
eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk

Universities of Leeds, Sheffield and York

Deposited via The University of Sheffield.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/200909/

Version: Published Version

Article:

Ellis, M.O.A., Welbourne, A., Kyle, S.J. et al. (2023) Machine learning using magnetic 
stochastic synapses. Neuromorphic Computing and Engineering, 3 (2). 021001. ISSN: 
2634-4386 

https://doi.org/10.1088/2634-4386/acdb96

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1088/2634-4386/acdb96
https://eprints.whiterose.ac.uk/id/eprint/200909/
https://eprints.whiterose.ac.uk/


Neuromorphic Computing and Engineering

LETTER • OPEN ACCESS

Machine learning using magnetic stochastic
synapses
To cite this article: Matthew O A Ellis et al 2023 Neuromorph. Comput. Eng. 3 021001

 

View the article online for updates and enhancements.

You may also like

Simulating the filament morphology in
electrochemical metallization cells
Milan Buttberg, Ilia Valov and Stephan
Menzel

-

HfO
2
-based resistive switching memory

devices for neuromorphic computing
S Brivio, S Spiga and D Ielmini

-

On-chip learning of a domain-wall-
synapse-crossbar-array-based
convolutional neural network
Varun Bhavin Desai, Divya Kaushik, Janak
Sharda et al.

-

This content was downloaded from IP address 188.220.45.213 on 27/06/2023 at 11:51

https://doi.org/10.1088/2634-4386/acdb96
/article/10.1088/2634-4386/acdbe5
/article/10.1088/2634-4386/acdbe5
/article/10.1088/2634-4386/ac9012
/article/10.1088/2634-4386/ac9012
/article/10.1088/2634-4386/ac9012
/article/10.1088/2634-4386/ac62db
/article/10.1088/2634-4386/ac62db
/article/10.1088/2634-4386/ac62db


Neuromorph. Comput. Eng. 3 (2023) 021001 https://doi.org/10.1088/2634-4386/acdb96

OPEN ACCESS

RECEIVED

9 March 2023

REVISED

30 May 2023

ACCEPTED FOR PUBLICATION

5 June 2023

PUBLISHED

23 June 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Machine learning using magnetic stochastic synapses
Matthew O A Ellis1,4,∗, Alexander Welbourne2,4, Stephan J Kyle2, Paul W Fry3, Dan A Allwood2,
Thomas J Hayward2 and Eleni Vasilaki1
1 Department of Computer Science, University of Sheffield, Sheffield S1 4DP, United Kingdom
2 Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
3 Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
4 These authors contributed equally to this work.
∗ Author to whom any correspondence should be addressed.

E-mail: m.o.ellis@sheffield.ac.uk

Keywords: neuromorphic, magnetic nanowire, binary stochastic synapses, gradient rule, spintronics

Abstract
The impressive performance of artificial neural networks has come at the cost of high energy usage
and CO2 emissions. Unconventional computing architectures, with magnetic systems as a
candidate, have potential as alternative energy-efficient hardware, but, still face challenges, such as
stochastic behaviour, in implementation. Here, we present a methodology for exploiting the
traditionally detrimental stochastic effects in magnetic domain-wall motion in nanowires. We
demonstrate functional binary stochastic synapses alongside a gradient learning rule that allows
their training with applicability to a range of stochastic systems. The rule, utilising the mean and
variance of the neuronal output distribution, finds a trade-off between synaptic stochasticity and
energy efficiency depending on the number of measurements of each synapse. For single
measurements, the rule results in binary synapses with minimal stochasticity, sacrificing potential
performance for robustness. For multiple measurements, synaptic distributions are broad,
approximating better-performing continuous synapses. This observation allows us to choose
design principles depending on the desired performance and the device’s operational speed and
energy cost. We verify performance on physical hardware, showing it is comparable to a standard
neural network.

1. Introduction

The meteoric rise of artificial intelligence (AI) as a part of modern life has brought many advantages.
However, as AI programs become increasingly more complex, their energy footprint becomes larger [1, 2],
with the training of one of today’s state-of-the-art natural language processing models now requiring similar
energy consumption to the childhood of an average American citizen [3]. Several non-traditional computing
architectures aim to reduce this energy cost, including non-CMOS technologies [4–7]. However, competitive
performance with non-CMOS technologies requires overcoming the latent advantage of years of
development in CMOS.

In biological neural networks, synapses are considered all-or-none or graded and non-deterministic,
unlike the fully analogue synapses modelled in artificial networks [8]. Inspired by biology, several approaches
have considered networks with binary synapses and neurons, with the view that binary operations are
simpler to compute and thus lower energy [9–12]. However, while these binarised neural networks are more
robust to noise, they suffer from lower performance than analogue versions. In contrast, networks with
stochastic synapses provide sampling mechanisms for probabilistic models [13] and can rival analogue
networks at the expense of long sampling times [14–19]. Adapted training methods are required to provide
higher performance for a lower number of samples, while implementations require hardware that can
natively (with low energy cost) provide the stochasticity required. Magnetic architectures are one possible
route for such unconventional computing. They have long promised a role in computing logic following the
strong interest in the field stemming from the data storage market [6, 7, 20–26]. The non-volatility of
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magnetic elements naturally allows for data storage, while ultra-low-power control mechanisms, such as
spin-polarised currents or applied strain [27, 28] offer routes towards energy-efficient logic-in-memory
computing. Recent demonstrations of spin-orbit torque based devices have shown how magnetic materials
can be used as both binary and multi-level synapses for efficient neuromorphic systems [29–33]. Meanwhile,
ongoing developments have shown how to manipulate magnetic domains to both move data and process it
[22, 24, 34, 35]. However, magnetic domain wall (DW) logic is limited by stochastic effects, particularly
when compared to the low error tolerance environment of CMOS computing [36, 37].

