v). Since the distance distG(u, v) is strictly smaller than
this bound by the above calculations, the shortest path between u and v in G passes through some
hub of Yi.

To bound the highway dimension, for any r > 0 we still need to bound the number of hubs
that hit shortest paths of length in (r, 2r] in a ball B of radius 2r in G. Since our hub sets form a
hierarchy, we may consider all shortest paths longer than r: if i is the index such that r ∈ (2i, 2i+1],
all shortest paths of length more than 2i are hit by hubs of Yi because Yj ⊆ Yi for all j > i. In G
the ball B has a diameter of at most 4r. Measured in the metric according to distX the set of
vertices in B also has a diameter of at most 4r ≤ 2i+3, since distX(u, v) ≤ distG(u, v) for any

vertices u, v ∈ X. Because Yi is a ε2i−3

(1+ε)2L
-packing in the metric, the aspect ratio of Yi ∩ B is

α′ ≤ 64(1 + ε)2L/ε. By the fundamental property of low doubling metrics [18] mentioned above,
there are at most (128(1 + ε)2L/ε)d hubs in Yi ∩B, which concludes the proof.

Feder and Greene [14] show that, for any ε > 0, it is NP-hard to compute a (2−ε)-approximation
for the k-Center problem in two-dimensional L∞ metrics. In particular, the metric is induced
by a grid graph with unit edge lengths, so that the aspect ratio is at most n. The doubling
dimension of any such metric is 2, since a vertex set of diameter 2r (contained in a “square” of
side-length 2r) can be covered by 4 vertex sets of diameter r (contained in “squares” of side-length r).
By the reduction given in Lemma 10 we can thus obtain graphs of highway dimension O(log2 n)
for which computing (2 − ε)-approximations to k-Center is NP-hard. The challenge remains
is to push the highway dimension bound of this inapproximability result down to a constant.
This would mean that no (2− ε)-FPA algorithm for k-Center exists if the parameter is the
highway dimension h, unless P=NP. However, we can still argue that assuming the exponential time
hypothesis (ETH) [21, 22], any (2−ε)-FPA algorithm for parameter h must have doubly exponential
running time. In particular, the above hardness result implies a polynomial-time reduction from
SAT to k-Center on graphs of highway dimension O(log2 n). That is, given a SAT formula
of size N , the reduction will produce a graph with n = NO(1) vertices and highway dimension

14

h = O(log2 n) = O(log2N). Thus an algorithm computing a (2− ε)-approximation to k-Center

in time 22
o(

√
h)
· nO(1) would be able to decide SAT in time 2o(N) · NO(1). However, this would

contradict ETH. Thus if a (2− ε)-approximation algorithm for k-Center with parameter h exists,
it is fair to assume that its running time dependence on h must be extremely large. To summarize
we obtain the following lower bounds.

Corollary 11. For any constant ε > 0 it is NP-hard to compute a (2− ε)-approximation for the
k-Center problem on graphs of highway dimension O(log2 n). Moreover, there is no (2− ε)-FPA

for k-Center parameterized by the highway dimension h with runtime 22
o(

√
h)
· nO(1), unless ETH

fails.

The following lemma gives further evidence that obtaining a (2−ε)-FPA algorithm for parameter h
is hard. As argued below, it excludes the existence of such algorithms that only use shortest path
covers of constant scales.

Lemma 12. For any ε > 0 it is NP-hard to compute a (2− ε)-approximation for the k-Center

problem on graphs for which on any scale r > 0 there is a locally (3 · 22r − 2)-sparse shortest path
cover spc(r). Moreover, this is true for instances where the optimum cost ρ is at most 4.

Proof. The reduction is similar to the one used for Theorem 9, but reduces from the NP-hard
Dominating Set problem on cubic graphs [6]. To obtain an instance of k-Center, again we simply
introduce unit edge lengths, guess the size of the minimum dominating set D, and set k = |D|. In
contrast to the reduction of Theorem 9 however, we will guess the size of D in decreasing order
starting from n. As before, any feasible center set of cost 1 corresponds to a dominating set, and vice
versa, while on the other hand, a center set has cost at least 2 if and only if it is not a dominating
set. Hence whenever k is at least |D| a (2− ε)-approximation for k-Center must have cost ρ = 1,
and the cost is at least 2 for smaller k. Therefore guessing the size of D in decreasing order, k
is equal to |D| the last time a (2 − ε)-approximation of cost 1 is computed by an algorithm for
k-Center.

