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Abstract

Graphs with bounded highway dimension were introduced by Abraham et al. [SODA 2010]
as a model of transportation networks. We show that any such graph can be embedded into a
distribution over bounded treewidth graphs with arbitrarily small distortion. More concretely,
given a weighted graph G = (V,E) of constant highway dimension, we show how to randomly
compute a weighted graph H = (V,E′) that distorts shortest path distances of G by at most
a 1 + ε factor in expectation, and whose treewidth is polylogarithmic in the aspect ratio of G.
Our probabilistic embedding implies quasi-polynomial time approximation schemes for a number
of optimization problems that naturally arise in transportation networks, including Travelling
Salesman, Steiner Tree, and Facility Location.

To construct our embedding for low highway dimension graphs we extend Talwar’s [STOC 2004]
embedding of low doubling dimension metrics into bounded treewidth graphs, which generalizes
known results for Euclidean metrics. We add several non-trivial ingredients to Talwar’s tech-
niques, and in particular thoroughly analyse the structure of low highway dimension graphs.
Thus we demonstrate that the geometric toolkit used for Euclidean metrics extends beyond the
class of low doubling metrics.

1 Introduction

In [14, 15], Bast et al. studied shortest-path computations in road networks and observed that such
networks are highly structured: there is a sparse set of transit or access nodes such that when
travelling from any point A to a distant location B along a shortest path, one will visit at least one
of these nodes. The authors presented a shortest-path algorithm (called transit node routing) that
capitalizes on this structure in road networks and demonstrated experimentally that it improves
over previously best algorithms by several orders of magnitude. Motivated by Bast et al.’s work
(among others), Abraham et al. [1, 2, 3] introduced a formal model for transportation networks and
defined the notion of highway dimension. Informally speaking, an edge-weighted graph G = (V,E)
has small highway dimension if, for any scale r ≥ 0 and for all vertices v ∈ V , shortest paths of
length at least r that are close (in terms of r) to v are hit by a small set of hub vertices. In the
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following formal definition, if dist(u, v) denotes the shortest-path distance between vertices u and v,
let Br(v) = {u ∈ V |dist(u, v) ≤ r} be the ball of radius r centred at v. We will also say that a path
P lies inside Br(v) if all its vertices lie inside Br(v).

Definition 1.1. The highway dimension of a graph G is the smallest integer k such that, for some
universal constant c ≥ 4, for every r ∈ R

+, and every ball Bcr(v) of radius cr, there are at most k
vertices in Bcr(v) hitting all shortest paths of length more than r that lie in Bcr(v).

Rather than working with the above definition directly, we often consider the closely related
notion of shortest path covers (also introduced in [1]).

Definition 1.2. For a graph G and r ∈ R
+, a shortest path cover spc(r) ⊆ V is a set of hubs that

intersect all shortest paths of length in (r, cr/2] of G. Such a cover is called locally s-sparse for
scale r, if no ball of radius cr/2 contains more than s vertices from spc(r).

In particular, a graph with highway dimension k can be seen to have a locally k-sparse shortest
path cover for any scale r [1] (using the same constant c in Definition 1.1 and Definition 1.2). In
both definitions above, Abraham et al. [1] specifically chose c = 4 but also note that this choice
is, to some extent, arbitrary. In the present paper, the flexibility of being able to choose a slightly
larger value of c is crucial as we will explain shortly. In the following, we will let λ = c − 4 and
call it the violation of Abraham et al.’s original definition. While we believe that a small positive
violation does not stray from the intended meaning of highway dimension, we also point out that
there are graphs whose highway dimension is highly sensitive to the value of c, as we explain in
Section 9. Hence this is not an entirely innocuous change.

Abraham et al. [1, 2, 3] focused on the shortest-path problem and formally investigated the
performance of various prominent heuristics as a function of the highway dimension of the input
graph. They also pointed out that, “conceivably, better algorithms for other [optimization] problems
can be developed and analysed under the small highway dimension assumption”. This statement is
the starting point of this paper.

We study three prominent NP-hard optimization problems that arise naturally in transportation
networks: Travelling Salesman, Steiner Tree and Facility Location (see Section 8 for formal defini-
tions). Each of these was first studied in the context of transportation networks, and as we will
show they admit quasi-polynomial time approximation schemes (QPTASs) on graphs with bounded
highway dimension. Our work thereby provides a complexity-theoretic separation between the class
of low highway dimension graphs and general graphs, in which the aforementioned problems are
APX-hard [23, 25, 29].

Technically, we achieve the above results by employing the powerful machinery of metric space
embeddings [12, 26]. Specifically, for any ε > 0 we probabilistically compute a low-treewidth graph
H on the same vertex set as the input graph G such that the shortest-path distance between any
two vertices in H is lower bounded by their distance in G, and, in expectation, upper bounded by
1 + ε times their distance in G. The latter factor by which the distances are bounded from above
is called the distortion or stretch of the embedding H (see Section 2 for formal definitions). The
following is the main result of this paper, where the aspect ratio is the maximum distance of any
two vertices divided by the minimum distance between any vertices.

Theorem 1.3. Let G be a graph with highway dimension k of violation λ > 0, and aspect ratio α.
For any ε > 0, there is a polynomial-time computable probabilistic embedding H of G with treewidth

(logα)O(log
2( k

ελ
)/λ) and expected distortion 1 + ε.

Low highway dimension graphs do not exclude fixed-size minors and therefore do not have low
treewidth [35]: the complete graph on vertices {1, . . . , n} where each edge {i, j} with i > j has
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length ci, has highway dimension 1. The example also shows that the aspect ratio of a low-highway
dimension graph can be exponential. Using standard techniques, we will show that the aspect ratio
may be assumed to be polynomial for our considered problems when aiming for 1+ε approximations.
Existing algorithms for bounded treewidth graphs [6, 16] then imply QPTASs on graphs with
constant highway dimension (see Section 8 for more details).

While Travelling Salesman, Facility Location, and Steiner Tree are APX-hard in general graphs,
improved algorithms are known in special cases. For example, polynomial time approximation
schemes (PTASs) for all three of these problems are known if the input metric is low-dimensional
Euclidean or planar [5, 7, 9, 16, 18, 31, 34]. Talwar [38] also showed that the work in [7, 9, 34]
extends (albeit with quasi-polynomial running time) to low doubling dimension metrics. Bartal
et al. [13] later presented a PTAS for Travelling Salesman instances in this class.

The concept of doubling dimension was studied by Gupta et al. [30], and captures metrics that
have bounded growth. Formally, a metric space (X, dist) has doubling dimension d if d is the smallest
number such that every ball of radius 2r is contained in the union of 2d balls of radius r. The class
of constant doubling dimension metrics strictly generalizes that of Euclidean metrics in constant
dimensions. Doubling dimension and highway dimension (as defined here) are incomparable metric
parameters, however: Abraham et al. [1] noted that grids have doubling dimension 2 but highway
dimension Θ(

√
n), while stars have doubling dimension Θ(log n) and highway dimension 1.

We briefly note here that there are alternative definitions of highway dimension (see Section 9
for a detailed discussion). In particular, the more restrictive definition in [3] implies low doubling-
dimension, and hence Talwar [38] readily yields a QPTAS for the optimization problems we study.
Our choice of definition is deliberate, however, and motivated by the fact that Definition 1.1 captures
natural transportation networks that the more restrictive definition does not. For instance, typical
hub-and-spoke networks used in air traffic models are non-planar and have high doubling dimension,
since they feature high-degree stars. This immediately renders them incompatible with the highway
dimension definition in [3]. Nevertheless they have low highway dimension by Definition 1.1, since
the airports act as hubs, which become sparser with growing scales as longer routes tend to be
serviced by bigger airports. We also prove in Section 9 that our definition is a strict generalization
of the one in [3]: any graph with highway dimension k according to [3] has highway dimension O(k2)
according to Definition 1.1, while a corresponding lower bound is not possible in general.

Our results not only provide further evidence that the highway dimension parameter is useful in
characterizing the complexity of graph theoretic problems in combinatorial optimization. Importantly,
they also show that the geometric toolkit of [7, 9, 34] extends beyond the class of low doubling
dimension metrics, since the proof of Theorem 1.3 heavily relies on the embedding techniques
proposed in [38].

1.1 Our techniques

The embedding constructed in the proof of Theorem 1.3 heavily relies on previous work by Talwar [38]
but needs many non-trivial new ideas, a few of which we sketch here.

Talwar’s embedding algorithm first computes a so called split-tree decomposition, a certain
laminar family of subsets of the set X of points underlying the given metric space. Initially, this
family contains just one element, the set X itself. In each step, the algorithm picks a non-singleton
leaf C of the family, partitions it into sets C1, . . . , Cq of random diameter roughly half of that of C,
and adds these to the family. The algorithm continues until all the leaves in the family are singletons.
An element C of the computed decomposition is commonly referred to as a cluster.

Each cluster C of the split-tree decomposition is associated with a set of net points; net points
are well spaced in C, and each point in C is close to at least one of these. For each cluster, only the
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edges between the net points of its child clusters are kept to form the embedding. The shortest
path between two points can then be approximated by a path that exits each cluster only via the
net points. The error introduced due to the shifting of points on a path to net points, as well as the
total distortion, can be bounded as the sum of errors over all levels of the split-tree decomposition.
In the tree decomposition (see Section 2 for formal definitions) of the resulting embedding, each
bag corresponds to a cluster and consists of the net points of its child clusters. Using the bounded
doubling dimension assumption, the number of child clusters and number of net points per cluster
can be bounded by constants depending on the doubling dimension and the desired stretch. This in
turn bounds the embedding’s treewidth.

Figure 1: The sprawl (enclosed by
dotted lines) contains vertices close to
hubs (crosses). Each town (dashed
circles) has small diameter and is far
from other vertices.

We want to construct a similar recursive decomposition for
metrics with low highway dimension, but this turns out to be
non-trivial. In order to obtain a decomposition we observe
that the hubs in the shortest path cover induce a natural
clustering of the vertices in G for any scale r (see Figure 1).
Each vertex v ∈ V whose distance from any hub is larger than
2r is said to belong to a town that is contained in the ball
of radius r centered at v. All vertices that are not part of a
town (and hence at distance no more than 2r from some hub)
are said to be part of the sprawl. We will show that towns
are nicely separated from other towns and the sprawl and that
the degree of separation is highly sensitive to the choice of c
in Definition 1.1. It turns out that choosing c = 4 yields a
separation that is just barely too small.

Based on this clustering, we compute a hierarchical decomposition of the graph that we call
the towns decomposition. It is a laminar family of towns and recursively separates the graph into
towns of decreasing scales, and our embedding is computed recursively on this decomposition.
The towns decomposition is analogous to the quad-tree decomposition in PTASs for Euclidean
metrics [7, 8, 9, 10] or the split-tree decomposition for low doubling dimension metrics [38], though
the particulars differ greatly. At a high level, towns look similar to clusters in Talwar’s split-tree
decomposition. However, while in Talwar’s split-tree decomposition, clusters have a relatively small
number of child clusters, towns can contain a very large number of child towns. As it turns out,
however, these child towns are connected through hubs of higher scales, which can be chosen in a way
such that they have bounded doubling dimension. We can therefore apply Talwar’s decomposition
technique to these connecting hubs. We then recursively construct a low treewidth embedding for
each child town and attach these embeddings to the embedding of the connecting hubs. The details
are described in Section 4.

The most intricate part of our result is to prove low doubling dimension of these “connecting
hubs”, which are chosen as follows. We prove that to preserve all distances within a town T it
suffices to connect embeddings of T ’s child towns in the towns decomposition via a carefully chosen
set of so-called core hubs within T . To prove low doubling dimension, the general idea is to rely on
the local sparsity of the shortest path covers (see Figure 2): by definition, the core hubs lie in the
sprawls of various scales, and for scale r the sprawl can be covered by balls of radius 2r around
the hubs of the shortest path cover. In a low highway dimension graph, any ball B of radius cr/2
contains only a small number of hubs. Hence, to bound the doubling dimension, we attempt to
use these hubs as centers of balls of smaller radius to cover the core hubs. These balls have radius
2r < cr/2, and hence this scheme can be applied recursively in order to cover the core hubs in B
with balls of half the radius. Several issues arise with this approach though. For instance, part of
the sprawl for scale r in B might be covered by balls centered at hubs outside of B. However a key
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insight of our work is that in fact the number of hubs in the vicinity of a ball is also bounded when
using Definition 1.1 for the highway dimension (see Lemma 6.2).

Figure 2: The sprawl (enclosed by
dotted lines) intersecting a ball B of
radius cr/2 (black) can be recursively
covered by balls of radius 2r (grey)
centered at hubs on scale r (crosses).
For this the number of hubs in the
vicinity of B needs to be bounded.

Another obstacle when trying to bound the doubling di-
mension of the core hubs is that, unlike the nets in Talwar’s
split-tree decomposition, the hubs do not form a hierarchy,
i.e., a hub at some scale may not be a hub at a lower scale.
Nevertheless, we show that core hubs at different scales can
be aligned: they can be shifted slightly in order to obtain a
nested structure. We are able to show that this alignment
process does not affect the target stretch of our embedding and,
most importantly, ensures that the resulting set of approximate
core hubs within T has small doubling dimension. We may
thus apply Talwar’s [38] embedding of low doubling dimension
metrics into bounded treewidth graphs to the approximate core
hubs.

1.2 Related work

The highway dimension concept was introduced by Abraham et al. [1] who showed that the efficiency
of certain shortest-path heuristics can be explained with this parameter. Follow-up papers [2, 3]
introduced alternative definitions and showed that it is possible to approximate the highway
dimension k within an O(log k) factor assuming that shortest paths are unique. For the p-Center
problem the embedding techniques given in this paper are not applicable since the objective function
is non-linear. Instead, in [27] a parameterized approximation for this problem on low highway
dimension graphs is presented. Bauer et al. [17] show that for any graph G there exist edge lengths
such that the highway dimension is Ω(pw(G)/ log n), where pw(G) is the pathwidth of G. Also
Kosowski and Viennot [32] consider the highway dimension and compare it to the related skeleton
dimension.

In the seminal work of Bartal [11, 12] it was shown that any graph can be embedded into a
distribution over trees with an expected polylogarithmic stretch. The stretch bound was later
improved to O(log n) by Fakcharoenphol et al. [26], which is the best possible. These techniques led
to the embedding of low doubling dimension metrics into bounded treewidth graphs by Talwar [38],
which forms a major ingredient in our result. Another generalization is that of Chan and Gupta [22],
who showed how to embed a metric of low correlation dimension into a metric of bounded treewidth.
It it worth noting that the highway dimension cannot be bounded in terms of the correlation
dimension (due to the complete graph example described above). In terms of lower bounds, there are
graphs [20, 21] with treewidth t, which cannot be embedded into distributions over graphs excluding
minors of size t− 1, without incurring an expected stretch of Ω(log n). The authors also show that
embeddings of planar graphs into bounded treewidth graphs must incur logarithmic distortions.

