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Abstract

We consider the Sparse Hitting Set (Sparse-HS) problem, where we are given a set sys-
tem (V, F , B) with two families F , B of subsets of the universe V . The task is to Ąnd a hitting set
for F that minimizes the maximum number of elements in any of the sets of B. This generalizes
several problems that have been studied in the literature. Our focus is on determining the complexity
of some of these special cases of Sparse-HS with respect to the sparseness k, which is the optimum
number of hitting set elements in any set of B (i.e., the value of the objective function).

For the Sparse Vertex Cover (Sparse-VC) problem, the universe is given by the vertex
set V of a graph, and F is its edge set. We prove NP-hardness for sparseness k ≥ 2 and polynomial
time solvability for k = 1. We also provide a polynomial-time 2-approximation algorithm for any k.
A special case of Sparse-VC is Fair Vertex Cover (Fair-VC), where the family B is given by
vertex neighbourhoods. For this problem it was open whether it is FPT (or even XP) parameterized
by the sparseness k. We answer this question in the negative, by proving NP-hardness for constant k.
We also provide a polynomial-time (2 − 1

k
)-approximation algorithm for Fair-VC, which is better

than any approximation algorithm possible for Sparse-VC or the Vertex Cover problem (under
the Unique Games Conjecture).

We then switch to a different set of problems derived from Sparse-HS related to the highway

dimension, which is a graph parameter modelling transportation networks. In recent years a growing
literature has shown interesting algorithms for graphs of low highway dimension. To exploit the
structure of such graphs, most of them compute solutions to the r-Shortest Path Cover (r-SPC)

problem, where r > 0, F contains all shortest paths of length between r and 2r, and B contains all
balls of radius 2r. It is known that there is an XP algorithm that computes solutions to r-SPC of
sparseness at most h if the input graph has highway dimension h. However it was not known whether
a corresponding FPT algorithm exists as well. We prove that r-SPC and also the related r-Highway

Dimension (r-HD) problem, which can be used to formally deĄne the highway dimension of a
graph, are both W[1]-hard. Furthermore, by the result of Abraham et al. [ICALP 2011] there is a
polynomial-time O(log k)-approximation algorithm for r-HD, but for r-SPC such an algorithm is
not known. We prove that r-SPC admits a polynomial-time O(log n)-approximation algorithm.
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1 Introduction

In this paper, we study the problem of Ąnding a sparse hitting set. That is, we are given a

set system (V,F ,B) on universe V with two set families F ,B ⊆ 2V , and a feasible solution

is a set H ⊆ V that hits (i.e., intersects) every set of F . Instead of minimizing the overall

size of the solution however, we think of the sets of B as being small and we would like

to distribute the solution H among the sets in B as evenly as possible. Intuitively and

depending on the context, the sets in B are balls in some metric and the hitting set should be

sparse within them. That is, we want to Ąnd a hitting set for F that minimizes the largest

intersection with the sets of B. Formally, the Sparse Hitting Set (Sparse-HS) problem

with input (V,F ,B) is deĄned by the following integer linear program (ILP) with indicator

variables xv for each v ∈ V encoding membership in the solution H ⊆ V .

min k such that:
∑

v∈F

xv ≥ 1 ∀F ∈ F (Sparse-HS-ILP)

∑

v∈B

xv ≤ k ∀B ∈ B

xv ∈ ¶0, 1♢ ∀v ∈ V

The Sparse-HS problem generalizes several problems studied in the literature, with

applications in for instance cellular [24], communication [25], and transportation [2, 22]

networks. Our aim in this paper is to determine the complexity of some basic variants of

Sparse-HS, and we are speciĄcally interested in the complexity depending on the sparseness,

which is the solution value k of (Sparse-HS-ILP). In general, Sparse-HS contains the

Hitting Set problem by setting B = ¶V ♢, and thus does not admit any g(k)-approximation

in f(k) · nO(1) time [21], for any computable functions f and g, where n = ♣V ♣, under ETH.

Sparse Vertex Cover. A much easier special case of Hitting Set is the well-known

Vertex Cover problem: for the Sparse Vertex Cover (Sparse-VC) problem the set

system is given by a graph G = (V,E) so that F = E and B ⊆ 2V . We show that this

problem is NP-hard for any k ≥ 2, even on very simple input graphs.

▶ Theorem 1. Sparse-VC is NP-hard for any k ≥ 2, even if the input graph is a matching.

Note that this hardness result implies that, unless P=NP, Sparse-VC does not admit

an XP algorithm with runtime nf(k) for any function f (the problem is paraNP-hard

parameterized by the sparseness k). This is in contrast to the Vertex Cover problem,

which is known to be fixed-parameter tractable (FPT) parameterized by the solution size s,

which means that it can be solved much more efficiently in f(s)·nO(1) time for some function f

(which can be shown [10] to be 1.2738s). On the other hand, we will show that for k = 1 the

Sparse-VC problem is polynomial-time solvable, which together with the previous hardness

result settles the complexity of the Sparse-VC problem for every sparseness value k.
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▶ Theorem 2. Sparse-VC is polynomial time solvable for k = 1.

As we will see, Theorem 1 also implies that Sparse-VC does not admit a polynomial-time

(3/2−ε)-approximation algorithm for any ε > 0, unless P=NP. Moreover, As Vertex Cover

is a special case of Sparse-VC with B = ¶V ♢, any polynomial time (2 − ε)-approximation

algorithm for Sparse-VC would refute the Unique Games Conjecture (UGC) [28]. On the

positive side, we show that we can match this conditional approximation lower bound with a

2-approximation algorithm. This means that Sparse-VC can be approximated as well as

the Vertex Cover problem, which also admits a 2-approximation [28] in polynomial time.

▶ Theorem 3. Sparse-VC admits a polynomial time 2-approximation algorithm.

Fair Vertex Cover. A special case of Sparse-VC is the Fair Vertex Cover (Fair-VC)

problem where the family of sets B is given by closed neighbourhoods, i.e., if N [v] is the set

containing vertex v and all neighbours of v in G then B = ¶N [v] ♣ v ∈ V ♢ (alternatively, B
contains all balls of radius 1). The fairness constraint was introduced by Lin and Sahni [25]

in the context of communication networks, and has since then been studied for several

types of problems (cf. Section 1.1), including Vertex Cover [22, 18, 26]. In contrast

to this paper, in [22, 18] the problem is deĄned slightly differently by considering open

neighbourhoods, i.e., B = ¶N [v] \ ¶v♢ ♣ v ∈ V ♢, and we call this version Open-Fair-VC.

Notably, the parameterized complexity of Open-Fair-VC has been studied for a plethora of

parameters, including treedepth, treewidth, feedback vertex set, modular width [22], and

the total solution size ♣H♣ [18], and most of these results also apply to Fair-VC with closed

neighbourhoods.

Jacob et al. [18] observe that it is NP-hard to decide if a vertex cover of size s exists,

if every neighbourhood is allowed to only contain at most k vertices of the solution H, for

a given constant k ≥ 3: this follows from the fact that Vertex Cover is NP-hard on

sub-cubic graphs [17]. While the authors of [18] call this problem Fair Vertex Cover

as well, note that this is signiĄcantly different from the Fair-VC problem studied in this

paper as well as the Open-Fair-VC problem studied in [22]. In particular, on sub-cubic

graphs both of these problems as deĄned here always trivially have a solution for k ≥ 3,1

and thus the NP-hardness of Vertex Cover on sub-cubic graphs does not immediately

imply NP-hardness of Fair-VC or Open-Fair-VC. In fact, for the natural parameterization

by the sparseness k the complexity of Open-Fair-VC (and also Fair-VC) has so far been

unknown.2 We answer this open problem by showing NP-hardness of Fair-VC for k ≥ 3 and

of Open-Fair-VC for k ≥ 4 on more complex input graphs when compared to Sparse-VC.

▶ Theorem 4. Fair-VC is NP-hard for any k ≥ 3 and Open-Fair-VC is NP-hard for

any k ≥ 4, even on planar input graphs.

Thus, as for Sparse-VC, we can conclude that Fair-VC and Open-Fair-VC do not

admit XP algorithms parameterized by k. For the cases when k ≤ 2, Jacob et al. [18]

provide a polynomial time algorithm that solves their version of Fair Vertex Cover,

which however also works for the Fair-VC and Open-Fair-VC problems as deĄned in this

paper. Hence this settles the complexity of Fair-VC for every value of k, and only leaves

the value k = 3 open for Open-Fair-VC.

1 Observe that it is never necessary to pick a vertex v and all its neighbours.
2 Tomáš Masařík, personal communication.
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In terms of approximation, interestingly we are able to obtain a slightly better algorithm

for Fair-VC than for Sparse-VC, namely a (2 − 1
k
)-approximation. This beats the best

possible approximation for Sparse-VC and Vertex Cover under UGC [28]. In particular,

the following theorem implies that for the smallest value k = 3 for which Fair-VC is NP-hard,

we can obtain a solution of sparseness 5. We leave open whether a solution of sparseness 4 can

be computed in polynomial time for Fair-VC if k = 3, and whether better approximation

algorithms are possible for Open-Fair-VC.

▶ Theorem 5. Fair-VC admits a polynomial time (2 − 1
k

)-approximation algorithm.

Shortest Path Cover and Highway Dimension. We now turn to a different set of problems

derived from Sparse-HS, which as we shall see generalize Fair-VC. Given a value r > 0

and an edge-weighted graph G, for the r-Shortest Path Cover (r-SPC) problem the

family F is given by shortest paths of length between r and 2r and the family B is given

by balls of radius 2r. That is, let Pr contain S ⊆ V if and only if S is the vertex set of a

path in G, which is a shortest path (according to the edge weights) and whose length is in

the range (r, 2r]. Furthermore, let dist(u, v) be the length of a shortest u-v-path and let

Br(v) = ¶u ∈ V ♣ dist(u, v) ≤ r♢ denote the ball of radius r centered at v. Then for the

r-SPC problem, F = Pr and B = ¶B2r(v) ♣ v ∈ V ♢.

The r-SPC problem Ąnds applications in the context of the highway dimension, which

is a graph parameter introduced by Abraham et al. [2] to model transportation networks.

