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Abstract

We introduce a general and compositional, yet simple, framework that allows to derive soundness

and expressiveness results for modal logics characterizing behavioural equivalences or metrics (also

known as Hennessy-Milner theorems). It is based on Galois connections between sets of (real-valued)

predicates on the one hand and equivalence relations/metrics on the other hand and covers a part of

the linear-time-branching-time spectrum, both for the qualitative case (behavioural equivalences)

and the quantitative case (behavioural metrics). We derive behaviour functions from a given logic

and give a condition, called compatibility, that characterizes under which conditions a logically

induced equivalence/metric is induced by a fixpoint equation. In particular, this framework allows

to derive a new fixpoint characterization of directed trace metrics.
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1 Introduction

In the verification of state-based transition systems, modal logics play a central role: they can

be used to specify the properties that a system must satisfy and model-checking techniques

allow to verify whether this is in fact the case. Modal logics also play a fundamental role in

characterizing behavioural equivalences: van Glabbeek in his seminal paper [25] showed how

a whole spectrum of behavioural equivalences and preorders can be characterized via modal

logics. This characterization is also known as the Hennessy-Milner theorem [9], which says that

two states x, y are equivalent (wrt. to some notion of behavioural equivalence) iff they satisfy

the same formulas ϕ (of a given modal logic). Formally, x ∼ y ⇐⇒ ∀ϕ : (x ♣= ϕ ⇐⇒ y ♣= ϕ).

For quantitative systems, the notion of behavioural equivalence is often too strict and

small deviations in quantitative information, such as probabilities, can cause two states that

intuitively behave very much alike to be inequivalent in a formal sense. Hence it is natural to

consider various metrics for determining at what behavioural distance two states lie [7, 24].

This yields an extension of classical notions of behavioural equivalence which knows only
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12:2 Hennessy-Milner Theorems via Galois Connections

distance 0 (two states behave the same) and distance 1 (two states behave differently). Such

metrics have often been studied in probabilistic settings [7], but they can be studied in other

quantitative contexts, for instance metric transition systems [6, 8].

In the quantitative case, equivalences are replaced by pseudo-metrics and evaluation of a

formula ϕ results in a real-valued (as opposed to a boolean-valued) function JϕK, intuitively

indicating to which degree a state satisfies a formula. Stated in this context the Hennessy-

Milner property says that d(x, y) =
∨

ϕ ♣JϕK(x) − JϕK(y)♣, where d is the behavioural metric.

We present a general framework that allows to easily deduce the Hennessy-Milner prop-

erty for a variety of equivalences, preorders and (directed) metrics in the qualitative and

quantitative setting. We rely on a well-known property [2, 4, 5] for Galois connections that

says under which conditions left adjoints preserve least fixpoints. Such Galois connections

relate the logical with the behavioural universe and translate sets of (real-valued) predicates

to equivalences (metrics) and vice versa. Our first contribution is the identification of adjunc-

tions both in quantitative/qualitative settings, which are crucial in capturing bisimilarity

and (decorated) trace versions of equivalences/preorders/metrics.

While most contributions to this area start with a behavioural equivalence (resp. metric)

and define a corresponding characteristic logic, our approach goes in the other direction,

with the slogan: “Derive behaviour functions from a modal logic”. The recipe, which is our

second contribution, is as follows: we define a logic function living in the logical universe and

check that it is compatible with the closure induced by the Galois connection. Compatibility

ensures that the Hennessy-Milner property is satisfied when we transfer the logic function into

a behaviour function living in the behavioural universe. More concretely, we can guarantee

that the least fixpoint of the logic function (the set of all formulas) induces an equivalence

(resp. metric) which is the least fixpoint of the behaviour function. Note that in the qualitative

case, the Galois connection is contravariant, resulting in behavioural equivalence being the

greatest fixpoint, as usual.

Related ideas have been considered in more categorical settings [13, 18], here we demon-

strate that this can be done in a purely lattice-theoretical setup and in particular for

behavioural metrics. To our knowledge, the adjunctions that we are considering here, have

not yet been used to derive Hennessy-Milner theorems and behaviour functions. Our third

contribution is the novel connection to up-to functions and compatibility and we show

how closure properties for up-to functions can be employed to combine logics, leading to a

modular framework. Furthermore, the behaviour function that we obtain for the trace metric

case is, as far as we know, not yet known in the literature. Our final contribution is the

characterisation of these behaviour functions in more concrete terms both in the qualitative

(Theorem 4.12 and Corollary 4.14) and quantitative (Theorem 5.17 and Corollary 5.22) cases.

In turn, these general results effortlessly instantiate into many of the equivalences in the van

Glabbeek spectrum and immediately yield: logical characterizations, the hierarchy between

them and also recursive characterizations, which are often hard to obtain (at least in the

metric case).

The full version of this paper, including all proofs, is available from [3].

2 Preliminaries

Functions and Relations

Given a function f : X → Y and Z ⊆ X we write f [Z] for ¶f(z) ♣ z ∈ Z♢. Similarly, for

a relation R ⊆ X × X and X ′ ⊆ X, we define R[X ′] = ¶y ∈ X ♣ ∃x ∈ X ′ : (x, y) ∈ R♢.

Furthermore, Y X denotes the set of all functions from X to Y and, for a given set F ⊆ Y X

of functions, by ⟨F⟩ we denote a function of type X → Y F defined as ⟨F⟩(x)(f) = f(x). For

S ⊆ X, χS : X → ¶0, 1♢ stands for the characteristic function of S.
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A congruence is an equivalence relation R ⊆ P(X) × P(X) satisfying:
⋃

i∈I Xi R
⋃

i∈I Yi

whenever Xi R Yi for all i ∈ I. Given any relation R ⊆ P(X) × P(X), by cong(R) we denote

its congruence closure, i.e., the smallest congruence such that R ⊆ cong(R).

The directed relation lifting R−→
H

⊆ P(X) × P(X) for a relation R ⊆ X × X is defined as

X1 R−→
H

X2 ⇐⇒ ∀x1 ∈ X1∃x2 ∈ X2 : x1 R x2. Furthermore, we write RH = R−→
H

∩ (R−→
H

)−1,

which can be seen as a special case of the Hausdorff distance (see below).

Pseudo-metrics

We use truncated addition and subtraction on the interval [0, 1], i.e., for r, s ∈ [0, 1] we have

r ⊕ s = min¶r + s, 1♢, r ⊖ s = max¶0, r − s♢.

A directed pseudo-metric or hemimetric on a set X is a function d : X × X → [0, 1] such

that for all x, y, z ∈ X (i) d(x, x) = 0, (ii) d(x, z) ≤ d(x, y) ⊕ d(y, z). It is called a pseudo-

metric if in addition (iii) d(x, y) = d(y, x) for all x, y ∈ X. Whenever d(x, y) = 0 implies

x = y we drop the prefix “pseudo-” and call d a metric. Given a directed pseudo-metric

d on X, d refers to the symmetrization of d, i.e., d(x, y) = max¶d(x, y), d(y, x)♢, for every

x, y ∈ X. Some examples of metrics used in this paper are the following:

The discrete metric ddisc on a set A is ddisc(a, b) = 1 if a ̸= b and 0 otherwise.

