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Incomplete adaptive distinguishing sequences
for non-deterministic FSMs

Uraz Cengiz Türker, Robert M. Hierons, Gerassimos Barlas, and Khaled El-Fakih

Abstract—The increasing complexity and criticality of software systems has led to growing interest in automated test generation. One

of the most promising approaches is to use model based testing (MBT), in which test automation is based on a model of the

implementation under test (IUT), with much of the work concerning finite state machine (FSM) models. Many FSM-based test

generation techniques use, possibly adaptive, sequences to check the state of the IUT. Of particular interest are adaptive distinguishing

sequences (ADSs) because their use can lead to relatively small tests. However, not all systems possess an ADS. In this work, we

generalise the notion of incomplete ADSs to non-deterministic partial and observable FSMs. We show that the problem of checking the

existence of a set of k incomplete ADSs that separates every pair of states is PSPACE-hard. Further, we generalise the notion of

invertible sequences to non-deterministic partial and observable FSMs and show how invertible sequences can be used to derive

additional incomplete ADSs. We propose a novel algorithm to generate incomplete ADSs and describe the results of experiments that

evaluated its performance. The results indicate that the proposed method can generate sequences to identify states of the IUT and is

faster and can process larger FSMs than other existing methods.

Index Terms—Software engineering/software/program verification, software engineering/testing and debugging, software

engineering/test design, non-deterministic finite state machines, adaptive distinguishing sequences/tests.

✦

1 INTRODUCTION

AMultitude of approaches have been devised for the
functional (conformance) testing of systems based on

finite state machine (FSM) models [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20].
The application areas of such techniques span a wide spec-
trum including sequential circuits [21], lexical analysis [22],
software design [4], communication protocols [4], [5], [23],
[24], object-oriented systems [25], and web services [26],
[27], [28], [29]. In addition, such techniques have been
shown to be effective when used in significant industrial
projects [30]. For related surveys and experiments the reader
may refer to [31], [32], [33], [34]. It is worth mentioning
that FSM based approaches can also be applied to systems
modeled using more expressive modeling techniques such
as SDL and State-Charts whose underlying semantics can be
expressed as FSMs (see, for example, [35]).

An FSM M is defined by finite sets of states, inputs,
outputs, and transitions. Each transition can be defined by
a tuple of the form (s, x, y, s′) that states that if M receives
input x when in state s then M can produce output y and
move to state s′. If there is at least one such transition
for each pair (s, x) of state and input then M is complete.
Otherwise M is partial. Moreover M is deterministic if for
each state s and input x there is at most one transition that
has starting state s and input x. If M is not deterministic
then it is a non-deterministic FSM. An FSM M is observable if
for every state s, input x and output y there is at most one
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transition of the form (s, x, y, s′). In this paper we consider
FSMs that can be partial and non-deterministic but we
assume that they are observable (all deterministic FSMs are
observable). The requirement that FSMs are observable is
not a significant restriction since every FSMs can be mapped
to an observable FSM from which one can test [36].

Conformance (correctness) testing is the process of exe-
cuting the IUT to check whether it is a correct implementa-
tion of the specification. In order to formalise conformance
testing, and reason about test effectiveness, it is normal to
assume that the IUT behaves like an unknown model that
can be expressed using the same formalism as the speci-
fication: the minimum hypothesis [37]. When testing from
an FSM specification M , it is therefore normal to assume
that the IUT behaves like an unknown FSM N . As a result,
conformance testing involves applying input sequences to
N and checking that the resultant input/output sequences
are also input/output sequences of M . Observe that testing
is black-box and so one cannot, for example, take advantage
of the structure of N .

As previously mentioned, FSM-based test techniques
have been applied in several domains and this is unsur-
prising since many systems are state-based: they have an
internal state that is affected by operations and also af-
fects how operations work [38]. As an example, consider
an embedded control system within a vehicle or a robot.
Such a control system has internal state: variables that hold
information about previous interactions with the environ-
ment. Input is received from sensors and output is sent to
actuators that might, for example, change the engine speed
or apply the brakes. Typically, software development will
include the writing of a state-based model in a language
such as Statecharts. The model and the IUT will normally
be cyclic: within each cycle, inputs are read from sensors,
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the values of state variables are updated, and outputs are
sent to actuators. Thus, the specification/design model and
also the IUT can be seen as being FSMs, possibly once an
abstraction has been applied to data. Such cyclic behaviour
can also be found in notations such as Statecharts [39] that
have a step semantics.

There are two possible types of faults associated with a
transition (s, x, y, s′): output faults, that lead to the wrong
output being produced, and state transfer faults that lead to
the wrong state being reached. If we go back to the example
of an embedded control system, an output fault would
correspond to the wrong values being sent to one or more
actuators. This might involve, for example, the speed of the
engine being set to the wrong value. A state transfer fault
would correspond to an incorrect update to the values of
one or more internal values; such a fault is not immediately
observed but might later lead to an incorrect value being
output.

If one knows that there are no state transfer faults then,
in testing, it is sufficient to simply execute each transition at
least once. However, such a test need not find state transfer
faults [40]. As a result, most algorithms for deriving test
sequences from an FSM M use state identification compo-
nents to check for state-transfer faults. In most approaches,
a state identification component is an input sequence x̄
that separates two or more states of the specification FSM
M 1. The main state identification components used are
Distinguishing Sequences (DSs) [32], [41], Unique Input
Output (UIO) sequences [5], Characterising Sets (W) [4], and
Harmonised state identifiers (HSI) [13], [42], [43].

There are two main types of DSs. A preset DS (PDS)
is an input sequence that pairwise separates the states of
M . In contrast, in an adaptive DS (ADS), also known as
a Distinguishing Set [9], the choice of next input to apply
can depend on the output that has (so far) been produced
in response to the ADS. An ADS can therefore be seen as
a finite rooted decision tree and, similar to PDSs, an ADS
pairwise separates the states of M . DSs have been found to
lead to relatively short tests, resulting in them being utilised
in many FSM-based approaches [11], [44]. DSs have also
been used in several other areas. For example, DSs have
been utilised in FSM-based mutation testing to distinguish
the (initial state of) the specification M from (the initial
states) of a set of given mutants of M [45], [46]. They have
also been used, in fault localisation techniques, to identify
a faulty IUT by distinguishing its behaviour from a set of
possible faulty (FSM) candidates [47], [48], [49].

