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Abstract Phononic crystals (PCs) consist of a periodic arrangement of inclusions in a matrix material, and
have garnered a great deal of interest owing to a phenomenon known as band gap frequencies in which particular
frequency ranges are not able to propagate through the PCs. The aim of this work is to study the effects of
magneto-elastic coupling and other parameters such as randomness in geometrical properties, volume fraction
and size of inclusions on longitudinal wave propagation and, in particular, on the appearance of stop-band
frequencies. The results indicate that the most important parameters deciding whether a frequency is in a stop-
band or a pass-band are the randomness in geometrical properties and piezomagnetic coupling. It was observed
that piezomagnetic coupling can lead to a widening of the first stop-band range for a periodic microstructure.
Moreover, while randomness in particle size leads to a stop-band range and reduced wave transmission in
the second pass region, randomness in particle position leads to removal of the pass band ranges compared
to periodic structures. Additionally, the influence of piezomagnetic coupling becomes insignificant in fully
random structures.

Keywords Magnetorheological elastomers · Wave propagation · Stop-band · Piezomagnetic coupling ·

Randomness

1 Introduction

It is well known that the behaviour of heterogeneous materials differs significantly from their homogeneous
counterparts, specifically in dynamic problems. A considerable effort has been put on the study of elastic
wave propagation in periodic composite materials by theoretical and experimental studies [1–6]. Composite
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materials with periodic arrangement of inclusions embedded in a matrix are known as phononic crystals (PCs)
and they show a well-known phenomenon referred to as stop-band behaviour, where elastic wave propagation
and vibrations are suppressed in certain frequency ranges [1,3,5,7–10]. Complete frequency gaps in PCs have
potential for applications such as acoustic filters, reflectors, waveguides, switches and vibration isolation [4,9–
12]. Controlling and tuning the characteristics (e.g. position and the width) of stop-bands and analysing the
effective parameters influencing these properties are therefore important topics for investigation, allowing to
create more effective designs or enhance the functionality of PCs. It is known that the stop-band attributes
can be influenced by inclusion geometry, lattice pattern, volume fraction and elastic characteristics of the
constituents [5,6,10,13].

Stimuli-responsive composite materials have also been extensively studied as they offer potential for supe-
rior features compared to conventional materials, in particular improved and controllable physical properties
[6,12,14]. Therefore, these materials are attractive and promising candidates for stop-band tunability purposes.
Specifically, PCs with piezoelectric or piezomagnetic constituents show some advantages compared to purely
elastic PCs such as quick response, controllability and reversibility [15]. Bou Matar et al. [10] pointed out
that large magnitudes of stimuli are needed to tune stop-band characteristics for electrorheological materials
(or indeed temperature change) while magneto-elastic materials are very sensitive to external magnetic fields
and their magnetic state. This feature makes magneto-elastic materials suitable candidates for contactless con-
trollable PCs. They have already shown contactless tunability of stop-bands via the magnetic field dependent
piezomagnetic material model for 2D PCs composed of Terfenol-D and an epoxy matrix [10]. It was concluded
that introduction of magneto-elastic coupling can lead to some potentially advantageous effects on the band
gap properties, such as an increase in bandwidth of the first stop-band range and the creation of a second
stop-band range [10,12,16].

The influence of an external static magnetic field on band gaps of Lamb waves in PC slabs has been studied
by Zhou et al. [11]. They concluded that the width of the first band gap can be changed significantly with a
change in amplitude of the magnetic field, which can have potential applications in vibration isolation. Similarly,
Ding et al. [9] have considered 1D magneto-elastic phononic crystals analysing and tuning longitudinal wave
band gap properties. In addition to the static magnetic field, it was shown that filling fraction, pre-stress and
thermal conditions can also influence band gap properties noticeably. Furthermore, elastic wave propagation
in 2D magnetoelectroelastic materials has been investigated by Wang et al. [6,17] to understand the effects
of lattice geometry and coupling effects on the bad gap characteristics. They demonstrated that the first band
gap width is larger for triangular and square patterns as opposed to hexagonal geometries, and this difference
increases with the filling ratio. On the other hand, piezoelectric and piezomagnetic effects have a significant
influence (especially in high filling ratios) on the width of the higher band gaps.