Here, we propose a methodology where, rather than seeking to eliminate stochastic effects, they become a
crucial part of our computing architecture. As a proof of concept, we demonstrate how a magnetic nanowire
(NW) is usable as a stochastic synapse able to perform handwritten digit recognition using multiplexing of
one of the hardware synapses. We have developed a learning rule that can effectively train artificial neural
networks made of such ‘noisy’ synapses by considering the synaptic distribution. When a single
measurement is used to identify the state of the synapse the learning rule will adjust its parameter, i.e. the
field at which the wall is propagated, to reduce the synaptic stochasticity. However, if multiple measurements
are taken, the gradient rule will find parameters that allow for a broad synaptic distribution, mimicking a
continuous synapse and improving performance. Without the stochasticity, the operation would be limited
to binary operations, which lack the resolution power of analogue synapses. With stochasticity, we have a
flexible system tunable between quick-run-time approximation and long-run-time performance. Our
learning rule provides efficient network training despite the high or variable noise environment and differs
from other stochastic neural network computing schemes that employ mean-field-based learning rules [14,
16, 19]. Here, the inclusion of the network variance allows the training to find better solutions in low
sampling regimes, providing a trade-off between operational speed/energy cost and test accuracy.

We have verified the model performance experimentally by transferring the trained weights to a network
utilising such a hardware synapse, with excellent agreement between the experimental performance and that
of a simulated network. Our observations allow for a design framework where we can identify the number of
required measurements (and hence energy requirements) for a given desired accuracy and vice versa.

This work opens up the prospect of utilising the low-energy-cost benefits of spintronic-based logic [5–7,
38]. In particular, it enables the use of DW-based NW devices [24, 35, 39, 40] whilst transforming the
hitherto hindrance of noisy operation [36, 37] into the basis of a high-performance stochastic machine
learning paradigm.

2. Results

2.1. Hardware stochastic synapse
Our proposed elementary computation unit is a binary stochastic synapse based on a ferromagnetic NW with
two favourable magnetic orientations; parallel and antiparallel to the NW. The transitions between regions of
differing magnetisation orientation are known as DWs. While different forms of DWs exist, here they form a
‘vortex’ pattern with a cyclical magnetisation texture. Our synapse was a 400 nm wide, 54 nm thick permalloy
NW with notches patterned halfway along its length to create an artificial defect site. Figure 1(a) shows an
SEM image of the system, with the inset enlarging the notch. DWs were nucleated at the left-hand side of the
wire (false-coloured blue) by applying a voltage pulse across a gold current line (false-coloured orange).

The operation of this system as a stochastic synapse is described schematically in figure 1(b). A vortex
DW [41] can be injected into the wire by applying a current pulse in the line. This corresponds to presenting
the synapse with an input of 1, while no DW injection corresponds to an input of 0. An applied magnetic
field is used to propagate the DW along the length of the wire. If the propagation field is sufficiently high, the
DW does not pin at the defect site and can pass to the end of the wire, resulting in an output of 1. If the
propagation field is low, the DW is pinned at the notch, resulting in an output of 0. For intermediate values
of the field, the behaviour becomes stochastic but with a well defined pinning probability. Figure 1(c) shows
the probability of not pinning (i.e. passing probability), as measured using the focused Magneto-Optical
Kerr effect, as a function of the propagation field. The probability of passing behaves in a sigmoid-like
manner, and the orange dashed line shows a fit using a logistic sigmoid function f(hij) (see methods). We can
consider the propagation field as controlling the weight in a binary synapse with detecting a DW on the right
hand side of the NW as the output of the synapse.

Therefore, our binary stochastic synapse is determined by

wij =

{

1 with probability f(hij)

0 otherwise,
(1)

2
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Figure 1. Characterisation of a notched permalloy nanowire (NW) as a stochastic synapse. (a), False-coloured SEM image of the
permalloy NW (blue) and current injection line (orange). The inset shows detail of the artificial notch. The field (green) and
current (white) axes are marked. (b), Schematic of the operating principle of the stochastic synapse. The current line allows input
(xj) of 1 (current pulse, DW injected) or 0 (no pulse, no DW). Field inline with the NW drives (if present) the DW through the
system: high fields pass the DW through the notch and produce an output of 1, low fields result in the notch blocking the DW and
an output of 0. Intermediary fields (not shown) provide intermediate probabilities of passing the notch. (c), Experimentally
measured probability of an injected domain wall passing the notch. Tuning the propagation field can control this probability
across the whole range in a logistic sigmoid-like fashion. Points are averages of 1000 samples, x error bars represent precision in
choice of propagation field, and y error bars are given p(1− p)/

√
1000. The logistic sigmoid fit is given in methods. The

nucleation field with no input (no injection, xj = 0) is (10.74± 0.07) mT. Therefore, below 10 mT the passing probability for no
input is zero. (d), Average synaptic weight for randomly selected propagation fields, as defined in equation (2). Depending on the
number of samples, i.e. repetitions of the operation in (b), the effective synaptic weight varies from purely binary (one
repetition/sample, K = 1) to almost continuous (K = 128 samples).

where f(hij) is the DW passing probability function, hij is the propagation field for the synapse connecting
input neuron j with output neuron i. Through this definition our synapses are purely excitatory, which
corresponds to the physical representation of a magnetic DW being pinned or not, rather than the
complementary binary scheme, with values {−1,1}, which is not naturally represented by the physical
system. In general, the DW motion in the NW is complex [36] and the position of the notch relative to the
perturbation of the DW structure may alter the pinning process. However, since the notches cover 60% of the
NW width it is likely that the pinning probability remains relatively independent of the position of the
notches in the NW.