The Euclidean distance d on the interval [0, 1] given by d(r, r′) = ♣r − r′♣.

The sup-metric d on [0, 1]I is given by d(p, p′) = supi∈I ♣p(i) − p′(i)♣.

The product of two (pseudo)metric spaces (X, dX) and (Y, dY ) is a (pseudo)metric space

(X × Y, dX ⊗ dY ), where (dX ⊗ dY )((x, y), (x′, y′)) = max¶dX(x, x′), dY (y, y′)♢.

The directed Hausdorff lifting d−→
H

of a pseudo-metric space (X, d) is a directed pseudo-

metric on the power set P(X) given by d−→
H

(U, V ) = supx∈U infy∈V d(x, y). Intuitively,

the Hausdorff distance between two sets is the farthest that any element of one set has to

“travel” to reach the other set.

It can equivalently be characterized as the infimum d−→
H

(U, V ) =
∧

¶ε ∈ [0, 1] ♣ U ⊆ Vε♢,

where Vε = ¶x ∈ X ♣
∧

v∈V d(x, v) ≤ ε♢. This means that we are looking for the least ε

such that U is included in the union of all ε-balls around elements of V .

Moreover, the Hausdorff lifting dH of a pseudo-metric d is the symmetrization of d−→
H

.

Given a directed pseudo-metric d : X × X → [0, 1], a function f : X → [0, 1] is called

non-expansive wrt. d whenever for all x, y ∈ X: f(x) ⊖ f(y) ≤ d(x, y).

Lattices, Fixpoints and Galois Connections

A complete lattice (L, ⊑) consists of a set L with a partial order ⊑ such that each Y ⊆ L has

a least upper bound
⊔

Y (also called supremum, join) and a greatest lower bound
d

Y (also

called infimum, meet). In particular, L has a bottom element ⊥ =
d
L and a top element

⊤ =
⊔
L. Whenever the order is clear from the context, we simply write L for a complete

lattice. For example:

([0, 1], ≤) has a lattice structure with infimum
∧

and supremum
∨

.

The set Eq(X) (Pre(X)) of equivalences (preorders) on X is a lattice with
⊔

=
⋂

and

the join
⊔

R is the least equivalence (resp. preorder) generated by
⋃

R.

The set PMet(X) (DPMet(X)) of (directed) pseudo-metrics is lattice-ordered by ≤.

Via the Knaster-Tarski theorem it is well-known that any monotone function f : L → L

on a complete lattice L has a least fixpoint µf and a greatest fixpoint νf .

Let L, B be two lattices. A Galois connection from L to B is a pair α ⊣ γ of monotone

functions α : L → B, γ : B → L such that for all ℓ ∈ L: ℓ ⊑ γ(α(ℓ)) and for all m ∈ B:

α(γ(m)) ⊑ m. Equivalently, α(ℓ) ⊑ m ⇐⇒ ℓ ⊑ γ(m), for all ℓ ∈ L, m ∈ B. The function α

(resp. γ) is also called the left (resp. right) adjoint and it preserves arbitrary joins (meets).

CSL 2023
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For an arbitrary function f , we define fω as fω(x) =
⊔

i∈N
f i(x). Given a function

f : X → [0, 1], the function f̃ : P(X) → [0, 1] denotes the join-preserving function generated

by f and is defined as f̃(X ′) =
∨

x∈X′ f(x) (for X ′ ⊆ X).

Closures

A closure c is a monotone, idempotent and extensive (i.e. x ⊑ c(x) for all x) function on a

lattice. Given a Galois connection α ⊣ γ, the map γ ◦ α is always a closure.

Given a set Z, a family O of operators on Z (of arbitrary, possibly infinite, arity) and

a subset Z ′ ⊆ Z, we denote by clO(Z ′) the least superset of Z ′ that is closed under all the

operators from O. The set O will sometimes be left implicit in favour of a more suggestive

notation. For instance, given a set S ⊆ P(X), cl∪(S) closes S under arbitrary unions and

cl∪,∩(S) under arbitrary unions and intersections. On the other hand clOf closes only under

operators in O of finite arity (such as finite unions or intersections). Clearly, clO and clOf are

closures in the above sense.

A special case is the shift, where, given a set F ⊆ [0, 1]X , clsh(F) is the closure under

constant shifts, i.e., operations f 7→ f ⊖ c, f 7→ f ⊕ c for c ∈ [0, 1].

We end this subsection by a technical result which is needed to show that our “logic”

function (cf. Section 3) is continuous.

▶ Lemma 2.1. Let (Fi ⊆ Z)i∈N be an increasing family of sets, i.e., Fi ⊆ Fi+1 for every

i ∈ N. If the set O (of operators on Z) contains operators of only finite arity, then

clO(
⋃

i∈N
Fi) =

⋃
i∈N

clO(Fi).

Transition Systems

We will restrict to systems of the following kind in this paper.

▶ Definition 2.2 ((Metric) Transition Systems). A transition system over an alphabet A is a

pair (X, →) consisting of a state space X and a transition relation → ⊆ X × A × X. We

write x
a
−→ x′ for (x, a, x′) ∈ →. For x ∈ X, δ(x) = ¶(a, x′) ♣ x

a
→ x′♢ and δa(x) denotes the

a-successors of x. A transition system is finitely branching if δ(x) is finite for every x.

For a set ∆ ⊆ A × X we denote by lab(∆) the set of labels of ∆, in other words the

projection to the first argument, i.e. lab(∆) = ¶a ♣ ∃x ∈ X : (a, x) ∈ ∆♢. Similarly tgt(∆) is

the set of targets and projects to the second argument.

A metric transition system over A is a triple (X, →, dA) with a metric dA : A×A → [0, 1].

▶ Definition 2.3 (Traces). For x ∈ X, σ = a1 · · · an ∈ A∗, we write x
σ
−→ x′ if x

a1→ · · ·
an→ x′

and define Tr(x) = ¶σ ♣ ∃x′ : x
σ
−→ x′♢. We extend δ, δa to sequences δ̂, δ̂σ in the obvious way.

Given a metric transition system, the distance of two traces is defined as dTr : A∗ ×

A∗ → [0, 1] where dTr(σ1, σ2) = 1 if ♣σ1♣ ≠ ♣σ2♣, dTr(ε, ε) = 0 and dTr(a1σ′
1, a2σ′

2) =

max¶dA(a1, a2), dTr(σ
′
1, σ′

2)♢ (sup-metric).

3 General Framework

Our results are based on the following theorem that shows how fixpoints are preserved by

Galois connections, a well-known property, see for instance [2, 4, 5].

We first introduce the notion of compatibility that has been studied in connection with

up-to techniques, enhancing coinductive proofs [23].
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▶ Definition 3.1. Let log, c : L → L be two monotone endo-functions on a lattice L. We call

log c-compatible whenever log ◦c ⊑ c ◦ log.

▶ Theorem 3.2. Let L,B be two complete lattices with a Galois connection α : L → B,

γ : B → L and two monotone endo-functions log : L → L, beh: B → B.

1. Then α ◦ log = beh ◦α implies α(µ log) = µ beh.

2. Let c = γ ◦ α be the closure operator corresponding to the Galois connection and assume

that beh = α ◦ log ◦γ. Then c-compatibility of log implies α(µ log) = µ beh.