To deĄne the highway dimension, we deĄne a problem related to r-SPC called r-Highway

Dimension (r-HD), where for each vertex v ∈ V the task is to Ąnd a hitting set for all

shortest paths of length in (r, 2r] intersecting the ball B2r(v), and we need to minimize the

largest such hitting set. Note that compared to r-SPC the quantiĄcation is reversed, i.e., for

r-SPC there is a hitting set that is small in every ball, while for r-HD for every ball there is

a small hitting set (thus r-HD is not a special case of Sparse-HS). The highway dimension

of an edge-weighted graph G is the smallest integer h such that there is a solution to r-HD

of value at most h in G for every r > 0.

There is empirical evidence [4] that road networks have small highway dimension, and it

has been conjectured [13] that public transportation networks (especially those stemming

from airplane networks) have small highway dimension as well.3 Therefore, there has been

some effort to devise algorithms [13, 2, 12, 14, 11, 11, 5, 19, 8, 7] for problems on low highway

dimension graphs that naturally arise in transportation networks. It is known [1] that if

the highway dimension of a graph G is h, then the r-SPC problem on G has sparseness at

most h for every r > 0, but not vice versa, as the sparseness of r-SPC can be much smaller

than h. However, since a solution to r-SPC consists of one hitting set H ⊆ V for the whole

graph, it is more convenient to work with algorithmically than the n hitting sets for all balls

of radius 2r that form a solution to r-HD. Therefore, algorithms exploiting the structure of

graphs of low highway dimension typically compute a solution to the r-SPC problem for

each of the O(n2) relevant values of r given by the pairwise distances between vertices.

For graphs of low highway dimension, Abraham et al. [1] give an algorithm that for

each relevant value of r computes a solution to the r-HD problem, in order to obtain a

solution to r-SPC with sparseness at most the value of the r-HD solution. While Abraham

et al. [1] propose to use an approximation algorithm for r-HD (see below), note that the

3 In fact there are several deĄnitions of the highway dimension, with the one presented here being
well-suited for public transportation networks, cf. [13, 6]
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r-HD problem admits an XP algorithm with runtime nO(k), since for any ball B2r(v) it can

construct the set system given by all shortest paths of length in (r, 2r] intersecting B2r(v),

for which it can then try every possible k-tuple of vertices as a solution. This algorithm can

thus be used to compute solutions to r-SPC of sparseness at most h in nO(h) time if the

input graph has highway dimension h. Interestingly, it is not possible to compute solutions of

optimum sparseness for r-SPC using an XP algorithm due to the NP-hardness of Fair-VC:

consider an r-SPC instance with unit edge weights and value r = 1/2. Since every edge is a

shortest path between its endpoints, the r-SPC problem on this instance is equivalent to

Fair-VC. As argued above however, no XP algorithm exists for Fair-VC, unless P=NP.

In light of the growing amount of work on problems on low highway dimension graphs, it

would be very useful to have a faster algorithm to solve r-HD in order to compute a hitting

set for r-SPC of corresponding sparseness. While it is known that computing the highway

dimension is NP-hard [13] and this also implies that r-HD is NP-hard, r-HD might still be

FPT and allow algorithms with runtime f(k) · nO(1) for some function f . However, we will

show that it is unlikely that such algorithms exist. In particular, we prove that r-HD is

W[1]-hard parameterized by the solution value k. We also prove that r-SPC does not admit

FPT algorithms (in particular, k here denotes the optimum sparseness and not just an upper

bound that we would obtain by solving r-HD, as suggested above). While already the above

reduction from Fair-VC to r-SPC excludes FPT algorithms for r-SPC, this only excludes

such algorithms for very small values of r, in fact the smallest relevant value for r (as the

problem becomes trivial for even smaller values). A priori it is not clear whether r-SPC

admits FPT (or XP) algorithms for large values of r. In our reduction however, the value

of r takes the largest relevant value, so that there exists a ball of radius 2r containing the

whole graph.

▶ Theorem 6. Both r-HD and r-SPC are W[1]-hard parameterized by their solution values k,

where 2r is the radius of the input graph.

One caveat of this hardness result is that it does not answer the question of whether

computing the highway dimension is FPT or not. This is because the presented reduction

only shows hardness of r-HD for a large value r. However, for smaller values of r the solution

value to r-HD is unbounded in the constructed graph, and thus the graph does not have

bounded highway dimension. This means that it might still be possible to compute the

highway dimension in FPT time, but not using the existing tools provided by Abraham et

al. [1], where each value r is considered separately. Instead, if such an algorithm exists it

must consider the structure of the whole graph. We leave open whether there is such an

algorithm.

As mentioned above, Abraham et al. [1] propose an approximation algorithm for r-HD:

under the assumption that all shortest paths are unique (which can always be achieved by

slightly perturbing the edge lengths), r-HD admits a polynomial time O(log k)-approximation

algorithm. Due to the fact that the sparseness of r-SPC can be a lot smaller than the solution

value to r-HD,4 it is not known how to obtain such an algorithm for r-SPC. However, we

prove the existence of a weaker O(logn)-approximation algorithm.

▶ Theorem 7. r-SPC admits a polynomial time O(logn)-approximation algorithm.

4 as for instance witnessed by the graphs constructed in the reduction for Theorem 4 and value r = 1/2.

IPEC 2022



5:6 On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension

Dense Matching. Finally, in light of the above results for Sparse-VC, we also consider

the dual Dense Matching problem, where we are given a graph G = (V,E) and the

task is to Ąnd a matching M ⊆ E maximizing the smallest number of matching edges

induced by a set in the family B, i.e., the minimum ♣M ∩ E(B)♣ over all B ∈ B, where

E(B) = ¶¶u, v♢ ∈ E ♣ u, v ∈ B♢. Despite the Maximum Matching problem being

polynomial-time solvable, we show that Dense Matching does not admit a polynomial time

(2−ε)-approximation, even if B is restricted to balls of radius two, unless P=NP. Interestingly,

a matching 2-approximation seems a lot harder to come by compared to Sparse-VC, and

we leave open whether a constant approximation is possible for Dense Matching.

▶ Theorem 8. It is NP-hard to approximate Dense Matching within 2 − ε for any ε > 0,

even if B = ¶B2(v) ♣ v ∈ V ♢ where all edges have weight 1.

Due to space restrictions, the proof of Theorem 8 can be found in the appendix.

1.1 Related Work

Apart from the work cited above, we here list some additional related work. Kanesh et

al. [20] study the Fair Feedback Vertex Set problem, where the family F contains

all vertex sets of cycles of the input graph (in this case F is not part of the input). They

prove results on the parameterized complexity of several versions of this problem, where

the considered parameters include treewidth, treedepth, neighbourhood diversity, the total

solution size, and the maximum vertex degree. Jacob et al. [18] consider the parameterized

complexity of the Fair Set and Fair Independent Set problems, but also Π-Fair Vertex

Deletion, where Π is any property expressible in Ąrst order (FO) logic. Knop et al. [22] study

Π-Fair Vertex Deletion for properties Π expressible in monadic second order (MSO1)

logic parameterized by the twin cover number. They also consider Fair-VC parameterized

by treedepth, feedback vertex number, and modular width. Agrawal et al. [3] study the

parameterized complexity of the Minimum Membership Dominating Set problem, where

F = B = ¶N [v] ♣ v ∈ V ♢, and consider parameterizations by pathwidth, sparseness, and

vertex cover number.

While in this paper we study Sparse-HS problems on graphs where the universe is the

set of vertices, another line of work studies variants of Sparse-HS when the universe is the

edge set. For instance, the work of Lin and Sahni [25] that introduced the fairness constraint,

studies the Fair Feedback Edge Set problem, where the family F contains the edge

sets of all cycles of the input graph. Masařík and Toufar [26] consider the parameterized

complexity of the Π-Fair Edge Deletion problem, where Π is a property expressible

in FO logic or in MSO logic. For each of these problems they study parameterizations by

the treewidth, pathwidth, treedepth, feedback vertex set number, neighbourhood diversity,

and vertex cover number. Kolman et al. [23] study the Π-Fair Edge Deletion problem

on graphs of bounded treewidth, where Π is any property expressible in MSO logic. They

also give tight polynomial-time O(
√
n)-approximation algorithms for Fair Odd Cycle

Transversal and Fair Min Cut, where the family F contains all edge sets of odd cycles

and (s, t)-paths for given vertices s and t, respectively. Another notable problem is Min

Degree Spanning Tree, where the family F consists of every edge cut under the fairness

constraint. Fürer and Raghavachari [15] prove that the problem is NP-hard but a solution of

sparseness k + 1 can be computed in polynomial-time.

Regarding the complexity of computing the highway dimension, it is interesting to note

that Abraham et al. [1] show that any set system given by unique shortest paths has

VC-dimension 2 (this observation also leads to the above mentioned O(log k)-approximation
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algorithm for r-HD). At the same time, Bringmann et al. [9] prove that the Hitting Set

problem is W[1]-hard for set systems of VC-dimension 2. Hence it is intriguing to think that

the latter reduction could possibly be modiĄed to also prove W[1]-hardness for r-HD or

r-SPC. However, it seems that shortest paths exhibit a lot more structure than general set

systems of VC-dimension 2, and thus it is unclear how to obtain a hardness result for r-HD

or r-SPC based on [9]. Instead, a more careful reduction as provided in Theorem 6 seems

necessary.

2 Sparse Vertex Cover

In this section we consider the Sparse-VC problem and start by proving NP-hardness for

any k ≥ 2.

▶ Theorem 1. Sparse-VC is NP-hard for any k ≥ 2, even if the input graph is a matching.

Proof. We reduce from a variant of the satisĄability problem called exactly-3-Sat, meaning

that all clauses contain exactly three literals. This problem was shown to be NP-complete

in [16]. For a set of variables X = ¶xi♢i, we use the notation X̄ := ¶x̄i♢i.