Compared to binary synapses, neural networks with analogue or graded synapses tend to perform better
due to the wider range of states [42, 43]. Here, we adopt a scheme similar to that of stochastic computing,
where the average of a series of binary measurements or samples are used to represent a value. Thus, we allow
for K ⩾ 1 measurements to identify the state of a synapse and denote the equivalent mean weight as

w̄ij =
1

K

∑

k

w(k)
ij , (2)

where K is the total number of samples taken and the superscript (k) indicates the individual sampling of the
synaptic weights as per equation (1). The mean synapse has K+ 1 states, e.g. for K = 1 the two states will be 0
and 1, while for K = 2 the states will be 0, 0.5, and 1. It follows that for K →∞, w̄ij will be equivalent to a
sigmoidally-shaped continuous synapse, bounded between 0 and 1. An example demonstrating the average
weight as a function of the number of samples can be seen in figure 1(d), where we plot equation (2) for

3
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K = 1 (purple squares), 4 (blue diamonds) and 128 (green circles). Each example is calculated by sampling
wij the desired number of times with a fixed hij that was selected randomly. In each case only discrete levels
are available but when K = 128 the sampling is sufficient to provide an almost continuous representation.

In this way, our proposed binary stochastic synapse can be used to construct neural networks that will
approach a bounded analogue network when multiple samples are taken. Physically, this is achieved by
repeated operation of the hardware devices to accumulate the average values. Instead, to avoid the additional
complexity of storing and summing values this could be achieved by physical replication of the synapses.

2.2. Stochastic network
We embed these synapses in an artificial neural network where the output of neuron i is given by

yi =
∑

j

w̄ijxj, (3)

where j is an index over the input dimension. The summation here implies that the DW pinning occurs in
independent nanowires. If the DW was to interact with multiple pinning sites on the same wire it would
instead perform a multiplication of the pinning probabilities. This multiplicative operation would have uses
for encoding the input as a non-binary value but we restrict our approach here to binarised inputs.

We trained the network as a classifier for a problem of C classes with C independent neurons
(perceptrons) each representing one class. This task was based on the well-known MNIST dataset but with
each image downsampled to give images with a shape of 14 by 14 pixels instead of the standard 28 by 28. This
was necessary to reduce the time of the operation when running on the prototype experimental hardware
(see methods). In figure 2(a) we depict the perceptron that corresponds to class ‘0’. If we present to the
neuron a representative of its corresponding class (in this case an image of the digit ‘0’), the neuron should
produce a high activity for recognising the input as zero.

The experimental process is shown in figure 2(b). For ease of demonstration, only a single hardware
synapse is used, with operations serialised in time. Potential devices would have multiple synapses running in
parallel with a summation performed during the measurement. The perceptron parameters are stored on a
computer, which sends the input and synaptic parameter to the external hardware synapse and requests the
result. The process is repeated until K samples per synapse (see equation (2)) are collected. Summation of the
results takes place on the computer with an additional bias term applied. To avoid redundant measurements,
pixels corresponding to inputs of ‘0’ (white pixels in our example image) were omitted, since the output is
deterministically ‘0’ by design. A synapse receiving a black pixel (xj = 1) will produce ‘1’ if the field is set at a
high value or ‘0’ if the field is set at a low value, see figure 2(c). Intermediate field values will produce outputs
that vary stochastically, reflecting the passing probability f(hij). Using this experimental approach,
approximately 50 synaptic operations are measured per second. Since the repeated sampling occurs
sequentially the inference speed scales linearly with the total number of samples required.

2.3. Analysis of the stochastic learning rule
We now sketch the derivation of the learning rule that we apply to the synapses of the neural network. Each

synapse w(k)
ij is an independent sample from a Bernoulli distribution, and therefore the sum of these samples

will follow a Poisson-Binomial distribution. The mean, µi, and variance, σ2
i , for each output neuron

(calculated by equation (3)) are given by:

µi =
∑

j

f(hij)xj, (4)

σ2
i =

1

K

∑

j

f(hij)xj

[

1− f(hij)xj

]

. (5)

For a detailed calculation of these values see the appendix.
Given the number of inputs and the sampling process this sum will be over a large number of events,

which means the Poisson-Binomial distribution can be approximated by the Gaussian distribution [44].
Using this approximation, the neuronal output can be re-parameterised so that the stochasticity is only in a
term with no dependence on the trainable parameters. In this way, we write

ỹi = µi +σi ξi, (6)

where ỹi denotes the approximation of neuronal output yi and ξi is a sample from a Gaussian distribution
with zero mean and unit variance.