Song et al. [5] demonstrated that geometrical and mechanical randomness also affect the stop-band fre-
quencies in an elastic material. In particular, these authors showed that that randomness in the geometry causes
much more significant changes on the stop-bands compared to mechanical randomness. Even for moderate
perturbations in the geometry, the second pass band decreases dramatically, both in width and in transmission
coefficient, and ultimately the second pass-band can be turned into a stop-band for a sufficiently high degree
of geometric randomness.

The aim of this study is to analyse longitudinal wave propagation and stop-band behaviour in magneto-
elastic composite materials and to investigate the combined influence of magneto-elastic coupling and ran-
domness. The influence of the size and volume fraction of magnetic inclusions will be studied with and
without magneto-elastic coupling. Randomness will be introduced in the magnetic inclusions’ sizes and posi-
tions separately as well as simultaneously to analyse the effect of randomness in magneto-elastic composite
material.

In Sect. 2, the finite element formulation will be described that has been used to simulate magneto-elastic
wave propagation. The test setup and the algorithm of analysis will be given in Sect. 3. In Sect. 4, numerical
results and discussions of different test material geometries are presented to study the effects of periodicity,
randomness, particle size, volume fraction, and coupled versus decoupled behaviour. Finally, some closing
remarks are presented in Sect. 5.

2 Continuum equations and discretisation aspects

Magnetostrictive materials exhibit non-linear material behaviour, but they can be described by linear piezo-
magnetic laws in a certain range of operation. This range can be obtained by considering only variations around
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the initial magnetic bias and the mechanical pre-stress conditions [18]. The constitutive equations of a linear
piezomagnetic medium in case of a static magnetic field (curl-free) are given as [8,19–22]

σ = Cε − QH (1a)

B = QT
ε + µH (1b)

where σ and B are the stress and magnetic induction. C, Q and µ are the stiffness, piezomagnetic coupling and
magnetic permeability matrices, respectively. ε and H are strain and magnetic field. The kinematic relations
and equation of motion can be written as:

ε = Luu and H = −Lϕϕ (2)

LT
u σ = ρü and LT

ϕ
B = 0 (3)

Combining Eqs. (1–3) yields

LT
u C Luu + LT

u Q Lϕϕ = ρ ü (4a)

LT
ϕ

QTLuu − LT
ϕ

µLϕϕ = 0 (4b)

where Lϕ = ∇ and Lu is the usual strain–displacement derivative operator, u is the displacement field, ϕ is
the scalar magnetic potential, ρ is the mass density, and a superimposed dot denotes a time derivative.

To obtain the finite element formulation, the weak form of Eq. (4) can be written for domain � and boundary
Ŵ after integration by parts as follows:

∫

�

wT
u ρüd� +

∫

�

(Luwu)
TC Luud� +

∫

�

(Luwu)
TQ Lϕϕd� =

∫

Ŵ

wT
u tσdŴ (5a)

∫

�

(Lϕwϕ)TQTLuud� −

∫

�

(Lϕwϕ)T
µLϕϕd� =

∫

Ŵ

wT
ϕ

tBdŴ (5b)

where wu and wϕ are the test functions, tσ are the mechanical boundary tractions, and tB is the magnetic
traction on the boundary. Thus, the following system of equations is obtained:

[

M 0
0 0

] [

d̈
0

]

+

[

Kuu Kuϕ

Kϕu −Kϕϕ

] [

d
�

]

=

[

F
�

]

(6)

where d and � are nodal displacement and nodal scalar magnetic potential vectors via u = Nud, ü = Nu d̈ and
ϕ = Nϕ�. Moreover, F and � are nodal mechanical force and nodal magnetic flux vectors. Lastly, stiffness
and mass matrices are given by

M =

∫

�

ρNT
u Nud�, Kuu =

∫

�

BT
u CBud�Kuϕ =

∫

�

BT
u QBϕd�,

Kϕu =

∫

�

BT
ϕ

QTBu�Kϕϕ =

∫

�

BT
ϕ

µBϕd� (7)

with Bu = LuNu, Bϕ = LϕNϕ. The matrices Nu and Nϕ contain the relevant shape functions of linear
triangular finite elements.