Let an instance of exactly-3-Sat be given by a set of variables X = ¶xi♢i=1,...,n

and a set of clauses C = ¶Cj♢j=1,...,m with Cj ⊂ X ∪ X̄, ♣Cj ♣ = 3. We deĄne the graph

G = (V,E) by V = X ∪ X̄ ∪ ¶yi, ȳi ♣ i ∈ ¶1, . . . , k− 1♢♢ and E = ¶¶xi, x̄i♢ ♣ i ∈ ¶1, . . . , n♢♢ ∪
¶¶yi, ȳi♢ ♣ i ∈ ¶1, . . . , k − 1♢♢. We further let C̃ = C ∪ ¶y1, ȳ1, . . . , yk−2, ȳk−2♢ and choose

B = ¶¶xi, x̄i, y1, ȳ1, . . . , yk−1, ȳk−1♢ ♣ i ∈ ¶1, . . . , n♢♢ ∪ ¶C̃ ♣ C ∈ C♢. This construction can

be carried out in linear time and G is a matching. For NP-hardness, it remains to show that

G has a vertex cover H ⊆ V satisfying ♣H ∩B♣ ≤ k for every B ∈ B if and only if the given

exactly-3-Sat instance has a satisfying assignment.

To see this, Ąrst assume that the given exactly-3-Sat instance has a satisfying assign-

ment α : X → ¶0, 1♢ and extend α to X̄ by letting α(x̄) := 1 −α(x). We construct the vertex

cover H = ¶x ∈ X ∪ X̄ ♣ α(x) = 0♢ ∪ ¶y1, . . . , yk−1♢. Indeed, H is a vertex cover, since

every edge of G is covered by exactly one of its endpoints. It also follows that, for every

i ∈ ¶1, . . . , n♢, we have ♣¶xi, x̄i, y1, ȳ1, . . . , yk−1, ȳk−1♢ ∩H♣ = k. By deĄnition of α, for every

C ∈ C, we have
∑

x∈C α(x) ≥ 1, hence
∣

∣H ∩ C̃
∣

∣ = ♣H ∩ C♣ + k − 2 =
∑

x∈C α(x̄) + k − 2 =

3 −∑x∈C α(x) + k − 2 ≤ k.

Conversely, suppose that there exists a vertex cover H ⊆ V with ♣H ∩B♣ ≤ k for

all B ∈ B. We claim that α(x) = ♣¶x̄♢ ∩H♣ deĄnes a satisfying assignment for the given

exactly-3-Sat instance. Observe that we must have ♣¶xi, x̄i♢ ∩H♣ ≥ 1 for all i ∈ ¶1, . . . , n♢
and ♣¶yi, ȳi♢ ∩H♣ ≥ 1 for all i ∈ ¶1, . . . , k − 1♢, since H needs to cover all edges. Since

¶xi, x̄i, y1, ȳ1, . . . , yk−1, ȳk−1♢ ∈ B, it follows that ♣¶xi, x̄i, y1, ȳ1, . . . , yk−1, ȳk−1♢ ∩H♣ ≤ k

for all i ∈ ¶1, . . . , n♢. Together, we obtain ♣¶xi, x̄i♢ ∩H♣ = 1 for all i ∈ ¶1, . . . , n♢. We

can therefore extend α to X̄ by setting α(x̄) = 1 − α(x) = ♣¶x♢ ∩H♣. Finally, for C ∈ C,

we have C̃ ∈ B and thus
∣

∣H ∩ C̃
∣

∣ ≤ k and moreover
∣

∣H ∩ C̃
∣

∣ ≥ ♣H ∩ C♣ + k − 2, which

implies ♣H ∩ C♣ ≤ 2. It follows that
∑

x∈C α(x) = 3 −∑x∈C α(x̄) = 3 −∑x∈C ♣¶x♢ ∩ U ♣ =

3 − ♣H ∩ C♣ ≥ 1, thus α is a satisfying assignment. ◀

We can observe that Theorem 1 also shows that Sparse-VC does not admit a (3/2 − ε)-

approximation algorithm for any ε > 0, unless P=NP. This follows from the fact that for k = 2,

such an algorithm would be able to determine whether a given instance of Sparse-VC

admits a solution of sparseness 2 · (3/2 − ε) < 3, i.e., of optimal sparseness 2.
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Let us now consider the Sparse-VC problem for sparseness k = 1. We show that in

this case, Sparse-VC can be reduced to the 2-SAT problem, which is commonly known to

admit a linear time algorithm. This yields the following theorem.

▶ Theorem 2. Sparse-VC is polynomial time solvable for k = 1.

Proof. The instance of the Sparse-VC problem is given by a graph G = (V,E) and a set of

balls B ⊆ 2V . Given this instance, we construct a 2-Sat formula ϕ, which is solvable if and

only if the Sparse-VC instance has a solution. Moreover, we can reconstruct the fair vertex

cover for (V,E,B) given a satisfying assignment to ϕ.

To construct ϕ, we Ąrst assign a variable xv to each vertex v ∈ V . Next, for every edge

¶u, v♢ ∈ E we create a clause (xu ∨ xv) and add it to ϕ, so that we are guaranteed that any

satisfying assignment will correspond to a valid vertex cover. Now we have to enforce, that

for each ball B ∈ B, at most one variable in the set ¶xv♢v∈B is set to true. This is done

by adding
(

♣B♣
2

)

clauses: for each pair v, u ∈ B, u ≠ v we add a clause (x̄v ∨ x̄u) to enforce

that xv and xu cannot be both true. In this way, we ensure that only one variable of the set

¶xv♢v∈B is set to true. Thus, the Ąnal formula ϕ takes the following form:

ϕ =
∧

¶u,v♢∈E

(xu ∨ xv) ∧
∧

B∈B,u,v∈B:u ̸=v

(x̄v ∨ x̄u)

Given a satisfying assignment for ϕ, we reconstruct the solution to (V,E,B) by taking

the vertices whose variable was set to true. We already argued that such a solution is feasible

for Sparse-VC with k = 1. In the opposite direction, given a solution to Sparse-VC

with k = 1, we Ąnd an assignment by setting the variables corresponding to the vertices of

the solution to true: the clauses corresponding to edges are then satisĄed due to the solution

being a vertex cover, and the remaining clauses corresponding to B are satisĄed because the

solution picks at most one vertex from each B ∈ B. ◀

Finally, we show how to obtain a 2-approximation algorithm for Sparse-VC. This

approximation factor is optimal unless the Unique Games Conjecture fails, as Vertex

Cover is a special case of Sparse-VC with B = ¶V ♢.

▶ Theorem 3. Sparse-VC admits a polynomial time 2-approximation algorithm.

Proof. We consider the relaxation of (Sparse-HS-ILP) for a given graph G = (V,E):

min k such that: xu + xv ≥ 1 ∀uv ∈ E (1)
∑

v∈B

xv ≤ k ∀B ∈ B (2)

xv ≥ 0 ∀v ∈ V (3)

Note that in any feasible solution to this LP, for any edge ¶u, v♢ at least one of the two

variables xu and xv has value at least 1/2, due to constraints (1) and (3). Thus the set

W = ¶v ∈ V ♣ xv ≥ 1/2♢ of all vertices with value at least 1/2, is a vertex cover for the input

graph. The sparseness of this solution can be bounded using (2) for any set B ∈ B:

♣W ∩B♣ ≤ 2
∑

v∈B

xv ≤ 2k

Thus solving the above LP relaxation optimally in polynomial time and then outputting the

set W , gives a 2-approximation algorithm for Sparse-VC. ◀
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x1

x̄1

x2
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x̄4

Y 1

1
Y 2

1
Y 1

2
Y 2

2
Y 1

3
Y 2

3
Y 1

4
Y 2

4

Z1

Q1

1

Z2

Q1

2

Z3

Q1

3
Q2

3

Z4

Q1

4
Q2

4

Z5

Q1

5
Q2

5

ysi,0

ysi,4

ysi,1

.

.

.

Y s
i

Figure 1 Left: The graph G for the formula (x1∨x2∨x3)∧(x1∨x3∨x4)∧(x̄1∨x2)∧(x̄2∨x̄4)∧(x̄3∨x4)
and k = 4. Right: A star Y s

i with center ys
i,0 and leaves ys

i,1, . . . , ys
i,4. Similarly, Zj and Qs

j denote
stars with centers zj,0 and qs

j,0, and leaves zj,1 . . . , zj,4 and qs
j,1, . . . , qs

j,4, respectively.

3 Fair Vertex Cover

Let us now consider the (Open-)Fair-VC problem, where the balls B are given by (open)

vertex neighborhoods. We Ąrst show NP-hardness of Fair-VC and Open-Fair-VC for k ≥ 3

and k ≥ 4, respectively.

▶ Theorem 4. Fair-VC is NP-hard for any k ≥ 3 and Open-Fair-VC is NP-hard for

any k ≥ 4, even on planar input graphs.

Proof. We reduce from the planar 2P1N-3-Sat problem. In this variant of satisĄability,

all clauses contain two or three literals, and we may assume that every variable appears

exactly twice as a positive literal and exactly once as a negative literal over all clauses. In

addition, we may assume that the bipartite graph connecting clauses to the variables they

contain is planar. This variant of satisĄability was shown to be NP-complete in [27].

We Ąrst consider the Fair-VC problem and later show how to modify our reduction for

Open-Fair-VC. Let an instance of planar 2P1N-3-Sat be given by a set of variables

X = ¶xi♢i=1,...,n and a set of clauses C = ¶Cj♢j=1,...,m with Cj ⊂ X ∪ X̄, ♣Cj ♣ ∈ ¶2, 3♢. We

deĄne the graph G = (V,E) by

V =
n
⋃

i=1

(

¶xi, x̄i♢ ∪
k−2
⋃

s=1

k
⋃

r=0

¶ys
i,r♢


∪
m
⋃

j=1





k
⋃

r=0

¶zj,r♢ ∪
k−♣Cj ♣
⋃

s=1

k
⋃

r=0

¶qs
j,r♢





and

E =

n
⋃

i=1

(

¶¶xi, x̄i♢♢ ∪
k−3
⋃

s=1

¶¶xi, y
s
i,0♢♢ ∪

k−2
⋃

s=1

¶¶x̄i, y
s
i,0♢♢ ∪

k−2
⋃

s=1

k
⋃

r=1

¶¶ys
i,0, y

s
i,r♢♢



∪
m
⋃

j=1





⋃

x∈Cj

¶¶x, zj,0♢♢ ∪
k
⋃

r=1

¶¶zj,0, zj,r♢♢ ∪
k−♣Cj ♣
⋃

s=1

(

¶zj,0, q
s
j,0♢ ∪

k
⋃

r=1

¶qs
j,0, q

s
j,r♢




 .