2 Embeddings for low doubling dimension metrics

Next we formally define the treewidth and summarize the properties of Talwar’s [38] embedding for
low doubling dimension metrics that we require for our construction. More details will be given in
Section 5, which are needed for the analysis of the stretch of our embedding.

Let G = (V,E) be a graph. For u, v ∈ V we denote the length of the shortest path between u
and v by dist(u, v) and the distance between two sets S, T ⊂ V by dist(S, T ) = minu∈S,v∈T dist(u, v).
If the metric used for distances is ambiguous we specify the graph in the subscript, such as distG(u, v)
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or distH(u, v). The diameter diam(·) of a graph or set of vertices is the maximum distance between
any two vertices. The treewidth of a graph measures how close the graph is from being a tree. A
tree decomposition of G consists of a tree T whose vertices are labelled by subsets of V that are
commonly referred to as bags. We will often identify the bags with the vertices of the tree and talk
about a “tree of bags”. Bags satisfy certain structural properties as is formalized in the following
definition.

Definition 2.1. A tree decomposition D of a graph G = (V,E) is a tree T each of whose vertices v
are labelled by a bag bv ⊆ V of vertices of G. We require the following properties:

(a)
⋃

v∈V (T ) bv = V ,

(b) for every edge {u,w} ∈ E there is a vertex v ∈ V (T ) such that bv contains both u and w, and

(c) for every v ∈ V the set {u ∈ V (T ) : v ∈ bu} induces a connected subtree of T .

The width of the tree decomposition is max{|bv| − 1 : v ∈ V (T )}. The treewidth of a graph G is
the minimum width among all tree decompositions for G.

To construct our embedding we will mainly focus on the shortest path metric of the graph G.
We let the distance function of every considered metric be the function dist(·, ·) of the underlying
graph. Though the treewidth is a property of a graph’s edge set, whereas doubling dimension is
a property of the metric it defines, Talwar [38] shows that low doubling dimension graphs can be
approximated to within 1 + ε by bounded treewidth graphs. Formally this means the following.

Definition 2.2. Let (X, dist) be a metric, and D be a distribution over metrics (X, dist′). If for
all x, y ∈ X, dist(x, y) ≤ dist′(x, y) for each dist′ ∈ D, and Edist′∈D[dist

′(x, y)] ≤ a · dist(x, y), then
D is an embedding with (expected) stretch or distortion a. If every dist′ ∈ D is the shortest path
metric of some graph class G, then D is a (probabilistic) embedding into G.

The main result of Talwar [38] that we use for our embedding of low highway dimension graphs
into bounded treewidth graphs, is the following.

Theorem 2.3 ([38]). Let (X, dist) be a metric with doubling dimension d and aspect ratio α.
For any ε > 0, there is a polynomial-time computable probabilistic embedding H of (X, dist) with
treewidth (d log(α)/ε)O(d) and expected distortion 1 + ε.

As described in the introduction, Talwar’s embedding employs a randomized split-tree decom-
position, which is a hierarchical decomposition of the vertices X of a metric into clusters of smaller
and smaller diameter. A cluster is a subset of X, which is partitioned into clusters of at most half
the diameter on the next lower level, so that the highest cluster is X itself and the lowest ones
are individual vertices. The geometrically decreasing diameters of the levels are set according to
a random variable. Each level of this hierarchy is associated with an index. Our construction of
the embedding for low highway dimension graphs also has levels associated with indices, but these
have different growth rates. To avoid confusion we will denote the levels of Talwar’s split-tree
decomposition with indices ī, j̄, etc., and ours with indices i, j etc.

The tree decomposition constructed from the split-tree has a bag for each cluster. The tree
on the bags exactly corresponds to the split-tree. Each bag contains a coarse set of points of the
cluster. More concretely it contains a net, defined as follows.

Definition 2.4. For a metric (X, dist), a subset Y ⊆ X is called a δ-cover if for every u ∈ X
there is a v ∈ Y such that dist(u, v) ≤ δ. A δ-net is a δ-cover with the additional property that
dist(u, v) > δ for all vertices u, v ∈ Y .
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For a cluster C on level ī the corresponding bag contains a Θ(ε2ī/(d logα))-net of C. For
every bag b the graph embedding contains a complete graph on the nodes in b with edge lengths
corresponding to distances in the metric. The net in each bag serves as a set of portals, through
which connections leaving the cluster are routed, analogous to those in [8].

3 Properties of low highway dimension graphs

We assume w.l.o.g. that every shortest path in our input graph is unique by slightly perturbing
edge lengths. This allows us to compute locally O(k log k)-sparse shortest path covers in polynomial
time [2] (or locally k-sparse covers in time nO(k)). We show in Section 9 that computing the highway
dimension is NP-hard even for graphs with unit edge lengths, so in general approximations are
needed.

An important observation is that the vertices of low highway dimension graphs are grouped
together in all regions that are far from the hubs. This gives rise to our main observation on the
structure of low highway dimension graphs, as summarized in the following definition: for any scale
the vertices are partitioned into one sprawl and several towns with large separations in between.

Definition 3.1. Given a shortest path cover spc(r) for scale r, for any vertex v ∈ V such that
dist(v, spc(r)) > 2r, we call the set T = {u ∈ V |dist(u, v) ≤ r} a town for scale r. The sprawl for
scale r is the set of all vertices that are not in towns.

Note that the vertices of the sprawl are at most 2r away from a hub, but there can be vertices
in towns that are closer than 2r to some hub, as long as the town has some other vertex that is
farther away. Note also that the towns are defined with respect to a shortest path cover spc(r),
and using two distinct shortest path covers will not always result in the same set of towns. We will
fix an inclusion-wise minimal shortest path cover spc(r) for any scale r and only consider towns
with respect to this cover. We summarize the basic properties of towns below.

Lemma 3.2. Let T be a town of scale r. Then diam(T ) ≤ r and dist(T, V \T ) > r. For any vertex
v of the sprawl of scale r, dist(v, spc(r)) ≤ 2r.

Proof. The bound on the distance from any vertex of the sprawl to the nearest hub follows
immediately from the definition of the towns. To prove that the diameter of a town T is at most r,
assume there are vertices u,w ∈ T such that dist(u,w) > r. By Definition 3.1 we know there is a
vertex v ∈ T such that dist(u, v) ≤ r and dist(w, v) ≤ r, so that dist(u, v) ≤ 2r. This means that
the length of the shortest path between u and w lies in the interval (r, cr/2], as by Definition 1.1
the constant c defining spc(r) is at least 4. In particular, there is a hub h ∈ spc(r) that lies on this
shortest path. Assume w.l.o.g. that h is closer to w than to u, so that dist(h,w) ≤ r. But then,
dist(h, v) ≤ dist(h,w) + dist(w, v) ≤ 2r, which contradicts dist(v, spc(r)) > 2r.

Similarly, we can prove that the distance of any vertex u of a town T to any vertex w outside of
T is more than r. Consider again the vertex v ∈ T given by Definition 3.1, for which dist(u, v) ≤ r,
dist(w, v) > r, and dist(v, spc(r)) > 2r. If we assume that dist(w, u) ≤ r, then from the first
distance bound for u and v we get dist(w, v) ≤ 2r. Together with dist(w, v) > r, this means that
the length of the shortest path P between w and v lies in the interval (r, cr/2], as by Definition 1.1
c ≥ 4. Hence there is a hub h ∈ spc(r) on P that is at most as far from v as w is, i.e. dist(v, h) ≤ 2r.
However this contradicts dist(v, spc(r)) > 2r.

We will exploit the structure given by Lemma 3.2 for growing scales to construct our embedding.
More concretely, we will consider scales ri = (c/4)i for values i ∈ N0 and call i the level of the sprawl,
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towns, and shortest path cover of scale ri. We choose our scales in this way since 2ri = cri−1/2. As
a consequence, a ball of radius 2ri around a hub of level i that covers part of the sprawl contains at
most s hubs of the next lower level i− 1 if the shortest path covers are locally s-sparse. We will
exploit this in our analysis in order to bound the treewidth of our embedding.

Note that the scales are monotonically non-increasing if we choose c ≤ 4. As we shall see,
positive scale-growth is essential, however, for our algorithm as it allows us to argue that any two
disjoint towns are sufficiently separated.

Throughout this paper we will assume that the shortest path covers are inclusion-wise minimal.
By scaling we can assume that the shortest distance between any two vertices is slightly more
than c/2. Hence spc(r0) = ∅ since there are no paths of length in (r0, cr0/2]. In particular this
means that on level 0 there is no sprawl, and each vertex forms a singleton town. The highest level
we consider is m = ⌈logc/4 diam(G)⌉. At this level spc(rm) = ∅ and hence the whole vertex set V
of the graph is a town.

We show next that towns of different levels form a laminar family T . Due to this laminar
structure of towns we will use tree terminology such as parents, children, siblings, ancestors, and
descendants of towns in T . Note that these family relations are with respect to the laminarity of T
and not the levels on which towns exist. The root of the laminar family is the highest level town V .

Lemma 3.3. Given a graph G, the set T := {T ⊆ V | T is a town on level i ∈ N0} forms a laminar
family. Furthermore, any town T ∈ T on level i either has 0 or at least 2 child towns, and in the
latter case these are towns on levels below i.

Proof. Assume T is not laminar, in which case there are two towns T1 and T2 in T that cross, i.e.,
all of the sets T1 ∩ T2, T1 \ T2, and T2 \ T1 are non-empty. Assume that T1 is a town of level i, while
T2 is a town of level j ≥ i. Let v and w be two vertices of T1 such that v ∈ T2 but w /∈ T2. By
Lemma 3.2, dist(v, w) ≤ diam(T1) ≤ ri and dist(v, w) ≥ dist(T2, V \ T2) > rj ≥ ri—a contradiction.

For the second part, let T be a town in the set T with a child T ′. Note that T \ T ′ 6= ∅, while
every vertex is a town on level 0. So there must be another town that is a child of T . Now assume
there is a town T on level i with a child town T ′ on level j ≥ i. By Lemma 3.2, the diameter of T is
at most ri, and any other child town of T must be at distance more than rj ≥ ri from T ′. This
would mean that T only has one child town—a contradiction.

The above lemma proves that the following procedure has a well-defined output: starting with a
town T on some level i, repeatedly remove child towns on level i− 1 until only the sprawl remains.
Continue by removing all towns on level i− 2, i− 3, etc. from the remaining nodes until all nodes
have been removed. Then recurse on each of the removed child towns.

Starting the decomposition with town G on level logc/4 diam(G), we refer to the resulting laminar
family T as the towns decomposition of G. Note that T partitions every town T ∈ T , and although
T appears once in T , T can be a town on multiple levels of the shortest path covers, if it is a
town with respect to both spc(ri) and spc(ri+1). From now on we will consider the graph metric
(V, distG) induced by G instead of G itself. All properties of towns and sprawl, such as given by
Lemma 3.2 and 3.3, are still valid in the metric.

4 Constructing the embedding

We now describe our algorithm in more detail. PTASs for Euclidean and low doubling metrics [8, 38]
use hierarchical decompositions coupled with a small number of “portal” nodes: paths leaving a
cluster in the decomposition must do so via an appropriate portal, resulting in a small “interface”
between distinct clusters in the decomposition. Intuitively, the hubs are natural choices for portals,
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since long paths through some ball must pass through a hub. However problems crop up almost
immediately because hubs are not guaranteed to be well-spaced or consistent between levels, and
although all long paths through a ball may be hit by portals, there may be many short paths that
go nowhere near one.

We overcome these difficulties by exploiting the properties of the towns decomposition. Lemma 3.2
guarantees that towns are isolated from both each other and the sprawl. Consequently, any
approximate shortest path between nodes in a town must remain within that town. The embedding
is constructed recursively on the metric using the structure of the towns decomposition T . That is,
for a town T ∈ T we assume that we have already computed an embedding (and accompanying
tree decomposition) with expected stretch 1 + ε for each child town of T . We then connect these
embeddings so that distances between them are preserved within a 1 + ε factor in expectation. This
gives an embedding for T and, since V itself is the root of the towns decomposition, eventually
yields an embedding for G.

The key insight that lets us connect the child towns of T is that there exists a set of so-called
approximate core hubs XT in T with low doubling dimension that can serve as the crossroads through
which child towns connect. We will compute a low-treewidth embedding of the set XT based on
Theorem 2.3 and connect the embeddings of the child towns to it. In particular, for every child
town T ′ we will identify a bag b of the tree decomposition of XT containing hubs that are close to T ′.
We call b the connecting bag of T ′. The embedding of T is constructed by connecting every vertex
in each child town to every hub in the corresponding connecting bag. As we show in Section 5,
this means that short connections between child towns can be routed directly through hubs in the
connecting bags. Long connections on the other hand can be routed through the embedding of the
core hubs XT at only a small overhead.

Figure 3: The cores of three
different levels of town T (en-
closed by dotted lines for levels
i < j). Note that some hubs of
level j − 2 (small crosses) lie in
towns of level j−1 (larger dashed
circles), and these are not core
hubs.

The tree decomposition for T is constructed by connecting each
tree decomposition DT ′ for a child town T ′ to the corresponding
connecting bag b of the tree decomposition DX for the hubs in XT

(lines 29 to 31 in Algorithm 1). Even though this yields a tree of
bags containing all vertices of the town T , properties (b) and (c) of
Definition 2.1 might be violated by this initial attempt. As we will
show in Section 7, we need to make two modifications to the bags:
first we need to add all vertices of b to each bag of DT ′ . Since the
treewidth of DX is bounded by Theorem 2.3, this does not increase
the sizes of bags by much. Second, we also need to add all hubs
of XT within the child town T ′ to each bag of DT ′ , as well as to b
and all descendants of b in DX . To bound the growth of the bags
in this step, we need to bound the number of hubs in XT in a child
town T ′, which we do in Section 7.

The set XT is an approximate hub set of T . To define the
set properly we need some additional insights on the structure of
hubs of different levels in T . The core of T is the intersection of
sprawls formed by removing all child towns of T above a given level
(c.f. Figure 3):

Definition 4.1. Let T ∈ T be a town on level j, and let Si be the sprawl of V on level i ≤ j. The
core Ci of T on level i is inductively defined as follows: Cj = T , and Ci = Si ∩ Ci+1 for i ≤ j − 1.

The core hubs of T are given by the set
⋃j−1

i=1 Ci ∩ spc(ri).