3. Whenever α ◦ log = beh ◦α and log reaches its fixpoint in ω steps, i.e., µ log = logω(⊥),

so does beh.

Here L is the universe in which the logic lives and B is the universe in which equivalences

respectively metrics live. Furthermore log is the “logic function”, constructing modal logic

formulas, and µ log will be the set of all formulas. On the other hand, beh is the “behaviour

function” whose least (respectively greatest) fixpoint is the behavioural metric (equivalence).

▶ Remark 3.3. Note that the above theorem is true even in more general situations, for

example if L and B are only assumed to be complete partial orders. We however stick to

complete lattices since they are more widely known. Also, on a complete lattice many notions

of continuity, such as Scott-continuity or chain-continuity, coincide [19]. In the following we

will therefore simply say that a monotone function on L or B is continuous if it preserves

suprema of all (well-ordered) chains.

The recipe used in this paper is the following: first, define a logical universe L and a

logic function log : L → L. Then choose a suitable Galois connection α ⊣ γ to a behaviour

universe B and show that log is c-compatible, where c = γ ◦ α is the closure associated to

the Galois connection. Then derive the behaviour function beh = α ◦ log ◦γ : B → B and

from the results above, we automatically obtain the equality α(µ log) = µ beh, which tells

us that logical and behavioural equivalence respectively distance coincide (Hennessy-Milner

theorem). This will be worked out in the following examples.

Combining logic functions results in the combination of the corresponding behaviour

functions, which is essential in establishing Hennessy-Milner theorems compositionally.

▶ Proposition 3.4. Let i ∈ ¶1, 2♢ and logi, c : L → L be monotone functions on a complete

lattice L such that logi are c-compatible. Then log1 ⊔ log2 and log1 ◦ log2 are also c-compatible.

Let behi = α◦logi ◦γ be the behaviour functions corresponding to logi. Then the behaviour

functions of log1 ⊔ log2 and log1 ◦ log2 are, respectively, beh1 ⊔ beh2 and beh1 ◦ beh2.

Furthermore every constant function k and the identity are c-compatible. Their corres-

ponding behaviour functions are the constant function b 7→ α(ℓ) (where ℓ is the constant

value of k) respectively the co-closure α ◦ γ.

We are using techniques for the construction of up-to functions studied in [23], but we are

using them in a non-standard way. The point is subtle since the closure is usually supposed

to be the up-to function, while in our notion of compatibility the logic function plays this

role. Furthermore we are interested in least fixpoints, while the results of [23] consider

post-fixpoints up-to in order to show that a lattice element is below the greatest fixpoint.

We end this section by characterising the compatibility property when the closure c is

induced by an adjoint situation α ⊣ γ (as in Theorem 3.2). This result is in turn used to

relate with the notion of approximating family of predicates [14] in Section 6.

▶ Lemma 3.5. Let α ⊣ γ be a Galois connection between lattices L, B (with c = γ ◦ α) and

let log : L → L be a monotone function. Furthermore let ℓ ∈ L. Then log(c(ℓ)) ⊑ c(log(ℓ)) iff

∀ℓ′ ∈ L :
(
α(ℓ′) ⊑ α(ℓ) =⇒ α(log(ℓ′)) ⊑ α(log(ℓ))

)
.

CSL 2023
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4 Qualitative Case

We will start with the classical, qualitative case with behavioural equivalences on the one

side and boolean-valued modal logics on the other side. In this way we will recreate parts

of the theory of [25], incorporating it into the setting of adjunctions as described earlier.

Throughout this section we fix a transition system (X, →) over A.

4.1 Bisimilarity

For bisimilarity we work with the lattices L = (P(P(X)), ⊆) and B = (Eq(X), ⊇). The

Galois connection is given as follows, where [x]R is the equivalence class of x wrt. R:

αb(S) = ¶(x, x′) ∈ X × X ♣ ∀S ∈ S : (x ∈ S ⇐⇒ x′ ∈ S)♢

γb(R) = ¶S ⊆ X ♣ ∀(x, x′) ∈ R : (x ∈ S ⇐⇒ x′ ∈ S)♢ =
{⋃

¶[x]R ♣ x ∈ S♢ ♣ S ⊆ X
}

.

Intuitively αb generates an equivalence on X from a set of subsets of X and γb maps an

equivalence to all subsets of X that are closed under this equivalence. Both functions are

monotone and it is easy to see from the definition that it is indeed a Galois connection

(see also Proposition 4.2 below). As logic function we consider logb : P(P(X)) → P(P(X))

with logb(S) =
⋃

a∈A ♢a[cl∪,¬
f (S)], where cl∪,¬

f closes S under finite unions and complement

(hence also finite intersections). Moreover, ♢a(S) = ¶x ∈ X ♣ ∃x′ ∈ S : x
a
−→ x′♢ for a ∈ A.

The set µ logb of subsets of X is obtained by evaluating modal logic formulas consisting

of constants true, false (empty conjunction/disjunction), binary conjunctions/disjunctions,

negation and diamond modality, where the outermost operator is always the modality. Note

that µ logb is a strict subset of the usual modal logic formulas, but sufficient for expressivity.

▶ Remark 4.1. The continuity of logb deserves some attention. Note that the size of A (be it

finite or infinite) has no effect on the continuity of logb. Rather it follows from Lemma 2.1

and the fact the direct image of a function preserves arbitrary unions. As this argument

remains unchanged in other contexts (e.g. simulation preorders and (bi)simulation metrics),

we will henceforth tacitly state that our logic functions in the sequel are continuous.

We first study the closure associated to the Galois connection, which is important for showing

compatibility later on, and the corresponding co-closure.

▶ Proposition 4.2. The closure cb = γb ◦ αb closes a set S ⊆ P(X) under arbitrary boolean

operations (union, intersection, complement), while the co-closure αb ◦ γb is the identity.

The next step is to show that the logic function is indeed cb-compatible, so that we can

invoke Theorem 3.2. Not being compatible basically means that the closure cb introduces

operators that clash with logical equivalence. For the proof of Proposition 4.4 we require the

fact that the transition system is finitely branching. We first need the following lemma:

▶ Lemma 4.3. Let (X, →) be a finitely branching transition system and (Xi ⊆ X)i∈I be a

sequence of sets of states. Then, for a ∈ A, we have ♢a

 ⋂
i∈I Xi


=

⋂
I0⊆I

I0 finite

♢a

 ⋂
i∈I0

Xi


.

▶ Proposition 4.4. For finitely branching transition systems, logb is cb-compatible.

This theorem would straightforwardly generalize to the case where the set of a-successors

is finite for each a in the qualitative case, but not directly in the quantitative case which we

treat later. Hence, in this paper, we require the transition system to be finitely branching

for branching equivalences/metrics, a requirement that is unnecessary in the trace case.
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As a result we can derive the behaviour function from the logic function via the Galois

connection. Not surprisingly, this behaviour function is in fact the well-known function whose

greatest fixpoint (remember the contravariance) is bisimilarity.

▶ Proposition 4.5. The behaviour function behb can be characterized as: x1 behb(R) x2 iff

∀a ∈ A, y1 ∈ δa(x1) ∃y2 ∈ δa(x2) : y1 R y2 ∧ ∀a ∈ A, y2 ∈ δa(x2) ∃y1 ∈ δa(x1) : y1 R y2.