4
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Figure 2. Stochastic network operation. (a), Sketch of the stochastic perceptron. Each input value from an image is fed via a mean
weight to the neurons for each class. Here, the weighted inputs are summed to give the neuron’s activity (as in equation (3)). In
the case of the MNIST task, there is a neuron for each of the ten classes (numbers ‘0’–‘9’; y0 to y9). When trained, the neuron for
the class corresponding to the correct input, here y0, should have the highest activity. Each mean weight in our network (w̄ij) is
the average of multiple measurements (K ⩾ 1) of the output of a synapse with individual weight wij set by its trained propagation
field (see equations (1) and (2)). A clear distinction should be made here from traditional neural networks that these weights are
stochastic and will vary for each run of the network. The individual weights take the value ‘1’ with the probability f(hij) (DW
passing probability, as characterised in figure 1(c)) or ‘0’ otherwise. The mean weights, therefore, take values from the
distributions shown in figure 1(d). (b), The architecture of the hardware network. For the purpose of demonstrating successful
performance, only the stochastic synapses are run directly on the hardware. The perceptrons are stored on a computer, which
requests results (‘1’ or ‘0’) from the magnetic stochastic synapses for a given synaptic parameter (trained propagation field, hij).
After this is repeated for each synapse, summations are performed to predict the correct class of the input. (c), Idealised operation
of single synapses in materia for the neuron y0. The data path is shown for two inputs, or pixels, for the case of a correct image for
the class (‘0’) and an incorrect image (‘5’). The value of the weight control, the propagation field hij, is expected to be correlated
with pixels in images from the correct class: where the pixels are ‘on’ for correct images, high values of the weight control are
expected; when ‘off ’, low values. If the input pixel value is ‘0’, the synapse is bypassed as the result is ‘0’ by construction. However,
if it is ‘1’, a result is requested from the hardware using the corresponding weight control. As shown in the top graph, high
propagation fields result in the DW directly passing the notch (only a single step is seen) which is interpreted as an output of ‘1’.
As in the lower graph, low propagation fields result in a two step procedure where the DW initially pins at the notch before
depinning at a higher driving field. This is interpreted as a ‘0’. In practice, the results from the synapses will vary stochastically
reflecting the passing probability f(hij).

If we assume that we are in a supervised learning framework and that E is the error function we would
like to minimise (e.g. square mean error or cross-entropy), then E is a function of the pattern p we present to
the network, which defines the desirable output target. E is also a function of the output neurons,
represented by vector y, which also depends on p. The learning rule will update the values of the applied field
to each synapse hij by ∆hij according to the following ‘online’ gradient rule:

∆hij =−η
∂E(ỹ)

∂ỹi

∂ỹi

∂hij
(7)

=−η
∂E(ỹ)

∂ỹi

(

∂µi

∂hij
+

∂σi

∂hij
ξi

)

, (8)

where η is a small positive number representing the learning rate. We calculate the derivative of ∂ỹi

∂hij
from

equations (6), (4) and (5). We also calculate the value ξi using equation (6), computing µi and σi from
equations (4) and (5) and ỹi from equation (3) (setting ỹi = yi). It follows that for K →∞, σ → 0 and we

5
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obtain a ‘mean-field’ gradient rule that takes into account the mean but not the variance of the output
neurons.

We have tested the performance of this rule on the downsampled MNIST dataset. During training, the
number of repeats (samples) K is set as a parameter of the network, which we define as Ktrain, and as such
modifies how the training progresses. The variance of the output has an important effect on the classification
procedure; if the variance is high then mis-classification will be more likely, especially in classes that have
similar mean values for each neuron. Therefore, during supervised training the network aims to minimise
this variance. When K is low, this happens through changing the weights, controlled through the magnetic
fields hij, so that the probabilities are close to either 1 or 0 (high or low applied field), as this minimises the
single sample variance in equation (5). This leads to a solution that is almost a deterministic binary network.
However, if K is large then the variance is reduced by the factor 1/K and therefore the system can tolerate
higher synaptic variance than in the case of K = 1. Thus, a pseudo-analogue solution can be found.

Figure 3 describes the effect of the learning rule on the network synapses. We plot the probability
distribution, calculated as a normalised histogram, of the propagation fields, hij, over all the neurons from 5
independent models before training (figure 3(a)), after training with Ktrain = 1 sample (figure 3(b)) and after
training with Ktrain = 128 samples (figure 3(c)). The final distributions confirms the theoretical expectation
that Ktrain = 1 leads to a binary network (low variance) while Ktrain = 128 approximates a standard
perceptron with a continuous distribution of synaptic weight (high variance).

In figures 3(e) and (f) we show the distributions of the neuronal output when presented with the same
image repeatedly for the three training cases above and find that the neuronal distribution reflects the
synaptic distribution. We now consider the case where during testing a different number of samples are
drawn when calculating equation (2), which we define as Ktest. The top row shows the distribution when
Ktest = 1, while the bottom row shows Ktest = 128. The untrained neuron values exhibit a Gaussian
distribution across all data samples, with fields initialised to give the largest possible variance; see figure 3(d).
After training, with Ktrain = 1 or Ktrain = 128 and Ktest = Ktrain the distributions of the correct and incorrect
class neurons minimally overlap. However, if we test the network with Ktest = 1 after we train it with
Ktrain = 128 there is a rather significant overlap (figure 3(f), upper panel) suggesting a high probability of
miss-classification. In all cases, when testing with Ktest = 128 (bottom row) the variance is reduced 1/128 as
given in equation (5) and allows for better resolution of the mean values. In the case Ktrain = 128, the
learning rule has exploited this additional sampling and variance reduction by better utilising a continuous
range of weights to boost performance. However, when Ktest < 128 (as in figure 3(f), upper panel), the
increase in variance decreases the probability of correct classification. In the other training case (Ktrain = 1,
figure 3(e), upper panel), the learning rule adapts the weights to find a low variance, almost deterministic
binary, solution. Further sampling during testing (figure 3(e), lower panel) reduces this variance further, as
expected, but does not significantly change the overlap as it has already been optimised for the lower
sampling regime. As we will show, this leads to higher performance when test sampling (Ktest) is small, but
capped high performance when test sampling is allowed to rise, in contrast to the large Ktrain case.