By this definition a town T on level j can be partitioned into its core on level i and its child
towns on levels {i, . . . , j − 1}. Observe also that the set system {Ci}ji=0 given by the cores forms a
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chain, i.e. Ci−1 ⊆ Ci. Intuitively, the core hubs should have low doubling dimension: if the shortest
path covers are locally s-sparse, then in a ball around a hub at level i there will be at most s hubs
in that ball on level i− 1, and the balls of half the radius around these hubs cover the core on that
level (cf. Figure 2). In fact one can show that the doubling dimension of the core hubs is fairly
small but unfortunately not small enough for our purposes. In particular, we need the doubling
dimension to be independent of the aspect ratio α of the metric. To circumvent this issue, roughly
speaking, we shift each core hub so that it overlaps with lower level core hubs if possible, making
the hubs nested to some degree. However, in order to preserve distances we will only shift them by
at most an ε fraction. This shifting produces the set XT of approximate core hubs of T , which we
use to construct our core embedding. Note that we do not use the approximate core hubs XT to
define our towns decomposition, only to produce a low-treewidth core embedding (see lines 7 and 3
in Algorithm 1). We rely on the following non-trivial properties, which require an intricate proof
provided in Section 6.

Theorem 4.2. Let T be a towns decomposition of a graph of highway dimension k, given by locally
s-sparse shortest path covers on all levels with violation λ > 0. For any town T ∈ T of a level j
there exists a polynomially computable set of approximate core hubs XT ⊆ T such that

• for any core hub h ∈ Ci ∩ spc(ri) of T on level i ∈ {1, . . . , j − 1}, there is a vertex h′ ∈ XT

with distG(h, h
′) ≤ εri, and

• the doubling dimension of XT is d = O(log(ks log(1/ε)λ )/λ).

From now on, we use d to denote the above doubling dimension bound for XT . Our algorithm
computes the low-treewidth embedding HT of T by explicitly computing its tree-decomposition
DT . The latter is constructed by connecting the recursively computed tree decompositions DT ′ for
child towns T ′ of T to the tree decomposition DX of an embedding HX for the metric induced by
the approximate core hubs XT . For this to work we need to make sure that the approximate core
hubs contained in the same child town T ′ do not end up in different bags in the tree decomposition
DT of HT . Our solution is to pick a representative core hub for each child town T ′. Specifically,
let YT ⊆ XT contain one arbitrary approximate core hub for each child town T ′ of T for which
T ′ ∩ XT 6= ∅. We say that a vertex v ∈ YT of a child town T ′ represents the nodes in XT ∩ T ′

(including v itself). The sub-metric YT of XT inherits the doubling dimension bound of Theorem 4.2,
since the doubling dimension of any sub-metric is at most twice the doubling dimension of the
original metric. This was already noted in [30], and we give a formal proof of this fact in the
following. We state this observation slightly more general than we need it here, as we will reuse it
in Section 6: in the next lemma the metric Z is not required to have bounded doubling dimension,
but the premise is clearly fulfilled if it does.

Lemma 4.3. Let (Z, dist) be a metric and Z ′ ⊆ Z. If for every ball B2r(v) ⊆ Z of radius 2r there
are at most 2δ balls Br(ui) ⊆ Z, with centers ui and each with radius r, such that their union
contains all vertices in B2r(v) ∩ Z ′, then the doubling dimension of (Z ′, dist) is at most 2δ.

Proof. Any ball in (Z ′, dist) corresponds to a ball in (Z, dist) with a center vertex in Z ′. Pick a
ball B2r(v) ⊆ Z with radius 2r and v ∈ Z ′. For each of the 2δ balls Br(ui) that exist for B2r(v),
there again are at most 2δ balls Br/2(wij) ⊆ Z with radius r/2 whose union contains Br(ui) ∩ Z ′.
Pick any vertex w′

ij ∈ Z ′ (if any) in such a ball Br/2(wij) and consider the ball Br(w
′
ij) of double

the radius. This ball must contain Br/2(wij). Doing this for all such balls Br/2(wij) gives at most

22δ balls, each with a center vertex in Z ′, such that their union covers B2r(v) ∩ Z ′. Hence the ball
B2r(v) ∩ Z ′ in (Z ′, dist) is covered by at most 22δ balls in (Z ′, dist) by intersecting each of these
balls in (Z, dist) with Z ′.
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By Lemma 4.3 the doubling dimension of YT is at most 2d, and so we can compute an embedding
HY for the metric (YT , distG) with bounded treewidth by Theorem 2.3. Given HY together with a
tree decompositionDY we convert it into an embeddingHX ofXT together with a tree decomposition

Algorithm 1: Compute embedding H with tree decomposition DH of graph G

1 for i = 0, . . . , ⌈logc/4 diam(G)⌉ do
2 spc(ri)← locally O(k log k)-sparse minimal shortest path cover // See [2]

3 T ← towns decomposition based on spc(ri)
4 (H,DH) = Embed(V, ⌈logc/4 diam(G)⌉) // Recursively compute embedding H with

tree decomposition DH

5 function Embed(T, j) // Low-treewidth embedding of town T at level j
6 if j = 0 then return (T, T ) // A town is a singleton at level 0
7 Compute approximate core hubs XT of T // According to Theorem 4.2

8 Towns← ∅ // Set of embeddings of child towns of T
9 for i = j − 1, . . . , 0 do // Recurse on child towns

10 foreach child town T ′ ∈ T of T on level i do
11 (HT ′ , DT ′)← Embed(T ′, i)
12 Add (HT ′ , DT ′ , i) to Towns

// Compute embedding HX for XT with tree decomposition DX

13 YT ← one node in XT ∩ T ′ for each child town T ′ of T for which XT ∩ T ′ 6= ∅
14 (HY , DY )← Talwar(YT , ε

′) // Embedding of YT with distortion 1 + ε′

15 (HX , DX)← expand each vertex in HY , DY into all hubs it represents in XT

16 HT ← HX // Initially the embedding HT of T is HX

17 DT ← DX // Initially the tree decomposition DT of T is DX

18 root(DT )← root(DX) // Set the root bag of the tree decomposition

19 foreach (HT ′ , DT ′ , i) in Towns do // Join towns to HT

// Find the connecting bag b for T ′

20 T ′′ ← closest sibling town to T ′ in T
21 i← level for which distG(T

′, T ′′) ∈ (ri, ri+1]
22 h← closest hub in XT to T ′

23 ī← ⌈log2 ri⌉
24 j̄ ← highest level of DX

25 C ← cluster containing h at level l̄ = min{j̄, ī+ ⌈log2(d/ε)⌉} in split-tree of XT

26 b← bag in DX corresponding to cluster C
// Connect T ′ to XT in the embedding

27 Add all vertices and edges of HT ′ to HT

28 Add edge {u, v} with length distG(u, v) to HT for each pair u ∈ T ′, v ∈ b
// Add DT ′ to the tree decomposition DT of HT

29 Merge DT ′ and DT by connecting root(DT ′) with b
30 Add all vertices of b to each bag of DT ′

31 Add all hubs of XT ∩ T ′ to each bag of DT ′ , and also to b and all descendants of b
in DX (but not the descendants of b in DT that are bags of some DT ′′ for some child
town T ′′ 6= T ′ of T )

32 return (HT , DT )
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DX by replacing a vertex v ∈ YT with all approximate core hubs that v represents (see lines 13 to 15
in Algorithm 1). In particular, the tree decomposition DX of HX is obtained from the decomposition
DY of HY by replacing v ∈ YT with all the hubs it represents in each bag containing v. For every bag
b of DX the embedding HX contains a complete graph on the vertices of b, where the length of an
edge {u, v} is the distance distG(u, v) in G. It is easy to see that DX is a valid tree decomposition,
i.e., it satisfies all properties of Definition 2.1. We will show in Section 7 that the number of
approximate core hubs in each child town is bounded, and therefore the growth of the treewidth
caused by replacing a vertex by its represented hubs is also bounded. We also need to bound the
extra distortion incurred by going from HY to HX and show that a 1+ ε distortion of HY translates
into a 1 +O(ε) distortion of HX , which entails reproving the relevant parts of Theorem 2.3.

After computing the embedding HX for XT , we connect each recursively computed embedding
for the child towns of T (line 11 of Algorithm 1) to HX to form the final embedding HT . We need
to argue that HX exists every time there are child towns to connect. From Lemma 3.3 we know that
T has at least two child towns if it has any. In Section 5 we will show (in Lemma 5.1) that there is
a core hub h in T on any shortest path between a pair of children towns. By Theorem 4.2, there is
an approximate core hub in XT close to h. Since XT is non-empty, HX exists. Once we compute
HX we connect every vertex of a child town T ′ to all hubs in a bag b of the tree decomposition
DX of HX . This bag b is log2(d/ε) levels higher in the split-tree decomposition than the level
corresponding to the shortest distance that needs to be bridged from T ′ to any other vertex in T . At
the same time we will make sure that the net defining b is fine enough so that lengths of connections
passing through b are preserved to a sufficient degree. This way, short connections from T ′ to core
hubs with length up to O(1/ε) times the separation of T ′ are preserved in expectation by routing
through the hubs in b. Connections to more distant hubs can be rerouted from a hub close to T ′

through the embedding HX with only an ε overhead, as we will prove in Section 5.
Recall that levels of the split-tree decomposition are denoted by ī, j̄ etc. To determine the level

of the bag b, note that due to our growth rate of c/4 = 1 + λ/4 of the levels (and the assumption
that the violation λ is at most 4) the intervals (ri, 2ri] of the shortest path covers might overlap. As
described in lines 20 to 26 of Algorithm 1, let i be the level for which the distance between T ′ and its
closest sibling town lies in the interval (ri, ri+1], and let ī = ⌈log2 ri⌉ be the corresponding level of the
split tree decomposition of DX . Now let h ∈ XT be the closest approximate core hub to T ′ (which
might lie inside of T ′). If j̄ is the highest level of DX , i.e. it is the level of the cluster containing all
of XT , then the bag b of the tree decomposition DX is the one on level l̄ = min{j̄, ī+ ⌈log2(d/ε)⌉}
for which the corresponding cluster C contains h. All edges between vertices of T ′ and b are added
to the embedding for T (lines 27 and 28 of Algorithm 1), and we call the bag b the connecting bag
for T ′.

Note that there are several parameters ε we could adjust independently: the target distortion of
Talwar’s algorithm, the level in the split-tree decomposition at which a child town is attached, and
the amount of adjustment permitted in defining XT . The latter two parameters we set to ε, but the
distortion in Theorem 2.3 needs to be smaller. We use ε′ for the target distortion of this embedding
and set ε′ = ε2.

5 The expected distortion of the embedding

We now show that the expected distortion of the constructed embedding H is 1 +O(ε). For this,
we focus on a pair of vertices u, v ∈ V and argue that

E[distH(u, v)] ≤ (1 +O(ε))distG(u, v).
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The high-level idea is rather intuitive: suppose that distG(u, v) ∈ (ri, ri+1] for some i and let T ∈ T
be a town (a) that contains both u and v, and (b) whose child towns separate u and v; i.e., u and v
are in different child towns of T . We first argue that there is a level-i core hub h of T that lies on
the unique shortest u–v path.

Lemma 5.1. Let u and v be vertices that lie in different child towns of T , and i be such that
distG(u, v) ∈ (ri, ri+1]. There is a core hub h ∈ Ci ∩ spc(ri) of T on level i that hits the shortest
path between u and v.

Proof. By definition, spc(ri) must contain some hub h on the shortest u–v path. Recall that the
town T can be partitioned into its core Ci on level i and the child towns on levels at least i. If hub
h is not a core hub, h /∈ spc(ri)∩Ci, then it is either outside of T or in a child town of T on a level
at least i.

If h lies in a child town T ′ of T , we can assume w.l.o.g. that v /∈ T ′ since v and u lie in different
child towns. As a hub on level i, h cannot be in a town on level i by Definition 3.1, so T ′ is a
town on level i+ 1 or above. By Lemma 3.2 we then know that distG(v, h) > ri+1, but at the same
time, distG(v, h) ≤ distG(v, u) ≤ ri+1—a contradiction. If h lies outside of T , then by Lemma 3.2
distG(v, u) ≥ distG(v, h) ≥ dist(T, V \ T ) > rj , where j is the level of T . However by the same
lemma, distG(v, u) ≤ diam(T ) ≤ rj—again a contradiction.

By Theorem 4.2 it now follows that there is an approximate core hub hX ∈ XT such that

distG(h, hX) ≤ εri = O(ε)distG(u, v), (1)

since ri+1/ri = O(1) using our assumption that c = O(1). We are also able to show that the
expected distances between u and hX and v and hX , respectively, are well preserved by H.

Lemma 5.2. Let v be a vertex in a child town T ′ of T ∈ T , and let hX be an approximate
core hub in XT . If the distance to the closest sibling town of T ′ is r, then E[distH(v, hX)] ≤
(1 +O(ε))distG(v, hX) +O(εr).

Since u lies in a different child town than v and distG(u, v) ∈ (ri, ri+1], we get O(εr) =
O(ε ·distG(u, v)) in Lemma 5.2. Hence, using triangle inequality, the bound on the expected distance
in this lemma immediately implies the following:

E[distH(v, u)] ≤E[distH(v, hX)] +E[distH(hX , u)]

≤(1 +O(ε))distG(v, hX) + (1 +O(ε))distG(hX , u) +O(ε · distG(u, v))
≤(1 +O(ε))(distG(v, h) + distG(h, hX) + distG(hX , h) + distG(h, u)) +O(ε)distG(u, v)

≤(1 +O(ε))distG(v, u),

where the last equality uses the fact that hX lies close to a shortest u, v-path (see (1)). Together
with the fact that distG(u, v) ≤ distH(u, v), this implies our stretch bound.

Theorem 5.3. The expected stretch of the embedding H of G is 1 +O(ε).

The remainder of this section is devoted to providing a proof of Lemma 5.2, for which we will
need some further details from Talwar’s embedding of low doubling metrics into bounded treewidth
graphs.
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5.1 The distortion of an embedding for approximate core hubs

Before proceeding with the proof of Lemma 5.2 we will first need to have a closer look at the
properties of Talwar’s split-tree decomposition. We will use these properties to prove that our
computed embedding HX of the approximate core hubs XT has distortion 1 +O(ε).

Lemma 5.4 ([38]). The split-tree decomposition for a metric (X, dist) with doubling dimension d
and aspect ratio α satisfies the following properties:

(1) there are log2 α+ 2 levels,

(2) the clusters on each level ī partition X,

(3) the diameter of a cluster at level ī is at most 2ī+1, and

(4) the probability that any points x, y ∈ X are in distinct level ī clusters is O(d · dist(x, y)/2ī).