In particular this means that (x1, x2) ∈ αb(µ logb) = µ behb iff x1, x2 are bisimilar.

It is well known that the behaviour function behb for bisimilarity is continuous if the

underlying transition system is finitely branching.

4.2 Simulation Preorders

In this section we show that not only equivalences, but also behavioural preorders can be

integrated into our framework. Our logical and behavioural universes are given by the lattices

L = (P(P(X)), ⊆) and B = (Pre(X), ⊇). The Galois connection is given as follows:

αs(S) = ¶(x1, x2) ♣ ∀S ∈ S : (x1 ∈ S ⇒ x2 ∈ S)♢

γs(R) = ¶S ⊆ X ♣ ∀s ∈ S : R[¶s♢] ⊆ S♢.

In other words, αs(S)[x] =
⋂

¶S ∈ S ♣ x ∈ S♢. As logic function we consider logs : P(P(X)) →

P(P(X)) with logs(S) =
⋃

a∈A ♢a[cl∩f (S)], where cl∩f closes a family of sets S under finite

intersections. Hence the corresponding logic may use ♢a (a ∈ A), conjunction and true (the

empty intersection), where we again consider only formulas where the outermost operator

is a modality. The logic function logs is continuous and µ logs contains all sets that are

obtained from evaluating such formulas.

As desired, the closure induced by the Galois connection closes under union and intersec-

tion, but not under negation, an operation that should be disallowed in a logic characterizing

simulation. The co-closure is instead the identity on preorders, as in Section 4.1.

▶ Proposition 4.6. The closure cs = γs ◦ αs closes a family of subsets of X under arbitrary

unions and intersections. Moreover, the co-closure αs ◦ γs is the identity on Pre(X).

We show that logs is cs-compatible and subsequently state the main result of this section.

▶ Proposition 4.7. For finitely branching transition systems, logs is cs-compatible.

▶ Theorem 4.8. The behaviour function behs can be characterized as follows: x1 behs(R) x2

iff ∀a ∈ A, y1 ∈ δa(x1) ∃y2 ∈ δa(x2) : y1 R y2, i.e., (x1, x2) ∈ αs(µ logs) = µ behs iff x2

simulates x1. Moreover, for finitely branching transition systems, behs is continuous.

4.3 Trace Equivalence

We now follow the same storyline to set up a Galois connection and framework for trace

equivalence, which will later be enriched to decorated traces like complete/failure/ready

traces [25]. Note that we cannot use the Galois connections from the previous sections, since

in particular c-compatibility would fail, due to the fact that negation and conjunction have to

be disallowed in a logic using the diamond modality to characterize trace equivalence, while

instead disjunction is permitted. On the logic side we use the same lattice L = (P(P(X)), ⊆),

however, the behaviour lattice B = (Eq(P(X)), ⊇) is the set of all equivalences over P(X)

(instead of equivalences over X). Choosing powerset as a semantic domain seems natural

due to determinization. The corresponding Galois connection is given as follows:
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αt(S) = ¶(X1, X2) ∈ P(X) × P(X) ♣ ∀S ∈ S : (X1 ∩ S ̸= ∅ ⇐⇒ X2 ∩ S ̸= ∅)♢

γt(R) = ¶S ⊆ X ♣ ∀(X1, X2) ∈ R : (X1 ∩ S ̸= ∅ ⇐⇒ X2 ∩ S ̸= ∅)♢.

Now we consider logt : P(P(X)) → P(P(X)) with logt(S) =
⋃

a∈A ♢a[S] ∪ ¶X♢, which

is again continuous. Then µ logt represents a set of subsets of X obtained by evaluating

modal logic formulas consisting of the constant true (which evaluates to ¶X♢) and iterated

application of the diamond modalities.

▶ Proposition 4.9. The closure ct = γt ◦ αt closes a set of subsets of X under arbitrary

unions, while the co-closure αt ◦ γt maps an equivalence on P(X) to its congruence closure.

As indicated in the general “recipe”, the next step is to show that the logic function is

compatible with the closure. Intuitively this is true since diamond distributes over union.

▶ Proposition 4.10. The logic function logt is ct-compatible.

Finally the induced behaviour function is the one expected for trace equivalence: the

bisimilarity function on the determinized transition system. This is true only for congruences,

since beht automatically returns a congruence.

▶ Proposition 4.11. On a congruence relation R ⊆ P(X) × P(X), we have X1 beht(R) X2

iff (X1 = ∅ ⇐⇒ X2 = ∅) ∧ ∀a ∈ A : δa[X1] R δa[X2]. The restriction of beht to congruences

is continuous, independent of the branching type of the transition system.

Since on congruences beht agrees with the usual fixpoint function for trace equivalence

and beht preserves congruences, in the corresponding Kleene iteration we obtain only

congruences and hence it agrees with the usual one, where one computes bisimilarity on the

determinized transition system. Hence it is easy to see that µ beht is indeed trace equivalence

(cf. Theorem 4.12).

Decorated Trace Equivalences

We now consider completed trace/ready/failure/possible futures equivalence from the van

Glabbeek spectrum [25] and explain how these equivalences can be obtained by adding fixed

predicates. We parameterize over a family S of predicates over the state space (see Figure 1).

We first characterize the fixpoint of the behaviour function, modified with an extra preorder

as follows. The advantage of this characterisation is that it allows to state various decorated

trace equivalences in terms of transfer properties as in the definition of bisimulation relations.

▶ Theorem 4.12. Let R0 ∈ Pre(X) and consider the map behR0
= beht ∩(R0)H . Then

µ behR0
is equal to the set Ω(R0) of those pairs (X1, X2), such that if x1 ∈ X1 admits a

trace x1
σ
−→ x′

1, then there exists x2 ∈ X2, such that x2
σ
−→ x′

2 and x′
1 R0 x′

2 (and vice versa).

In order to infer that µ beht characterizes trace equivalence simply set R0 = X × X.

The idea is to fix a set S of predicates and add these to our trace logic, using R0 = αs(S)

as the preorder required in the above theorem. In order to ensure that logical and behavioural

equivalence coincide, we require that S has certain “good” properties.

▶ Lemma 4.13. Let S ⊆ P(X) such that ∀x∃S ∈ S : (x ∈ S ∧ ∀y : x αs(S) y ⇐⇒ y ∈ S).

Then, αt(S) coincides with the relation lifting (αs(S))H .
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S x R0 y Behavioural equivalence

¶TX♢ lab(δ(x)) = ∅ =⇒ lab(δ(y)) = ∅ completed trace

¶Ref(B) ♣ B ⊆ A♢ lab(δ(y)) ⊆ lab(δ(x)) failure

¶Ready(B) ♣ B ⊆ A♢ lab(δ(x)) = lab(δ(y)) ready

cl∩(µ logt ∪¬(µ logt)) Tr(x) = Tr(y) possible futures

Figure 1 Behavioural equivalences obtained from a logic of the form log0(F) = logt(F) ∪ S,

respectively a behaviour function of the form beh0 = beht ∩(R0)H .

The condition of Lemma 4.13 is for instance satisfied if S is closed under intersections.

We obtain the following characterization of decorated trace logics.