This construction (illustrated in Figure 1) can be carried out in linear time and G is planar.

For NP-hardness of Fair-VC, it remains to show that G has a vertex cover H ⊂ V

satisfying ♣H ∩N [v]♣ ≤ k for every v ∈ V if and only if the given planar 2P1N-3-Sat

instance has a satisfying assignment.
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To see this, Ąrst assume that the given planar 2P1N-3-Sat instance has a satisfying

assignment α : X → ¶0, 1♢ and extend α to X̄ by letting α(x̄) := 1 − α(x). We construct the

vertex cover H = ¶x ∈ X∪X̄ ♣ α(x) = 0♢∪⋃n

i=1

⋃k−2
s=1 ¶ys

i,0♢∪⋃m

j=1

(

¶zj,0♢ ∪⋃k−♣Cj♣
s=1 ¶qs

j,0♢


.

Indeed, H is a vertex cover, since all edges are of the form ¶x, x̄♢ or incident to some

ys
i,0, zj,0, or qs

j,0. Also, ♣H ∩N [v]♣ = 1 for v ∈ ⋃n

i=1

⋃k−2
s=1

⋃k

r=1¶ys
i,r♢ ∪ ⋃m

j=1

⋃k

r=1¶zj,r♢ ∪
⋃m

j=1

⋃k−♣Cj ♣
s=1

⋃k

r=1¶qs
j,r♢, ♣H ∩N [v]♣ = 2 for v ∈ ⋃n

i=1

⋃k−2
s=1 ¶ys

i,0♢ ∪⋃m

j=1

⋃k−♣Cj ♣
s=1 ¶qs

j,0♢, and

♣H ∩N [v]♣ = k for v ∈ X ∪ X̄. It remains to consider v = zj,0 for some j ∈ ¶1, . . . ,m♢.

Observe that
∑

x∈Cj
α(x) ≥ 1 since α is a satisfying assignment. It holds that ♣H ∩N [zj,0]♣ =

1+k−♣Cj ♣+∑x∈Cj
♣¶x♢ ∩H♣ = 1+k−♣Cj ♣+∑x∈Cj

(1−α(x)) ≤ 1+k−♣Cj ♣+ ♣Cj ♣−1 = k.

In either case, we conclude that ♣H ∩N [v]♣ ≤ k.

Conversely, suppose that there exists a vertex cover H ⊆ V with ♣H ∩N [v]♣ ≤ k for

all v ∈ V . Let i ∈ ¶1, . . . , n♢ and s ∈ ¶1, . . . , k − 2♢. Since H is a vertex cover with
∣

∣H ∩N [ys
i,0]
∣

∣ ≤ k and deg(ys
i,0) > k, we must have ys

i,0 ∈ H. Similarly, we must have

zj,0 ∈ H for all j ∈ ¶1, . . . ,m♢ and qs
j,0 ∈ H for all j ∈ ¶1, . . . ,m♢, s ∈ ¶1, . . . , k − ♣Cj ♣♢.

We claim that α(x) = ♣¶x̄♢ ∩H♣ deĄnes a satisfying assignment for the given planar

2P1N-3-Sat instance. To see this, Ąrst observe that ♣¶x, x̄♢ ∩H♣ = 1 for all x ∈ X since

H is a vertex cover and ♣H ∩N [x]♣ ≤ k. We can therefore extend α to X̄ by setting

α(x̄) = 1−α(x) = ♣¶x♢ ∩H♣. Recall that for for all j ∈ ¶1, . . . ,m♢ we have ♣H ∩N [zj,0]♣ ≤ k

and
{

zj,0, q
1
j,0, . . . , q

k−♣Cj ♣
j,0

}

⊆ H, which implies
∣

∣

∣H ∩
(

N [zj,0 \
{

zj,0, q
1
j,0, . . . , q

k−♣Cj ♣
j,0

}∣

∣

∣ ≤
k − (1 + k − ♣Cj ♣) = ♣Cj ♣ − 1. With this, for j ∈ ¶1, . . . ,m♢, we have

∑

x∈Cj
α(x) = ♣Cj ♣ −

∑

x∈Cj
α(x̄) = ♣Cj ♣ −∑x∈Cj

♣¶x♢ ∩H♣ ≥ ♣Cj ♣ −
∣

∣

∣

(

N [zj,0] \
{

zj,0, q
1
j,0, . . . , q

k−♣Cj ♣
j,0

}

∩H
∣

∣

∣ ≥
♣Cj ♣ − (♣Cj ♣ − 1) = 1. We conclude that α is a satisfying assignment.

We now turn to Open-Fair-VC and modify the above reduction as follows. The Ąrst

difference is that there is now only one Y s
i gadget for each variable xi, so we call it Yi. The

second difference is that Yi is different from Y s
i from the previous reduction, because now

Yi is responsible for picking only one vertex among ¶xi, x̄i♢ to the solution. To be more

precise Yi is now a star with a center yi,0 connected to yi,1, . . . yi,k−1, but now also each

yi,j , j ∈ ¶1 . . . , k − 1♢ is a center of a star, connected to yj
i,1, . . . , y

j
i,k. In other words, Yi is a

tree of depth two rooted at yi,0, where the root has k − 1 children and each child of the root

has k children. In the constructed graph, for each variable xi both literals xi and x̄i are now

connected to yi,0 instead of ys
i,0 vertices from the previous reduction. The remaining part of

the graph is precisely the same as in the reduction for Theorem 1.

Assume we have an Open-Fair-VC solution for the constructed graph and the given

parameter k ≥ 4. Observe, that for each i the vertices yi,0 and yi,1 . . . yi,k−1 must be taken

to the solution since their degree is k + 1. Therefore, since vertex yi,0 has k − 1 neighbors

other than xi and x̄i, only one vertex among xi and x̄i can be taken to the solution. The

remaining part of the argument is the same as in the proof for Fair-VC: we construct a

satisfying assignment by setting this literal to false, whose corresponding vertex was taken to

the solution. Similarly as before, each clause has at most two negated literals. The opposite

direction is analogous. ◀

The previous reduction actually also shows that for any ε > 0, it is NP-hard to compute

a (4/3 − ε)-approximation for Fair-VC, as for k = 3, a (4/3 − ε)-approximate solution

actually has sparseness 3. Still, we are able to compute a (2− 1
k

)-approximation for Fair-VC,

which is slightly better than our result for Sparse-VC and also better then the best possible

approximation ratio for Vertex Cover (and thus Sparse-VC) under UGC. In particular,

our algorithm implies that for the smallest value k = 3 for which Fair-VC is NP-hard, we
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can obtain a solution of sparseness 5. We leave open whether a solution of sparseness 4 can

be computed in polynomial time for Fair-VC if k = 3, and whether better approximation

algorithms are possible for Open-Fair-VC.

▶ Theorem 5. Fair-VC admits a polynomial time (2 − 1
k

)-approximation algorithm.

Proof. As for the 2-approximation algorithm for Sparse-VC (cf. Theorem 3), we consider

the relaxation of (Sparse-HS-ILP). However, in order to improve the approximation ratio,

observe that in any solution of cost k to Fair-VC, every vertex of degree more than k

must be contained in the solution (otherwise some edge incident to such a vertex is not

covered). Thus we may guess the optimum sparseness k⋆, deĄne the set of high degree

vertices D = ¶v ∈ V ♣ deg(v) > k⋆♢ and add the constraint xv = 1 for every v ∈ D to the

above LP relaxation. We again let W be the set of vertices with value at least 1/2, which is

a feasible vertex cover. If for any closed neighbourhood N [v] ∈ B we have N [v] ⊆ W then

all neighbours of v are contained in W , and thus we may remove v from W and still obtain

a vertex cover. We repeat this iteratively for each vertex until we obtain a vertex cover W

for which no closed neighbourhood is entirely contained in W . In particular, for any v /∈ D

we have ♣W ∩N [v]♣ ≤ k⋆. For v ∈ D on the other hand, since xv = 1 we get

♣W ∩N [v]♣ ≤ ♣D ∩N [v]♣ + 2
∑

u∈N [v]\D

xu ≤ (2xv − 1) + 2
∑

u∈N [v]\¶v♢

xu ≤ 2k − 1.

This means that the set W yields a (2 − 1
k

)-approximation. ◀

4 Hardness of Highway Dimension and Shortest Path Cover

In this section, we study the parameterized complexity of r-HD and r-SPC, and show the

following theorem.

▶ Theorem 6. Both r-HD and r-SPC are W[1]-hard parameterized by their solution values k,

where 2r is the radius of the input graph.

To prove this, we present a parameterized reduction from Clique to r-HD. This reduction

also shows W[1]-hardness for r-SPC, as the constructed graph G has radius at most 2r, i.e.,

any solution for r-HD is also a solution for r-SPC of the same cost and vice versa.

Let H = (V,E) be a graph and let k ∈ N. Denote the number of vertices and edges of H

by n and m, respectively. For convenience we treat H as a bidirected graph, i.e. we replace

every edge ¶u, v♢ ∈ E with directed edges (u, v) and (v, u). Let C be a constant whose value

will be determined later on. We construct a graph G such that r-HD has a solution of value

k′ = 4Ck(k− 1) +
(

k
2

)

+ k+ 3 on G for r = 2m if and only if H contains a clique if size k. In

the following, we call the individual elements of a solution for r-HD also hubs.

The graph G contains k(k − 1) gadgets: For all 1 ≤ i, j ≤ k satisfying i ̸= j there is

a gadget Gi,j . Choosing a certain set of hubs from Gi,j means that Gi,j represents a pair

(wi, wj) of adjacent vertices of H. The idea of the reduction is to have a pair (wi, wj) from

every Gi,j such that

(i) if Gi,j represents (x, y), then Gj,i represents (y, x), and

(ii) if Gi,j represents (x, y) and Gi,j′ represents (x′, y′), then x = x′.