If an FSM has a PDS then it also has an ADS but
the converse is not necessarily true [9], [32]. Besides, the
shortest ADS for an FSM M cannot be longer than the
shortest PDS for M [9], [32], [50]. A number of papers
report results regarding the problem of generating ADSs for
deterministic FSMs [32], [41], [44], [51], [52], [53], [54]. For
observable non-deterministic FSMs, Kushik et al. [55], [56]
established an exponential upper bound2 on the length of a
shortest ADS. It is now known that this bound is tight [56].

Several ADS generation algorithms have been provided.

1. An input sequence separates two states s and s′ if it leads to
different output sequences when applied in s and s′.

2. 2n−n−1, where n is the number of states of the underlying FSM.

One class of ADS generation algorithm uses the power
set construction and thus can only be applied to small
machines [55]. A scalable massively parallel ADS derivation
algorithm has also been introduced [57]. More recent work
introduced an algorithm [56] that checks the existence of
an ADS and, if there is an ADS, construction of an ADS is
through a top-down approach using a successor tree.

Unfortunately, not every FSM has an ADS or PDS. In
such cases UIOs, W sets or HSIs have instead been used.
Recent work introduced the notion of incomplete ADSs [54].
An incomplete ADS is similar to an ADS but it only sep-
arates some pairs of states. The idea is to derive a set of
(incomplete) ADSs that distinguish all the states of a given
FSM so that once incomplete ADSs have been computed
one can either use these or derive HSIs from the ADSs.
The work also gave a greedy algorithm that produces a
set of incomplete ADSs, with experiments finding that the
resultant sets of incomplete ADSs are typically relatively
small. In addition, they showed that the decision problems
associated with finding a smallest set of incomplete ADSs
is PSPACE-complete. However, this previous work only
concerned deterministic complete FSMs (DFSMs).

The work described in this paper aims to fill the above
gap by generalising incomplete ADSs so that they can be
used for conformance testing from a partial observable non-
deterministic FSM. As well as providing this generalisation,
we also introduce and evaluate a novel algorithm for gener-
ating such incomplete ADSs, with the aim of supporting
automated test generation that scales to relatively large
models.

While devising an algorithm for generating incomplete
ADSs for partial observable non-deterministic FSMs, we
generalise the notion of an invertible sequence, previously
defined for DFSMs [58], [59], [60]. Naik [60] showed how
invertible sequences could be used in the process of gener-
ating a UIO from a DFSM, motivated by the UIO generation
problem being computationally hard. The use of invertible
sequences can make it possible to construct a UIO for a state
s from a UIO already generated for another state s′. This can
reduce the time required to construct UIOs but can lead to
longer UIOs. In recently reported experiments [61], 80% of
the UIOs found were generated through the use of invertible
sequences.

Most work on using preset input sequences to test from
a partial non-deterministic FSM restricts attention to FSM
with harmonised traces. As explained later (Definition 2.13), a
partial non-deterministic FSM M has harmonised traces if,
whenever an input sequence can take M to states s and s′

then all inputs defined in s are also defined in s′. The key
reason for restricting attention to FSMs with harmonised
traces is that if there is some sequence of transitions of
the FSM that has input sequence x̄ then we can use x̄ in
testing since we know that it cannot lead to an input x
being applied in a state in which x is not defined. One
of the advantages of using (possibly incomplete) ADSs to
distinguish states is that there is no need to restrict attention
to FSMs with harmonised traces since the choice of next
input to apply can depend on the output previously ob-
served. However, the experimental evaluation in this paper
used FSMs with harmonised traces since we compared the
proposed technique against a baseline technique that uses
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preset input sequences.
This paper makes several contributions. It generalises

the notion of incomplete ADSs to partial (observable) non-
deterministic FSMs. We prove that the problem of deciding
whether an FSM has a set of k incomplete ADSs, that
pairwise separate all states, is PSPACE-hard. As a result,
we know that there is no polynomial time algorithm that
generates the smallest set of incomplete ADSs for an FSM.
Motivated by this, we propose an algorithm (heuristic)
that generates incomplete ADS and, as part of this, we
generalise invertible sequences to partial non-deterministic
FSMs. Scalability of the proposed ADS construction algo-
rithm is aided by the fact that, unlike other previous related
work [62], the algorithm does not require the construction of
characterising sets; this allows us to avoid additional com-
putational cost [62]. The paper also provides the results of
an experimental evaluation that used both benchmark and
randomly generated FSMs with varying properties. In these
experiments, it was found that the proposed algorithm:

1) can reduce the number of input sequences in a test,
which is important as it directly reduces the number of
resets3 (53% on average);

2) can reduce the total number of inputs of the tests (39%
on average);

3) can generate state identifiers from incomplete ADSs
much faster (27% reduction in generation time on aver-
age);

4) can generate state identifiers (67% of the time on aver-
age) by using the invertible sequences.

5) can increase the scalability of generating state identi-
fiers by a factor of 3000 compared with the existing
state identifier generation algorithm.

This paper is organised as follows. Section 2 introduces
notation and terminology that are used throughout the
paper. In Section 3 we formally introduce adaptive test
cases, while Section 4 uses an example to motivate the
work. This is then followed by a section that provides the
theoretical foundations for incomplete ADSs. In Section 6,
we generalise invertible sequences to incomplete ADSs for
non-deterministic FSMs. Following this, we introduce the
proposed algorithm. Section 8 describes the experiments
conducted and discuss the results. This is then followed by
conclusions and directions for possible future work.

2 DEFINITIONS AND NOTATIONS

We start by describing the type of model we use: finite state
machines. In Section 2.2 we then explain how the behaviour
of an FSM can be defined and outline associated properties.
Table 1 summarises the notation used for FSMs.

2.1 Finite State Machines

We now define non-deterministic finite state machines.

Definition 2.1. A non-deterministic finite state machine
(FSM) is defined by a tuple M = (S, s0, X, Y, h) in
which: S = {s1, s2, . . . , sn} is the finite set of states,
s0 ∈ S is the initial state, X = {x1, x2, . . . , xr} is the
finite set of inputs, Y = {y1, y2, . . . , yv} is the finite set

3. A reset brings the IUT to a specific starting state.

Notation Definitions

M Finite state machine.
S, S′ Set of states, subset of states.
s0, s1 . . . States of an FSM.
X,Y, x, y, h Set of inputs, set of outputs, input symbol,

output symbol, set of transitions.
τ Transition of an FSM.
out(., .), i(.), o(.) Set of outputs, input portion,

output portion.

σ, σ̂, s
x̄/ȳ
−−−→ s′ Trace, a walk, a trace (x̄/ȳ)

of walk from s to s′.
LM (s), LM Language of state s, Language of FSM M .
M(s, x̄),M(S′, x̄) Set of traces from s with input portion x̄,

set of traces from S′ with input portion x̄.
Hi,H Harmonised state identifiers for s, set

of harmonised state identifiers.