Recall the notion of δ-net from Definition 2.4. The main result of Talwar [38] that we use for
our embedding is the following more detailed account of Theorem 2.3.

Theorem 5.5 ([38]). Let (X, dist) be a metric with doubling dimension d and aspect ratio α. In
polynomial time we can compute a probabilistic embedding D of X into bounded treewidth graphs.
In particular, a computed graph H ∈ D has a tree decomposition D with the following properties:

(i) each bag b in D corresponds to a cluster C in the split-tree decomposition of (X, dist), and the
tree underlying D is precisely that of the split-tree decomposition;

(ii) the nets of the clusters form a hierarchy, i.e., every vertex in a bag b is also contained in one
of the children of b in the tree D;

(iii) a bag b corresponding to a cluster C at level ī consists of a β2ī-net of C for some β > 0; and

(iv) using a β2ī-net for clusters at level ī, the expected distortion of H is 1 +O(βd logα), and the
treewidth of D is at most (1/β)O(d).

In particular there is a β = Θ(ε′/(d logα)) such that the expected distortion is 1 + ε′, and the
treewidth is (d log(α)/ε′)O(d).

For every bag b in D, the graph H contains a complete graph on the nodes in b. The β2ī-net
in each bag serves as a set of portals, through which connections leaving the cluster are routed,
analogous to those in [8]. The bound on the stretch follows from Lemma 5.4 (see [38] for the details).
The bound on the treewidth follows from the fact that a β2ī-net in a cluster with diameter at
most 2ī+1 has aspect ratio O(1/β) and the following property of low doubling dimension metrics.

Lemma 5.6 ([30]). Let (X, dist) be a metric with doubling dimension d and Y ⊆ X be a set with
aspect ratio α. Then |Y | ≤ 2d⌈log2 α⌉.

To analyze the distortion of the embedding HX , we rely on the following useful fact that relates
properties of hubs in XT and their representatives in YT . Recall that a cluster CX of XT is formed
from a cluster CY of YT by expanding each hub h ∈ CY into all vertices in XT that h represents,
and a bag bX of the tree decomposition DX of XT is formed by the same procedure from a bag bY
of the tree decomposition DY of YT . For such pairs of clusters and bags we obtain the following.

Lemma 5.7. If bY is a δ-net of CY for some δ, then bX is a 2δ-cover of CX , i.e., for each hX ∈ CX

there is a hY ∈ bX such that distG(hX , hY ) ≤ 2δ.
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Proof. Let hX ∈ CX . If hX ∈ bX , we are done. If not, let hY be hX ’s representative in YT , and
let T ′ be the child town of T for which hX , hY ∈ XT ∩ T ′. We obtained bX by expanding each
h ∈ bY into all vertices it represents, so hX /∈ bX implies hY /∈ bY . Let h′Y ∈ bY be the closest
vertex in bY to hY . The set bY is a δ-net of CY , so distG(hY , h

′
Y ) ≤ δ, but h′Y /∈ T ′, since h′Y 6= hY ,

and each town contains at most one representative. By Lemma 3.2, diam(T ′) ≤ distG(T
′, V \ T ′),

so distG(hX , hY ) ≤ dist(hY , h
′
Y ), which means that distG(hX , h′Y ) ≤ 2δ. Finally, h′Y ∈ bX , since

bY ⊆ bX .

Another useful tool is given by the following lemma, which compares the separation probabilities
of approximate core hubs and their representatives.

Lemma 5.8. Let u, v ∈ XT be two hubs with respective representatives u′, v′ ∈ YT . If u′ 6= v′, then
the probability with which u and v are in distinct level ī clusters is O(d · distG(u, v)/2ī), where d is
the doubling dimension of YT .

Proof. If the representatives u′ and v′ of u and v differ, then u and v must lie in different
child towns T ′ and T ′′ of T . By Lemma 3.2, diamG(T

′) < distG(T
′, V \ T ′) ≤ distG(T

′, T ′′),
so that distG(u, u

′) ≤ distG(u, v), and similarly for distG(v, v
′). Hence distG(u

′, v′) ≤ distG(u
′, u) +

distG(u, v) + distG(v, v
′) ≤ 3 · distG(u, v). By Lemma 5.4 (4), the separation probability of u′ and

v′ on level ī is at most O(d · distG(u′, v′)/2ī). Since u and v lie in different clusters if and only if
their representatives do, the probability of u and v being separated is O(d · distG(u, v)/2ī).

The next lemma bounds the distortion of HX . Its proof closely mirrors Talwar’s proof of
Theorem 5.5 (c.f. [38]).

Lemma 5.9. If the embedding HY of (YT , distG) is computed according to Theorem 5.5, then the
constructed embedding HX of (XT , distG) has expected distortion 1 +O(ε′).

Proof. Consider a cluster CY on level ī in the split-tree decomposition of YT given by Lemma 5.4.
For any h ∈ CY the ī-parent of h is the closest vertex to h in the bag bY corresponding to CY . Since
by Theorem 5.5 the bag bY consists of a β2ī-net of CY , the distance between h and its ī-parent is
at most β2ī. Let CX be the cluster in XT formed by expanding each h ∈ CY into all vertices in XT

that h represents, and let bX be the corresponding bag formed by the same procedure from bY . We
define the ī-parent of a vertex w ∈ CX in the same way as for CY , i.e. it is the closest vertex to w
in bX . According to Lemma 5.7, the distance from w to its ī-parent is at most 2β2ī.

For an arbitrary pair u, v ∈ XT we bound the distortion of their distance in HX by considering
the path along the ī-parents of u and v for increasing values of ī. More concretely, since the bags of
the tree decomposition DY of HY form a hierarchy by Theorem 5.5, the same is true for the bags
of the tree decomposition DX of HX . Thus on the lowest level l̄ of the split-tree decomposition,
the l̄-parent of a vertex w is w itself. We inductively define vl̄ = v, ul̄ = u, and vī and uī to
be the ī-parent of vī−1 and uī−1, respectively, for any level ī > l̄. Since the bags of DX form a
hierarchy, for each level ī > l̄ the edges {uī−1, uī} and {vī−1, vī} exist in HX . Thus the distance

from uī−1 to uī and from vī−1 to vī is at most 2β2ī in HX . Now, let j̄ be the lowest level at which
u and v lie in the same cluster of XT . In particular, the j̄-parents uj̄ and vj̄ lie in the same bag
of DX , and so there is an edge {uj̄ , vj̄} in HX . We next bound the expected length of the path
P = (u = ul̄, ul̄+1, . . . , uj̄ , vj̄ , vj̄−1, . . . , vl̄ = v) in HX in terms of distG(u, v).

For this we need to bound the probability with which any pair of ī-parents uī and vī lie in
different clusters of XT on level ī. Note that u and v always lie in the same cluster as their respective
ī-parent, and so uī and vī lie in different clusters of XT on level ī if and only if u and v lie in
different clusters of XT on the same level. Lemma 5.4 gives a bound for the probability with
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which representatives lie in different clusters of YT in terms of the distance between them. Let
u′, v′ ∈ YT be the respective representatives of u and v. If u′ = v′ then obviously distG(u

′, v′) = 0.
Otherwise, u′ and v′ lie in different child towns of T . By Lemma 5.8, this means that u and v
lie in different clusters on level ī with probability O(d · distG(u, v)/2ī). Let Aī be the indicator
variable that is 1 if uī and vī lie in different clusters of XT on level ī, and 0 otherwise, so that
Pr[Aī = 1] = O(d · distG(u, v)/2ī).

Consider the subpaths of P from u to uj̄ and v to vj̄ . The length of each such path is at most
∑

ī 2β2
ī+1Aī. Accordingly, the edge {uj̄ , vj̄} has length at most distG(u, v) + 2

∑

ī 2β2
ī+1Aī. Since

there are at most log2 α levels in the split-tree decomposition, we can bound the expected length of
P by

distG(u, v) + 4

log2 α
∑

ī=l̄

2β2ī+1 ·O(d · distG(u, v)/2ī) =

(1 +O(βd logα))distG(u, v) = (1 +O(ε′))distG(u, v),

where we use that β = Θ(ε′/(d logα)) by Theorem 5.5.

5.2 The distortion of the embedding of the graph

We now turn to proving Lemma 5.2. For this, throughout this section, we focus on a town T of
the towns decomposition T . We further let T ′ be some child town of T , and we let the distance
r between T ′ and the closest sibling town be in the interval (ri, ri+1]. Further, we define b to be
the connecting bag of T ′ (c.f. Algorithm 1), and let C be the corresponding cluster in the split-tree
decomposition of the approximate core hubs XT .

Given vertex v ∈ T ′ ⊆ T , and some core hub hX ∈ XT , the goal is to bound their expected
distance in the constructed embedding H in terms of their distance in the input graph G. If H
contains an edge between v and hX then we are of course immediately done, but this may not be
the case. For example, in the construction of the embedding, we add direct links between vertices of
T ′ and members (i.e., net points) of the connecting bag b, but hX may not be a member of b. We
first consider this issue and show that, even if hX ∈ C \ b, then b at least contains a net point close
to hX .

Lemma 5.10. For any approximate core hub h ∈ XT ∩ C, the bag b contains a net point w such
that distH(h,w) = O(εri).

Proof. Let l̄ be the level of b in the tree decomposition DX , which by Algorithm 1 is at most
ī + log2(d/ε), where ī = ⌈log2 ri⌉. If h ∈ b there is nothing to show. By (ii) of Theorem 5.5, the
bags of DY form a hierarchy, which by construction of DX means that the bags of DX do too.
Thus h /∈ b is a vertex in a bag on some level below l̄, and so we can reach some vertex of b from
h in HX by starting at the bag containing h and following the edges to higher level bags until we
reach b. More concretely, the bags computed for the tree decomposition DY of the representative
hubs YT contain β2j̄-nets of the corresponding clusters by Theorem 5.5. Hence by Lemma 5.7,
the bags of DX contain 2β2j̄-covers of the clusters of XT . Thus there is a path in HX from h to
some vertex w of the bag b that traverses the net points of the bags up the levels until reaching
l̄, by always moving to the closest net-point at the next level. The length of this path is at most
∑l̄

j̄=1 2β2
j̄ = O(β2l̄) = O(βdri/ε), since 2

l̄ = O(dri/ε). Because β = O(ε′/(d logα)) by Theorem 5.5

and ε′ = ε2, this bound simplifies to O(εri), which also bounds distH(h,w).
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Figure 4: The net point w lies in the connect-
ing bag b of T ′, and h lies in the corresponding
cluster C. Note that v may be closer to hX

than to h.

The above lemma provides a vertex w of the con-
necting bag b of T ′ through which we can connect to
a hub hX , if hX ∈ C. In case hX lies outside of C
however, as we will see the following lemma provides
such a vertex in b to connect to hX .

Lemma 5.11. For any v ∈ T ′ and approximate core
hub hX ∈ XT \T ′, the connecting bag b of T ′ contains a
vertex w such that distG(v, w) = O(distG(v, hX)) and
distG(v, w) = O(ri).

Proof. Recall that, by our choice in Algorithm 1, cluster
C corresponding to connecting bag b of T ′ contains the closest hub h ∈ XT to T ′. By Lemma 5.10,
there exists w ∈ b with distG(h,w) ≤ distH(h,w) = O(εri) (cf. Figure 4). As by triangle inequality
distG(v, w) ≤ distG(v, h) + distG(h,w), it remains to show that distG(v, h) = O(ri) in order to
prove distG(v, w) = O(ri), if ε tends to zero. By Lemma 5.1 there is a core hub u of T on level i,
which lies on the shortest path between T ′ and T ′′, the closest sibling town to T ′, and thus u is
at most as far from T ′ as any vertex in T ′′. Hence distG(T

′, u) ≤ ri+1, since we assumed that the
distance r between T ′ and T ′′ lies in the interval (ri, ri+1]. By Theorem 4.2 there is an approximate
core hub u′ ∈ XT for which distG(u, u

′) ≤ εri. Hence the closest approximate core hub h is at
distance at most ri+1 + εri from T ′. From Lemma 3.2 it follows that every town on level at least
i + 1 has distance more than ri+1 to any other town. Since the distance r from T ′ to T ′′ is at
most ri+1, the level of T ′ is at most i. Hence the same lemma also implies that the diameter of
T ′ is at most ri, and thus distG(v, h) ≤ diam(T ′) + distG(T

′, h) ≤ ri+1 + (1 + ε)ri = O(ri), since
ri+1/ri = c is constant and we assume that ε tends to zero. This implies distG(v, w) = O(ri) as
claimed. Note that since hX lies outside of T ′, distG(v, hX) ≥ distG(T

′, V \ T ′) > ri by Lemma 3.2,
which immediately implies the remaining bound distG(v, w) = O(distG(v, hX)).

So far we have identified vertices w in the connecting bag b through which we are able to connect
to a hub hX from a vertex v ∈ T ′ for the two cases when hX ∈ C and hX /∈ C. The next lemma
provides a bound on the probability with which we need to consider each of these cases. Additionally
it also bounds the distance from v to hX in the former case.

Lemma 5.12. Let hX be an approximate core hub in XT , and v ∈ T ′, then Pr[hX /∈ C] =
O(ε · distG(v, hX)/ri). In addition, distH(v, hX) ≤ distG(v, hX) +O(εri) if hX ∈ C.

Proof. If hX ∈ T ′ then hX ∈ C, since by Algorithm 1 the cluster C contains the closest approximate
core hub to T ′ and all hubs of XT that are represented by the same hub of YT ∩ C (i.e. that are of
the same child town) are contained in C. Hence if hX /∈ C then hX /∈ T ′. Consider the vertex w ∈ b
for which distG(v, w) = O(distG(v, hX)), which now exists due to Lemma 5.11. The hub hX is in C
if and only if w and hX are in the same cluster on the level l̄ of C. If the level l̄ of the cluster C
is the level j̄ of the root of DX , then C contains all vertices of T including hX and w, and so if
hX /∈ C then l̄ 6= j̄. If w and hX have the same representative, they will be in the same cluster by
Algorithm 1, so that if hX /∈ C then w and hX have different representatives in YT .

By these observations, the probability with which w and hX lie in different clusters is O(d ·
distG(w, hX)/2l̄) using Lemma 5.8, which in turn can be bounded by O(ε · distG(w, hX)/ri), as
2l̄ = Θ(dri/ε) by Algorithm 1 whenever l̄ 6= j̄. Upper bounding distG(w, hX) in terms of distG(w, v)+
distG(v, hX) = O(distG(v, hX)) we obtain Pr[hX /∈ C] = O(ε · distG(v, hX)/ri).