In order to integrate the equations of motion in time, the constant average acceleration variant of the
Newmark method has been used.
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Fig. 1 Numerical model of simulation

Table 1 Size of the parts in the test setup (mm)

Test material Source/receiver PML-1/PML-2

Length (l) 2 0.5 1.5
Height (h) 2 2 2

3 Numerical test setup

The test setup has been constructed as given in Fig. 1. The test material (MRE) consists of polymer matrix and
piezomagnetic particles. It is known that reflections either from the interface between the parts or from the ends
of the geometry can significantly affect the results in a wave propagation analysis. So-called perfectly matched
layers (PMLs) are often used in numerical simulations to absorb the waves, so that unwanted reflections can be
avoided [5]. Additionally, it was pointed out that spurious reflections can pollute the results, if the difference
in compressional wave speeds between the PMLs and source/receiver parts is too large [5]. Therefore, two
PMLs have been created in the test setup to reduce this numerical noise (Table 1).

The test material (MRE) has been placed between PMLs and artificial source/receiver regions to simulate
the longitudinal waves propagating in the test material along the z axis. Here, the superscripts 1, 2, s and r
represent the first PML, the second PML, source and receiver regions respectively. The acoustic impedance of
PMLs and source/receiver parts should be identical to provide a smooth transition between the various parts
and low compressional wave speeds in the PMLs [5]. Therefore, the material properties have been taken as

ρs
= ρr ρ2

= 10ρs ρ1
= 50ρs

Cs
= Cr C2

= 0.1Cs C1
= 0.02Cs

(8)

where ρ is the mass density and C is the stiffness matrix. Thus, the compressional matching impedance has

been achieved via
√

ρsCs
33 =

√

ρrC r
33 =

√

ρ1C1
33 =

√

ρ2C2
33, where C33 is the stiffness in direction of

longitudinal wave propagation along the z axis. Furthermore, the compressional wave speed in the various
parts follows from

vs
comp. = vr

comp., v
2
comp. =

√

C2
33

ρ2
= 0.1vs

comp. v
1
comp. =

√

C1
33

ρ1
= 0.02vs

comp. (9)

The process to identify stop-bands and pass-bands can be summarized as follows:

1. Mechanical boundary conditions have been prescribed as uz

(

−
L
2

)

= uz

(

L
2

)

= 0, ux

(

−
L
2

)

= ux

(

L
2

)

= 0

and ux

(

−
h
2

)

= ux

(

h
2

)

= 0 where ux and uz are horizontal and vertical displacements. Magnetic boundary
conditions have been set up by defining scalar magnetic potentials �s and �r on the nodes of source and
receiver lines (at the middle of the source/receiver parts, see Fig. 1) to model a static external magnetic
field Ho affecting the test material. Scalar magnetic potentials on the receiver and source nodes have been
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a b c d

Fig. 2 Example of test materials. Periodic (a), randomness in particle size (b), position (c) and both (d). (V f = 30%)

set to be −6.25 A and 6.25 A, respectively. These potentials create 5 kA/m of external magnetic field Ho

between source and receiver lines that corresponds to a small variation around bias field [18]. Lastly, initial
conditions at t = 0 have been defined as v = 0 and u = 0 where v is the nodal velocity vector.

2. A continuous harmonic longitudinal sine wave is activated at the source line by applying nodal forces
Fg = Ag sin(ωt) where Ag is the amplitude, ω is the angular frequency and t is time. This longitudinal
wave propagates in the positive z direction through the test material (MRE) and the displacements on the
receiver line are recorded.

3. For each frequency, two simulations are set: one with a heterogeneous test material, and one with the
equivalent homogeneous test material. In the homogenous setup, material properties of the test material are
averaged from magnetic particle and polymer matrix according to the rule of mixtures. In the heterogeneous
setup, constituents have their individual material properties. The material properties of the source and
receiver parts are assigned to be the averaged properties in both simulations.