Table 1: List of symbols related to finite state machines.

of outputs, and h ⊆ S×X×Y ×S is the set of transitions.
We assume that X is disjoint from Y .

If an input x from set X is applied when FSM M is in
state s then M changes state to s′ ∈ S and produces output
y ∈ Y for some y and s′ such that M has the transition
(s, x, y, s′) ∈ h. A transition τ = (s, x, y, s′) has starting
state s, ending state s′, and label x/y. The label x/y has input
portion x and output portion y.

s1 s2

s4s3

x2/y0, x3/y0

x3/y1

x 2
/y
0

x
2 /

y
1

x1/y1, x2/y0

x3/y0

x2/y1

x
1 /y

0

x3/y0

Figure 1: An FSM M1. Note
that the initial state is high-
lighted with a dashed line.

In Figure 1, we intro-
duce a non-deterministic
FSM M1 with four states
where s1 is the initial
state. Here, for exam-
ple, there is an edge
from node s3 to node s1
that has label x1/y0; this
represents the transition
(s3, x1, y0, s1) that tells us
that if the FSM receives in-
put x1 when in state s3
then it can produce output
y0 and move to s1.

An FSM may have non-deterministic transitions. A tran-
sition τ = (s, x, y, s′) is a non-deterministic transition if M
has another transition τ ′ = (s, x, y′, s′′), i.e., for state s and
input x there might be several transitions that have starting
state s and input x. We focus on a particular class of FSM.

Definition 2.2. FSM M is observable if for all s ∈ S, x ∈ X ,
and y ∈ Y there is at most one state s′ ∈ S such that
(s, x, y, s′) ∈ h.

A consequence of an FSM M being observable is that if
we know that M is in state s, input x is received, and output
y produced then the new state s′ is uniquely defined. As
explained below, if an FSM specification is not observable
then it can be mapped to an observable FSM from which
one can test.

Input x is defined for state s if there exists an output y and
state s′ such that (s, x, y, s′) ∈ h; otherwise x is undefined in
s. For example, in M1 we have that input x1 is undefined
for state s2 and inputs x2 and x3 are defined for state s2.
Similarly, an input x is defined for a set of states S′ if for
every state s ∈ S′, x is defined for s. If for every state s ∈ S
and for every input x ∈ X , x for defined in s, then the
FSM is complete. If an FSM is not complete then it is partial.
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Throughout the paper, we use the notation FSM(s) to denote
observable non-deterministic FSM(s) that maybe partial or
complete.

There are several possible reasons for input x not being
defined for state s in a specification. First, this may indicate
that there are no constraints on the behaviour after such
an input: all behaviours are allowed if x is received in
state s. Where this is the case, one can complete the FSM
by adding transitions to a new state with self-loops for
all input/output pairs. In this case, there is no value in
applying input x in state s during testing since it cannot lead
to a failure being observed. A second reason for x not being
defined for s is that x should not, or cannot, be received in
this state. This might occur, for example, if the environment
in which the IUT operates does not allow x to be received in
this state or applying x in state s might lead to undesirable
consequences such as damage to equipment or safety issues.
In this second case, testing should not try to apply input x
in state s. In both of the above scenarios, there is no value
in applying input x in state s if x is not defined for s. It
is therefore normal to only apply an input x when M is in
state s if x is defined in s.

We use out(s, x) to denote the set of outputs that can be
observed in response to the application of input x in state s.

Definition 2.3. Given FSM M , state s of M , and input x,

out(s, x) = {y|∃s′.(s, x, y, s′) ∈ h}

For example, in M1, out(s2, x2) = {y0, y1}. Given set S′

of states, we define out(S′, x) to be the set of outputs that
can be observed if x is received when the state of the FSM
is in S′. We therefore have that out(S′, x) = ∪s∈S′out(s, x).

When an FSM receives an input, it produces an output
and changes state; it can then receive a new input. Thus,
a behaviour/observation is a sequence of input/output
pairs. We use ε to denote the empty sequence and given
sequences x̄ and x̄′, x̄x̄′ will denote the concatenation of x̄
and x̄′. We also use (X/Y )∗ to denote the set of input/out-
put sequences. Given input/output pairs x1/y1, . . . , xk/yk,
both x1/y1 . . . xk/yk and also x1x2 . . . xk/y1y2 . . . yk will
denote the corresponding input/output sequence (or trace)
σ: the sequence that starts with x1/y1, then has x2/y2, then
. . . and finally xk/yk. Further, we let i(σ) = x1 . . . xk and
o(σ) = y1 . . . yk denote the input portion and output portion
respectively of trace σ.

Testing involves applying a sequence of inputs to the
IUT, observing the resultant sequence of outputs, and check-
ing the trace against the specification FSM. The application
of a sequence of inputs to an FSM M leads to M following
a walk.

Definition 2.4. Given an FSM M , a walk is a sequence
σ̂ = (s1, x1, y1, s2)(s2, x2, y2, s3) . . . (sk, xk, yk, sk+1) of
consecutive transitions of M . The trace of σ̂ is σ =
x1/y1 . . . xk/yk. In addition, i(σ̂) = x1 . . . xk is the input
portion of the walk and o(σ̂) = y1 . . . yk is the output
portion of the walk.

For example, if we apply input sequence x2x2x2

when M1 is in state s1 and observe output sequence
y0y0y1 in response, M1 has followed the walk σ̂ :
(s1, x2, y0, s2)(s2, x2, y0, s3)(s3, x2, y1, s3), with trace σ =
x2/y0x2/y0x2/y1.

Given a trace σ we define pref(σ) to be the set of
prefixes of σ: pref(σ) = {σ′|∃σ′′.(σ = σ′σ′′)}. Thus,
for example, pref(x1/y1x2/y2) = {ε, x1/y1, x1/y1x2/y2}.
Given a set A of traces, we let pref(A) denote the set of
prefixes of traces in A: pref(A) = ∪σ∈Apref(σ).

We introduce notation that allows one to say that the
FSM can move from state s to state s′ through a walk with
trace σ.

Definition 2.5. Given an FSM M , state s of M and trace σ, if
there is a walk with starting state s, ending state s′, and

label σ = x̄/ȳ then we write s
σ
−→ s′ (or s

x̄/ȳ
−−→ s′) and

we say that the application of x̄ in s can reach s′. If s = s0
then we simply say that x̄ reaches s.

We will also need to say what it means for an input
sequence x̄ to be defined in a state s and in a set S′ of
states. This essentially requires that if x̄ is written in the
form x̄1xx̄2 for input sequences x̄1, x̄2 and input x then x
is defined in all states reachable through x̄1. This can be
defined recursively as follows.