To bound the distance if hX ∈ C, by Lemma 5.10 we know that there is a vertex hb ∈ b
such that distH(hb, hX) = O(εri), and v has an edge in H to hb. Therefore distH(v, hX) ≤
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distH(v, hb) + distH(hb, hX) = distG(v, hb) + O(εri). Since distG(hb, hX) ≤ distH(hb, hX), we can
upper bound distG(v, hb) by distG(v, hX) + distH(hX , hb), which proves the claim.

Lemma 5.12 provides a bound on the distance between vertices of T ′ and approximate core hubs
in C. We also need to bound the distance between vertices of T ′ and core hubs of T that are not
in C. The following lemma will be useful in this endeavour.

Lemma 5.13. Let HX be the probabilistic embedding of (XT , distG) with expected distortion 1+O(ε′)
given by Lemma 5.9. Let x, y ∈ XT , and let C be a cluster in the randomized split-tree decomposition
containing x. Then E[distHX

(x, y) | y /∈ C] ≤ (1 +O(ε′)/Pr[y /∈ C])distG(x, y).

Proof. By Lemma 5.9, the expected distance between x and y in H is at most (1 + O(ε′)) times
their distance in metric (XT , distG), and hence

E[distHX
(x, y)] = Pr[y /∈ C]E[distHX

(x, y) | y /∈ C] + Pr[y ∈ C]E[distHX
(x, y) | y ∈ C]

≤ (1 +O(ε′))distG(x, y).

Embedding HX dominates (XT , distG), and hence E[distHX
(x, y) | y ∈ C] ≥ distG(x, y). The

inequality above therefore implies that

Pr[y 6∈ C]E[distHX
(x, y) | y 6∈ C] + (1− Pr[y 6∈ C])distG(x, y) ≤ (1 +O(ε′))distG(x, y).

Rearranging, Pr[y /∈ C](E[distHX
(x, y) | y /∈ C]− distG(x, y)) ≤ O(ε′)distG(x, y), and

E[distHX
(x, y) | y /∈ C] ≤

(

1 +
O(ε′)

Pr[y /∈ C]

)

distG(x, y) .

We are now ready to bound the distance between a vertex v ∈ T and any core hub in XT , given
the tools of the above lemmas.

Proof of Lemma 5.2. Let C be the cluster corresponding to the connecting bag b of T ′. We
bound E[distH(v, hX)] in terms of the conditional expected values E[distH(v, hX) | hX ∈ C] and
E[distH(v, hX) | hX /∈ C]. If hX ∈ C we get a (deterministic) bound on the distance between v and
hX from Lemma 5.12. Hence E[distH(v, hX) | hX ∈ C] ≤ distG(v, hX) +O(εri).

If hX ∈ T ′ then hX ∈ C, since C contains the closest hub to T ′ and all hubs of XT in the
same child town of T end up in the same cluster after expanding all hubs of YT into the hubs of
XT that they represent. Hence if hX /∈ C then hX /∈ T ′, and by Lemma 5.11 there is a vertex
w ∈ b for which distG(v, w) = O(distG(v, hX)). Both w and hX are approximate core hubs, and so
E[distH(w, hX) | hX /∈ C] ≤ E[distHX

(w, hX) | hX /∈ C], as H contains HX . Applying Lemma 5.13
on this conditional expected distance, we obtain

Pr[hX /∈ C]E[distH(v, hX) | hX /∈ C] ≤ Pr[hX /∈ C](distG(v, w) +E[distH(w, hX) | hX /∈ C])

≤ Pr[hX /∈ C]

(

distG(v, w) +

(

1 +
O(ε′)

Pr[hX /∈ C]

)

distG(w, hX)

)

= Pr[hX /∈ C](distG(v, w) + distG(w, hX)) +O(ε′)distG(w, hX)

≤ Pr[hX /∈ C](2 · distG(v, w) + distG(v, hX))

+O(ε′)(distG(w, v) + distG(v, hX))

= Pr[hX /∈ C](2 · distG(v, w) + distG(v, hX)) +O(ε′ · distG(v, hX)).
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From Lemma 5.11 we also know that distG(v, w) = O(ri). Additionally using that ε′ = ε2, and
the bound on Pr[hX /∈ C] in Lemma 5.12, the expression above is

Pr[hX /∈ C]distG(v, hX) +O

(

ε
distG(v, hX)

ri

)

O(ri) +O(ε′ · distG(v, hX)) =

Pr[hX /∈ C]distG(v, hX) +O(ε)distG(v, hX) .

Combining the above bounds we obtain

E[distH(v, hX)] =Pr[hX ∈ C]E[distH(v, hX) | hX ∈ C] + Pr[hX /∈ C]E[distH(v, hX) | hX /∈ C]

≤Pr[hX ∈ C](distG(v, hX) +O(εri)) + Pr[hX /∈ C]distG(v, hX)

+O(ε)distG(v, hX)

=(1 +O(ε))distG(v, hX) +O(εri) ,

where ri = Θ(r), which proves the claim.

6 The doubling dimension of approximate core hubs

The aim of this section is to give a proof of Theorem 4.2 by showing that for any town T ∈ T there
is a set XT ⊆ T of approximate core hubs with bounded doubling dimension. We first define the
set XT and then compare its properties with those of the core hubs. In particular, even though we
obtain the approximate core hubs by shifting the core hubs to positions nearby, the resulting set is
still locally sparse on each level. In addition, they are also locally nested. Roughly speaking, this
means that within a small ball of radius εri for some level i, all approximate core hubs above level i
are “nested”, i.e., contained in one another. This property will help us in bounding the doubling
dimension of XT independently of the aspect ratio.

The set XT of a town T of level j is the union of sets Xi
T , one for each level i ∈ {1, . . . , j − 1},

which are defined inductively as follows in Algorithm 2. We call a vertex in Xi
T an approximate core

hub of T on level i. Recall that Ci is the core of T at level i (Definition 4.1), and C0 = ∅ since the
sprawl is empty on level 0.

Algorithm 2: Defining XT

1 X1
T ← C1 ∩ spc(r1)

2 for i = 2, . . . , j − 1 do

3 Xi
T ← ∅

4 foreach h ∈ Ci ∩ spc(ri) do
5 if ∃h′ ∈ X l

T for some l < i such that dist(h, h′) ≤ εri then add h′ to Xi
T

6 else add h to Xi
T

7 return
⋃j−1

i=1 X
i
T

Note that this definition of XT fulfills the two properties of Theorem 4.2 that there must be an
approximate core hub h′ ∈ XT within distance εri of each core hub h of level i and that XT can be
computed in polynomial time. Note also that Xi

T ⊆
⋃i

l=1Cl ∩ spc(rl), and hence the vertices in
Xi

T are core hubs, but not necessarily core hubs of level i. The main benefit of shifting core hubs

to approximate core hubs is that for any town T ∈ T on level j, the set system {Xi
T }

j
i=1 is locally

nested as we explain in the following lemma.
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Lemma 6.1. Let B be a set of diameter at most εrl for some level l, and let i be the lowest level
for which Xi

T ∩ B 6= ∅. The approximate core hubs on level q ≥ max{i, l} in B must also be core

hubs on some level at most max{l, i}; i.e., B ∩Xq
T ⊆

⋃max{l,i}
p=1 Xp

T .

Proof. The statement is trivially true for q = max{l, i}. Consider any higher level q > max{l, i}.
Since the diameter of B is at most εrl ≤ εrq and Xi

T ∩B 6= ∅, for every h ∈ B ∩ Cq ∩ spc(rq) there
is a vertex h′ ∈ Xi

T at distance at most εrq from h. Hence by the definition of the approximate core

hubs in Algorithm 2, Xq
T ∩B ⊆ ⋃q−1

p=1X
p
T , and the claim follows by induction.

The cost of using approximate core hubs is that it is not immediately clear why the vertices
in Xi

T should still be locally sparse. This requires a tricky argument that we turn to now. The
crucial observation leading to this result is that we can bound the number of hubs of a shortest
path cover spc(ri) not only in a ball Bcri/2(v) using the local sparsity but also close to the ball.
The approximate core hubs in Xi

T are obtained by shifting the core hubs of level i to lower level
core hubs at distance at most εri. Hence the number of vertices of Xi

T ∩Bcri/2(v) can be bounded
by the total number of level i core hubs that are within distance εri of Bcri/2(v). The definition of
highway dimension (Definition 1.1) allows us to get a handle on the hubs in larger balls of radius cri,
and this, combined with the minimality of our shortest path cover, allows us to bound the number
of nearby core hubs. Specifically, in a graph of highway dimension k, and given a locally s-sparse
shortest path cover, we are able to show that the approximate core hubs Xi

T of level i are locally
3ks-sparse as long as the stretch parameter ε is chosen to be at most 2. The lemma is stated in a
slightly more general form than we need it here, since we will reuse it later.

Lemma 6.2. For a metric (V, distG) induced by an underlying graph G of highway dimension k,
let Bcr/2(v) be a ball of radius cr/2 centered at v ∈ V , and let spc(r) be a minimal locally s-sparse
shortest path cover. There are at most 3sk hubs h ∈ spc(r) for which distG(h,Bcr/2(v)) ≤ cr/2.

We note that this lemma does not bound the number of hubs in spc(r) that lie in a ball Bcr(v),
and in fact the number of hubs in Bcr(v)∩ spc(r) can be unbounded: in a star with edges of length
cr a minimal shortest path cover spc(r) may contain all vertices except the center vertex v of the
star. This shortest path cover is also locally 1-sparse, since any ball of radius cr/2 contains only
one vertex of the star. However the ball of radius cr centered at v contains the whole star, and thus
all hubs from spc(r), i.e. a potentially unbounded number.

Since the hubs considered in Lemma 6.2 may lie outside of Bcr/2(v), we need to use Definition 1.1,
which bounds the number of hubs in larger balls of radius cr. However, the hubs given by Definition 1.1
do not necessarily coincide with those of spc(r). Therefore, we need an additional tool, as given by
the following technical lemma, which relates the hubs given by Definition 1.1 with those in spc(r).

In the following lemma, we consider once more a metric induced by graph G = (V,E) of highway
dimension k. As usual, we let spc(r) denote a locally s-sparse shortest-path cover for radius r.
Consider radii r, r̃ such that r̃ < cr/2, and let Bcr̃(v) be a ball of radius cr̃ centered at v. For each
vertex h ∈ Bcr̃(v)∩ spc(r), we let Ph be a shortest path that (a) lies in Bcr̃(v), i.e. V (Ph) ⊆ Bcr̃(v),
(b) has length in (r̃, cr/2], and (c) contains h. If no such path exists, we let Ph = ⊥.
Lemma 6.3. Let W̃ be the set of all vertices h ∈ Bcr̃(v)∩spc(r) for which Ph 6= ⊥. Then |W̃ | ≤ sk.

Proof. The proof follows directly from Definition 1.1. The definition implies that there is a set
K ⊆ Bcr̃(v) of at most k vertices covering all shortest paths in Bcr̃(v) of length more than r̃. In
particular these vertices cover each path Ph for h ∈ W̃ . We have h ∈ V (Ph) and the length of Ph is
at most cr/2, so distG(h,K) ≤ cr/2. Therefore W̃ can be covered by at most k balls of radius cr/2
centered at each vertex in K. The set spc(r), and with that also W̃ , is locally s-sparse, so each of
these balls contains at most s nodes, yielding |W̃ | ≤ sk.
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Figure 5: The three balls in Lemma 6.2. The dashed ball is Bcr/2(v), and the bold balls are the three
considered balls Bcr̃i(v), moving from left to right. Hubs are crosses, and shaded areas represent possible
locations for hubs. Hubs in W̃1 (left) cover paths entirely in Bcr(v). For a hub h ∈ W̃2 (center) the path Ph

between h and wh is long, while for h ∈ W̃3 (right) the path Ph from h to uh is long.

We now prove Lemma 6.2. For this, define

W = {h ∈ spc(r) | distG(h,Bcr/2(v)) ≤ cr/2}

as the set of hubs near v whose size we want to bound. In order to accomplish this, we carefully
choose three radii r̃i, where i ∈ {1, 2, 3}, and let W̃i be the corresponding set of hubs as defined in
Lemma 6.3 (see Figure 5). We will then show that

W ⊆ W̃1 ∪ W̃2 ∪ W̃3,

and conclude that W has at most 3sk elements directly from Lemma 6.3.

Proof of Lemma 6.2. We first apply Lemma 6.3 for r̃1 = r, and infer that the set W̃1 of hubs
h ∈ spc(r) that cover a shortest path contained in Bcr(v) and with length in (r, cr/2], is at most sk.

Observe that, by the inclusion-wise minimality of spc(r), each h ∈ spc(r) must hit some shortest
path Qh with length in (r, cr/2]. For h ∈W \ W̃1 this path Qh is not contained in Bcr(v). Let wh

be a vertex on path Qh of maximum distance from v, which by assumption must lie outside the
ball Bcr(v). We know distG(h,wh) ≤ cr/2, as the distance between h and wh is bounded by the
maximum length of Qh. Also let uh be the closest vertex in Bcr/2(v) to h. By the definition of W ,
distG(uh, h) ≤ cr/2. Since h does not cover any shortest path inside Bcr(v) with length in (r, cr/2],
we must have distG(uh, h) ≤ r. Combining these, the distance from v to wh is at most

distG(v, uh) + distG(uh, h) + distG(h,wh) ≤ cr/2 + r + cr/2 = (c+ 1)r = c(1 + 1/c)r.

Hence, Qh lies in the ball Bcr̃2(v) if we choose r̃2 = (1 + 1/c)r. Furthermore, h ∈ W̃2 if Qh has
length in the interval (r̃2, cr/2].

Finally, let us consider a hub h ∈W \ (W̃1 ∪ W̃2), for which the length of the path Qh must lie
in the interval (r, r̃2] = (r, (1 + 1/c)r]. Let uh and wh be defined as before. The distance between
h and wh is now at most (1 + 1/c)r, while the distance between uh and wh is more than cr/2, as
uh ∈ Bcr/2(v) and wh /∈ Bcr(v). It follows that

distG(uh, h) > cr/2− (1 + 1/c)r = (c/2− 1− 1/c)r. (2)
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We already saw that the left-hand side of the above inequality is at most r, so this case only arises
when c <

√
6 + 2. Note also that

distG(v, h) ≤ distG(v, uh) + distG(uh, h) ≤ cr/2 + r = (c/2 + 1)r,

and hence B(c/2+1)r(v) contains a shortest path Ph from uh to h. Equivalently, Ph is contained in
Bcr̃3(v) for r̃3 = (1/2 + 1/c)r. Observe that by (2), the length of Ph is greater than

(c/2− 1− 1/c)r ≥ r̃3 = (1/2 + 1/c)r,

as c ≥ 4. The length of Ph is of course also bounded by cr/2, the maximum length of Qh, and
hence h ∈ W̃3.