4. To have the amplitudes of propagated incident wave for both homogeneous (Ah) and heterogeneous (Ac)
setup, a Fourier transform is applied to the recorded displacements at the end of each simulation. It is
known that wave propagation is non-dispersive in homogeneous materials, and each individual harmonic
travels with the same velocity. However, the wave propagation will show a dispersive behaviour in case
of heterogeneous materials, and an inability of certain harmonic components to propagate may occur. The
amplitude variance between the homogeneous and heterogeneous configurations will be used to define the
transmission coefficient. Displacements are recorded on ten equally spaced nodes (recording points) at the
receiver line during the simulation. Finally, a transmission coefficient is defined as

T =
Ac

Ah
(10)

In this study, it was assumed that if the transmission coefficient is less than 10%, the relevant harmonic
component can be considered as “stopped”. This process has been followed for a range of frequencies to
determine the stop-band frequency ranges. By varying microstructural properties of the test material and
applying or switching off magnetic field, the effects of microstructure and magneto-elastic coupling can be
measured and assessed in a systematic manner.

4 Results and discussion of numerical test

In the numerical analysis, material properties of magnetostrictive Terfenol-D particles and polymer matrix
material have been adopted as given in Table 2. The polymer matrix has been modelled to be a non-magnetisable
material. To represent the non-magnetisable polymer, piezomagnetic constants of the matrix have been assumed
as zero, and the magnetic permeability of the matrix has been taken as the magnetic permeability of air. Damping
of the constituents have been assumed as zero to simplify the analysis [23], and volume fractions of particles
V f have been chosen as 30 and 45% (for different tests). A continuous harmonic force function has been
applied with an amplitude (Ag) of 1 Newton during the simulation time which has been set to be equal 30
periods of the wave to ensure that sufficient periods have propagated and been recorded. To describe the wave
propagation accurately, approximately 6 finite elements per wavelength were used in the test material. The
studied frequency range has been set to be 0.5–7.0 MHz.

As mentioned above, the effects of piezomagnetic coupling and microstructure of the MRE have been
investigated in this study. To study the coupling effect, the piezomagnetic coupling properties of the particles
have been assigned as zero and non-zero (see Table 2) to simulate decoupled and coupled physics. Moreover,
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Table 2 Material properties

Coupled Decoupled

Terfenol-Da Polymerb Terfenol-Da Polymerb

C11 27 7.8 27 7.8
C13 11.8 4.8 11.8 4.8
C33 31.4 7.8 31.4 7.8
C55 4.2 1.6 4.2 1.6
q31 −15.2 0 0 0
q33 217 0 0 0
q15 68 0 0 0
μ11 9 μ0 μ0 μ0

μ33 1.68 μ0 μ0 μ0

ρ 9250 1150 9250 1150

Ci j in GPa, qi j in N/Am, μij in 10−6N/A2, ρ in kg/m3

a,bAdopted from [18,24], respectively

the magnitude of the external magnetic field Ho has been set to be 0 kA/m for the decoupled case, and 5 kA/m
for the coupled case in the z direction.

In the evaluation of the microstructure, attributing to our earlier studies [5,23,25], periodic and random
particle distributions have been created for the test material. To this end, alongside periodic material (a),
randomness has been introduced in terms of particle size only (b), particle position only (c), and both size and
position simultaneously (d) as depicted qualitatively in Fig. 2.

4.1 Periodic microstructure

We start our analysis with a periodic test material (Fig. 2a), which will serve as a benchmark for all subsequent
tests.

4.1.1 Influence of magneto-elastic coupling

In this first study, the influence of piezomagnetic coupling on the wave propagation in periodic material has
been evaluated. The transmission coefficients on the recording points have been calculated for each frequency,

and an averaged transmission coefficient T has been determined for each frequency as the mean of the ten Ti ,
recorded in the ten receiver points to visualise and compare results more quantitatively as shown in Fig. 3. It

must be noted that these average values T represent the change in the trend of transmission coefficients along
the frequency range, and it should not be used as the only result to assess the propagation of the wave in the
test material. However, since transmission coefficients Ti at the stop-band frequencies are similar, the averaged
value can represent the wave propagation and transmission coefficients on the recording line. Fig. 3 shows stop-
band frequencies range of 2.1–2.6 MHz for the case of pure elasticity (or decoupled with absence of magnetic
field). When the piezomagnetic coupling terms are introduced (or coupled with presence of magnetic field), the
width of the first stop-band increases to 2.1–3.1 MHz, presenting a slightly enlarged stop-band characteristic
for the test material.