Definition 2.6. An input sequence x̄ is defined in set S′ of
states if either x̄ = ǫ or x̄ = xx̄′ for some input x and
input sequence x̄′ such that x is defined in S′ and x̄′ is
defined in the set {s′′ ∈ S|∃s′ ∈ S′; y ∈ Y.(s′, x, y, s′′) ∈
h} of states that can be reached from S′ through input x.
Further, x̄ is defined in state s if x̄ is defined in {s}.

2.2 Finite State Machine behaviour

An FSM M defines the language L(M) of labels of walks
with starting state s0 and we use LM (s) to denote the
language obtained if we make s the initial state of M .

Definition 2.7. Given a state s of FSM M

LM (s) = {x1 . . . xm/y1 . . . ym ∈ X∗/Y ∗|∃s1, . . . , sm+1.

s1 = s ∧ ∀1 ≤ i ≤ m.(si, xi, yi, si+1) ∈ h}

Clearly, L(M) = LM (s0). Given S′ ⊆ S, we define
LM (S′) to be the set of traces that can be produced if the
initial state of M is in S′ and so LM (S′) = ∪s∈S′LM (s).
Please note that for a given state s, LM (s) can be an
infinite set of walks. If we consider, for example, the
FSM M1 given in Figure 1, we have that LM (s2) =
{ε, x3/y1, x3/y1x3/y1, x3/y1x3/y1 . . . x3/y1, . . .}.

If we apply an input sequence x̄ to an FSM M when it
is in state s then the set of possible behaviours is a subset of
LM (s): the traces with input portion x̄. We use M(s, x̄) to
denote the set of traces in LM (s) that have input portion x̄.

Definition 2.8. Given FSM M , state s of M , and input
sequence x̄

M(s, x̄) = {σ ∈ LM (s)|i(σ) = x̄}

Given state set S′ ⊆ S, we define M(S′, x̄) to be the set
of traces that can result from applying x̄ to a state in S′. As
a result M(S′, x̄) =

⋃
s∈S′ M(s, x̄).

Since the behaviour associated with state s is defined
by LM (s), we obtain a natural definition of state and FSM
equivalence.

Definition 2.9. States s, s′ of FSM M are equivalent if
LM (s) = LM (s′). Further, two FSMs M and N are
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equivalent if L(M) = L(N). FSM M is minimal if there is
no equivalent FSM that has fewer states.

Throughout this paper, M = (S, s0, X, Y, h) refers to
an FSM that is non-deterministic, observable and need not
be complete. If M is complete but it not observable then
it can be transformed into an equivalent complete and
observable FSM by using any algorithm that converts a
non-deterministic finite automaton into an equivalent de-
terministic finite automaton. Although this cannot always
be done for partial FSMs, recent work has shown that if M
is partial but not observable then it can be converted into an
observable FSM from which one can test [36]. As a result,
the only restriction we make, which is to require M to be
observable, does not limit the applicability of the results.

2.3 Separating and Identifying states

As explained, we are interested in the problem of separating
states of an FSM and we now define what this means if one
is using an input sequences; in Section 3 we extend this to
adaptive test cases.

Definition 2.10. An input sequence x̄ is a separating sequence
for states s, s′ if x̄ is a defined input sequence for s and
s′ and M(s, x̄) ∩M(s′, x̄) = ∅.

The above definition requires that x̄ is defined in states s
and s′ because, as previously explained, an input x should
not be applied in a state in which it is not defined.

Many test generation techniques use a set W of input
sequences that, between them, separate all pairs of states.
Having produced such a set W , one might identify a given
state by using W . However, it has been shown that one
can improve on this by instead using Harmonised State
Identifiers [62] with it being known that they yield shorter
tests [33]. We first define state identifiers

Definition 2.11. A state identifier (SI) for a state si of FSM
M = (S, s0, X, Y, h) is a set Hi ⊆ X∗ such that for all
sj ∈ S \ {si}, there exists x̄ ∈ Hi such that x̄ separates
si and sj .

This leads to the following definition of HSIs.

Definition 2.12. A set of Harmonised State Identifiers (HSIs)
for FSM M = (S, s0, X, Y, h) is a set of state identifiers
H = {H1, H2, . . . Hn} such that for all si, sj ∈ S with
i 6= j, there exists x̄ ∈ pref(Hi) ∩ pref(Hj) that is a
separating sequence for si and sj .

As previously explained, when applying an input se-
quence x̄ = x1 . . . xk in a state s, we require that each
input xi+1 is defined in all states that can be reached by
x1 . . . xi. Non-determinism complicates this scenario and to
see this consider the FSM M1 given in Figure 1 and notice
that this has initial state s1 and walk σ̂1 = (s1, x2, y0, s2)
(s2, x2, y0, s3)(s3, x2, y1, s3) and so we might consider ap-
plying the input portion x2x2x2 of σ̂1 in testing. How-
ever, the application of x2x2 in M1 can lead to the walk
(s1, x2, y0, s0)(s2, x2, y1, s4) and there is no transition from
s4 with input x2. Thus, since we need to avoid applying
an input in a state where it is not defined, we cannot use
the input sequence x2x2x2 in testing from M1 even though
M1 has a walk whose label has input portion x2x2x2. In
order to avoid such scenarios, most work on testing from

Algorithm 1: Deciding whether M has harmonised
traces.

Input: FSM M
Output: Boolean F stating whether M has harmonised traces
begin

1 P :={(s0, s0)}
2 C:=P
3 while C 6= ∅ do
4 Temp := ∅
5 foreach (si, sj) ∈ C and for each input x defined in (si, sj) do

Add to Temp the set of pairs (s′i, s
′
j) such that si

x
−→ s′i,

sj
x
−→ s′j and (s′i, s

′
i) 6∈ P

6 foreach (si, sj) ∈ Temp do
7 if The sets of inputs defined in si and sj are not the same

then
Return False

8 P := P ∪ Temp
9 C := Temp

10 Return True

µ(ε/ε) = x3

µ(x3/y1) = ε
states was s2

µ(x3/y0) = x2

µ(x3/y0x2/y0) = x2

µ(x3/y0x2/y0x2/y1) = ε
state was s1

µ(x3/y0x2/y0x2/y0) = ε
state was s3

µ(x3/y0x2/y1) = x1

µ(x3/y0x2/y1x1/y0) = ε
state was s4

µ(x3/y0x2/y1x1/y1) = ε
state was s1

Figure 2: An adaptive test case for FSM M1 given in Figure 1.

a partial non-deterministic FSM has required that the FSM
has harmonised traces.