If these two conditions are fulĄlled, it follows that there are k distinct vertices w1, . . . , wk

which are pairwise adjacent, i.e. ¶w1, . . . , wk♢ is a clique of size k.
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umi,ju1i,j

v1i,jvmi,j

a1i,j

ami,jb1i,j

bmi,j
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ψ′
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ψ′′
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ψ′

β

ψβ

ψ′′

β

ψ ψ′ψ′′

Figure 2 A gadget Gi,j and the global vertices. Solid black edges have length 1, dashed blue
edges have length r − m + 1, thick blue edges have length r − 2m + 2, dotted gray edges have length
m − 1, dashed gray edges have length r/2 and red edges have length r.

Every gadget Gi,j contains a path u1
i,j , . . . , u

m
i,j , a path v1

i,j , . . . , v
m
i,j , a path a1

i,j , . . . , a
m
i,j ,

and a path b1
i,j , . . . , b

m
i,j , each consisting of m−1 edges of length 1. We identify every vertex of

these paths with a pair (x, y) of adjacent vertices in H as follows: Fix any ordering ≺ on V and

denote the resulting lexicographic ordering on V ×V also by ≺. DeĄne τ : E → ¶1, . . . ,m♢ as

τ(x, y) = ♣¶(u, v) ∈ E ♣ (u, v) ≺ (x, y)♢♣ + 1,

i.e. (x, y) is the τ(x, y)-th edge according to ≺. This allows us for instance to associate the

vertex u
τ(x,y)
i,j of Gi,j with the edge (x, y) of H.

The four paths are connected as follows. For z ∈ ¶a, v, b♢ we connect um
i,j with z1

i,j and

zm
i,j with u1

i,j , each through a path of length r − m + 3. To that end we introduce ver-

tices u0,z
i,j , u

m+1,z
i,j , z0,u

i,j and zm+1,u
i,j , and add the edges ¶u1

i,j , u
0,z
i,j ♢, ¶um

i,j , u
m+1,z
i,j ♢, ¶z1

i,j , z
0,u
i,j ♢,

¶zm
i,j , z

m+1,u
i,j ♢ of length 1 and the edges ¶um+1,z

i,j , z0,u
i,j ♢, ¶zm+1,u

i,j , u0,z
i,j ♢ of length r −m+ 1.

Moreover, we add vertices am+1,v
i,j , v0,a

i,j , v
m+1,b
i,j , b0,v

i,j and add edges

¶am
i,j , a

m+1,v
i,j ♢, ¶v1

i,j , v
0,a
i,j ♢, ¶vm

i,j , v
m+1,b
i,j ♢, ¶b1

i,j , b
0,v
i,j ♢ of length 1 and edges

¶am+1
i,j , v0,a♢, ¶vm+1,b

i,j , b0,v
i,j ♢ of length r − 2m+ 2. This is illustrated in Figure 2.

The idea is that the shortest path from u1
j,j to any of a0,u

i,j , v
0,u
i,j , and b0,u

i,j has length r + 1

and that we will have to choose some pair (x, y) in order to hit these shortest paths through

the hub u
τ(x,y)
i,j . Still, the shortest paths between a0,u

i,j and b0,u
i,j and between am+1,u

i,j and

bm+1,u
i,j both have length 2r − 2m+ 4 > r, but are not hit, if we choose, e.g., the hub u2

i,j .

Hence, we introduce a shorter path between a0,u
i,j and b0,u

i,j and between am+1,u
i,j and bm+1,u

i,j ,

which will be hit by a global dummy hub: We add vertices ψ,ψ′, ψ′′ and the edges ¶ψ′, ψ♢
and ¶ψ′′, ψ♢, both of length r. Moreover, we add edges between ψ and a0,u

i,j , a
m+1,u
i,j , b0,u

i,j ,

and bm+1,u
i,j , each of length r/2. The shortest a0,u

i,j -b0,u
i,j - and am+1,u

i,j -bm+1,u
i,j -paths now have

length r and pass through ψ. Furthermore, the shortest ψ′-ψ′′-path has length 2r and we

may assume w.l.o.g. that it is hit through the hub ψ.

We will show that if the Ąnal graph G admits a solution of value k′, then there is a hitting

set for Pr containing four vertices from every gadget Gi,j , which represent a pair (x, y) of

adjacent vertices of H. Our construction needs to ensure that for these pairs (x, y) conditions

i and ii are fulĄlled. First we create C copies G1
i,j , . . . , G

C
i,j of the graph Gi,j . For simplicity,
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we confuse the graphs Gi,j and Gλ
i,j for λ ∈ ¶1, . . . , C♢ when the context is clear. Our Ąnal

construction will yield that if Gλ
i,j represents (x, y) and Gλ′

i,j represents (x′, y′), then we have

(x, y) = (x′, y′). Note that the vertices ψ,ψ′, and ψ′′ are not part of any gadget Gi,j and

hence, we do not create copies of them.

For condition i we have to synchronise the gadgets Gi,j and Gj,i. To that end, for all

1 ≤ i < j ≤ k and all (x, y) ∈ E we add a vertex α
(x,y)
i,j . Moreover, we add edges of weight

m from (all C copies of) a
τ(x,y)+1
i,j and from (all C copies of) a

τ(y,x)+1
j,i to α

(x,y)
i,j . This is

illustrated in the appendix (Figure 3). The idea is that all shortest paths between Gi,j and

Gj,i contained in Pr can be hit with one additional hub α
(x,y)
i,j if both gadgets agree on the

pairs (x, y) and (y, x).

Still, the newly added edges of length m add new shortest paths to Pr. For instance, in

any Gi,j , the shortest path between um+1,a
i,j and α

τ−1(1)
i,j has length r + 2. To ensure that it

suffices to choose only u
τ(x,y)
i,j , v

τ(x,y)
ij

, and α
(x,y)
i,j as hubs, we remove these paths from Pr by

creating a new shortest path between um+1,a
i,j and α

τ−1(1)
i,j , which passes through the dummy

hub ψ. To that end, for all 1 ≤ i, j ≤ k satisfying i ≠ j we add an edge between ψ and

u0,a
i,j , u

m+1,a
i,j and all α

(x,y)
i,j , each of length r/2.

Similarly, we avoid ŤundesiredŞ hubs covering shortest paths across different gadgets Gi,j

and Gj,i by introducing new vertices ψα, ψ
′
α and ψ′′

α and adding the edges ¶ψ′
α, ψα♢ and

¶ψ′′
α, ψα♢ of length r and an edge of length m− 1 between ψα and all a

τ(x,y)+1
i,j .

To fulĄll condition ii we have to synchronise the gadget Gi,j with every other gadget

Gi,j′ . To that end, for all 1 ≤ i ≤ k and all x ∈ V we add a vertex βx
i . Let y0, . . . , yd be the

neighbors of x such that y0 ≺ · · · ≺ yd. For 1 ≤ i, j ≤ k, i ̸= j we add an edge of weight

m+ d between βx
i and every (copy of) b

τ(x,y0)−1
i,j . Here the idea is that if two gadgets Gi,j

and Gi,j′ represent pairs (x, y) and (x′, y′) such that x = x′, then choosing βx
i as a hub

suffices to hit all relevant shortest paths between the two gadgets.

Again, we have to take care of newly created shortest paths. Therefore we add an edge of

length r/2 between ψ and u0,b
i,j , u

m+1,b
i,j and all βx

i . Moreover we handle shortest paths across

different gadgets Gi,j and Gi,j′ by introducing new vertices ψβ , ψ
′
β and ψ′′

β and adding the

edges ¶ψ′
β , ψβ♢ and ¶ψ′′

β , ψβ♢ of length r and an edge of length m+ d− 1 between ψβ and

every b
τ(x,yd)−1
i,j where yd is the maximum neighbor of x according to ≺. This concludes the

construction of the graph G, which is also illustrated in the appendix (Figure 4).

We now show several properties of the graph G which allow us to prove Theorem 6.

The following Lemma states that choosing four hubs from some gadget Gi,j means that the

gadget represents a unique pair (x, y). A proof can be found in the appendix.

▶ Lemma 9. Let 1 ≤ i, j ≤ k where i ̸= j and let Hi,j be a hitting set for all shortest paths

from Pr that are contained in Gi,j . It holds that ♣Hi,j ♣ ≥ 4 and moreover, if ♣Hi,j ♣ = 4, then

Gi,j represents some (x, y), that is Hi,j =
{

u
τ(x,y)
i,j , a

τ(x,y)
i,j , v

τ(x,y)
i,j , b

τ(x,y)
i,j

}

.

Moreover, we show that if a gadget Gi,j represents some pair (x, y), then two certain

shortest paths are not hit by the hubs of Gi,j . To that end, for any (x, y) ∈ E and all

1 ≤ i < j ≤ k and λ ∈ ¶1, . . . , C♢, let A
(x,y),λ

i,j be the shortest path between α
(x,y)
i,j and the

λ-th copy of v
τ(x,y)−1
i,j . The length of A

(x,y),λ

i,j is

dist(α
(x,y)
i,j , a

τ(x,y)+1
i,j )+dist(a

τ(x,y)+1
i,j , am+1,v

i,j )+dist(am+1,v
i,j , v0,a

i,j )+dist(v0,a
i,j , v

τ(x,y)−1
i,j ) =

m + m − τ(x, y) + r − 2m + 2 + τ(x, y) − 1 = r + 1.
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Similarly, we deĄne Bx,λ
i,j as the shortest path between βx

i and the λ-th copy of v
τ(x,yd)+1
i,j ,

where yd is the maximum neighbor of x. The path Bx,λ
i,j consists of a v

τ(x,yd)+1
i,j -vm+1,b

i,j -path

of length m − τ(x, yd), the edge ¶vm+1,b
i,j , b0,v

i,j ♢ of length r − 2m + 2, a b0,v
i,j -b

τ(x,y0)−1
i,j -path

of length τ(x, yd) − d− 1 and the edge ¶bτ(x,y0)−1
i,j , βx

i ♢ of length m+ d. The path Bx,λ
i,j has

length

dist(βx
i , b

τ(x,y0)−1
i,j ) + dist(b

τ(x,y0)−1
i,j , b0,v

i,j ) + dist(b0,v
i,j , v

m+1,b
i,j ) + dist(vm+1,b

i,j , v
τ(x,yd)+1
i,j ) =

m + d + τ(x, yd) − d − 1 + r − 2m + 2 +m − τ(x, yd) = r + 1.

Moreover the following Lemma holds. An illustration (Figure 5) and a proof can be found in

the appendix.