Figure 3(g) compares the average variance during testing with Ktest = 1 samples (circles) and Ktest = Ktrain

samples (squares) as a function of the number of samples used during training, Ktrain. As discussed before,
when training with 1 sample the variance is kept low by having passing probabilities close to 0 or 1. However,
when more samples are used during training, the variances for a single sample can increase as the variance of
the averaged samples decreases.

This behaviour of minimising the variance to reduce miss-classification arises due to the variance term in
the ‘stochastic’ learning rule. Other rules that only consider the mean term [14, 19] cannot find these
deterministic solutions when using a stochastic network. Figure 3(h) shows the test accuracy with
Ktest = Ktrain as a function of Ktrain samples for our stochastic learning rule (squares) vs the mean field rule
(circles) averaged over five independently trained models. For both rules, increasing the number of samples
leads to an improvement in the test accuracy as more levels are possible for the synapse averages (see
figure 1(d)). However, in all cases, the stochastic learning rule out performs the mean-field rule, with
convergence when a large number of samples (K ⩾ 8) is used for training and testing. The dashed line shows
the performance for a fully mean-field network, where effectively an infinite number of samples are taken (i.e
continuous but bounded synapses), and represents the best possible accuracy for such a network given the
task.

2.4. Hardware and operational principles
We now proceed to demonstrate our neural networks working on physical hardware and not only within
simulation. Figures 4(a) and (b) shows the test accuracy computed when the synaptic operation has been
simulated (lines) and processed using the hardware (points) for models trained with either a, Ktrain = 1 or b,

6
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Figure 3. Analysis of the stochastic learning rule. (a)–(c), Probability density histograms of synaptic magnetic field parameters
over 5 independent models. (a) shows the distribution before training, where all the fields are initialised so that the passing
probability (shown in orange, right hand axis) is 0.5. (b) and (c) show the distributions when trained using 1 or 128 samples
respectively. With 1 sample, the distribution is bimodal with peaks at fields with probabilities close to 0 or 1. While when training
with 128 samples, the distribution is focused on the central region of the passing probability function. (d)–(f), Distribution of the
neuron values y when an image of a zero is shown 10 000 times independently for neurons either identifying the correct (output 0
in this example) or incorrect (outputs 1–9) classification. In (d) the model is untrained so all outputs have the same distribution,
while in (e) and (f) the distribution is split into the correct output neuron and the incorrect output neurons when training with 1
and 128 samples respectively. The top row shows Ktest = 1 while the bottom row shows Ktest = 128. Using more samples during
testing reduces the variance and therefore the chance of mis-classification. (g), The standard deviation averaged over all the
neurons when increasing number of samples are used in training, with Ktest = 1 (circles) and Ktest = Ktrain (squares). This
summarises the conclusions from the distribution plots in (d)–(f). More samples during training allows the standard deviation
for a single sample to increase as the standard deviation over all samples is reduced. However, testing with Ktest < Ktrain results in
an increased overall standard deviation. (h), Accuracy on the test set against number of samples during training when using the
stochastic (dark green circles) or the mean-field (light green squares) learning rules. The points show the accuracy averaged over 5
independently trained models, while the shaded region indicates 1 standard deviation. The stochastic learning rule maintains a
higher test accuracy when the number of samples is low.

Ktrain = 128 and tested with increasing numbers of samples (Ktest). Due to the throughput of our prototype
device, we only demonstrate experimental results up to Ktest = 8.

The simulation and hardware results show excellent agreement and highlight different behaviours in
models trained with different sampling levels. In the case trained on one repeat, the network is deterministic
and as such the accuracy does not significantly improve when we average over more samples during testing.
On the other hand, while the model trained with 128 repeats shows a lower performance with only one
testing repeat, the accuracy improves as we increase the number of samples during testing. This arises from
the increased stochasticity at low sampling levels and resultant increased precision at high sampling levels.
This behaviour is corroborated by the corresponding neuronal distributions (figure 3(e)) and (figure 3(f)),
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Figure 4. Hardware verification and choice of sampling. (a) and (b) Comparison of the testing accuracy computed using either
the physical hardware (points) or from simulation (curves). The test data set is restricted to the first 600 images with an
approximately equal balance of digits. In both, training was done using the model, and hardware testing was limited to eight
samples due to throughput limitations of the prototype device. (a) shows the accuracy when the network was trained with only 1
sample while (b) was trained with 128 samples. As before, training with 1 sample reaches an almost deterministic solution, so
repeated sampling during testing does not improve the accuracy. Training with 128 shows an increase in accuracy as more samples
are used during testing, reaching higher peak performance (albeit with a lower initial base). The dashed line shows the
performance on a standard neural network and the dotted-dashed is for a full mean-field binary stochastic network. In both cases
the hardware performance shows excellent agreement with the model calculations. The model accuracy is averaged over 5
independent tests with the same trained weights, with the shaded area showing 1 standard deviation. This can be taken to
represent the variability in performance for a given task due to the inherent stochasticity of the network. Naturally, it decreases as
the number of test samples increases and is lower for the, more deterministic, Ktrain = 1 case. The hardware accuracy is from a
single run over the 600 images, so the error bars show the standard error of the estimation of the accuracy over the mini-batches.
(c) Test accuracy (as measured with the model) over different combinations of training and testing sampling for the sub-sampled
MNIST task. The data is bi-linearly interpolated, which can be considered as averaging over fractions of the data set with different
sampling rates. In general, testing with more samples increases accuracy, but, this is limited when Ktest > Ktrain. In particular, in
the Ktrain = 1 case, further sampling provides little improvement due to the deterministic weight distributions. Training with two
samples is better in all test cases than when training with 1, but best overall accuracy is when 128 samples are used in both
training and testing. Data such as this provide a guide to choosing training and testing samples depending on desired accuracy
and operation times for a given task.