In conclusion, we showed that W ⊆ W̃1 ∪ W̃2 ∪ W̃3, and hence W contains at most 3sk elements
by Lemma 6.3.

We have now determined all the properties of approximate core hubs that we need in order to
prove that any set XT has low doubling dimension. Recall that for this we need to show that we can
cover any ball B of radius 2r in the metric defined by XT by a bounded number of balls of half the
radius r. We first prove a slightly weaker result in which we show that core hubs in a ball of radius
cr/2 can be covered by a small number of balls of radius 2r, for some given r (note that, for c > 4,
2r is smaller than cr/2). We will later apply the next lemma recursively in order to obtain a bound
on the doubling dimension of XT .

Lemma 6.4. For any level i and any ball Bcri/2(v) ⊆ V of radius cri/2 we can cover Bcri/2(v)∩XT

with at most O (ks log(1/ε)/λ) balls in V of radius 2ri each, for any 0 < ε ≤ 2 and violation λ > 0.

Proof. Recall that XT =
⋃j−1

l=1 X
l
T , where j is the level of the town T and X l

T are the approximate
core hubs at level l of T . We distinguish three cases based on the level l. First consider the vertices
in

⋃i
l=1X

l
T up to level i, and recall that Xi

T ⊆
⋃i

l=1(Cl ∩ spc(rl)), i.e., the approximate core hubs
of level i are core hubs of levels up to i. By Definition 4.1 the cores of town T form a chain—
Cq−1 ⊆ Cq—and thus every vertex of

⋃i
l=1X

l
T is contained in the core Ci of T on level i. The core

Ci is part of the sprawl of level i, which by Definition 3.1 is covered by balls of radius 2ri centered
at hubs in spc(ri). For such a ball to cover some parts of the core Ci in Bcri/2(v), its center v must
be at distance at most 2ri from Bcri/2(v). Hence by Lemma 6.2 there are at most 3ks balls of radius

2ri covering all of
⋃i

l=1X
l
T in Bcri/2(v).

Second, consider the approximate core hubs on levels q ∈ {i+1, . . . , l} where l = i+⌈logc/4(c/ε)⌉.
Cover every vertex of

⋃l
q=i+1X

q
T in Bcri/2(v) by one ball of radius 2ri each. For any such level q > i

the radius of Bcri/2(v) is at most crq/2. Since we assumed that ε ≤ 2 while c > 4, the approximate
core hubs on level q are shifted by at most εrq ≤ 2rq < crq/2 to lower level core hubs by Algorithm 2.
Hence we can bound the number of such hubs in Bcri/2(v) per level by 3ks using Lemma 6.2, which
also bounds the number of balls we use to cover them. If the violation λ tends to zero, the number
of such levels is O(logc/4(c/ε)) = O(log(1/ε)/λ), since log(c/4) = log(1 + λ/4) = Θ(λ). In total this
makes O (ks log(1/ε)/λ) balls for levels up to l.

For the remaining levels l > i+ ⌈logc/4(c/ε)⌉ we use the fact that the approximate core hubs are

locally nested by Lemma 6.1. In particular, note that εrl ≥ cri since rl = (c/4)l, i.e., the diameter
of Bcri/2(v) is at most εrl for level l. Let q be the lowest level for which Xq

T ∩Bcri/2(v) 6= ∅. If q ≤ l
the hubs in Xq

T ∩Bcri/2(v) are already accounted for. Otherwise, as before we greedily cover each
hub in Xq

T ∩Bcri/2(v) by a ball of radius 2ri each, and by Lemma 6.2 we need at most 3ks balls to
do so. Now, by Lemma 6.1, every vertex of Xp

T ∩Bcri/2(v) for a level p > max{l, q} is contained in

some set Xp′

T ∩Bcri/2(v) for p
′ ≤ max{l, q}. Since we already covered each hub in Xp′

T ∩Bcri/2(v)
with a ball, the claim follows.
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We can now use the above lemma recursively to cover the set XT in a ball B2r(v) with balls of
half the radius, as we show next.

Lemma 6.5. Let T ∈ T be a town and let B2r(v) ⊆ V be a ball of radius 2r. Then B2r(v) ∩XT

can be covered by at most (ks log(1/ε)/λ)O(1/λ) balls in V of radius r, for any 0 < ε ≤ 2 and
violation λ > 0.

Proof. Let l be the smallest level for which crl/2 ≥ 2r. Instead of using B2r(v) directly, we will
cover the larger set Bcrl/2(v) ∩XT with balls of radius crl−1/4 < r, which we find by recursively
covering Bcrl/2(v) with balls of the next lower level.

Since ri = (c/4)i, a ball B2ri+1
(h) has radius 2ri+1 = 2cri/4 = cri/2. Hence, by Lemma 6.4, we

can cover XT ∩B2ri+1
(h) with O (ks log(1/ε)/λ) balls of radius 2ri, on which we recurse. By the

choice of l, r > crl−1/4, and since ri = (c/4)i, the number of levels β on which we need to recurse is
at most

logc/4(crl/2)− logc/4(crl−1/4) = 1 +
1

log2(c/4)
= O(1/λ).

The total number of balls needed to cover B2r(v) with balls of radius r is then at most

β−1
∑

i=0

O (ks log(1/ε)/λ)i = (ks log(1/ε)/λ)O(1/λ) ,

which concludes the proof.

The balls Br(h) found in Lemma 6.5 are centered at hubs. If all these hubs are part of XT ,
then we have shown that XT has bounded doubling dimension. However, if h /∈ XT for some ball
center, then we have partly covered B2r(v) ∩XT with invalid balls that are not centered at points
in the metric XT . We already addressed this issue in Section 4 by proving Lemma 4.3. Thus we
are finally ready to prove the remaining part of Theorem 4.2 by bounding the doubling dimension
of XT . Consider a ball B2r(v) ⊆ V . According to Lemma 6.5 we can cover B2r(v) ∩ XT using
at most (ks log(1/ε)/λ)O(1/λ) balls in V of radius r. Recall that the doubling dimension is log2 δ,
where δ is the number of balls needed. Hence by Lemma 4.3 the doubling dimension of XT is
O(log(ks log(1/ε)λ )/λ), as claimed.

7 The treewidth of the embedding

We prove by induction that the embedding has bounded treewidth. That is, we prove that the
embedding of any town T ∈ T has bounded treewidth, assuming that the embeddings of its child
towns have bounded treewidth. In particular, we prove the following, which implies the treewidth
bound of Theorem 1.3, since there are O(logc/4 α) = O(log(α)/λ) levels in total, and we can assume
that s = O(k log k) by [2].

Theorem 7.1. The embedding constructed for a town T ∈ T of level j has treewidth

j · (log(α))O(log2( ksελ )/λ).

To prove Theorem 7.1, we show how to compute a tree decomposition DT of the embedding HT ,
when T has child towns in the towns decomposition. Recall that HT is obtained by connecting the
embeddings HT ′ of each child town T ′ to the embedding HX of the approximate core hubs XT . In
particular, an edge is added between every vertex in T ′ and every hub in the connecting bag b of T ′
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in the tree decomposition DX of HX . To compute DT we will join the tree decompositions of the
child towns with DX . For this we need to inductively specify a root bag for each tree decomposition,
and the root bag of DT is the highest level bag of DX .

Now for each child town T ′, consider appending the subtree DT ′ to DX by adding the root bag
of DT ′ as a child of the connecting bag b of T ′ in DX . This satisfies condition (a) of Definition 2.1,
as the union of all bags is T . Unfortunately, though, this initial tree of bags DT does not satisfy
the remaining requirements of a valid tree decomposition of HT according to Definition 2.1: the
edges added to connect the child towns and their connecting bags may not be contained in any
bag—violating (b)—and there might be some vertex v for which the bags containing v are not
connected in DT—violating (c).

To make DT valid we change the initial tree of bags in two steps, of which the first will guarantee
that (b) is satisfied, and the second guarantee that (c) is satisfied. Namely, we perform the following
for every child town T ′ and its connecting bag b in DX :

1. add all vertices of b to each bag of DT ′ , and

2. add all hubs of XT ∩ T ′ to each bag of DT ′ , and also to b and all descendants of b in DX (but
not the descendants of b in DT that are bags of some DT ′′ for some child town T ′′ 6= T ′ of T ).

We now argue that the resulting tree decomposition is valid.

Lemma 7.2. After performing step (1) above, all edges are contained within some bag.

Proof. First, note that the decompositions DX and DT ′ for each child town T ′ are valid by
Theorem 5.5 and by induction, respectively. Hence the only edges that are not contained in any bag
of DT are those added to connect a child town T ′ and its connecting bag b. We add all vertices of b
to every bag of the decomposition DT ′ , so after repeating this for every child town, for every edge
in E(HT ) there is a bag in DT containing both endpoints.

We will bound the growth of the bags during this step later on using the bound on the size
of each bag b of DX given by Theorem 5.5. Next we show that performing the second step will
guarantee that (c) of Definition 2.1 is satisfied.

Lemma 7.3. After performing step (2) above, for all vertices v, the set of bags containing v form
a connected subtree of DT , and DT is a valid tree decomposition of T .

Proof. Suppose there is a vertex v such that the bags containing v are not connected after performing
the first step. By Theorem 5.5 and by induction, the sets of bags containing each vertex are connected
within DX and DT ′ for all child towns T ′, so v must be in XT ∩ T ′ for some T ′. This means that v
is an approximate core hub of T that happens to lie in the child town T ′. Since child towns of T
are disjoint by Lemma 3.3, v cannot be contained in two different ones, so that T ′ is the only child
town containing v. Note that v cannot be in the connecting bag b of T ′ because then the first step
would have added v to all bags of DT ′ , which would have connected the sets of bags in DX and DT ′

containing v. Hence it can only be that v is in a bag of DT ′ and in some bag of DX other than the
connecting bag of T ′.

We know from (ii) in Theorem 5.5 that the vertices in the bags of the decomposition DY for the
representative hubs YT of T form a hierarchy: every vertex in a bag b′ of DY is also contained in
one of the child bags of b′. Recall that the decomposition DX of XT is obtained from DY by simply
replacing each vertex with all hubs it represents. Hence the vertices in the bags of DX also form a
hierarchy. Furthermore, all hubs in XT ∩ T ′ are in the same bags in DX , since they are represented
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by the same vertex of YT . Since v ∈ XT ∩ T ′ is not yet in the connecting bag b of T ′, this means
that in DX none of the hubs in XT ∩ T ′ are in a bag on a higher level than b.

Recall that we choose the connecting bag b so that its corresponding cluster contains the closest
approximate core hub h to T ′. In this case, XT ∩T ′ 6= ∅ as it contains v, so h is a hub in XT ∩T ′. By
the construction of DX , if b contains h then b contains the entire set XT ∩ T ′. By (2) of Lemma 5.4,
on each level the clusters for YT partition YT . Clearly this is also true for XT . Hence any hub of
XT ∩T ′, including the problematic vertex v, can only be contained in bags of the decomposition DX

that are descendants of b.
Due to these observations we add all hubs of XT ∩ T ′ to each bag of DT ′ and also to b and all

descendants of b in DX , and this will ensure there will not be any v for which the bags containing it
are disconnected in the resulting decomposition. Note that we do not need to add these hubs to
descendants of b in DT that are bags of some DT ′′ for some other child town T ′′ 6= T ′.

For the second part of the lemma, note that adding nodes to bags does not break conditions (a)
or (b) of Definition 2.1 established in Lemma 7.2, so the resulting tree decomposition is valid.

At this point we have a valid tree decomposition DT , but we still need to bound the sizes of the
resulting bags in DX and each DT ′ . We use the following two lemmas to bound the size of the bags
of DX . In the first we show that for each bag b of DX , the number of child towns connecting to b
and containing approximate core hubs is bounded. In the second lemma we prove a bound on the
maximum number of approximate core hubs in each child town.

Lemma 7.4. Let b be a bag of the decomposition DX of the embedding HX for XT , and let d be
the doubling dimension of XT . The number of child towns T ′ of T for which XT ∩ T ′ 6= ∅ and for
which b is their connecting bag, is O((d/ε)d).

Proof. Let Y ⊆ YT be the set containing exactly one representative for each of child town T ′ that
has b as its connecting bag and for which XT ∩T ′ 6= ∅. We can bound the size of Y in order to bound
the desired number of child towns. To prove the bound we will use the fundamental property of
low doubling dimension metrics given by Lemma 5.6, which says that such metrics have a bounded
number of vertices in terms of their aspect ratio. We will use this lemma to bound the size of Y by
deriving a bound on its aspect ratio: since the child towns connect to the same bag b, we are able
to obtain an upper bound on the distance between the representatives in Y . We also get a lower
bound on the distances from the fact that b was chosen for a child town according to the minimum
distance to any other child town.

More concretely, consider the tree decomposition DY for the representative hubs YT . The bag b
was obtained from a bag b′ of DY by replacing each vertex with the represented hubs of XT . If the
level of bag b′ is l̄ then, by (3) of Lemma 5.4, the diameter of the cluster C ′ corresponding to b′ is
at most 2l̄+1.

Suppose T ′ is a child town that has b as its connecting bag and for which XT ∩ T ′ 6= ∅. The bag
b was chosen so that the corresponding cluster contains the closest hub h of XT . Since XT ∩ T ′ 6= ∅,
this means h ∈ XT ∩T ′. Analogous to the connecting bag b, its cluster C is obtained from cluster C ′

by replacing each vertex with its represented hubs. Hence all of XT ∩ T ′ resides in C. Accordingly,
the representative for the set XT ∩ T ′ of each considered child town T ′ is in C ′, i.e., Y ⊆ C ′.

Bags b and b′ are at the same level l̄. Recall that we chose this level in the following way:
if the closest sibling of a child town T ′ is at a distance in the interval (ri, ri+1], then the level
l̄ of b is min{j̄, ī + ⌈log2(d/ε)⌉}, where j̄ is the level of the root of DX and ī = ⌈log2 ri⌉. Let
ī′ = l̄ − ⌈log2(d/ε)⌉ so that ī′ ≤ ī. Thus the distance from T ′ to any of its siblings is more
than ri ≥ 2ī−1 ≥ 2ī

′−1 ≥ ε2l̄−1/d.
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Since each vertex of Y is in a different child town, the distance between any pair of vertices in
Y is more than ε2l̄−1/d, so the aspect ratio of the set Y is at most 2l̄+1d/(ε2l̄−1) = O(d/ε), due to
the bound on the diameter of cluster C ′ containing Y . By Lemma 5.6 we then get |Y | ≤ O((d/ε)d),
and this bound is the same for the number of considered child towns.