4.1.2 Influence of volume fraction of inclusions

It is known that the volume fraction of the inclusions is an influential parameter on the static and dynamic
behaviour of MREs [6,10,12,26]. It was previously reported that a higher volume fraction of magnetic particles
can lead to increased band width and transition of the stop-band frequencies. Therefore, it is worth investigating
the effect of the volume fraction. To study this effect, another periodic test material has been created by
increasing the volume fraction to 45% as seen in Fig. 4.

As seen in the averaged transmission coefficient results (see Fig. 5), an increase in volume fraction affects
the wave propagation characteristics noticeably. Increasing the particle volume fraction moves the frequency
ranges 3.5–4.0 MHz and 6.5–7.0 MHz into stop bands for the decoupled physics case. For the coupled physics
case, increasing the particle volume fraction leads to a considerably wider first stop band of 2.0–5.5 MHz.
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Fig. 3 The average transmission coefficient T and effect of magneto-elastic coupling on the stop-band frequencies in periodic
microstructure. Decoupled (solid), coupled (dashed) of magnetic field cases. Dashed-dotted line presents 10% cut-off indicating
stop-band

a b

Fig. 4 Increased volume fraction for periodic test material: V f = 30% (a), V f = 45% (b)
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Fig. 5 The average transmission coefficient T and the effect of volume fraction on the wave propagation in coupled (cir-
cle)/decoupled (triangle) cases. V f = 30% (solid) and V f = 45% (dashed)



3266 S. Eraslan et al.

a b c

Fig. 6 Different particle sizes: smaller (a), original (b), larger (c) (V f = 30%)

4.1.3 Influence of particle sizes

The particle size is another geometric parameter influencing the wave propagation. To study this parameter,
three different (but each uniform) size configurations have been created (see Fig. 6). Figure 7 presents the
averaged transmission coefficient results for smaller (dashed), original (solid) and larger (dash-dotted) particle
size configurations. It can be seen that with decreasing particles sizes, the first stop-band frequency moves to
higher values and the first stop-band widens for both coupled and decoupled cases. It is also useful to note, that
coupled cases for each size configuration present increased first stop-band widths compared to their decoupled
counterparts.

4.2 Random microstructure

Next, random microstructural configurations are considered. Geometrical randomness has been introduced in
terms of particle size, particle position, and both (see Fig. 2). A volume fraction of inclusions of 30% has been
assumed for all random microstructures. To investigate particle size randomness, a uniform particle diameter
distribution of 110–240µm is assumed to create random sizes for particles in a periodic pattern (Fig. 8).

The average transmission coefficients in Fig. 9 show that randomness added to particles sizes leads to
increased first stop-band width for both the decoupled and coupled physics cases. Besides, different realisations
of the particles size randomness present similar results to a certain degree in the first stop-band and second
pass-band regions. However, there are noticeable differences between the realisations and periodic case with
identical particles.

For the next test, identical particles with random positions have been used for position randomness by
using a MATLAB code developed in-house (Fig. 10).

Figure 11 depicts that randomness added to particles positions has a much more significant influence on
the results by removing almost all the second pass-band frequencies and turning them into a stop-band in
both coupled and decoupled cases. It can also be noted that randomness in positions leads to more dispersive
wave propagation in the test material, and thus transmission coefficients in pass-band frequencies are generally
significantly lower compared to the periodic benchmark case while randomness in particle size still maintains
a level of geometric periodicity and, thus, it still provides distinct stop and pass-band regions.