Consider the value k = |D|−1, i.e., the iteration at which we realize the size of D. If the number
of connected components of the input graph exceeds k, we know that there cannot be a dominating
set of size k, and we can dismiss this value as a guess for the size of D right away. Otherwise,
there is a connected component with at least two vertices of D, since |D| = k + 1. It is easy to see
that removing one of these two vertices results in a center set of size k with cost at most 4. Hence
we only need to call the (2 − ε)-approximation algorithm for k-Center on instances where the
optimum cost is ρ ≤ 4.

It is easy to see that any ball with radius 2r around a vertex v contains at most 3(
∑2r−1

i=0 2i)+1 =
3 · 22r − 2 vertices, due to the bound on the maximum degree. Hence any set of hubs is locally
(3 · 22r − 2)-sparse, which concludes the proof.

Consider a (2 − ε)-FPA algorithm for k-Center, which only takes shortest path covers of
constant scales into account, where the parameter is their sparseness. That is, the algorithm
computes a (2− ε)-approximation using hub sets spc(r) only for values r ≤ R for some R ∈ O(1),
and the parameter is a value s such that spc(r) is locally s-sparse for every r ≤ R. By Lemma 12
such an algorithm would imply that P=NP. Moreover this is true even if R ∈ O(ρ). Hence if it
is possible to beat the inapproximability barrier of 2 using the local sparseness as a parameter,
then such an algorithm would have to take large (non-constant) scales into account. Note that the
running time of our 3/2-FPA algorithm can in fact be bounded in terms of the local sparseness of
spc(ρ/2) instead of the highway dimension. The instances produced by the reduction of Lemma 12

15

have shortest path covers that are locally 46-sparse on scale r = ρ/2 ≤ 2. Thus we obtain the
following corollary, which is a matching hardness lower bound to our algorithm.

Corollary 13. For any ε > 0 it is NP-hard to compute a (2− ε)-approximation for the k-Center

problem on graphs for which on scale r = ρ/2 ≤ 2 there is a locally 46-sparse shortest path
cover spc(r), where ρ is the optimum k-Center cost.

From this corollary and Theorem 9, we can conclude that our algorithm necessarily needs to
combine the parameter h with k in order to achieve its approximation guarantee of 3/2.

5 Generalizations of the k-Center problem

The weighted k-Center problem is defined by giving each vertex v ∈ V an integer weight
w(v) ∈ N. The aim is to find a set C ⊆ V of centers such that their total weight is at most k,
i.e.,

∑

v∈C w(v) ≤ k, and the maximum distance of any vertex to its closest center is minimized.
Hochbaum and Shmoys [19] gave a 3-approximation to the problem, and no better approximation
factor is known. However, Algorithm 1 can be modified to obtain a 2-FPA algorithm for weighted

k-Center for parameters k and h in graphs of highway dimension h.
For this, Algorithm 1 will again guess r = ρ/2 in line 2 to line 4, where ρ is the cost of an optimum

solution. The three center sets C1, C2, C3 will be chosen more carefully respecting the weights. In
particular, instead of setting C1 = H in line 11, for each hub x ∈ H we pick a cheapest vertex in the
ball Bx(r) around x to be a center of C1, i.e., we pick a vertex from argmin{w(u) | u ∈ Bx(r)}. If H
was guessed correctly so that each non-cluster center u ∈ C∗

1 of the optimum solution C∗ has a hub
of H at distance at most r, then there is also a center v in C1 at distance at most 2r from u. Hence
a ball of radius 4r around v will contain the ball of radius 2r around u, i.e., R∗

1 ⊆
⋃

v∈C1
Bv(4r).

Furthermore, w(v) ≤ w(u) and hence the total weight of C1 is at most that of C∗
1 .

In line 16 of Algorithm 1, instead of picking an arbitrary vertex of the cluster T , we will pick a
vertex of T with minimum weight. Since the choice of a vertex in T was arbitrary before, we still
have R∗

2 ⊆ R2. Additionally the total weight of C2 is at most that of C∗
2 since each cluster of U

contains a center of C∗
2 if H was guessed correctly. To compute C3 we will solve the weighted Set

Cover problem in line 9, where the weight of each set Bv(ρ) ∩ spc(r) equals w(v). This can easily
be done by adapting the dynamic program of Fomin et al. [17] to respect weights of sets (cf. [11]).
Hence the weight of the resulting center set C3 is at most that of C∗

3 , and balls of radius 3r around
centers in C3 still cover all remaining vertices, by the same arguments as in the proof of Lemma 8.

In conclusion, the set of centers C = C1 ∪ C2 ∪ C3 computed by the modified algorithm has a
total weight at most that of C∗, and balls of radius 4r around the centers in C cover all vertices.
Since the weights are integers, there are at most ks hubs for scale ρ/2 if spc(ρ/2) is locally s-sparse
(cf. Lemma 5). Therefore we obtain a 2-FPA algorithm for the combined parameter (k, h).