▶ Corollary 4.14. Assume that S satisfies the requirements of Lemma 4.13 and let R0 = αs(S).

Consider the logic function logS = logt ∪S. Then αt(µ logS) = Ω(R0) = µ behR0
.

Hence if we instantiate S as in Figure 1, where

TX = δ−1(∅) Ref(B) = ¶x ♣ lab(δ(x)) ∩ B = ∅♢ Ready(B) = ¶x ♣ lab(δ(x)) = B♢,

we obtain complete trace/failure/readiness equivalences as the least fixpoint of behR0
. In all

these cases S ∪ ¶X♢ satisfies the requirements of Lemma 4.13.

Note that ¶X♢ is already generated by logt. The predicate TX semantically corresponds to

the predicate denoted 0 in [25] (satisfied by those states that have no outgoing transitions).

Similarly, the predicate Ref(B) (resp. Ready(B)) corresponds to the predicate B̃ (resp. B)

in [25], which is satisfied by those states that refuse (resp. enable) all the actions from B.

5 Quantitative Case

After discussing the classical case of behavioural equivalences, we will now follow an analogous

path to obtain behavioural distances in a quantitative setting. We will begin by first

considering the bisimulation pseudo-metric, then directed simulation pseudo-metric, and

lastly conclude with the directed (decorated) trace pseudo-metric, from which one can obtain

the undirected version by symmetrization. In each case, we will again start out by defining

the logics and derive the fixpoint equations for the corresponding behaviour function.

In addition, our decorated trace distance can be seen as the quantitative generalization

of a decorated trace preorder, which when instantiated corresponds to (complete) trace/fail-

ure/ready inclusions. So, in this sense, our decorated trace distance is going to be parametric.

Lastly, though the concrete trace distance is studied elsewhere (cf. [6, 8]), we are not aware

of this fixpoint characterization of (decorated) trace distance in the literature. There is a

recursive characterization in [8], but based on an auxiliary lattice that serves as memory.

In the rest of this section we fix a metric transition system (X, →, dA) over A.

5.1 Bisimulation Pseudo-metrics

Recall the adjunction from Section 4.1, which we will enrich by replacing a predicate S ⊆ X

with a function f : X → [0, 1], while pseudo-metrics now play the role of equivalences. In

particular, our logical and behavioural universes are given by the lattices L = (P([0, 1]X), ⊆)

and B = (PMet(X), ≤), respectively. Moreover, the Galois connection is given as follows:
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αB(F)(x1, x2) =
∨

f∈F

♣f(x1) − f(x2)♣ (for F ⊆ [0, 1]X)

γB(d) = ¶f ∈ [0, 1]X ♣ ∀x1, x2 ∈ X : ♣f(x1) − f(x2)♣ ≤ d(x1, x2)♢ (for d ∈ PMet(X)).

That is, αB(F) is the least metric on X such that all functions in F are non-expansive wrt. the

Euclidean metric on [0, 1], while γB returns all the non-expansive functions wrt. d ∈ PMet(X).

Next we introduce a family of modalities (⃝a f)a∈A in the style of [6]:

⃝a f(x) =
∨

¶Da(b) ∧ f(x′) ♣ x
b
−→ x′♢, where Da(b) = dA(b, a) and Da(b) = 1 − Da(b).

We consider the (continuous) logic function logB : P([0, 1]X) → P([0, 1]X) that maps a set

F ⊆ [0, 1]X of functions to the set
⋃

a∈A ⃝a[cl∧,¬,sh
f (F)], where cl∧,¬,sh

f closes F under finite

meets, complements (f 7→ 1 − f), and constant shifts (and hence also under finite joins),

which are all non-expansive operators (cf. Proposition 5.3). It should be noted that ⃝a is a

quantitative generalization of the qualitative diamond modality in the following sense.

▶ Proposition 5.1. If dA is a discrete metric then ⃝a f(x) = 1 ⇐⇒ x ∈ ♢af−1(¶1♢).

Following the development of Section 4.1, we establish the metric version of Lemma 4.3:

▶ Lemma 5.2. Let (X, →, dA) be a finitely branching metric transition system and F ⊆ [0, 1]X

be a family of functions. Then for c ∈ A we have ⃝c

 ∧
f∈F f


=

∧
F0⊆F

F0 finite

⃝c

 ∧
f∈F0

f


.

In the quantitative case, the closures induced by the Galois connections had appealing

characterizations via boolean operators. Here the closure cB is obtained by post-composing

the functions in F with all non-expansive operators. This is in fact a corollary of the

McShane-Whitney extension theorem [20, 26].

▶ Proposition 5.3. The closure cB = γB ◦ αB on F ⊆ [0, 1]X can be characterized as follows:

cB(F) = ¶op ◦⟨F⟩ ♣ op: [0, 1]F → [0, 1] is non-expansive wrt. the sup-metric♢.

Moreover, the co-closure αB ◦ γB is the identity.

The proof of the above proposition and the next two results are analogous to the corresponding

results in the next section on simulation.

▶ Proposition 5.4. For finitely branching transition systems, logB is cB-compatible.

▶ Theorem 5.5. The behaviour function behB on any d ∈ PMet(X) is behB(d) = (dA ⊗

d)H ◦ (δ × δ), which results exactly in bisimulation metrics as considered in [6]. Moreover,

behB is continuous for finitely branching transition systems.

It is well-known that the kernel of the bisimulation metric, i.e., the pairs of states with

distance 0, is exactly bisimilarity [8].

5.2 Directed Simulation Metrics

In this section, we will treat simulation distance. Our logical and behavioural universes are

L = (P([0, 1]X), ⊆) and B = (DPMet(X), ≤) with

αS(F)(x1, x2) =
∨

f∈F

(f(x1) ⊖ f(x2)) (for F ⊆ [0, 1]X)

γS(d) = ¶f ∈ [0, 1]X ♣ ∀x1, x2 ∈ X : f(x1) ⊖ f(x2) ≤ d(x1, x2)♢ (for d ∈ DPMet(X)).
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Now our (continuous) logic function logS : P([0, 1]X) → P([0, 1]X) is the mapping F 7→⋃
c∈A ⃝c[cl∧,sh

f (F)], where cl∧,sh
f closes F under finite meets and constant shifts (whose

necessity is argued in Example 5.9). To characterize the closure cS we use a directed

version of the McShane-Whitney extension theorem [20, 26] (a special case of enriched Kan

extensions).

▶ Proposition 5.6. The closure cS = γS ◦ αS on F is the set given in Proposition 5.3 except

that op is non-expansive wrt. the directed sup-metric. The co-closure αS ◦ γS is the identity.

In order to show cS-compatibility of logS, we first derive an alternative characterization

of the closure in terms of certain normal form given below. Note that a similar statement

holds in the context of bisimulation pseudo-metric when we replace the closure cS by cB.

▶ Proposition 5.7 (Normal Form). Let F ⊆ [0, 1]X with 1 ∈ F and f ∈ cS(F). Then there is

a family of functions ¶fε
(x,y) ♣ ε > 0 and x, y ∈ X♢, where each function fε

(x,y) is a constant

shift of a function in F , such that f =
∨

ε>0

∧
x∈X

∨
y∈X fε

(x,y).