which show that the neuronal variance when training with one sample and testing with one sample is much
lower than in the case of training with K = 128 samples and testing with one sample. It is akin to majority
voting, where classifiers have to be diverse to improve performance (see [45] and references therein). Here,
performance increase increases with increasing Ktest (number of voters) when the neuronal distribution has a
high variance.

Figure 4(c) allows further interrogation of the majority voting behaviour. It presents (using the now
verified simulation model) a colour plot of the test accuracy as a function of the number of training and test
samples. This variation in performance when testing using a different number of repeats raises an essential
trade-off in speed vs accuracy. To a first approach, the results follow the behaviour of stochastic computing:
fast approximation with increasing accuracy over time if required. This trend is matched on average with the
extra repeats, implying an extra time and energy cost to accumulate the samples, but providing a boost in
accuracy. However by utilising our learning rule’s ability to enable low sampling deterministic solutions we
can outperform the naive stochastic computing reasoning in the low sampling limit (as also seen in
figure 3(h)). If fixing Ktrain, this leads to a competition between low repeat performance and ultimate high
repeat accuracy, i.e if a model is trained on a high number of repeats, but uses a low number of repeats
during testing (inference) time, then the accuracy will be sub-optimal. Similarly, if the model is trained on a
low number of repeats, but tested on many, the ultimate accuracy suffers. One possibility is to always tie
Ktest = Ktrain, but this requires multiple trained weights. It is, therefore, constructive to utilise data such as
figure 4(c) as a guide on training and testing the synapse depending on the desired accuracies and
operational times. Whilst maintaining the simplicity of a single set of trained weights (fixing Ktrain), a
horizontal range of testing values can be chosen to achieve the desired accuracies and energy cost envelope.

Analysing the performance over the space of training vs test repeats for the MNIST task, we find that in
most cases, testing with a similar number of repeats to the training performs well. A significant outlier to this
was that training with two samples consistently outperformed training with one across all levels of testing,
including testing with one sample. We attribute this to the smaller step sizes in the parameter space with two
samples compared to one, which allows for a better solution while the variance is still very low and remains
small when testing with one sample.
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3. Discussion

Neuromorphic devices are a promising route to developing low-energy-cost machine learning systems,
seeking to overcome one of the chief drawbacks of traditional neural networks. Stochastic, binary neural
networks have shown promise in this regard due to their reduced energy cost and simple implementation
[9–13]. Multiple sampling of these networks allows their performance to rival analogue networks [14–19].
Outstanding problems, however, have been providing training rules to achieve high performance even at low
sampling rates (where calculations can be performed faster and at less energy cost) and identifying hardware
implementations that can natively provide the stochasticity required. We have developed a learning
methodology for stochastic binary neural networks that we verify experimentally, using the behaviour of
magnetic DWs in nanowires as stochastic synapses. Stochasticity has traditionally been considered a limiting
factor in nanomagnetic logic devices [36, 37], but here is a functional aspect that drives learning. We have
shown performance of the hardware network comparable to a standard neural network and demonstrated
high performance at low sampling thanks to the novel learning rule.

Experimentally, we have observed that a DW injected into a NW with an artificial pinning site can be
stochastically pinned and the pinning tuned by using an applied magnetic field. We have then demonstrated
that this tunable stochastic pinning can create synapses for a neural network device. Due to the nature of the
physical system, these synapses behave as binary stochastic synapses. Our fundamental ingredient for
training such a network is a learning rule that considers the variance of the stochastic output of the network.
This training method considers taking multiple samples (Ktrain/Ktest) of the network output to compute a
sample average and deviation. A low number of samples leads toward a predominantly deterministic binary
solution and is fast to compute but has lower performance than a high number of samples that approximates
a standard ‘analogue’ network and require more time (and energy). This trade-off allows flexibility in
designing the network based on the required performance or operating speed.

Key is that the learning rule developed here has allowed us to find a range of operating regimes because
the stochastic part of the output is considered. Other binary stochastic computing approaches, such as
Hirtzlin et al [19], train using the expectation of the network (which we call mean-field and is equivalent to
K →∞) and lead to a reduced accuracy when fewer samples are used during inference (testing). The
Gaussian approximation was also used by Esser et al [46] to train a network with binary stochastic synapses
on the IBM TrueNorth neurosynaptic system but the contribution from the variance term is considered to be
negligible. The contribution from the variance term in our rule allows for weights to be trained that operate
better in the low sampling regime compared to the mean-field versions.