For the (k,F)-Partition problem a family F of unweighted graphs is given, such that for
any n ∈ N there is a graph in F with exactly n vertices. Given an input metric (X, distX) and a
value c ∈ R

+, the bottleneck graph HX(c) on vertex set X has an edge for every pair of vertices
u, v ∈ X with distX(u, v) ≤ c. For the (k,F)-Partition problem the minimum cost c needs to be
found such that X can be partitioned into k sets X1, . . . , Xk, and there is a spanning subgraph
G ∈ F in HX(c) on the vertex set Xj for each j ∈ {1, . . . , k}.

Note that if F = {K1,i}i≥0, i.e., each graph in the family is a star, we have the k-Center

problem, and if F = {Ki}i≥1, i.e., each graph in the family is a clique, we have the so-called
k-Clustering problem. The eccentricity of a vertex v is the maximum distance from v to any
other vertex in terms of number of edges (i.e., measured by the hop-distance). The diameter of an

16

unweighted graph G is defined as the maximum eccentricity of any vertex in G. If the diameter
of each G ∈ F is at most d, then a 2d-approximation can be obtained for the (k,F)-Partition
problem [19].

Let the radius of a graph G be the minimum eccentricity of any vertex in G. For shortest-
path metrics induced by graphs of highway dimension h, we can obtain a 3δ-FPA algorithm for
the combined parameter (k, h) for the (k,F)-Partition problem, if every graph in the family
F has radius at most δ. Hence for graph families F for which 3δ < 2d, this improves on the
2d-approximation by Hochbaum and Shmoys [19]. This is, for example, the case when F contains
“stars of paths”, i.e., stars for which each edge is replaced by a path of length at most δ. The
diameter of such a graph can be 2δ, while the radius is at most δ, and hence 3δ < 2d = 4δ.

To obtain our algorithm we reduce the (k,F)-Partition problem to k-Center. Note that if
there is an optimum solution to (k,F)-Partition with cost ρ, then there must be a solution of
cost δρ for k-Center: for each X∗

j of the optimum partition for (k,F)-Partition, place a center
at a vertex v of X∗

j that minimizes the eccentricity in the graph G ∈ F spanning X∗
j . Since every

edge of G has length at most ρ, the ball Bv(δρ) will contain G. Computing a 3/2-approximation
to k-Center using Algorithm 1, we obtain a set C of k centers such that the closest center to
any vertex is at distance at most 3δρ/2. For each center vj ∈ C, j ∈ {1, . . . , k}, consider the set
of vertices Xj for which vj is the closest center (including vj itself), breaking ties arbitrarily. The
distance between any two vertices in Xj is at most 3δρ. Hence the vertices of the bottleneck graph
HX(3δρ) can be partitioned into the sets X1, . . . , Xk such that each Xj is a clique in HX(3δρ).
Clearly this also means that each Xj has some graph of F as a spanning subgraph in HX(3δρ).
Thus we obtain a 3δ-FPA algorithm to the (k,F)-Partition problem for metrics induced by low
highway dimension graphs, with the same asymptotic running time as Algorithm 1.

Note that the reduction would not yield an improved approximation ratio if a 2-approximation
was used to solve k-Center (which in many cases is the best achievable approximation ratio, as
summarized in the introduction), since the radius is always at least half the diameter of a graph,
i.e., a 2d-approximation is already a 4δ-approximation.

6 Open problems

In this last section we summarize some problems left open by our results. The most pressing
unanswered question concerns the approximability of k-Center using only the highway dimension
h as a parameter. Even though we obtained some partial answers in Section 4, these do not exclude
the existence of a (2− ε)-FPA for parameter h alone. Also whether better approximation ratios
than 3/2 can be obtained for the combined parameter (k, h) remains open. In particular, the
approximation scheme given by Becker et al. [10] for parameter (k, h) using the more restrictive
highway dimension definition as used in [16], makes this an appealing possibility. Even more
intriguing would be a hardness result that excludes approximation schemes for parameter (k, h)
using the more general Definition 1 for the highway dimension. This would imply that the difference
between these definitions is more than just “cosmetic”. We note at this point that all lower bound
results of Section 4 are applicable to the highway dimension definition used in [10, 16] (only the
constants in the sparsity of the shortest path covers increase).

Another interesting open question concerns the computability of the highway dimension. In
particular, obtaining better approximation ratios than O(log h), as given in [2], would improve the
running time of not only the k-Center algorithm presented here, but also the algorithms given
in [10, 16]. This is true even if the running time is parameterized in the highway dimension h.
Hence an important question is whether computing the highway dimension is FPT for the canonical

17

parameter h, or even whether an o(log h)-FPA algorithm exists for this parameter.
Finally, it would also be interesting to see whether the techniques developed here (or in [10, 16])

can be used for other variants of the k-Center problem, such as, for instance, the k-Supplier
problem [19].