Definition 2.13. An FSM M has harmonised traces if for every
input sequence x̄, states s and s′, and input x, if there is
a walk from s0 to s with input portion x̄ and also a walk
from s0 to s′ with input portion x̄ then x is defined in s
if and only if x is defined in s′.

As we can see from the example above, M1 is an FSM
that does not have harmonised traces. In this paper, we
consider FSMs that may or may not have harmonised traces.
However, as previously mentioned, the experiments used
FSMs with harmonised traces since we compared the pro-
posed approach against a technique that uses preset input
sequences. We therefore required a method for checking that
an FSM has harmonised traces so that we could filter out
those that did not; we now explain how this was done.

Observe that the definition of an FSM M having har-
monised traces can be expressed in term of pairs (s, s′) of
states of M : we require that for all such pairs (s, s′) such
that a common input sequence x̄ reaches both s and s′, we
have that the same set of inputs is defined in s and s′. This
provides the basis for an algorithm: we apply a breadth-first
search to find all such pairs (s, s′) and check these pairs
(Algorithm 1). Note that since the number of pairs of states
is quadratic, this algorithm has polynomial time complexity.

We provided C++ source code that decides whether an
FSM has harmonised traces in https://bit.ly/3FH9UlB.

3 ADAPTIVE TEST CASES

In this section we introduce adaptive test cases: test cases
where the next input to apply depends on the input/output
sequence that has been observed. An adaptive test case is
defined by the recursive application of a function of type
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µ : (X/Y )⋆ → X that specifies the adaptive test case’s next
action if an input/output sequence x̄/ȳ has been observed.
If the (recursive) application of µ has (so far) led to the
(possibly empty) trace x̄/ȳ then there are two possibilities.
If µ(x̄/ȳ) = x for an input x then input x is applied.
Otherwise, if µ is not defined on x̄/ȳ then the adaptive test
case terminates.

To see how an adaptive test case can be defined by
such a function µ, let us consider the problem of separating
states s1, s4 of FSM M1 given in Figure 3. Then µ(ε) = x2,
µ(x2/y0) = x3 defines an adaptive test case that can sep-
arate s1 and s4. This adaptive test case starts by applying
input x2 and then, if the SUT produces y0 in response to
x2, the adaptive test case applies input x3. The adaptive test
then terminates. In order to simplify the exposition, we will
say that such a function µ is an adaptive test case.

Definition 3.1. An adaptive test case µ is a partial function
from (X/Y )∗ to X such that:

1) If µ is defined on the trace x̄x/ȳy then µ is also defined
on the trace x̄/ȳ and µ(x̄/ȳ) = x;

2) µ is defined on only finitely many members of (X/Y )∗.

The first condition above simply avoids redundancy:
there is no point in defining µ on the trace x̄x/ȳy if this trace
cannot possibly occur when using µ. The second condition
ensures that a test case is finite and so its application is
guaranteed to terminate.

We define what it means for an adaptive test case to
be defined in a given set of states. Note that we will use
null to represent the adaptive test cases that is not defined
on ε; such an adaptive test case simply terminates without
applying input.

Definition 3.2. Given FSM M and set S′ ⊆ S of states of M ,
adaptive test case µ is defined in S′ if one of the following
holds.

1) µ = null; or

2) µ(ε) = x such that x is defined in S′ and for all
y ∈ out(S′, x) we have that µ(x/y) is defined in the
set {s′|∃s ∈ S′.(s, x, y, s′) ∈ h} of states of M that can
be reached from a state in S′ by x/y.

As an example, consider the FSM M1 in Figure 3 and
the adaptive test case µ in Figure 2. In this example, µ(ε)
produces x3 and so the adaptive test case starts by applying
input x3. If the output produced by M1 is y1, then the
adaptive test case will terminate and the tester declares that
M was in state s2 prior to the application of input x3.

We let tr(µ) refer to the set of traces that can occur when
applying an adaptive test case µ.

Definition 3.3. Given adaptive test case µ

tr(µ) = {ε} ∪ {x̄x/ȳy|x = µ(x̄/ȳ) ∧ y ∈ Y }

We define the depth of an adaptive test case µ to be the
length of the longest trace in tr(µ).

We use pout(s, µ) to denote the set of possible traces that
might result when M is at state s and µ is applied and so:

pout(s, µ) = LM (s) ∩ tr(µ)

Note that this is guaranteed to be non-empty since the
empty sequence is in both tr(µ) and LM (s). Given a set
S′ of states, we can extend the notation in the natural way.

pout(S′, µ) =
⋃

s∈S′

pout(s, µ)

We will be interested in the traces that can result from
the complete application of an adaptive test case in a state or
set of states. We use the following notation.

out(s, µ) = {x̄/ȳ ∈ pout(s, µ).µ(x̄/ȳ) = null}

out(S′, µ) =
⋃

s∈S′

out(s, µ)

We now say what it means for an adaptive test case to
separate two states.

Definition 3.4. Let s and s′ be states of FSM M . Then s, s′

are distinguishable if there exists an adaptive test case
µ such that µ is defined in s and s′ and out(s, µ) ∩
out(s′, µ) = ∅. Further, µ is said to separate s and s′.

We are also interested in adaptive test cases that separate
a state either from all other states in S or some subset of S.

Definition 3.5. Let us suppose that FSM M has state set S,
S′ is a subset of S, and s ∈ S′. Then an adaptive test
case µ distinguishes s in S′ if for all s′ ∈ S′ with s 6= s′,
we have that µ separates s and s′. Further µ distinguishes
s if µ distinguishes s in S.

We now define the notion of an adaptive distinguishing
sequence.

Definition 3.6. Given an FSM M with state set S and
subset S′ of S, an adaptive test case µ is an adaptive
distinguishing sequence for S′ if for all s, s′ ∈ S′ with
s 6= s′, we have that µ separates s and s′. Further µ is an
adaptive distinguishing sequence for M , if µ is an adaptive
distinguishing sequence for S.

An ADS decides which input to apply next based on
the outputs it has received. As a result, repeated appli-
cation of the ADS from different states generates input
sequences sharing a common prefix with differing postfixes.
This branching behaviour can be depicted by a tree. The
edges in the tree indicate the flow of execution of the ADS,
progressing from the root to the leaves. Figure 2 gives an
ADS for the FSM M1 in Figure 1.

We now define the composition of two adaptive test
cases.

Definition 3.7. Let µ′ and µ′′ be two adaptive test cases over
a set of states S. We use µ◦ = µ′ ◦ µ′′ to denote the com-
posite adaptive test case such that tr(µ◦) = tr(µ′)tr(µ′′).