These results enable us to show that the logic function is indeed compatible with closure,

a prerequisite for being able to derive the corresponding behaviour function.

▶ Proposition 5.8. For finitely branching transition systems, logS is cS-compatible.

▶ Example 5.9. We show that adding shifts to the logic function is necessary to obtain

compatibility. Consider the metric transition system (¶x, y, x1, y1♢, ¶x
1
−→ x1, y

0
−→ y1♢, dA)

with dA is an Euclidean metric over the alphabet A = [0, 1].

Assume that F = ¶f♢ with f(x) = f(y) = f(x1) = 1/2, f(y1) = 0, where the pseudo-

metric d = αS(F) has distance 0 for the states x, y, x1 and it yields distance 1/2 between y1

and all other states. Then it is easy to see that g with g(x) = g(y) = g(x1) = 1, g(y1) = 1/2

is contained in cS(F), since it is non-expansive wrt. d. Then ⃝1 g ∈ logS(cS(F)) and

⃝1 g(x) ⊖ ⃝1 g(y) = (D1(1) ∧ g(x1)) ⊖ (D1(0) ∧ g(y1)) = (1 ∧ 1) ⊖ (0 ∧ 1/2) = 1.

In order for compatibility to hold, ⃝1 g must be contained in cS(logS(F)), i.e., it has to

be non-expansive wrt. αS(logS(F)). If the logic function does not use shifts, it only closes

F under finite meets and joins, which results in f , 0 (empty join), 1 (empty meet). For

all r ∈ [0, 1], f̄ ∈ cS(F), we have ⃝r f̄(x) ⊖ ⃝r f̄(y) < ⃝1 g(x) ⊖ ⃝1 g(y), which means

⃝1 g ̸∈ cS(logS(F)). In particular,

⃝r f(x)⊖⃝r f(y) = (Dr(1)∧f(x1))⊖ (Dr(0)∧f(y1)) = (Dr(1)∧ 1/2)⊖ (Dr(0)∧0) ≤ 1/2.

▶ Theorem 5.10. The behaviour function behS can be characterized as behS(d) = (dA ⊗d)−→
H

◦

(δ × δ) for any d ∈ DPMet(X). In particular, αS(µ logS) = µ behS is the directed similarity

metric of [6]. Moreover, behS is continuous for finitely branching transition systems.

Every metric transition system can be viewed as a classical one by forgetting the metric

on the labels. In addition, we can first compute the simulation metric of the quantitative

system and then discretize the values to obtain qualitative simulation equivalence.

▶ Proposition 5.11. Consider the Galois connection α ⊣ γ with α : DPMet(X) → Pre(X)

and γ : Pre(X) → DPMet(X) given by the maps α(d) = ¶(x, y) ♣ d(x, y) = 0♢, γ(R) = 1−χR.

If the transition system is finitely branching, then α ◦ behS(d) = behs ◦α(d) for every

d ∈ DPMet(X). In particular µ behs = α(µ behS) due to Theorem 3.2.
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We conclude this section by the observation that the characterization in Theorem 5.10

allows us to eliminate constant shifts from the simulation logic.

▶ Corollary 5.12. Let log′ : P([0, 1]X) → P([0, 1]X) be the variant of logS, where we do not

close under constant shifts. If the transition system is finitely branching, then log′ is still

sound and expressive for simulation, that means αS(µ log′) = µ behS.

5.3 Directed Trace Metrics

In this section, we treat the directed version of the (decorated) trace distance whose fixpoint

characterization is novel and, at the same time, the most complex scenario considered in this

paper. We will sometimes omit the adjective “directed”.

Based on the qualitative case of trace equivalence (Section 4.3), we fix the logical and

behavioural universes to be the lattices L = (P([0, 1]X), ⊆) and B = (DPMet(P(X)), ≤) with

αT(F)(X1, X2) =
∨

f∈F

(f̃(X1) ⊖ f̃(X2)) (for F ⊆ [0, 1]X)

γT(d) = ¶f ∈ [0, 1]X ♣ f̃ is non-expansive wrt. d♢ (for d ∈ DPMet(PX)).

It is easy to see that αT(F) is always join-preserving in its first argument. Notice that

we could have defined L as those functions in [0, 1]P(X) that are join-preserving. As a

result, one expects that the closure cT may close a set F under all non-expansive and

join-preserving operators. However, this is unfortunately not true as witnessed by the

following counterexample. This points to the more fundamental problem that there is no

McShane-Whitney type result for non-expansive, join-preserving operators: a non-expansive,

join-preserving operator defined on some subset does not necessarily have an extension to

the whole space which is both non-expansive and join-preserving.

▶ Example 5.13. Let X = ¶x, y, z♢ and F = ¶f1, f2♢ ⊆ [0, 1]X , where f1 and f2 are the

mappings x, y 7→ 1, z 7→ 0 and x, z 7→ 0, y 7→ 1/2, respectively. Now consider a map g : X →

[0, 1] with g(x) = 1/2, g(y) = 1 and g(z) = 0. Then it is easily seen that g ∈ cT(F). However,

we claim that there is no join-preserving and non-expansive operator op: [0, 1]2 → [0, 1] such

that g = op ◦⟨f1, f2⟩. Assume otherwise that op(f1(u), f2(u)) = g(x) (for u ∈ X), which

implies op(1, 0) = 1/2, op(1, 1/2) = 1, and op(0, 0) = 0. Due to non-expansivity of op we

conclude that op(0, 1/2) ≤ 1/2, which leads to the following contradiction:

1 = op(1, 1/2) = op((1, 0) ∨ (0, 1/2)) = op(1, 0) ∨ op(0, 1/2) = 1/2.

As (continuous) logic function logT : P([0, 1]X) → P([0, 1]X) we define logT(F) =⋃
a∈A ⃝a[clsh(F)] ∪ ¶1♢, where clsh closes a set of functions under constant shifts, as in

Section 5.2, and 1 is the constant 1-function. Typically, operators of a “metric” logic ought

to preserve non-expansiveness, which is not the case for the shift f 7→ f ⊕ r; since it might

increase the distance of a non-empty set to the empty set. This is not problematic in our

case, since the distance of ∅ to any other set is 1 anyway, induced by the constant operator 1.

(Note that the empty join is 0.) We will show in Theorem 5.20 that our logic characterizes

trace distance, i.e., αT(µ logT) = dT , where dT := (dTr)−→
H

◦ (Tr × Tr).

The co-closure, on the other hand, is straightforward to characterize.

▶ Proposition 5.14. The co-closure αT ◦ γT maps a directed pseudo-metric d to the greatest

directed pseudo-metric d′ such that d′ ≤ d and d′ is join-preserving in its first argument.
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Next we turn our attention to the compatibility of our logic function. Here we have to

work around the fact that the closure can not be easily characterized, neither in terms of

operators nor in terms of a suitable normal form (cf. Proposition 5.7). Still, compatibility

holds, even for transition systems of arbitrary branching type.

▶ Lemma 5.15. Let h : X → [0, 1], c ∈ A and Y ⊆ X. Then it holds that

⃝̃c h(Y ) =
∧

∆⊆δ[Y ]

(
D̃c(lab(δ[Y ] \ ∆)) ∨ h̃(tgt(∆))

)

▶ Proposition 5.16. The logic function logT is cT-compatible.