References

[1] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck. Highway dimension, shortest paths,
and provably efficient algorithms. In SODA, pages 782–793, 2010.

[2] I. Abraham, D. Delling, A. Fiat, A.V. Goldberg, and R.F. Werneck. VC-dimension and shortest
path algorithms. In ICALP, pages 690–699, 2011.

[3] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and R. F. Werneck. Highway dimension and
provably efficient shortest path algorithms. Journal of the ACM, 63(5):41, 2016.

[4] P. K. Agarwal and C. M. Procopiuc. Exact and approximation algorithms for clustering.
Algorithmica, 33(2):201–226, 2002.

[5] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed parameter
algorithms for dominating set and related problems on planar graphs. Algorithmica, 33(4):
461–493, 2002.

[6] P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theoretical
Computer Science, 237(1):123–134, 2000.

[7] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes. In transit to constant time
shortest-path queries in road networks. In ALENEX, pages 46–59, 2007.

[8] H. Bast, S. Funke, and D. Matijevic. Ultrafast shortest-path queries via transit nodes. 9th
DIMACS Implementation Challenge, 74:175–192, 2009.

[9] R. Bauer, T. Columbus, I. Rutter, and D. Wagner. Search-space size in contraction hierarchies.
In ICALP, pages 93–104, 2013.

[10] A. Becker, P. N. Klein, and D. Saulpic. Polynomial-time approximation schemes for k-center
and bounded-capacity vehicle routing in metrics with bounded highway dimension. ArXiv
e-prints, arXiv:1707.08270, 2017.

[11] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer, 2015.

[12] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Fixed-parameter algorithms
for (k, r)-center in planar graphs and map graphs. Transactions on Algorithms, 1(1):33–47,
2005.

[13] R. G. Downey and M. R. Fellows. Fundamentals of parameterized complexity, volume 4.
Springer, 2013.

[14] T. Feder and D. Greene. Optimal algorithms for approximate clustering. In STOC, pages
434–444, 1988.

18

[15] A. E. Feldmann and D. Marx. The parameterized hardness of the k-center problem in
transportation networks. In SWAT, pages 19:1–19:13, 2018. doi: 10.4230/LIPIcs.SWAT.2018.19.

[16] A. E. Feldmann, W. S. Fung, J. Könemann, and I. Post. A (1+ǫ)-embedding of low highway
dimension graphs into bounded treewidth graphs. SIAM J. Comput., 47(4):1667–1704, 2018.
doi: 10.1137/16M1067196.

[17] F. Fomin, D. Kratsch, and G. Woeginger. Exact (exponential) algorithms for the dominating
set problem. In WG, pages 245–256. Springer, 2005.

[18] A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low-distortion
embeddings. In FOCS, pages 534–543, 2003.

[19] D. S. Hochbaum and D. B. Shmoys. A unified approach to approximation algorithms for
bottleneck problems. Journal of the ACM, 33(3):533–550, 1986.

[20] W.-L. Hsu and G. L. Nemhauser. Easy and hard bottleneck location problems. Discrete Applied
Mathematics, 1(3):209–215, 1979.

[21] R. Impagliazzo and R. Paturi. On the complexity of k-sat. Journal of Computer and System
Sciences, 62(2):367–375, 2001.

[22] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?
Journal of Computer and System Sciences, 63(4):512–530, 2001.

[23] I. Katsikarelis, M. Lampis, and V. Paschos. Structural parameters, tight bounds, and approx-
imation for (k,r)-center. In ISAAC, pages 50:1–50:13, 2017.

[24] P. Klein. Personal communication, 2017.

[25] A. Kosowski and L. Viennot. Beyond highway dimension: Small distance labels using tree
skeletons. In SODA, pages 1462–1478, 2017.

[26] D. Marx. Parameterized complexity and approximation algorithms. The Computer Journal, 51
(1):60–78, 2008.

[27] D. Marx and M. Pilipczuk. Optimal parameterized algorithms for planar facility location
problems using Voronoi diagrams. In ESA, pages 865–877. Springer, 2015.

[28] J. Plesńık. On the computational complexity of centers locating in a graph. Aplikace matematiky,
25(6):445–452, 1980.

[29] V. V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc., 2001.

[30] D. P. Williamson and D. B. Shmoys. The design of approximation algorithms. Cambridge
University Press, 2011. doi: 10.1017/cbo9780511921735.

19