The essential idea is that once µ′ has produced a trace
x̄/ȳ on which µ′ terminates, we start µ′′ (and so apply
µ′′(ε)).

We now give a condition under which this composition
is defined for a set S′ of states. Given state set S′, we let
SS′(µ) denote the set of states that might be reached if µ is
applied when M is in a state from S′, i.e., SS′(µ) = {s′ ∈

S|∃s ∈ S′ ∧ x̄/ȳ ∈ out(s, µ).s
x̄/ȳ
−−→ s′}.
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Figure 3: FSM BeeCount from https://automata.cs.ru.nl/
BenchmarkCircuits/Mealy. Note that the initial state is
highlighted with a dashed line.

Corollary 3.1. Let µ′ be a defined adaptive test case for set
of states S′, and also let µ′′ be a defined adaptive test
case for S′′. Then µ′ ◦ µ′′ is a defined adaptive test case
for S′ if SS′(µ) ⊆ S′′.

Proof
The result follows from the fact that SS′(µ) ⊆ S′′ and µ′′

being a defined adaptive test case for S′′. �

4 MOTIVATING EXAMPLE

To motivate the work, in this section, we used a real-
life FSM BeeCount (Figure 3) retrieved from industry
and explore the problem of generating HSIs for this. The
FSM BeeCount is one of the simplest complete observable
and non-deterministic FSM in the repository given in [63].
BeeCount has 155 transitions and input and output sets
X = {x0, . . . , x7} and Y = {y0, . . . , y15}.

We start by illustrating the existing algorithm, which we
call the LPB [62] algorithm, by applying it to the example.
Due to the space limitations we only provide the total
number of the sequences and the total number of inputs
produced by the algorithms.

The LPB algorithm has two phases. In the first phase,
it constructs a characterising set (W-set) for M through a
breadth first search (BFS) on a rooted tree. In the BFS tree,
each node has the set of current states and inputs and
outputs label edges. The tree can have exponentially many
nodes because a separating sequence for a pair of states may
visit every element in the power set of the states set. Thus,
in the worst case the BFS tree has O(2n) nodes [64].

While the algorithm constructs the tree, it records pairs
of states separated and the sequences that separated them.
This collecting pairs-sequences on the fly approach makes the
method expensive4 because it does not take advantage of
potential overlap between these sequences.

After all separating sequences are gathered the algorithm
moves to the second step, in which it processes the W-set
to construct HSIs. The LPB algorithm to generate HSIs is
iterative and at every iteration it constructs HSIs for a single

4. Since, for a given n state FSM, the number of pairs is n∗(n−1)
2

, the

W set may contain at most n∗(n−1)
2

sequences.

state. For state si, the HSI contains sequences that i) are
prefixes of the HSIs computed for s0, s1, . . . si−1 (a prefix
should be able to separate sj from si where j < i) and
ii) for the states si+1, si+2, . . . , sn it gathers prefixes from
the W-set that separate si from sk where k > i. HSIs can be
used to derive test suites following the test suite construction
method (Algorithm 1, on page 17) given in [62].

When given BeeCount, the LPB algorithm produces
the W-set W = {x4x0, x2x0, x0, x6x4x0, x6x2x0}

5. It
then computes the following HSIs: {x4x0, x2x0, x4x4} for
state s0, {x4x0, x2x0} for s1, {x4x0, x2x0, x6x4x0, x0}
for state s2, {x0, x4x0, x6x2x0, x2x0} for s3,
{x2x0, x4x0, x0, x6x4x0, x6x2x0} for s4, {x4x0, x0} for
s5 and finally, {x2x0, x4x0, x0} for the state s6. We use H1

to denote these HSIs. Based on the test suite generation
algorithm and using H1, we obtain test suite T1 having 191
sequences with 905 total number of inputs.

The algorithm we introduce in this paper, however, com-
bines the two phases to generate HSIs. A BFSs for BeeCount
shows that {x0x4x0} is an HSI for states s0, s5 and s6. For s1
we have HSI {x0x2x0}, the HSI for s2 is {x6x4x0, x6x2x0},
for s3 we have {x6x2x0, x0x2x0} and finally the HSI for s4 is
{x6x4x0, x0x4, x0}.Let us call this set of HSIs H2. Based on
H2, the test suite generation algorithm constructs test suite
T2 having 431 inputs with 113 sequences. So in this simple
example, the proposed algorithm can construct a test suite
that is 52% shorter and has 40% fewer sequences.

5 INCOMPLETE ADSS

As previously discussed, many techniques for generating
tests from FSMs utilise input sequences or adaptive test
cases that separate states of the FSM M from which tests are
being generated [32], [41], [44], [51], [52], [53], [54]. Ideally,
one has a single input sequence or adaptive test case that
separates all states of M but there may be no such input
sequence/adaptive test case and so one instead uses a set
of input sequences/adaptive test cases. In this section we
explore the notion of an incomplete ADS: an adaptive test
case that separates some, but not all, pairs of states of M .

We first define what it means for an adaptive test case
µ to be an incomplete ADS for a set S′ of states, with this
requiring that µ separates at least one pair of states from S′.

Definition 5.1. Let M be an FSM with set of states S, also
let S′ ⊆ S be a subset of S. An adaptive test case µ is an
Incomplete Adaptive Distinguishing Sequence (I-ADS) for S′

if there exists s, s′ ∈ S′ such that µ separates s and s′.

Observe that there may be states from S′ in which µ is
not defined. This does not cause problems in testing. While
using I-ADSs, to check that the IUT is in the expected state
s, one would only apply I-ADSs that are defined in s. This
is how current test generation algorithms, for testing from a
partial FSM, operate.

If we want to distinguish all states of an FSM then we
may require more than one I-ADS.

Definition 5.2. A Complete Forest (CF) for a state set S′ of FSM
M is a finite set of I-ADSs F = {µ1, µ2, . . .} such that for
every pair s, s′ of states from S′ such that s 6= s′, there

5. We are assuming that the algorithm processes the set of inputs X
in ascending order of the inputs i.e., x0, x1 and . . ..
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exists an I-ADS µi ∈ F that separates s and s′. Further F
is a complete forest for M if it is a complete forest for S.

Given a complete forest F, we use F(s) to denote the set
of I-ADSs from F that separate s from other states in S. We
also use F(S′) to denote the set ∪s∈S′F(s). Further we let
F(s, s′) denote the set of I-ADSs that separate s and s′.