▶ Lemma 10. If the gadget Gλ
i,j represents the pair (x, y), then the hubs of Gλ

i,j hit the

shortest path A
(x′,y′),λ

i,j if and only if (x, y) ̸= (x′, y′), and the shortest path Bx′,λ
i,j if and only

if x ̸= x′.

Let us now prove Theorem 6. We show that on G, r-HD has a solution of value

k′ = 4Ck(k − 1) +
(

k
2

)

+ k + 3 for r = 2m if and only if H contains a clique if size k.

Proof of Theorem 6. Let r = 2m. Suppose that on the constructed graph G, there is a

solution of value k′ for r-HD. We observe that every vertex has distance less than 2r from

the vertex ψ. This means that B2r(ψ) contains the entire graph, and therefore there is a

hitting set H of size ♣H♣ ≤ k′ for Pr.

We will prove that for any 1 ≤ i, j ≤ k there is some (x, y) such that the hitting set H
contains four hubs u

τ(x,y)
i,j , v

τ(x,y)
i,j , a

τ(x,y)
i,j , b

τ(x,y)
i,j from every (copy of the) gadget Gi,j , and

that H contains one hub αx,y
i,j for every 1 ≤ i < j ≤ k and one hub βx

i for every 1 ≤ i ≤ k,

such that conditions i and ii are satisĄed. This implies that H contains a clique of size k.

Fix now i, j such that 1 ≤ i < j ≤ k. We prove that the hitting set H contains some

hub α
(x,y)
i,j . Let λ ∈ ¶1, . . . , C♢ and denote the vertices of H that are contained in Gλ

i,j by

Hλ
i,j . For the sake of contradiction suppose that there is no (x, y) such that α

(x,y)
i,j ∈ H.

Lemma 9 states that if
∣

∣Hλ
i,j

∣

∣ ≤ 4, then Hλ
i,j =

{

u
τ(x,y)
i,j , v

τ(x,y)
i,j , a

τ(x,y)
i,j , b

τ(x,y)
i,j

}

for some

(x, y) and therefore H does not hit the path A
(x,y),λ

i,j according to Lemma 10. Hence, we

obtain that for all λ ∈ ¶1, . . . , C♢ we have
∣

∣Hλ
i,j

∣

∣ ≥ 5. Moreover, Lemma 9 states that from

any gadget Gi′,j′ , (i′, j′) ̸= (i, j) we have to choose at least four hubs. This means however

that ♣H♣ ≥ 4Ck(k − 1) + C. If we choose C = k2 we obtain that 4Ck(k − 1) + C > k′, so it

cannot be that there is no hub α
(x,y)
i,j ∈ H. Analogously we can show that H contains some

hub βx
i for every 1 ≤ i ≤ k, if C = k2. To that end, Ąx 1 ≤ i ≤ k and suppose that there is

no x such that βx
i ∈ H. Again, it follows from Lemmas 9 and 10 that for all λ ∈ ¶1, . . . , C♢

we have
∣

∣Hλ
i,j

∣

∣ ≥ 5, where Hλ
i,j denotes the vertices of H that are contained in Gλ

i,j . As we

showed previously, for C = k2 this means that ♣H♣ > k′, and it follows that there must be

some x such that βx
i ∈ H.

This means that H contains at least one hub α
(x,y)
i,j for every 1 ≤ i < j ≤ k, at least one

hub βx
i for every 1 ≤ i ≤ k and at least four hubs from every Gλ

i,j . None of these hubs hits

the shortest paths ψ′′ −ψ−ψ′′, ψ′
α −ψα −ψ′′

α, or ψ′
β −ψβ −ψ′′

β . To hit these three paths, we

need three additional hubs. As H has size at most k′ = 4Ck(k − 1) +
(

k
2

)

+ k + 3, it follows

that H contains precisely four hubs from every Gλ
i,j , so every gadget represents indeed a

unique pair (x, y). Moreover, for every 1 ≤ i < j ≤ k there is a unique hub α
(x,y)
i,j and for

every 1 ≤ i ≤ k there is a unique hub βx
i .
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It remains to show that the pairs represented by the individual gadgets fulĄll properties

i and ii. Consider i, j such that 1 ≤ i < j ≤ k and let λ, λ′ ∈ ¶1, . . . , C♢. Let (x, y) and

(x′, y′) be the pairs represented by Gλ
i,j and Gλ′

j,i, respectively. Lemma 10 states that the

hubs contained in Gλ
i,j and Gλ′

j,i do not hit the shortest paths A
(x,y),λ

i,j and A
(x′,y′),λ′

j,i . This

means that the two paths must be hit through the hubs α
(x,y)
i,j and α

(x′,y′)
i,j . Moreover, both

hubs must coincide as H has size k′, i.e. we have (x, y) = (x′, y′), which implies condition i.

For condition ii, let 1 ≤ i ≤ k, let 1 ≤ j, j′ ≤ k, and let λ, λ′ ∈ ¶1, . . . , C♢. Denote

the pairs represented by Gλ
i,j and Gλ′

i,j′ by (x, y) and (x′, y′), respectively. It follows from

Lemma 10 that the shortest paths Bx,λ
i,j and Bx′,λ′

i,j′ are not hit through the hubs contained in

Gλ
i,j and Gλ′

i,j′ . This means that the paths must be covered through hubs βx
i and βx′

i , and as

♣H♣ = k′, this is only possible if x = x′, i.e. condition ii is satisĄed.

This implies that the graph H indeed contains a clique of size k. To prove the other

direction, we refer to the appendix. ◀

5 Approximating Shortest Path Covers

In this section, we show how to approximate r-SPC.

▶ Theorem 7. r-SPC admits a polynomial time O(logn)-approximation algorithm.

We present an algorithm based on the following ideas. It is well-known that the Set

Cover problem is equivalent to Hitting Set by swapping the roles of the elements of

the universe and the sets in the given set family. Kuhn et al. [24] study the Minimum

Membership Set Cover (MMSC) problem, where the aim is to minimize the maximum

membership of any element of the given universe of the Set Cover instance. Here the

membership of an element is the number of sets of the solution it is contained in. The

MMSC problem Ąnds applications in interference minimization in cellular networks, and

Kuhn et al. [24] prove that it admits a polynomial-time O(log ♣U ♣)-approximation, where U

is the given universe, and they show that this is best possible, unless P=NP. Translated to

Sparse-HS, this means that for an instance where F = B, an O(log ♣F♣)-approximation can

be computed in polynomial time, and this is also best possible, unless P=NP. We show that

r-SPC can be reduced to this version of Sparse-HS.

We Ąrst give a simple observation about the Sparse-HS problem which will be useful later

in our proof. Let (V,F ,B) be a set system and let B,B′ ∈ B be two sets such that B ⊊ B′.

If B′ contains at most k elements of the hitting set, then B also contains at most k such

elements. Hence we obtain the following.

▶ Observation 11. Let B be a family containing two sets B,B′ such that B ⊊ B′. If there

exists a solution to Sparse-HS for (V,F ,B\¶B♢) of sparseness k, then there exists a solution

to Sparse-HS for (V,F ,B) of sparseness k.

We reduce the r-SPC problem to the Minimum Membership Set Cover (MMSC)

problem. Formally, an instance of MMSC consists of a universe U and a family S of subsets

of U , and the goal is to choose a set S ′ ⊆ S such that every element in U belongs to at least

one set in S ′ and that the maximum membership of any element u with respect to S ′ is

minimal, where the membership of u is deĄned as the number of sets in S ′ containing u.

Recall that, given a weighted graph G = (V,E) and a radius r > 0, the r-SPC problem

for G is equivalent to the Sparse-HS problem on universe V with F = Pr and B = ¶B2r(v) ♣
v ∈ V ♢. Based on Observation 11, we Ąrst show that if there exists a ball B ∈ B which does

not contain any shortest path in Pr completely, we can safely remove it without affecting

the solution.

IPEC 2022



5:16 On Sparse Hitting Sets: From Fair Vertex Cover to Highway Dimension

▶ Lemma 12. Let B ∈ B which does not contain any shortest path in Pr completely,

i.e., S ⊈ B for every S ∈ Pr. If there exists a solution to r-SPC for (V,Pr,B \ ¶B♢) of

sparseness k, then there exists a solution to r-SPC for (V,Pr,B) of sparseness k.

Proof. First, if S ∩ B = ∅ for every S ∈ Pr, then there exists a solution for (V,Pr,B) not

containing any vertices of B, and the claim follows. Now assume there is some path SB ∈ Pr

intersecting B in some vertex w. We show that there exists a ball B′ ∈ B such that B ⊊ B′,

and thus the lemma follows from Observation 11.

Let v be the center of the ball B = B2r(v). As S ⊈ B for every S ∈ Pr, dist(u, v) ≤ r for

every u ∈ B, as otherwise the shortest u-v-path would be contained in the ball B of radius 2r

with a length in (r, 2r], which would then be in Pr. Hence for any two vertices u, u′ ∈ B,

dist(u, u′) ≤ dist(u, v) + dist(v, u′) ≤ 2r, so we have B ⊆ B2r(w). Moreover, it holds that

SB ⊆ B2r(w) as SB is the vertex set of a path containing w of length in (r, 2r], and it holds

that SB ̸⊆ B, which implies B ⊊ B2r(w). By deĄnition of B we have B2r(w) ∈ B, and thus

by Observation 11 the lemma follows. ◀

Lemma 12 means that we may assume w.l.o.g. that for any B ∈ B there is some SB ∈ Pr

such that SB ⊆ B. We now give the following observations about the relationship among Pr,

B, and a hitting set H of Pr.

▶ Observation 13. Let S ∈ Pr. As S is the set of vertices of a shortest path π of length

ℓ(π) ∈ (r, 2r], there exists a ball BS ∈ B of radius 2r, which completely contains S. This, in

turn, implies that H ∩BS ̸= ∅ and ♣H ∩ S♣ ≤ ♣H ∩BS ♣.
▶ Observation 14. Let B ∈ B. If B contains some shortest path set SB ∈ Pr, then we have

H ∩B ̸= ∅ and ♣H ∩ SB ♣ ≤ ♣H ∩B♣.
By Observations 13 and 14, we get the following.