Next we prove that the number of approximate core hubs in each child town is bounded. This
result will also help in bounding the treewidth of HX , since it gives a bound on the number of
approximate core hubs that a vertex from YT represents.

Lemma 7.5. For any child town T ′ of T , the number of approximate core hubs in the intersection
XT ∩ T ′ is O (s log(1/ε)/λ).

Proof. Suppose that T ′ is a town on level i, and recall from Section 6 that

Xi
T ⊆

i
⋃

q=1

Cq ∩ spc(rq), (3)

i.e. the approximate core hubs of level i are core hubs on levels i or below. By Definition 4.1 no such
core hubs exist, and hence T ′ also does not contain any approximate core hubs of level at most i.

Let l = i+ ⌈logc/4(1/ε)⌉, and consider q ∈ (i, l]. Once more, since T ′ does not contain core hubs
of level at most i, any approximate core hub of level q must also be a core hub of level l′ ∈ (i, q],
and hence we focus on bounding the size of spc(rl′) ∩ T ′ for each l′ ∈ (i, l]. Recall that Lemma 3.2
implies that town T ′ has diameter at most ri ≤ crl′/2, and therefore T ′ is contained in Bcr

l′/2
(v)

for any v ∈ T ′. Definition 1.2 implies that |Bcr
l′/2

(v) ∩ spc(rl′)| ≤ s, and hence also T ′ contains no
more than s level l′ core hubs. In summary, we have just shown that the set

X = T ′ ∩
⋃

q≤l

Xq
T

has cardinality at most s⌈logc/4(1/ε)⌉. It remains to consider levels q > l. Yet again by Lemma 3.2,
T ′ has diameter at most

ri =
( c

4

)i
≤ ε

( c

4

)l
< εrq.

Lemma 6.1 directly implies that any approximate core hub in T ′ of level greater than l is contained
in X if the latter set is non-empty. So let us assume that X = ∅. In this case we argue as before, and
use Definition 1.2 to bound |spc(rq)∩T ′| by s. All in all, we showed that T ′ contains O(s logc/4(1/ε))
approximate core hubs.

Using the obtained bounds in the above lemmas, we are now ready to prove that the treewidth
of the embedding HT is bounded.

Proof of Theorem 7.1. Towns that have no children are singletons, since every vertex is a town on
level 0. Hence for these the claim is trivially true. Otherwise, by Lemma 3.3, a town has at least
two children. For these we need to bound the resulting bag sizes of the tree decomposition DT , as
described in this section. First off we determine the treewidth of the embedding HX for XT . The
decomposition DX was obtained from the decomposition DY for YT by replacing each vertex with
the hubs of XT it represents. For each vertex of YT the number of represented hubs is bounded by
Lemma 7.5, while the treewidth of the embedding for YT is bounded by Theorem 5.5. Thus if the
doubling dimension of YT is d then the treewidth tX of HX is

tX ≤ (d log(α)/ε′)O(d) · s log(1/ε)/λ.
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In the first step of the transformation to make the tree decomposition DT valid, we add all
vertices of a bag b of DX to all bags of the decomposition trees DT ′ of child towns T ′ for which b is
the connecting bag. By Lemma 3.3, if T is a town on level j then each of its child towns is on some
level i ≤ j − 1. Hence if, by induction, the treewidth of some embedding HT ′ was i · tX , then it is at
most j · tX after adding the vertices of b.

In the second step of the transformation of DT , we add all hubs of XT ∩ T ′ to every bag of DT ′ .
By Lemma 7.5, |XT ∩ T ′| ≤ O(s log(1/ε)/λ) for any child town T ′. This term is dominated by
the asymptotic bound on tX . The second step also adds the hubs of XT ∩ T ′ to the connecting
bag b and all descendants of b in DX . Note that this does not affect the bags of a decomposition
DT ′′ of any child town T ′′ 6= T ′ of T . By Lemma 7.4, each bag b of DX receives approximate core
hubs from O((d/ε)d) child towns for which b is the connecting bag. Each such child town adds
O(s log(1/ε)/λ) hubs to b by Lemma 7.5. Hence the total number of hubs added to b from child
towns having b as their connecting bag is O((d/ε)d · s log(1/ε)/λ)). However these hubs are also
added to all descendants of such a bag b. The total number of levels of the decomposition tree DX is
O(logα) by (1) of Lemma 5.4. Hence any bag of DX receives at most O((d/ε)d log(α) ·s log(1/ε)/λ))
additional hubs from all its ancestors. This term is again dominated by the asymptotic bound on tX ,
since ε′ = ε2.

It follows that the treewidth of DT is j ·O(tX). Hence to conclude the proof we only need to

bound tX . The doubling dimension d of YT ⊆ XT is O(log(ks log(1/ε)λ )/λ) by Theorem 4.2. Since

x · (log x)O(log x) ⊆ (log x)O(log x), (x log x)O(1) ⊆ xO(1), and O(log x) ⊆ O(x), the treewidth tX of

HX is at most log(α)O(log2( ks
ελ

)/λ).

8 Obtaining approximation schemes

In this section we demonstrate how we can use the embedding of Theorem 1.3 to derive QPTASs
for various network design problems when the input graph G = (V,E) is an edge-weighted graph
with low highway dimension. Specifically, we consider the Travelling Salesman, Steiner Tree and
Facility Location problems. We begin by defining these (see also [39]), and we briefly mention how
these problems historically arose in contexts given by transportation networks.

For the Travelling Salesman problem the shortest tour, i.e. cycle in the shortest-path metric,
visiting all vertices of G needs to be found. One of the earliest references1 to the Travelling Salesman
problem appears in a manual of 1832, in which five tours through German cities are suggested to a
traveling salesman. The problem became known as the “48 States Problem of Hassler Whitney” in
1934 after Whitney studied it in the context of finding the shortest route along the capitals of the
lower 48 US states. Later milestones in its study include computing the shortest routes through
an increasing number of cities in countries such as the USA, Germany, and Sweden (though these
instances used Euclidean distances).

In the Steiner Tree problem, in addition to G a set of terminals R ⊆ V is given. The aim
is to find a minimum cost tree in G spanning all terminals (a so called Steiner tree). An early
reference2 to the Steiner Tree problem appears in a letter by Gauss from 1836, who mentioned it in
the context of connecting cities by railways. The problem was later popularized by the book “What
is Mathematics?” in 1941 by Courant and Robins, who described it in terms of minimizing the total
length of a road network.

The Facility Location problem assumes additional weights on the vertices, and the goal is to
select a subset of vertices W ⊆ V (the facilities). The opening cost of a facility is given by its vertex

1For historical references see Schrijver [36] and Cook [24].
2For historical references see Brazil et al. [19].
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weight, and the connection cost of a vertex v ∈ V is the distance from v to the closest facility in W .
The objective is to minimize the sum of all opening and connection costs. The Facility Location
problem has the same root3 as the Steiner Tree problem in the Fermat-Torricelli problem from 1643,
in which a point is to be found that minimizes the total distance to three other points in the plane.
The generalization to an arbitrary number of other points became known as the Weber problem,
after Alfred Weber studied it in 1909 in the context of finding a factory location so as to minimize
the transportation costs of suppliers. Among other problems, Hakimi introduced Facility Location
to networks in 1964, and related it to finding locations for police stations in road networks.

The main result of this section is the following, of which we give a proof sketch below.

Theorem 8.1. If the input graph G has constant highway dimension k with constant violation λ > 0,
then for any constant ε ∈ (0, 1] a (1 + ε)-approximation to each of the Travelling Salesman, Steiner
Tree and Facility Location problems can be found in quasi-polynomial time.

Our approach is similar to those used for Euclidean [10] and low doubling dimension [38] metrics.
Accordingly it can also be used for other problems, as in [10]. The main idea is to compute a
bounded treewidth graph from the input according to Theorem 1.3, and then optimally solve the
computed graphs using known algorithms for which the running time can be bounded in terms of
the treewidth. However, the treewidth bound of Theorem 1.3 depends on the aspect ratio α. To
guarantee quasi-polynomial running times we therefore need to ensure that the aspect ratio of the
input used in Theorem 1.3 is not too large. We achieve this by computing a coarse net of polynomial
aspect ratio for the input graph first. It is not too hard to show that only a small distortion of the
optimum solution is incurred if the nets are fine enough, and we therefore obtain approximation
schemes for the input instances. However, it is not necessarily the case that the nets themselves are
shortest-path metrics of low highway dimension graphs, even if they are obtained from graphs of
low highway dimension. Hence we need to argue that we can actually achieve the treewidth bound
of Theorem 1.3, even though we use the nets as inputs.

We go on to describe how a QPTAS as claimed in Theorem 8.1 can be obtained, if a problem P
has the following properties. Thereafter we will show that they are true for each of our considered
problems.

1. An optimum solution for P can be computed in time nO(t) for graphs of treewidth t,

2. a constant approximation to P in G can be computed in (quasi-)polynomial time,

3. the diameter of the input graph G can be assumed to be O(n ·OPTG), where OPTG is the
cost of an optimum solution in G,

4. an optimum solution in a δ-net of the vertices V of G has cost at most OPTG +O(nδ),

5. the optimization function of P is linear in the edge costs, and

6. any solution of P in a δ-net of the vertices V of G can be converted to a solution for G losing
at most an additive factor of O(nδ).

Assuming that ε, the highway dimension k, and the violation λ are constant, the treewidth
bound of Theorem 1.3 is polylogarithmic in the aspect ratio α. Combining Theorem 1.3 with an
algorithm for bounded treewidth graphs having a running time as proclaimed in item 1, thus does
not guarantee quasi-polynomial running time yet, since α might be large. Hence we will reduce the

3For historical references see Smith et al. [37].
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aspect ratio by pre-computing a coarse set of vertices of the input first. In particular, we greedily
compute a δ-net of V , where δ = εκ/n and κ = Θ(OPTG) is a constant approximation of the cost
OPTG of the optimum solution for the considered problem, which can be obtained according to
item 2. We assign each vertex in V to the closest point of the εκ/n-net. Note that this point is
unique if we assume each shortest-path length to be unique. Since the minimum distance between
any two vertices of the εκ/n-net is Ω(ε ·OPTG/n) and at most O(n ·OPTG) according to item 3,
the aspect ratio of the net is O(n2/ε). For such polynomial aspect ratios, the treewidth guaranteed
by Theorem 1.3 yields quasi-polynomial 2O(polylog(n)) running times given an algorithm for bounded
treewidth graphs as in item 1.

Computing an embedding for the metric given by the εκ/n-net is not straightforward though,
since the net is not necessarily a metric given by the shortest-path distances of a low highway
dimension graph. We will therefore use the structure of the input graph G and impose it on the
computed net. More concretely, a town T on level i of G induces a town T ′ of level i of the εκ/n-net,
by restricting T to the vertices of the net. All properties such as laminarity, separation bounds, and
diameter (see Section 3) needed for our construction are maintained by these subsets T ′. However
the shortest-path covers are not maintained, since the hubs might not be part of the εκ/n-net.
Instead of a shortest path cover, for every level i we will use a set of shifted hubs. For each hub in
spc(ri) of G this set of shifted hubs contains the vertex of the εκ/n-net it was assigned to, which is
at distance at most εκ/n.

Note that the towns decomposition of the net is given by the original hubs of the input graph G,
and not the shifted hubs. Consider the embedding that results from using the shifted hubs together
with the imposed towns decomposition of the εκ/n-net as input to the algorithm. Apart from the
fact that towns contain only a subset of the vertices, the only difference to using G as input to
the algorithm is that the approximate core hubs XT of a town T are now shifted by a total of
at most εri + εκ/n on level i from the original positions of the hubs in G. By re-examining the
proofs of Section 5 it is therefore not hard to see that in the embedding of the net the expected
shortest-path length for any pair u, v is (1 +O(ε))(distG(u, v) +O(εκ/n)), when using these hubs.
By item 4 the optimum solution in the εκ/n-net has cost at most OPTG + εκ, and by item 5 the
optimization function is linear in the edge costs. Hence by linearity of expectation, the optimum
solution in the embedding, computed by the algorithm given by item 1, has expected cost at most
(1+O(ε))(OPTG+O(εκ)) = (1+O(ε))OPTG. This solution still has to be converted into a solution
of the input graph G, which can be done by item 6 with only an O(εκ) additive overhead. Hence
we obtain an approximation scheme.

We still need to argue that we obtain the same treewidth bound of Theorem 1.3 when using
shifted hubs. In particular, it might be that the approximate core hubs are not locally sparse, due
to the additional εκ/n shift. To argue that local sparsity can be maintained, we make the level j
for which εκ/n ∈ (rj , rj+1] the lowest level, i.e. for any level below j we remove all hubs. Note that
the resulting set of hubs still covers all distances in the εκ/n-net. The total shift of a hub is now at
most εκ/n + εri ≤ rj+1 + εri ≤ (c/4 + ε)ri, since we made j the lowest level. If we assume that
ε ≤ 1 then this shift is less then cri/2. Accordingly, Lemma 6.2 still implies that the hubs in XT are
locally 3ks-sparse, as needed. All other proofs are as before and thus we obtain the same treewidth
bound as in Theorem 1.3.

Thus if all claimed properties for the considered problems are true, then this gives us QPTASs
for low highway dimension graphs, as claimed in Theorem 8.1. We will go on to argue that each
of the properties can be maintained for Travelling Salesman, Steiner Tree, and Facility Location.
For the latter two, in addition to using a net as input instead of G, we also need to specify the
additional input parameters. In particular for Steiner Tree, in addition to assigning each vertex of
G to the closest net point, we also need to shift terminals. More concretely, if a terminal of R is
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assigned to a vertex v of the net, then we make v a terminal of the net. For Facility Location we
need to adapt the opening costs in the net, which we do by setting the cost of a vertex v in the net
to the smallest cost of any vertex of G assigned to v.

For each of the three problems, the linearity of the optimization function as required by item 5
is obvious from their definitions. For Travelling Salesman and Steiner Tree, Bateni et al. [16] show
how to solve these problems in time nO(1) · tt, where t is the treewidth of the input instance. For
Facility Location, Ageev [6] gives an O(nt+2) algorithm. This settles item 1. It is well-known that a
2-approximation for Travelling Salesman can be obtained from the minimum spanning tree (MST),
and that for Steiner Tree the MST on the metric induced by the terminals is a 2-approximation (see
e.g. [39]). Mahdian et al. [33] give a 1.52-approximation algorithm for the Facility Location problem.
Hence we obtain an estimate κ = Θ(OPTG) in each case, so that also item 2 is true.