Other learning methods where the variance is taken in account stem from the Likelihood-Ratio
framework [47–49], which is related to policy gradient methods in reinforcement learning [50]. While these
methods consider the stochasticity of the neurons and synapse, they depend heavily on the choice of baseline
values for the loss which require complex approximation methods. Additionally, the reparameterisation
method applied here allows for a direct feedback of the error signal to the synaptic field parameters and fits
within existing backpropagation-based learning methodologies.

Overall, the stochastic learning rule presented in this paper has shown tunability in both high and low
sampling regimes and can be implemented simply within backpropagation-style codes. The ability, due to
consideration of the variance of the output, to tune between low-sampling deterministic binary and
high-sampling stochastic ‘analogue like’ behaviour lends itself to the flexibility of our system between
operational speed/energy cost and test accuracy.

The magnetic DW synapse that we have demonstrated here is a proof of principle component and as such
it important to look towards changes that would be necessary for a more ‘production ready’ neuromorphic
device. Optimised devices would likely look towards spin-torque driven DW motion [35] alongside the use
of local nanomagnetic elements to encode the weights. Also, readout of the synaptic state could employ
magnetoresistive effects to read the state of a synapse, similar to approaches in racetrack memory devices
[24]. For example, this could be done using a magnetic tunnel junction situated at the end of the NW to
sense whether the DW has propagated that far and by connecting these in series a total resistance
measurement could realise the sum over the synapses.

It is also possible to envisage our learning methodology applied to networks built of alternative magnetic
elements with similar stochastic properties, such as magnetic tunnel junctions, amongst others [12, 14,
51–53]. Elsewhere, DW devices have been used as neurons [54] or activation functions [55] and magnetic
elements in general have been demonstrated in a range of alternative low energy computation schemes [16,
51, 56–58] that exploit the stochasticity of magnetic devices. Our fundamental element, the magnetic
stochastic synapse, could fit within such paradigms where efficient production of random bits is key. It is
important, however, to state that the key result here is demonstrating performance as run on experimental
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hardware, enabled by our stochastic learning rule. Further optimisation is a matter of future research and
engineering development.

Whilst the single layer network demonstrated here can only solve linearly separable problems, it can be
extended in a number of ways. Retaining the single layer simplicity and looking towards an all magnetic
architecture, it has potential applications in the field of reservoir computing. In reservoir computing, a fixed
reservoir performs a non-linear spatial-temporal transformation of an input sequence such that the output
representation is linearly separable. The advantage of RC is that the reservoir transform can be offloaded to a
physical system with appropriate properties and there has been considerable recent interest in developing
magnetic (spintronics) based physical reservoir computing [7, 59–66]. There is potential to connect our
magnetic DW based neural network to these reservoirs to create a complete hardware reservoir computing
system. There is also the more traditional route of scaling our current approach towards multi-layer
networks as the learning rule is compatible with back-propagation. An open research question in this avenue
is whether the sampling procedure should apply at a local or global scale of the network. One approach is
implementation of multi-layers using NW interconnects and logic gates, but if we look away from the
limitation of all magnetic architectures, it is also possible to envisage hybrid magnetic-CMOS application
specific integrated circuits (as in [67]) that might provide a route to larger scale network hardware. However,
details of these implementations are beyond the scope of this current work.

In conclusion, we have developed a training methodology for binary stochastic synapses that considers
the network’s stochasticity during learning, and resampling of the stochastic output allows for a trade-off
between device run time and desired accuracy. This approach has been demonstrated on a proof of concept
magnetic DW-based stochastic synapse with excellent agreement between hardware and model during
inference.

4. Methods

4.1. Device fabrication
The devices were fabricated using two-stage electron beam lithography with the CSAR-62 resist. Nanowires
were deposited in the first stage using thermal evaporation of permalloy (Ni81Fe19) to a thickness of 54 nm
(base pressure, 7× 10−7 mbar; process pressure, ∼5× 10−5 mbar; rate, 0.5 Å s−1). Current lines and
connection pads were deposited in the second stage as Ti/Au (Nominally 10 nm/200 nm via thermal
evaporation). Samples were electrically connected to PCB devices using silver DAG.

4.2. Device operation
The device operation procedes as in figure 2. An AVTECH pulse generator was used to apply 30 volt,
100-nanosecond pulses along the current line (resistance 290 Ω). An electromagnet was used to apply fields
along the wire lengths. A National Instruments DAQ card was used to control timing between these two, with
pulses being triggered at particular times during repeated sinusoidal field sequences. The field at which the
pulse is triggered is the propagation field. On the fly calibration of timing enabled correction of any drift
between the trigger and field sequence (due to heating) to ≲0.1 mT.

A focused-MOKE magnetometer (spot size ∼5 micrometer) was used to measure the NW response.
Hysteresis loops were obtained with the laser spot positioned over the notch. Single steps in the hysteresis
loop indicate the DW passing the notch (an output of 1). Double steps indicate a two-stage
pinning/depinning process (an output of 0). An algorithmic method allowed automated evaluation of each
hysteresis loop. The number of peaks were calculated in the differentiated Kerr signal; if two peaks were
present then the DW had been pinned. To eliminate false positives, the steps in the raw signal corresponding
to the peaks were required to be greater than 24% of the total signal change. This was optimised
experimentally to allow for peak detection even with a slightly off centre laser spot (unequal step sizes), but
to minimises erroneous detections arising from noise.