Next, randomness has been introduced to both particle sizes and position simultaneously. Three different
fully random test materials have been created as seen in Fig. 12. The distributions of the average transmission
coefficients in Fig. 13 show results of random realisations and present the difference with the periodic test
material. As seen, all three random realisations present very similar behaviour by removing the second pass-
band compared to periodic arrangement. This difference can also be seen in Fig. 14 via 3D plots of the
transmission coefficients Ti. Furthermore, note that the difference between the coupled and decoupled cases
has become negligible in a fully random test material (see Fig. 14b).

Note that the results of random test materials in Fig. 13 present similar wave propagation characteristics
compared to the case of the randomness added to the position only (see Fig. 11). However, the transmission
coefficients in the second pass-band have been reduced slightly more than the position randomness, and the
second pass-band has been turned into stopped frequencies.
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(a) Decoupled
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(b) Coupled

Fig. 7 The average transmission coefficient T and the effect of particle size on the wave propagation in coupled/decoupled cases.
Particle sizes: smaller (dashed), original (solid), and larger (dash-dotted)

a b c

Fig. 8 Randomness added to particles sizes. Three different realisations a, b and c from left to right. (V f = 30%)
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(a) Decoupled
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(b) Coupled

Fig. 9 The average transmission coefficient T in case of randomness in particle size. Periodic (solid), realisation—a (dashed),
realisation—b (dotted), realisation—c (dash-dotted)

a b c

Fig. 10 Randomness added to particles position. Three different realisations a, b and c from left to right. (V f = 30%)
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(a) Decoupled
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(b) Coupled

Fig. 11 The average transmission coefficient T in case of randomness in particle position. Periodic (solid), realisation—a (dashed),
realisation—b (dotted), realisation—c (dash-dotted)

a b c

Fig. 12 Randomness added to particles sizes and positions simultaneously. Three different realisations a, b and c from left to
right (V f = 30%)
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(a) Decoupled
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(b) Coupled

Fig. 13 The average transmission coefficient T in case of fully random material realisations and periodic material. Periodic
(solid), realisation—a (dashed), realisation—b (dotted), realisation—c (dash-dotted)

5 Conclusions

In this study, the effects of magneto-elastic coupling and variations in geometry of microstructures on the
longitudinal wave propagation and stop-bands have been studied for a magnetorheological elastomer. Longi-
tudinal sine waves have been created during the simulation time in the source region and these waves have
been recorded in the receiver region after having propagated through the test material.

In a material with a periodic structure, it was seen that the particle size and volume fraction are impor-
tant parameters in the stop-band frequencies. For the same volume fraction, decreasing the particle size has
resulted in a wider first stop-band gap and a shift of the first stop-band frequency to a higher frequency value.
Furthermore, a distinct difference in the first band gap has been observed between coupled and decoupled
considerations for these tests. When magneto-elastic coupling was introduced to the system, test geometries
exhibited a wider band gap. Moreover, the volume fraction of inclusions also has a notable effect on the char-
acteristics: it was observed that pass-band frequencies can be transferred into the stop-band in case of higher
volume fractions. The difference between coupled and decoupled formulations has also been significantly
increased for higher volume fractions resulting in a possible second stop-band.
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(a) Periodic structure. Decoupled (left) and coupled (right).
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(b) Randomness added to both particles sizes and positions simultaneously. Decoupled (left) and coupled (right).

Fig. 14 Transmission coefficients Ti in periodic and fully random test materials

Next, materials with geometrically random microstructure have been analysed. It was observed that ran-
domness added to particle size reduces the transmission coefficient in the second pass range although the first
band gap remained similar to that of periodic materials. However, introduction of randomness to particle posi-
tion leads to the complete removal of the pass-band ranges in both coupled and decoupled cases. Lastly, fully
random test materials with randomness added to both sizes and positions have been investigated. Full random-
ness exhibited stop-band characteristics similar to those of randomness added to position only. It was observed
that the pass-band ranges tend to be removed in case of full randomness similar to positions randomness.
Therefore, it can be concluded that particle position randomness is much more significant than particle size
randomness in wave propagation behaviour. Interestingly, the effects of magneto-elastic coupling compared
to decoupled counterparts have been lost in the fully random structures, concluding that geometrical random-
ness, specifically positions randomness, is the most dominant parameter characterising wave propagation and
controlling stop/pass band behaviour.
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