It is easy to see that for any instance of the Travelling Salesman problem, OPTG is at least
twice the diameter of the graph G. For Steiner Tree, observe that the maximum distance between
two terminals is at most OPTG. Therefore we can remove Steiner vertices (vertices that are not
terminals) which are farther away from any terminal than κ. Thus the diameter of G is O(κ).
For Facility Location, consider a subgraph induced by edges of length at most κ. Note that in
an optimal solution, for any vertex the closest facility will be in its connected component in this
subgraph. Hence we can solve the problem on each component separately. The diameter of such a
component is at most O(nκ). Therefore, we can assume that item 3 is true in each case.

The optimum Travelling Salesman tour in the net is at most OPTG, since the net is a subset
of V . Since the terminals for the Steiner Tree problem are shifted by at most δ in a δ-net, the
optimum solution in the net has cost at most OPTG + nδ. By setting the vertex weights of the net
as described above for the Facility Location problem, taking each facility of the optimum solution
in G and shifting it to the vertex of a δ-net it is assigned to will increase only the total connection
cost by at most nδ. Hence the optimum solution in the net (with the adapted vertex weights) has
cost at most OPTG + nδ. This shows item 4 for each problem.

Given a solution of a δ-net of a graph G for Travelling Salesman, we obtain a tour for G by
making a detour from each vertex v of the net to the vertices of G assigned to v. The total overhead
of this step is at most 2nδ. For Steiner Tree, we obtain a solution for G by connecting each terminal
in R to the terminal of the δ-net it is assigned to. This introduces an additional cost of nδ in total.
The algorithm for Facility Location by Ageev [6] solves a generalization of the problem where the
connection cost of each vertex is weighted. More concretely, in addition to the weight determining
the opening cost, each vertex v also has a weight ϕ(v), and the connection cost of v for a set W of
facilities is ϕ(v) · dist(v,W ). In a δ-net we can set ϕ(v) to be the number of vertices of G assigned
to v. If a facility is opened on a vertex v of the net, we obtain a solution to G by shifting the
facility to the vertex of smallest opening cost assigned to v. By our choice of the opening costs in
the net, the total opening cost for the solution in G is the same as for the solution in the net. Due
to the additional weights ϕ(v), the total connection cost in the solution for G is at most nδ larger
than in the solution for the δ-net. This shows item 6, which was the last needed property to prove
Theorem 8.1.

9 Comparing alternative definitions of the highway dimension

In this section we compare the different definitions of highway dimension, as given in [1, 2, 3] and this
paper. We also consider the hardness of computing the highway dimension. The original definition
of [1] is the one we consider in the present work (with violation λ = 0 in Definition 1.1). In a follow-up
paper [2] a more general definition was given (along with alternative notions such as the average
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and cardinality-based highway dimension, which we do not consider here). Later in [3] another much
more restrictive definition was given, under which graphs of constant highway dimension also have
constant doubling dimension. Hence using this definition, the result of Talwar [38] can be applied
immediately to obtain a bounded-treewidth embedding with small distortion.

Note that this is not true for graphs of constant highway dimension according to Definition 1.1:
a star with unit edge lengths can use the center vertex as the single hub for any scale, since all
shortest paths pass through it. Hence its highway dimension is 1, but the doubling dimension
of a star is log2 n. In the following we will show that in fact a graph that has constant highway
dimension according to [3], also has constant highway dimension according to Definition 1.1 if the
violation is zero. Hence the original definition of [1] is a generalization of the one used in [3]. As far
as we know, this has not been observed anywhere else yet. The highway dimension in [3] is defined
as follows.

Definition 9.1 ([3]). Given a shortest path P = (v1, . . . , vk) and r > 0, an r-witness path P ′ is a
shortest path with length more than r, such that P ′ can be obtained from P by adding at most
one vertex to each end. That is, either P ′ = P , or P ′ = (v0, v1, . . . , vk), or P

′ = (v1, . . . , vk, vk+1),
or P ′ = (v0, v1, . . . , vk, vk+1). If P has an r-witness path P ′ it is said to be r-significant, and P is
(r, d)-close to a vertex v if dist(P ′, v) ≤ d. The highway dimension of a graph G is the smallest
integer k such that for all r > 0 and v ∈ V , there is a hitting set of size at most k for the r-significant
paths that are (r, 2r)-close to v.

The following lemma from [3] implies that an embedding for a graph of constant highway
dimension according to Definition 9.1 can easily be obtained by applying Theorem 5.5.

Lemma 9.2 ([3]). A graph that has highway dimension k according to Definition 9.1 has doubling
dimension at most log2(k + 1).

Lemma 9.2 is also useful to prove that graphs with constant highway dimension according to
Definition 9.1 also have constant highway dimension according to Definition 1.1, as we show next.

Lemma 9.3. A graph G that has highway dimension k according to Definition 9.1 has highway
dimension O(k2) according to Definition 1.1 for violation λ = 0.

Proof. Consider any ball B of radius 4r around a vertex v of G. We need to show that there is a
hitting set of size O(k2) for all shortest paths of length more than r entirely contained in B. Since
the doubling dimension of G is at most log2(k + 1) by Lemma 9.2, there are at most k + 1 balls of
radius 2r that cover all vertices in B. In particular, any shortest path of length more than r that is
contained in B also intersects some of the k + 1 balls of radius 2r. That is, each such shortest path
has a vertex that is at distance at most 2r to some center vertex of one of the k + 1 balls. Each of
these balls has a hitting set of size at most k for the r-significant paths that are (r, 2r)-close to its
respective center vertex. Since any shortest path of length more than r is its own r-witness, the
union of all these hitting sets intersects all the shortest paths of length more than r in B. Hence
there is a hub set of size k(k + 1) that hits all necessary shortest paths in B.

We now turn to the more general definition of highway dimension given in [2]. Here the idea is
that the hubs need only hit shortest paths that pass through a ball of radius 2r, instead of shortest
paths that are contained in a ball of radius 4r.

Definition 9.4 ([2]). The highway dimension of a graph G is the smallest integer k such that for
every scale r > 0, and every ball B2r(v) of radius 2r, there are at most k vertices of V hitting all
shortest paths of length in (r, 2r] and intersecting B2r(v).
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Figure 6: An example, which has highway
dimension 2 according to Definition 9.4, and
for which Lemma 6.2 is not true due to B4(v)
and vertices wi.

It is easy to see that Definition 9.4 is a generalization of
Definition 1.1 for violation λ = 0, since any path of length
at most 2r that intersects a ball B2r(v) is also entirely
contained in the ball B4r(v). Interestingly however, we do
not know how to generalize our embedding results to this
more general definition. In particular, we can show that
Lemma 6.2 does not hold for graphs of constant highway
dimension according to Definition 9.4, as the next lemma
implies. Hence an alternative method to the one developed
in this paper would be needed to find an embedding of
low distortion.

Lemma 9.5. For any integer l there exists a graph with
highway dimension k = 2 according to Definition 9.4, and
the following properties. There is a scale r > 0 for which
there is a ball B of radius 2r, such that a minimal locally
2-sparse shortest path cover contains l + 1 hubs, each of
which is at distance at most 2r from some vertex in B.

Proof. Given l we construct a star-like graph G as follows (see Figure 6). It has a center vertex v,
and for each i ∈ {1, . . . , l} it has four vertices ui, wi, xi, yi. There is an edge from v to ui of length 4,
from ui to wi of length 2ε, from wi to xi of length 1, and from wi to yi of length 1 + ε, for some
suitably small ε > 0.

We first prove that G has highway dimension k = 2 according to Definition 9.4. Consider a
ball B2r(v) centered at v. If r < 2 then this ball contains only v and there is nothing to show.
If r ∈ [2, 2 + ε) then B2r(v) = {v, u1, . . . , ul}, and it suffices to choose v as the only hub for this
ball: any shortest path intersecting the ball and not containing the hub v has length at most
1 + 3ε (e.g. u1w1y1), which is shorter than r. If r ≥ 2 + ε then wi ∈ B2r(v) for all i and the paths
xiwiyi intersect the ball. It still suffices to choose v as the only hub since a shortest path that
does not contain v has length at most 2 + ε (e.g. x1w1y1), and only paths of length more than
r need to be hit by the hubs. Now consider a ball B2r(zi) for some zi ∈ {ui, wi, xi, yi}. If r < 4
then B2r(zi) ⊆ {v, ui, wi, xi, yi}, and it suffices to choose {v, wi} as the hub set since any path
intersecting the ball passes through one of these vertices (if, for instance, zi = ui and r = 2 then
this choice is also necessary due to xiwiyi and vui). If r ≥ 4 then it suffices to choose only v as a
hub, since any shortest path not using v has length at most 2 + ε.

To prove that the claimed shortest path cover exists, consider the scale r = 2, for which
spc(r) = {v, wi | 1 ≤ i ≤ l}. This shortest path cover is minimal due to the xiwiyi paths of
length 2 + ε > r, and the vui paths of length 4 = 2r, for each i. It is also locally 2-sparse since
the B2r(ui) balls contain the maximum number of two hubs of spc(r). Now consider the ball
B := B2r(v) = {v, u1, . . . , ul}. Even though it contains only the hub v, each hub wi has a vertex ui
in B at distance 2ε ≤ 2r, which proves the claim.

Note that the graph constructed in the above proof does not have constant highway dimension
according to Definition 1.1 with violation λ = 0. This is because at scale r = 2, the ball centered at
v with radius 4r contains the xiwiyi paths, each of which needs to be covered by a hub.

Next we observe that introducing a violation to the original definition of [1] is not an entirely
innocuous change. In particular there are graphs for which the highway dimension grows significantly
when changing the violation only slightly, as the following lemma shows.

32



Lemma 9.6. For any constant c > 4 there is a graph that, according to Definition 1.1, has highway
dimension 1 with respect to c and highway dimension Ω(n) with respect to any c′ > c.

Proof. We construct a spider graph as follows. Let l ≫ 1 be a parameter and G = (V,E) where
V = {u, v1, w1, . . . , vl, wl}, and E = {(u, vi), (vi, wi)|1 ≤ i ≤ l}, and for all i the lengths of (u, vi)
and (vi, wi) are c− 1 and 1, respectively. If r ≥ 1 then the hub u covers all paths longer than r in
any ball of radius cr. Consider a ball Bcr(t) for any vertex t where r < 1. If t = u, the hub u covers
all paths in Bcr(t) of length (r, cr]. If t is vi or wi for some i then vi covers all requisite paths in
Bcr(t) because Bcr(t) cannot contain vj or wj for j 6= i. Therefore the highway dimension of G with
respect to c is 1.

On the other hand, for any c′ > c, let r = c/c′ and consider the ball Bc′r(u), which has radius
c′ · c/c′ = c and covers the entire graph. Any set of hubs that covers paths of length more than
c/c′ < 1 must cover all edges (vi, wi) and must therefore include vi or wi for every i. Hence the
highway dimension with respect to c′ is at least l = (n− 1)/2.

Finally, we also show that computing the highway dimension according to Definition 1.1 is
NP-hard. It remains open whether this is also true when considering the more restrictive highway
dimension definition from [3].

Theorem 9.7. Computing the highway dimension according to Definition 1.1 is NP-hard, for any
violation λ ≥ 0, even on graphs with unit edge lengths.

Proof. The reduction is from the NP-hard Vertex Cover problem [28]: given a graph G = (V,E)
we need to compute a minimum sized set of vertices C ⊆ V hitting each edge, i.e. v ∈ C or u ∈ C
for each vu ∈ E. For the reduction we introduce an additional vertex w and connect it with every
vertex in V . Then we give each edge of the resulting graph G′ unit length.

A hub set hitting each shortest path of length 1 is exactly a vertex cover for a graph with unit
edge lengths. Note that for scale r = 1/c, the ball Bcr(w) contains all vertices of the graph G′.
Hence removing w from the hub set in Bcr(w), which hits all shortest paths of length more than r,
yields a vertex cover for G, as c ≥ 4. Conversely, adding w to a vertex cover for G is a hub set in
Bcr(w) hitting all necessary shortest paths. Thus the highway dimension according to Definition 1.1
is k + 1 in the graph G′ if and only if the smallest vertex cover in G has size k.

10 Conclusions and open problems

Our main result shows that we can find embeddings of low highway dimension graphs into a distri-
bution of bounded treewidth graphs, with arbitrarily small expected distortion. Since the resulting
treewidth is polylogarithmic in the aspect ratio, this implies QPTASs for several optimization
problems that naturally arise in transportation networks. Hence, even if the network includes links
resulting from means of transportation such as airplanes, trains, or buses, our results indicate that
these problems are computationally easier than in the general case. It remains open however to
determine the complexity of the considered problems on graphs with constant highway dimension.
In particular we do not even know whether the problems are NP-hard for these graphs. Also, it
remains open whether we really need the more restrictive highway dimension definition as given in
Definition 1.1, or whether the more general one in Definition 9.4 suffices to compute an embedding.

As argued in the introduction, even a complete graph can have highway dimension 1, and
therefore low highway dimension graphs do not exclude minors. However it is not clear whether
the treewidth of such a graph can be bounded in terms of the aspect ratio α. Even though the
hardness results in [27] for the p-Center problem on graphs with highway dimension k exclude
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treewidth bounds of the form O(k logα), it is possible that the treewidth of such a graph is of the
form O(logk α). It seems notoriously difficult however to either prove or disprove this.

Another interesting open problem is the possibility of finding an embedding into a class of
graphs with a treewidth that is polylogarithmic in 1/ε but not the aspect ratio. This would imply
PTASs for the considered optimization problems. One limiting factor however is that we use the
embedding given by Talwar [38] for low doubling dimension graphs in our construction, for which it
is unclear how to obtain embeddings with treewidths independent of the aspect ratio. Even though
Bartal et al. [13] improve on the result by Talwar [38] by giving a PTAS for the Travelling Salesman
problem, the latter result does not give an embedding.

One alternative path to obtaining approximation algorithms is to find so called padded decom-
positions [4]. Whether these exist for low highway dimension graphs is not known. It may also be
possible to find reductions from low highway dimension graphs to graphs of bounded treewidth that
distort the optimal solutions of the instances by arbitrarily small factors. That is, the reduction
would produce a graph on a different vertex set than the input graph, meaning that it is not an
embedding. As for planar graphs [5, 16, 18, 31], this would circumvent the issue that better embed-
dings might not exist (as shown for the planar case [20, 21]). A last option obviously would be to
find algorithms that do not use algorithms for bounded treewidth graphs as a back-end, and instead
solve the problems on the graphs directly, as for instance was done for Euclidean metrics [7, 8, 9]
and, in the case of the Travelling Salesman problem, also for low doubling metrics [13].
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