▶ Lemma 15. There exists a solution to Sparse-HS for (V,Pr,B) of sparseness k if and

only if there exists a solution to Sparse-HS for (V,Pr ∪ B,B ∪ Pr) of sparseness k.

Proof. Observe that any solution to Sparse-HS for (V,Pr ∪ B,B ∪ Pr) is also a solution

to Sparse-HS for (V,Pr,B), as Pr ⊆ Pr ∪ B and B ⊆ B ∪ Pr. We now prove that any

solution H to Sparse-HS for (V,Pr,B) of sparseness k is also a solution to Sparse-HS for

(V,Pr ∪B,B∪Pr) of sparseness k. For this, we need to show that for every S ∈ Pr, ♣H∩S♣ ≤ k

and for every B ∈ B, H ∩B ̸= ∅. The former statement follows from Observation 13, while

the latter follows from Observation 14 where we assume that B contains some SB ∈ Pr due

to Lemma 12. ◀

We now deĄne an instance of the Minimum Membership Set Cover with U = Pr ∪ B
and S = ¶Su ♣ u ∈ V ♢, where Su = ¶S ∈ U ♣ u ∈ S♢, and prove the following.

▶ Lemma 16. There exists a solution to Sparse-HS for (V,Pr ∪ B,B ∪ Pr) of sparseness k

if and only if there exists a solution to MMSC for (U,S) of value k.

Proof. We will prove that if there exists a solution to Sparse-HS for (V,Pr ∪ B,B ∪ Pr)

of sparseness k, then there exists a solution to MMSC for (U,S) of value k. The proof for

the other direction is symmetric. Let H be a solution to Sparse-HS for (V,Pr ∪ B,B ∪ Pr)

of sparseness k. We claim that the set W = ¶Su ∈ S ♣ u ∈ H♢ is a solution to MMSC

for (U,S) of value k. Let E ∈ U . Then, H ∩E ≠ ∅. Let u ∈ H ∩E. By the deĄnition of Su,

this implies that E ∈ Su. Moreover, for any B ∈ Pr ∪ B, we have that ♣H ∩ B♣ ≤ k. This

implies that B belongs to at most k sets in W . Hence, W is a solution to MMSC for (U,S)

of value k. ◀
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Since there exists a O(log ♣U ♣)-approximation algorithm for MMSC by Kuhn et al. [24]

and ♣U ♣ = ♣Pr ∪B♣ = O(n2), by the above lemma we get an O(logn)-approximation algorithm

for r-SPC. This concludes the proof of Theorem 7.
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A Supplementary figures from Section 4

ψαψ′

α ψ′′

α

ψ′

β ψβ ψ′′

β

ψ

ψ′

ψ′′

Figure 3 Two gadgets Gi,j and Gj,i and the connections between them. The marked vertices
indicate that Gi,j and Gj,i represent the pairs (x, y) and (y, x), respectively. Moreover, the vertex
α

(x,y)
i,j is marked.

G1,2 G1,3 G2,1 G2,3 G3,1 G3,2

Figure 4 A (simpliĄed) illustration of the whole construction. Note that only one copy Gλ
i,j of

every Gi,j is shown.
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A
(x,y)
i,j

u
τ(x,y)
i,j

v
τ(x,y)
i,j

b
τ(x,y)
i,j A

(x′,y′)
i,j

a
τ(x,y)
i,j

Figure 5 An illustration of Lemma 10. The gadget Gi,j represents (x, y), which means that the

shortest path A
(x,y)
i,j is not hit by the hubs of Gi,j , whereas any other shortest path A

(x′,y′)
i,j is hit.

B Omitted proofs from Section 4

Proof of Lemma 9. Let 1 ≤ ι ≤ m+ 1. For z ∈ ¶a, v, b♢ we deĄne the path Puz(ι) as the

shortest s-t-path path for

s =

{

uι
i,j if ι ≤ m

um+1,z
i,j else

and t =

{

zι−1
i,j if ι > 1

z0,u
i,j else

.

Similarly we deĄne the path P zu(ι) as the shortest s-t-path for

s =

{

zι
i,j if ι ≤ m

zm+1,u
i,j else

and t =

{

uι−1
i,j if ι > 1

u0,z
i,j else

.

We observe that Puz(ι) passes through the vertices um+1,z
i,j and z0,u

i,j , and that its length

is (m+ 1 − ι) + (r −m+ 1) + (ι− 1) = r + 1. Similarly, P zu(ι) passes through zm+1,u
i,j and

u0,z
i,j , and has also length r + 1. This means that both Puz(ι) and P zu(ι) need to be hit

by Hi,j . Consider the eight shortest paths Pua(1), Pua(m+ 1), P au(1), Puv(m+ 1), P vu(1),

P bu(1), Pub(m+ 1), and P bu(m+ 1). It holds that every vertex of Gi,j covers at most two

of these paths, which implies ♣Hi,j ♣ ≥ 4. To hit the shortest path Puv(m + 1) we have to

choose one of the vertices um+1,v
i,j , v0,u

i,j , v
1
i,j , . . . , v

m
i,j . However, the vertices um+1,v

i,j and v0,u
i,j

do not hit any of the other seven shortest paths. Hence, if we have ♣Hi,j ♣ = 4, then one of

the four hubs must be the vertex v
τ(x,y)
i,j for some (x, y) ∈ E. Repeating the same argument

for the paths P au(1), Pub(m + 1), and Pua(1), one can show that if ♣Hi,j ♣ = 4, then Hi,j

consists of four vertices v
τ(x,y)
i,j , a

τ(x′,y′)
i,j , v

τ(x′′,y′′)
i,j , b

τ(x′′′,y′′′)
i,j .

We now show that for these four vertices it holds that (x, y) = (x′, y′) = (x′′, y′′) =

(x′′′, y′′′). Suppose that for some (x, y) we have v
τ(x,y)
i,j ∈ Hi,j . Consider the two shortest

paths Puv(τ(x, y)) and P vu(τ(x, y)). Our previous observations imply that both paths must

be hit through some vertex u
τ(x′,y′)
i,j . As Hij contains precisely one vertex u

τ(x′,y′)
i,j and as

both paths intersect only in u
τ(x,y)
i,j , it follows that u

τ(x,y)
i,j ∈ Hi,j . Similarly, it follows that

Hi,j needs to contain the vertices a
τ(x,y)
i,j and b

τ(x,y)
i,j . Hence, if ♣Hi,j ♣ = 4, it follows that

there is a unique (x, y) such that Hi,j =
{

u
τ(x,y)
i,j , a

τ(x,y)
i,j , v

τ(x,y)
i,j , b

τ(x,y)
i,j

}

. ◀
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Proof of Lemma 10. If the gadget Gλ
i,j represents the pair (x, y), then the hubs of Gλ

i,j

are u
τ(x,y)
i,j , v

τ(x,y)
i,j , a

τ(x,y)
i,j , and b

τ(x,y)
i,j . The shortest path A

(x′,y′),λ

i,j contains the vertices

v
τ(x′,y′)−1
i,j , . . . , v1

i,j and the vertices am
i,j , . . . , a

τ(x′,y′)+1
i,j . This means that A

(x′,y′),λ

i,j is hit if

and only if (x, y) ̸= (x′, y′). The shortest path Bx′

i,j contains the vertices v
τ(x′,yd)+1
i,j , . . . , vm

i,j

and the vertices b1
i,j , . . . , a

τ(x′,y0)−1
i,j , which means that Bx′

i,j is hit if and only if x ̸= x′. ◀

Proof of Theorem 6 (continued). For the other direction suppose that the graphH contains

a clique ¶w1, . . . , wk♢ of size k. Consider the following set H: For 1 ≤ i, j ≤ k, i ̸= j it

contains all C copies of the vertices u
τ(wi,wj)
i,j , v

τ(wi,wj)
i,j , a

τ(wi,wj)
i,j , b

τ(wi,wj)
i,j , for 1 ≤ i < j ≤ k

it contains α
(wi,wj)
i,j , for 1 ≤ i ≤ k it contains βwi

i,j , and moreover it contains the three vertices

ψ,ψα, ψβ . It holds that H has size k′.

We can observe that all shortest paths between different gadgets Gi,j and Gi′,j′ are hit

by ψα or ψβ . We now show that all shortest paths from Pr that intersect only one gadget

Gi,j are hit by H. Let 1 ≤ i, j ≤ k such that i ̸= j. Suppose that i < j, the case i > j can

be shown similarly. Consider some vertex t contained in Gi,j and denote the shortest path

between α
(x,y)
i,j and t by P . Suppose that P is not hit by ψ. We can observe that the shortest

path between α
(x,y)
i,j and um+1,a

i,j or b0,u
i,j contains ψ. As P is not hit by ψ, it follows that

(a) t = aι
i,j for some ι or t ∈ ¶a0,u

i,j , a
m+1,u
i,j , am+1,v

i,j ♢,

(b) t = v
τ(x′,y′)
i,j for some (x′, y′), or

(c) t ∈ ¶v0,a
i,j , v

0,u
i,j , v

m+1,u
i,j , vm+1,b

i,j ♢.

In case a it holds that P has length

dist(α
(x,y)
i,j , a

τ(x,y)+1
i,j ) + dist(a

τ(x,y)+1
i,j , t) ≤ m+m+ 1 = 2m+ 1 < r,

so it does not need to be hit by H. In case b, the length of P is

dist(α
(x,y)
i,j , a

τ(x,y)+1
i,j ) + dist(a

τ(x,y)+1
i,j , v0,a

i,j ) + dist(v0,a
i,j , v

τ(x′,y′)
i,j ) =

m+m− τ(x, y) + r − 2m+ 2 + τ(x′, y′) = r + 2 + τ(x′, y′) − τ(x, y).

It follows that the length of P exceeds r if and only if τ(x′, y′) ≥ τ(x, y) − 1, i.e. the path P

contains A
(x,y)
i,j as a subpath. Lemma 10 states that this subpath is hit by the hubs within

Gi,j if (x, y) ̸= (wi, wj), otherwise it is hit by α
(x,y)
i,j . Finally, in case c it holds that P is

shorter than r or that P contains A
(x,y)
i,j as a subpath, which is hit by H, as we just observed.