As previously noted, the use of I-ADSs as opposed to
preset input sequences has the advantage that we no longer
need to restrict attention to FSMs with harmonised traces.
However, we now show that if the FSM does have har-
monised traces then we can use I-ADSs to construct HSIs.
Consider a state s and the set F(s). Since F is a Complete
Forest, by Definition 5.2, for a given state s′ ∈ S \ {s}
there exists a non-empty set of I-ADSs F(s, s′) ⊆ F(s) that
separate s from s′.

In the following we use ω(s, µ) to denote the set of
input portions (input sequences) of traces that occur when
applying µ in state s i.e. ω(s, µ) =

⋃
σ∈out(s,µ) i(σ). We

also let H(s) denote the corresponding input sequences that
separate s from other states, i.e., H(s) =

⋃
µ∈F⋆(s) ω(s, µ).

Proposition 5.1. Let us suppose that M is an FSM with har-
monised traces. If F = {µ1, µ2, . . .} is a Complete Forest
for M then the set H(s), s ∈ S, define Harmonised State
Identifiers for s.

Proof
It is sufficient to prove that for any pair of states s and s′ of
M , with s 6= s′, there exist x̄ ∈ H(s) and x̄′ ∈ H(s′) such
that a prefix of x̄ and x̄′ separates s and s′.

First observe that, since F is a Complete Forest for M ,
there is some µ ∈ F that separates s and s′. Since M
has harmonised traces, we have that all input sequences in
ω(s, µ) are defined in s and all input sequences in ω(s′, µ)
are defined in s’.

Let x̄ be a longest input sequence in ω(s, µ) ∩ ω(s′, µ); it
is sufficient to prove that x̄ separates s and s′. Proof by
contradiction: assume that x̄ does not separate s and s′.
There therefore exists some output sequence ȳ such that
x̄/ȳ ∈ out(s, µ) ∩ out(s′, µ). Since µ separates s and s′,
we must therefore have that µ supplies further input after
x̄/ȳ since otherwise we have that out(s, µ) ∩ out(s′, µ) 6= ∅.
We therefore have that µ(x̄/ȳ) = x for some input x. But
this implies that there exist y and y′ such that x̄x/ȳy ∈
out(s, µ) and x̄x/ȳy′ ∈ out(s′, µ). But this implies that
x̄x ∈ ω(s, µ)∩ω(s′, µ). This contradicts the maximality of x̄
as required. �

We will use this result in the experimental evaluation
since it shows that, as long as we restrict attention to FSMs
with harmonised traces, we can use HSIs generated from
I-ADSs in test generation. That allows us to compare two
different approaches to test generation: a baseline technique
(with HSIs generated in the usual way); and an alternative
(the same test generation technique but with HSIs generated
from I-ADSs returned by the proposed I-ADS generation
algorithm). Importantly, the only difference between these
two techniques is the use of I-ADSs; any difference are
therefore the result of using the proposed I-ADS generation
algorithm. Further reductions in test suite size should result
from using the I-ADSs themselves, as opposed to HSIs
generated from them, to separate states: this will be a topic
of future work.

We are potentially interested in finding a smallest com-
plete forest and so we will explore the complexity of the
following associated decision problem.

Definition 5.3. Given FSM M and set S′ of states of M , the
K-Complete Forest problem is to decide whether M has
a complete forest for S′ that contains at most K I-ADSs.

We will prove that this problem is PSPACE-hard, draw-
ing on a previously proved result regarding deterministic
FSMs [54]. This previous paper provided reductions from
the Finite Automata Intersection Problem, which was intro-
duced by Dexter Kozen and is PSPACE-Complete [65]. Be-
fore defining the FA-INT problem, we define finite automata
and provide some associated notation.

Definition 5.4. A Finite Automaton (FA) is defined by a tuple
A = (Q,Σ, δ, 0, F ) where Q is the finite set of states, Σ
is the finite alphabet, δ is the transition function of type
Q× Σ → Q, 0 is the initial state and F ⊆ Q is the set of
accepting states.

A word w ∈ Σ∗ is accepted by A, if and only if it takes
A from 0 to some state in F . We use L(A) to denote the set
of words accepted A.

Definition 5.5 (Finite Automata Intersection Problem (FA-
INT)). Let A = {A1, A2, . . . , Az} be z finite automata
with a common alphabet Σ. The FA-INT problem is to
determine whether the Ai accept a common element of
Σ⋆, i.e. whether there is a word w such that w ∈ L(Ai)
for all 1 ≤ i ≤ z.

The proof from the previous work [54] took an in-
stance of the FA-INT problem A = {A1, A2, . . . , Az} and
constructed a deterministic FSM M(A) to be used in the
proof. We start by including the definition of M(A) for
completeness.

We assume that we are given a set A = {A1, A2, . . . , Az}
of (minimal) finite automata with alphabet Σ and define
M(A) in terms of these. We mark the initial states of the
finite automata so that the initial state of Ai is called 0i,
let S̄ = {01, 02, . . . , 0z, Sink} for a state Sink described
below, and set 01 to be the initial state. We introduce a set
D = {d1, d2, . . . , dz} of new inputs and so there exists one
such input di for each Ai ∈ A. The transitions of the finite
automata from A with input alphabet Σ are inherited (and
given output 0). We now define the remaining transitions.

• For all x, h(Sink, x) = {(0, Sink)}.
• If s ∈ Fi and x = di then h(s, x) = {(1, s)}.
• If s ∈ Fi and x = dj , i 6= j, then h(s, x) = {(0, s)}.
• Otherwise, h(s, x) = {(0, Sink)}.

The following result holds [54].

Lemma 5.1. Let us suppose that set A = {A1, A2, . . . , Az}
of finite automata have a common alphabet Σ. The FSM
M(A) has an incomplete ADS that pairwise separates
the states of S̄ = {01, 02, . . . , 0z, Sink} if and only if
there is a word w ∈ Σ⋆ that is accepted by all of the
finite automata.

This can be used to prove that the K-Complete Forest
problem is PSPACE-hard.

Theorem 5.1. The K-Complete Forest problem is PSPACE-
hard.
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Proof
Given an instance A = {A1, A2, . . . , Az} of the FA-INT
problem, we can construct the FSM M(A). Now consider
the case S′ = {01, 02, . . . , 0z, Sink} and K = 1. There is a
solution to this instance of the K-Complete Forest problem
if, and only if, there is an incomplete ADS that separates
the states of S′. But, by Lemma 5.1 we know that deciding
whether S′ has such an incomplete ADS is equivalent to
deciding whether there is a solution to the instance of the
FA-INT problem given by A. The result now follows from
the FA-INT problem being PSPACE-hard. �

As a result, one cannot expect to have a scalable algo-
rithm that returns minimal K-Complete Forests. Motivated
by this, we introduce a heuristic that aims to produce a
relatively small Complete Forest.