4.3. Domain passing probability
The probability of an DW not being pinned by the artificial defect site was observed to have a sigmoid-like
behaviour. A functional form of this probability was used to simulate magnetic stochastic synapses for
computational training of the networks. We fitted this probability using

f(h) = d+
1− d

1+ exp(−∆(h− h0))
, (9)

where d= 0.0219 is a finite passing probability at low field, h0 = 4.63 mT is the field centre and ∆= 2.73
mT−1 is the sigmoid width. We note that this exact form of the fitting function is not necessary for the
stochastic learning rule used to train the network.
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4.4. Stochastic learning rule
For a network comprised of binary stochastic synapses the value of each neuron can be approximated by a
Gaussian given by equation (6), where the mean and variance of each neurons is defined by equations (4)
and (5) respectively. Using this approximation, a gradient based learning rule can be derived as the random
variable no longer has a dependence on the model parameters. The parameters of this network are the
magnetic fields which determine the passing probability of the synapse so a gradient descent update is
given by

∆hij =−η
∂E(ỹ)

∂ỹi

∂ỹi

∂hij
(10)

=−η
∂E(ỹ)

∂ỹi

(

∂µi

∂hij
+

∂σi

∂hij
ξi

)

. (11)

The gradient of the mean and variance with respect to the magnetic fields are

∂µi

∂hij
= f ′(hij)xj (12)

∂σi

∂hij
=

(1− 2f(hij)xj)

2σi
f ′(hij)xj, (13)

where f ′(h) = ∂f(h)/∂h is the derivative of the passing probability function. Combining this result into
equation (10) gives the update rule

∆hij =−η
∂E(ỹ)

∂ỹi
f ′(hij)xj

(

1+
1− 2f(hij)xj

2σi
ξi

)

. (14)

In this form the rule contains the mean field component multiplied by a factor that depends on the variance.
While for the derivation of the rule we have specified that ξi is a Guassian random variable with zero mean
and unit variance, during training it is calculated exactly from the forward phase using ξi = (yi −µi)/σi, so
if the neuron output is higher than the mean it will be positive while if it is lower it will be negative. This
combines with the 1− 2f(hij)xj to determine whether the factor increases the weight update or reduces it.

4.5. Model training details
As a benchmark we use the MNIST dataset [68] but to reduce the number of synaptic operations for the
experimental hardware it was downsampled by using the MaxPool operation with a filter size of 2× 2. This
created a set of 14× 14 pixel images which were mapped to a binary input by thresholding the pixel intensity
at 0.5.

The training part of the dataset was randomly split into a 50 000 training and 10 000 validation subsets. A
real valued bias was applied to the output of the simulated binary synapses and these values were converted
into a probability using the Softmax function with the loss against the image labels measured using
Cross-Entropy loss. Training was performed using mini-batches of 50 images, and iterated until the
validation loss did not decrease over 20 epochs. The model with the lowest validation error before the end of
training was returned as the trained model. The Adam optimiser was used with a learning rate η= 0.001 for
K ⩾ 2 and η= 0.01 for K = 1, determined based on the lower validation error.

4.6. On device machine learning testing
For the demonstration of our stochastic network in materia we have used an automated control system to
inject an DW into the magnetic NW at the desired magnetic field given by the synaptic weights. We first
optimised the synaptic magnetic fields for our network models in simulation for the cases of Ktrain = 1 and
128, using the method detailed below. For each Ktrain, we trained five models before selecting the model that
had the lowest error on the validation dataset. We then transferred these to the hardware with the control
software loading the pixel binary values (xj) from the test dataset and using the simulation trained magnetic
fields (hij) to control the magnetic synapses. As detailed in figure 2, if the pixel value was 1 the control system
would determine whether the DW has pinned or passed the defect site and return a 0 or 1 respectively. The
result of this synaptic operation was then passed back to the program running the neural network inference,
which computed the neuron values to predict the correct class of the test data.
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Appendix. Mean and variance of the Poisson-Binomial distribution

For a network of binary stochastic synapses, the output of each synapses is assumed to be an independent
random binary event (Bernoulli trial). If these had the same probability then the sum of these events would
result in the Binomial distribution but as each synapse has a different input and synaptic probability the
value of the neuron will follow a Poisson-Binomial distribution. Since this distribution can be complex to
calculate in full we approximate the distribution by a Gaussian [44]. The mean of the neuron output, yi, for a
given number of samples K is

µi = E[yi] (A1)

= E





1

K

∑

k

∑

j

w(k)
ij xj



 (A2)

=
1

K

∑

k

∑

j

E

[

w(k)
ij xj

]

(A3)

=
1

K

∑

k

∑

j

(

0f(hij)xj + 1f(hij)xj

)

(A4)

=
∑

j

f(hij)xj. (A5)

where in the final step here we note that the synaptic passing probability f(hij) is independent of k. The
variance of the distribution is

σ2
i = var[yi] (A6)

= var





1

K

∑

k

∑

j

w(k)
ij xj



 . (A7)

We now use the fact that the variance of a sum of independent random events is the sum of the variances,
and that var [y/K] = var[y]/K2 such that

σ2
i =

1

K2

∑

k

∑

j

var
[

w(k)
ij xj

]

. (A8)

The variance of each synapse as a Bernoulli event is

var
[

w(k)
ij xj

]

= f(hij)xj

(

1− f(hij)xj

)

, (A9)

and again since this is independent of k then the variance of the neuron output is

σ2
i =

K

K2

∑

j

f(hij)xj

(

1− f(hij)xj

)

(A10)

=
1
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∑
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