Analogously, consider some vertex t contained in Gi,j , denote the shortest path between

βx
i and t by P ′ and suppose that P ′ is not hit by ψ. As the shortest path between βx

i and

u0,b
i,j or am+1,u

i,j contains ψ, it follows that

(a) t = bι
i,j for some ι or t ∈ ¶b0,u

i,j , b
0,v
i,j , b

m+1,u
i,j ♢,

(b) t = v
τ(x′,y′)
i,j for some (x′, y′), or

(c) t ∈ ¶v0,a
i,j , v

0,u
i,j , v

m+1,u
i,j , vm+1,b

i,j ♢.

In case a it holds that P ′ is shorter than r. In case b, the length of P ′ is

dist(βx
i , b

τ(x,y0)−1
i,j ) + dist(b

τ(x,y0)−1
i,j , vm+1,b

i,j ) + dist(vm+1,b
i,j , v

τ(x′,y′)
i,j ) =

m+ d+ τ(x, y0) − 1 + r − 2m+ 2 +m+ 1 − τ(x′, y′) =

r + 2 + τ(x, y0) + d− τ(x′, y′) = r + 2 + τ(x, yd) − τ(x′, y′).
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It holds that the length of P ′ exceeds r if and only if τ(x′, y′) ≤ τ(x, yd) + 1, which is the

case if and only if P ′ contains Bx
i,j as a subpath, which is hit by the hubs within Gi,j or by

β
(wi,wj)
i . In case c it holds that the length of P ′ is at most r or that P ′ contains Bx

i,j as a

subpath, which is hit by H.

Consider now the shortest path between u
τ(x,y)
i,j and some vertex t of Gi,j and denote it

by P ′′. DeĄne the shortest paths Puz(ι) and P zu(ι) as in the proof of Lemma 9. If the length

of P ′ exceeds r then for some z ∈ ¶a, v, b♢, the path P ′′ contains the path Puz(τ(x, y)) to

z
τ(x,y)−1
i,j or the path P zu(τ(x, y) + 1) to z

τ(x,y)+1
i,j as a subpath. Suppose that P ′′ contains

Puz(τ(x, y)), the other case is analogous. To show that Puz(τ(x, y)) (and hence also P ′′)

is hit by H, we distinguish two cases: If (wi, wj) ≺ (x, y), then Puz(τ(x, y)) is hit through

z
τ(wi,wj)−1
i,j , otherwise it is hit through u

τ(wi,wj)−1
i,j . Similarly it can be shown that any

shortest path between two vertices of Gi,j whose length exceeds r is hit by H, which means

that H is a solution for r-HD on G of value k′. ◀

C Dense Matching

▶ Theorem 8. It is NP-hard to approximate Dense Matching within 2 − ε for any ε > 0,

even if B = ¶B2(v) ♣ v ∈ V ♢ where all edges have weight 1.

Proof. Consider the following reduction from 3-Sat. Let an instance of this problem be

given by a set of variables X = ¶xi♢i=1,...,n and a set of clauses C = ¶Cj♢j=1,...,m with

Cj ⊂ X ∪ X̄, ♣Cj ♣ ≤ 3. Let ¯̄x = x. We construct the graph G = (V,E) given by

V =

n
⋃

i=1

(

¶xi, x̄i, x
0♢ ∪ ¶xℓ

i , x̄
ℓ
i ♣ 1 ≤ ℓ ≤ 7♢

)

∪
m
⋃

j=1



¶zj♢ ∪
⋃

x∈Cj

¶xj,ℓ ♣ 1 ≤ ℓ ≤ 4♢





and

E =

n
⋃

i=1

(

¶¶xi, x
0
i ♢, ¶xi, x

1
i ♢, ¶x1

i , x
0
i ♢, ¶x̄i, x

0
i ♢, ¶x̄i, x̄

1
i ♢, ¶x̄1

i , x
0
i ♢♢
)

∪

n
⋃

i=1

(

6
⋃

ℓ=1

¶¶xℓ
i , x

ℓ+1
i ♢, ¶x̄ℓ

i , x̄
ℓ+1
i ♢♢ ∪ ¶¶x7

i , x
4
i ♢, ¶x̄7

i , x̄
4
i ♢♢


∪

m
⋃

j=1

⋃

x∈Cj

¶¶zj , x
j,1♢, ¶xj,1, xj,2♢, ¶xj,2, xj,3♢, ¶xj,3, xj,4♢, ¶xj,4, x♢, ¶xj,4, x0♢♢

The construction is illustrated in Figure 6.

We now show that the given 3-Sat formula is satisĄable if and only if there is a matchingM

such that ♣M ∩E(B2(v))♣ ≥ 2 for every ball B2(v) of radius 2, where we assume that edges

have unit length. This means that if the given formula is not satisĄable, then there is a

ball B2(v) such that ♣M ∩ E(B2(v))♣ ≤ 1, which implies that it is NP-hard to obtain an

approximation factor less than two.

Suppose that the given formula has a satisfying assignment α : X → ¶0, 1♢ and extend α

to X̄ by choosing α(x̄) = 1 − α(x). For j = 1 . . .m let yj ∈ Cj be some literal satisfying Cj ,

i.e. α(yj) = 1. We construct the matching

M =
n
⋃

i=1

¶¶x2
i , x3

i ♢, ¶x4
i , x5

i ♢, ¶x6
i , x7

i ♢, ¶x̄2
i , x̄3

i ♢, ¶x̄4
i , x̄5

i ♢, ¶x̄6
i , x̄7

i ♢, ♢ ∪
⋃

x : α(x)=1

¶¶x, x0♢♢

∪
⋃

x : α(x)=0

¶¶x, x1♢♢ ∪

m
⋃

j=1



¶¶zj , yj,1
j ♢, ¶yj,2

j , yj,3
j ♢♢ ∪

⋃

x∈Cj \{yj }

¶¶xj,1, xj,2♢, ¶xj,3, xj,4♢♢







J. Blum, Y. Disser, A. E. Feldmann, S. Gupta, and A. Zych-Pawlewicz 5:23

x
0

2
x2 x̄2

x
1

2

x
7

2

x̄
1

2

x̄
7

2

x
0

1
x1 x̄1

x
1

1

x
7

1

x̄
1

1

x̄
7

1

x
0

3
x3 x̄3

x
1

3

x
7

3

x̄
1

3

x̄
7

3

x
0

4
x4 x̄4

x
1

4

x
7

4

x̄
1

4

x̄
7

4

x
1,1

1

x
1,4

1

x
2,1

1

x
2,4

1

x
1,1

2

x
1,4

2

x
2,1

2

x
2,4

2

x
2,1

4

x
2,4

4

x
1,1

3

x
1,4

3

x
2

1

z2z1

x
1,3

1

Figure 6 The graph G for the formula (x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x4). The bold edges yield a
matching that corresponds to the assignment x1 7→ 0, x2 7→ 1, x3 7→ 0, x4 7→ 1.

It is easy to verify that M is indeed a matching and that ♣M ∩ E(B2(v))♣ ≥ 2 for every

ball B2(v).

Suppose now that there is some matching M such that ♣M ∩ E(B2(v))♣ ≥ 2 for every

ball B2(v). Consider the assignment α : X → ¶0, 1♢, α(x) = 1 if and only if there is some j

such that ¶zj , x
j,1♢ ∈ M . To show that α is a satisfying assignment, consider some clause Cj

and let Cj = ¶xi1
, xi2

, xi3
♢. Consider the ball B2(xj,1

i1
) = ¶zj , x

j,1
i1
, xj,2

i1
, xj,3

i1
, xj,1

i2
, xj,1

i3
♢. We

show that M contains one of the edges ¶zj , x
j,1
i1

♢, ¶zj , x
j,1
i2

♢, and ¶zj , x
j,1
i3

♢. To prove this,

suppose that M contains none of these three edges. This means that M has to contain

the two remaining edges ¶xj,1
i1
, xj,2

i1
♢ and ¶xj,2

i1
, xj,3

i1
♢ contained in E(B2(xj,1

i1
)), which is not

possible as both edges are incident to xj,2
i1

.

Let now ¶zj , x
j,1
ι ♢ be the edge contained in M . If xι ∈ X, i.e. xι is a positive literal,

it immediately follows that α satisĄes the clause Cj . Suppose now that xι ∈ X̄. We

show that in this case we have α(xι) = 0, i.e. there is no j′ such that ¶zj′ , x̄j′,1
ι ♢ ∈ M .

For the sake of contradiction, suppose that ¶zj′ , x̄j′,1
ι ♢ ∈ M for some j′ ∈ ¶1, . . . ,m♢. It

follows from ♣M ∩ E(B2(xj,1
ι ))♣ ≥ 2 that ¶xj,2

ι , xj,3
ι ♢ ∈ M . Consider the ball B2(xj,3

ι ) =

¶xj,1
ι , xj,2

ι , xj,3
ι , xj,4

ι , xι, x̄
0
ι ♢. As M contains two edges from this ball and one of these edges

is ¶xj,2
ι , xj,3

ι ♢, the other edge needs to be contained in the triangle ¶xj,4
ι , xι, x̄

0
ι ♢. Consider

now the ball B2(x7
ι ) = ¶x4

ι , x
5
ι , x

6
ι , x

7
ι ♢. It holds that ¶x4

ι , x
5
ι ♢ ∈ M or ¶x4

ι , x
6
ι ♢ ∈ M , which

implies ¶x3
ι , x

4
ι ♢ ̸∈ M . If we now consider the ball B2(x2

ι ) = ¶x, x̄0
ι , x

1
ι , x

2
ι , x

3
ι , x

4
ι ♢, it follows

that M needs to contain one edge from the triangle ¶x, x̄0
ι , x

1
ι ♢. As M also contains one edge

from the triangle ¶xj,4
ι , xι, x̄

0
ι ♢, we obtain that M contains ¶x̄0

ι , x
4
ι ♢, ¶x̄0

ι , x♢, or ¶x̄0
ι , x

1
ι ♢.

However, as we also have ¶zj′ , x̄j′,1
ι ♢ ∈ M , it follows analogously that M contains

¶x̄0
ι , x̄

4
ι ♢, ¶x̄0

ι , x̄♢, or ¶x̄0
ι , x̄

1
ι ♢, which is not possible. This means that α is indeed a satisfying

assignment, which concludes the proof. ◀
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