Now we can characterize the behaviour function as follows. To the best of our knowledge,

this is the first time that a fixpoint function for trace metrics on the powerset of the state

space has been established. There is also a fixpoint characterization given in [8] although on

an auxiliary lattice which serves as a memory.

▶ Theorem 5.17. Let d ∈ DPMet(P(X)) such that d is join preserving in its first argument

and d(X1, ∅) = 1 for every non-empty set X1 ⊆ X. Then the behaviour function behT can be

characterized by the conditional equation: behT(d)(X1, ∅) = 1 if X1 ̸= ∅ and otherwise

behT(d)(X1, X2) =
∨

(a,x′)∈δ[X1]

∨

∆⊆δ[X2]

 ∧

b∈lab(∆)

dA(a, b) ∧ d(¶x′♢, tgt(δ[X2] \ ∆))


.

Moreover behT is continuous, independent of the branching type of the transition system.

The special case of X1 ̸= ∅, X2 = ∅ is an effect of the term ¶1♢ in the logic function logT.

Note that to our knowledge there is no straightforward way to compute the bisimilarity

distance on the determinization (see Theorem 17 in [6]). Next, we explain the above fixpoint

equation as a two-player game.

▶ Remark 5.18. Given two sets X1, X2 ⊆ X and a threshold ε ∈ [0, 1], we want to check,

whether dT(X1, X2) ≤ ε with a game played by two players: Death D and Maiden M. First, D

chooses a transition (a, x′) of δ[X1] and also stipulates a set ∆ ⊆ δ[X2] of allowed transitions

for M. Now M has two possibilities: she can either accept the set ∆ presented by D, or she can

reject it. If she rejects it, she can only reach states in Y ′ := tgt(δ[X2] \ ∆) and whatever way

D chooses to continue his trace from the state x′, M must continue her trace from one of the

states in Y ′. The game therefore continues with the sets ¶x′♢ and Y ′. If, on the other hand,

M chooses to accept the set presented by D, then, in trying to duplicate the trace begun by D

with one of the transitions in ∆, she makes an error of at least
∧

(b,y′)∈∆ dA(a, b). It is clear

that M should only make this decision if she thinks that D can otherwise force a larger error

in a later stage of the game. The game therefore ends and M wins iff
∧

(b,y′)∈∆ dA(a, b) ≤ ε.

▶ Example 5.19. We compute the directed trace distance of the state x to the state y in the met-

ric transition system over A = [0, 1] depicted in Figure 2 with Tr(x) = ¶(0, 0), (0, 1)♢, Tr(y) =

¶(1/2, 0), (0, 1)♢. There is only one outgoing transition from x and there are four pos-

sible choices for ∆ ⊆ δ(y). The corresponding terms are calculated in Figure 2, where

we used that we already computed dT(¶x′♢, ¶y1♢) = dT(¶x′♢, ¶y2♢) = dT(¶x′♢, ∅) = 1 and

dT(¶x′♢, ¶y1, y2♢) = 0. Taking the maximum of the minima we see that dT(¶x♢, ¶y♢) = 1/2,

which is indeed the Hausdorff distance between the two trace sets.

In the case of the trace metric we can eliminate constant shifts from the logic without

losing expressiveness. This is a consequence of Corollary 5.22, which we will prove later.
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y

y1 y2

1/2 0

0 1

x

x′

0

0 1

∆
∧

(b,y′)∈∆
dA(a, b) dT(¶x′♢, tgt(δ(y) \ ∆))

∅ 1 0
¶(1/2, y1)♢ 1/2 1
¶(0, y2)♢ 0 1

δ(y) 0 1

Figure 2 Computation of trace distance.

Decorated Trace Distances

Now we consider the quantitative generalization of decorated trace preorders. We follow

a presentation similar to Theorem 4.12, wherein we characterize the least fixpoint of a

behaviour function parameterized by a distance d0 ∈ DPMet(X), which is in turn induced

by a set G ⊆ [0, 1]X , corresponding to completed/failure/readiness traces.

▶ Theorem 5.20. Let d0 ∈ DPMet(X) and consider the map behd0
: DPMet(P(X)) →

DPMet(P(X)) defined as behd0
(d) = behT(d) ∨ (d0)−→

H
, for any d ∈ DPMet(P(X)). Then

µ behd0
(X1, X2) is characterized as the infimum of those ε ∈ [0, 1] that satisfy:

∀x1 ∈ X1, x′
1 ∈ X, σ ∈ A∗ : x1

σ
−→ x′

1

=⇒ ∃x2 ∈ X2, x′
2 ∈ X, τ ∈ A∗ : x2

τ
−→ x′

2 ∧ dTr(σ, τ) ≤ ε ∧ d0(x′
1, x′

2) ≤ ε.

When d0 is the constant 0-metric, this results in the behaviour function behT that

characterizes trace distance. Next, we reformulate the result in terms of a set G ⊆ [0, 1]X ;

this in turn helps in deriving the characterization of various decorated trace distances. We

start by imposing a condition on such a set G that guarantees that αT(G) is the directed

Hausdorff lifting of d0 = αS(G) (cf. Section 5.2), which ensures that by Proposition 3.4 the

enriched logic function induces a behaviour function as in the previous theorem.

▶ Lemma 5.21. Let G ⊆ [0, 1]X such that d0 = αS(G). Then αT(G) = (d0)−→
H

whenever

∀ε > 0, x ∈ X ∃g ∈ G : g(x) = 1 ∧ ∀x′ : g(x) ⊖ g(x′) ≥ d0(x, x′) − ε.

▶ Corollary 5.22. Assume that G ⊆ [0, 1]X satisfies the requirements of Lemma 5.21. Then

αT(µ(logT ∪G)) = (dTr ⊗ d0)−→
H

◦ (δ̂ × δ̂). The same holds if the logic function logT is replaced

by log′ with log′(F) =
⋃

a∈A ⃝a[F ] ∪ ¶1♢ (without shifts).

G d0(x, y) Behavioural distance

¶fRef
A ♢ fRef

A (x) ⊖ fRef
A (y) completed trace

¶fRef
B , ♣ B ⊆ A♢ (ddisc)−→

H
(lab(δ(y)), lab(δ(x)) (discrete) failures

cl∧,sh(¶ga ♣ a ∈ A♢) (dA)−→
H

(lab(δ(y)), lab(δ(x))) (Hausdorff) failures

¶fReady
B ♣ B ⊆ A♢ ddisc(lab(δ(x)), lab(δ(y))) (discrete) readiness

cl∧,sh(¶ga, 1 − ga ♣ a ∈ A♢) (dA)H(lab(δ(x)), lab(δ(y))) (Hausdorff) readiness

cl∧,sh(µ logT ∪¬(µ logT)) dT(¶x♢, ¶y♢) possible futures

Figure 3 Behavioural distances obtained from a logic of the form log0(F) = logT(F) ∪ G,

respectively a behaviour function of the form beh0 = behT ∨(d0)−→
H

, where d0 = αS(G).

These results supply fixpoint characterizations of several meaningful behavioural distances.

In Figure 3 we summarize which primitive set of functions G ⊆ [0, 1]X has to be added to

the trace logic in order to get (directed) metric versions of some decorated trace semantics

considered in [25]: completed/failure/ready trace semantics.
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▶ Corollary 5.23. Consider the following functions fRef
B , fReady

B , ga ∈ [0, 1]X :

fRef
B (x) =

{
1 x ∈ Ref(B)

0 otherwise
fReady

B (x) =

{
1 x ∈ Ready(B)

0 otherwise
ga(x) =

∧

b∈lab(δ(x))

dA(a, b).

Then by adding G to logT results in the behaviour functions and distances as given in Figure 3.

Note that the different versions of failures and readiness metrics correspond to different

ways to measure the distance between the refuse/ready sets of two states. In the first version

we take the discrete metric on P(A), and in the second version we take the Hausdorff lifting

of dA. In the qualitative setting, the two notions collapse. The Hausdorff versions are the

ones to use if we want to recover the hierarchy of [25].

Trace

Completed Trace

Hausdorff Failure pseudo-Hausdorff Failure

Hausdorff Ready discrete Failure

Possible Futures discrete Ready

Bisimulation

Figure 4 A spectrum of behavioural distances.

Consider also the pseudo-Hausdorff failure semantics arising from choosing a set G of pre-

dicates with αS(G)(x, y) = d0(x, y) = (dA)−→
H

(A\ lab(δ(x)), A\ lab(δ(y))). In the qualitative

setting this notion collapses with Hausdorff failure and discrete failure semantics, but in the

metric setting the pseudo-Hausdorff failure distance is not even bounded by the bisimulation

distance (see Figure 4). The inclusions shown in Figure 4 are obvious from comparing the

corresponding metrics d0 in Figure 3.

Again we conclude by comparing the qualitative and quantitative case.

▶ Proposition 5.24. Consider the map α : DPMet(P(X)) → Pre(P(X)) given by α(d) =

¶(X1, X2) ♣ d(X1, X2) = 0♢. If the set A of actions is finite, then µ beht = α(µ behT).

The necessity of requiring finiteness of A is illustrated by Example 5.25.

▶ Example 5.25. Consider the transition system depicted below:

x

0

y1

1/1

y2

1/2

y3

1/3

y4

1/4

y5

1/5

. . .

The trace distance of X1 = ¶yi+1 ♣ i ∈ N♢ and X2 = X1 ∪ ¶x♢ is µ behT(X1, X2) = 0.

However we do not have full trace inclusion, hence (X1, X2) /∈ µ beht.

CSL 2023
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6 Concluding Remarks, Related and Future Work

We presented a recipe to construct (bi)simulation equivalence/distance and trace equival-

ence/distance (together with various forms of their decorated trace counterparts) as the

least fixpoint of behaviour functions on the underlying lattice B of equivalences/distances.

Furthermore, upon realising the relevant Galois connection α ⊣ γ between the lattices L

(modelling sets of predicates) and B, we showed in each case that these behaviour func-

tions arise naturally (i.e., beh = α ◦ log ◦γ) when the logic function log is compatible with

the closure γ ◦ α. By doing so, we not only recover the fixpoint characterizations of the

branching-time spectrum, but we also gave novel ones in the linear-time spectrum (like the

trace distances and their variations: completed trace/failure/ready/possible futures).

Related work

Our work is related to [6, 8], where the former establishes a logical characterization (using

the syntax of LTL and µ-calculus) of bisimulation and trace distances, while the latter

recasts a part of the classical linear-branching time spectrum to a quantitative one involving

metrics, based on games. The fixpoint and logical characterizations of (decorated) trace

distances were not present in both [6, 8]. In [8] the authors parameterize over various trace

distances, which we are not, although this is an interesting direction for future work. By

restricting to pointwise trace distance with discount one, we obtain corresponding notions

for bisimilarity, trace and (Hausdorff) readiness. Note that [8] does not treat failures. Also,

our game in Remark 5.18 is different from the games played in [8], since it is played locally

on the powerset domain.

Coalgebraists familiar with fibrations/indexed categories [10] will recognize the Galois

connection between the fibres of two indexed categories: one modelling the logical universe,

the other behavioural universe on the state space of a coalgebra. Indeed, Klin in his PhD

thesis [13] has explored this adjoint situation αb ⊣ γb (cf. Section 4.1); note that behavioural

metrics were not treated in [13]. The two approaches diverge in the treatment of closures

especially in the context of decorated traces. In this paper, closures are always induced as

monad from the adjoint situation and to handle (decorated) trace equivalences we consider the

adjoint situation αt ⊣ γt since the closure cb is not sound w.r.t. (decorated) trace equivalence.

In Klin’s approach, on the contrary, the adjunction αb ⊣ γb used to characterize bisimilarity

is fixed (even for decorated trace equivalences), but the notion of closure is left parametric

[13, Definition 3.31]. Our new insight in the qualitative case is that the closure is naturally

induced by the Galois connection and the characterization of fixpoint preservation is a

fundamental ingredient.

We also point out the differences to the dual adjunction approach [12, 17, 18, 22] to

coalgebraic modal logic. There the functor on the “logic universe” characterizes the syntax

of the logics, while the semantics is given by a natural transformation. In [18] the approach

is lifted to fibrations (in which the equivalence lives). Generalizing our approach however

would lead to a situation where we obtain a fibred adjunction between two fibrations (for

logic and behaviour) on the same category.

In [14] the approach of [18] is instantiated to a quantitative setting, without treating trace

metrics. A central notion there is that of an approximating family, which, translated into our

language, says that F ⊆ [0, 1]X is an approximating family iff ∀f ∈ [0, 1]X : α(F) ≥ α(¶f♢)

implies α(log(F)) ≥ α(log(¶f♢)), with log being restricted to applying modalities. If log is

join-preserving, this is equivalent to log(c(F)) ⊆ c(log(F)) (this is a direct consequence of

Lemma 3.5), i.e., it is strongly related to compatibility.
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Future work

Taking inspiration from the above, we want to generalize our work to the level of coalgebras

with an approach based on fibrations, enabling us to treat other branching types, such as

probabilistic branching. Note that the coalgebraic treatment of establishing Hennessy-Milner

theorems in [11, 13] does not subsume the behavioural distances covered in this paper, while

the qualitative spectrum has been generalized using graded monads [21]. We plan to develop

fixpoint and logical characterizations of coalgebraic behavioural metrics [1, 15], which are

generalizations of both bisimulation pseudo-metric and trace distance.

We are also interested in exploring connections with [16], a paper studying the question

which formulas of Hennessy-Milner logic are preserved by quotienting through a behavioural

equivalence.

Another direction is to consider behavioural equivalences (such as failure trace/ready

trace equivalences and variations) that cannot be captured by our modular approach (i.e.,

by extending the logic functions logt/logT with a constant function). We also want to

characterize undirected trace distance directly without the symmetrization of directed trace

distance.

Another line of research is to determine under which circumstances we can restrict to

finitary operations, from which we deviate occasionally by closing under arbitrary meets or

intersections. This should be feasible by restricting to finitely branching transition systems.

Also, in the metric case, we plan to optimize the syntax by restricting shifts and modalities to

rational numbers. Last, but not least, it will be interesting to work out the compatibility of

logB for a weaker class of metric transition systems than those which are finitely branching.
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