6 INVERTIBLE SEQUENCES

The notion of an invertible sequence was originally defined
in the context of testing from a DFSM. This section gener-
alises invertible sequences to non-deterministic FSMs.

An input sequence x̄ is an invertible sequence for state
s′ of a DFSM if there is an output sequence ȳ such that

there exists a unique state s with s
x̄/ȳ
−−→ s′. Here, uniqueness

means that there is no state s′′ 6= s that is the starting
state of a walk that has label x̄/ȳ and ending state s′.
The important consequence is that if we apply x̄ in state
s and follow this by an input sequence x̄′ that identifies s′

(separates s′ from all other states of the DFSM) then the
output observed cannot have been observed in response to
x̄x̄′ in any other state s′′ 6= s. As a result, x̄x̄′ identifies
state s. The benefit is that, if one has found input sequences
that identify some states of a DFSM, and there are known
invertible sequences, then one might be able to use these to
devise input sequences that identify additional states of the
DFSM [58], [59], [60], [61], [66].

In this section, we generalise invertibility to non-
deterministic FSMs and so we use adaptive test cases rather
than fixed input sequences. We will introduce new notation
to help formalise concerns related to invertible sequences.

Note that the definition regarding when an input se-
quence x̄ is invertible has two elements: there was a walk
from s to s′ with label x̄/ȳ and s was the only such state (the
only state that started a walk with label x̄/ȳ and ending
state s′). We use similar conditions in defining invertible
sequences for FSMs.

Definition 6.1. Let M be an FSM with set of states S. An
adaptive test case µ is an invertible sequence that takes set
S′′ ⊆ S of states to S′ ⊆ S if the following hold.

1) µ is defined in S′′;
2) SS′′(µ) ⊆ S′; and
3) For all s, s′ ∈ S′′ with s 6= s′, if σ ∈ out(s, µ)∩out(s′, µ)

then S{s}(σ) ∩ S{s′}(σ) = ∅.

The first condition requires that we can apply µ in S′′,
while the second ensures that the state after µ is in S′. The
third condition ensures that if we know which state in S′

was reached by µ, and we also know that M was in some
state from S′′ before µ was applied, then this information,
along with the trace that was observed in response to µ, is

Algorithm 2: Pseudo code for Incomplete ADS
generation algorithm.

Input: FSM M , upper bound ℓ where ℓ ≥ 0.
Output: A complete set (F) for M or an empty set.
begin

1 F← ∅, D ← ∅, U ← S × S.
2 while an adaptive test case µ with height ℓ can be retrieved do
3 Retrieve µ, initialise Tµ with a root node χ0, Uµ ← ∅.
4 foreach current input x in µ do
5 Retrieve node χ from Tµ and apply x if x is defined for

C(χ) and |I(χ)| > 1 and generate fresh nodes
according to the outputs.

6 Add fresh nodes to Tµ.

7 foreach leaf (χ) of Tµ do
8 if the number of states of the leaf is equal to the number of

states of the root node then
9 Goto Line 2.

10 if I(χ) = {s} and each leaf χ′ with s ∈ I(χ′) has
|I(χ′)| = 1 (i.e. s is distinguished) then

11 µs ← (ε/ε, ε), D ← D ∪ {s},
U ← U \ (S × {s} ∪ {s} × S).

12 foreach Such χ′ do
13 µs ← µs ∪ {(σ(χ

′), ε)}.
14 µs ← µs ∪ {(σ, x)|∃y.(σ.x/y ∈

pref(σ(χ′)))}.

15 F← F ∪ {µs}
16 foreach si ∈ S \D such that there exists invertible

sequence x/y for si such that si
x/y
−−−→ s do

17 Construct adaptive test case i.e.,
µsi
← (ε/ε, x), µsi

← (x/y, ε), and
F← F ∪ {µsi

◦ µs}, D ← D ∪ {si},
U ← U \ (S × {si} ∪ {si} × S).

18 else
19 Uµ ← Uµ ∪ (I(χ) \D)× (I(χ) \D).

20 foreach Pairs (si, sj) ∈ U \ Uµ. do
21 foreach leaf χ′ of Tµ such that s⋆ ∈ I(χ′) where

s⋆ ∈ {si, sj} do
22 µ⋆

s ← (ε/ε, ε), µs⋆ ← µs⋆ ∪ (σ(χ′), ε).
23 µ⋆

s ← µ⋆
s ∪ {(σ, x)|∃y.(σ.x/y ∈ pref(σ(χ′)))}).

24 F← F ∪ {µs⋆}, remove (si, sj) from U .
25 foreach (s, s′) such that (s, s′) 6= (si, sj), (s, s′) ∈ U

and there exists an invertible sequence x/y such that

(s, s′)
x/y
−−−→ (si, sj) do

26 Initialise µs (µs ← (ε/ε, ε)) and construct µs for
s, s′ i.e., µs ← (x/y, ε), and µs ← µs ◦ µs⋆ .

27 F← F ∪ {µs}, and remove (s, s′) from U .

28 if for every pair of states there exist a µ in F then
29 Return F.

30 Return ∅.

sufficient to identify the state s that M was in before µ was
applied.

The following shows how invertible sequences can be
used in constructing adaptive test cases to distinguish states
of an FSM.

Lemma 6.1. Let F(S′) = {µ0, µ1, . . . , µl} be a complete
forest for S′ ⊆ S. If µ is an invertible sequence that
takes states of set S′′ to states of set S′, then F =
{µ ◦ µ0, µ ◦ µ1, . . . , µ ◦ µl} is a complete forest for S′′.

Proof
This result is an immediate consequence of Corollary 6.1.
and F(S′) = {µ0, µ1, . . . , µl} being a complete forest for
S′ ⊆ S. �

7 THE I-ADS ALGORITHM

In this section we describe the I-ADS algorithm and provide
pseudocode (Algorithm 2).
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Before going into the details of the algorithm, we intro-
duce the data structures used. The algorithm uses a set F

that stores the adaptive test cases that have been found to
separate pairs of states. When the algorithm terminates with
success, F is returned. Moreover, while searching, it uses a
generic adaptive test case µ to construct a generic tree Tµ.
Every node χ of Tµ holds an initial state set I(χ) ⊆ S, a cur-
rent state set C(χ) ⊆ S, a possibly empty input symbol as a
label (i(χ)), and an input output sequence σ(χ) ∈ (X/Y )⋆.
The root node of Tµ is χ0. An edge between two nodes is
labelled by an output symbol. The algorithm also uses three
sets D, U , and Uµ. D keeps the set of distinguished states
throughout the execution (those separated from all other
states) and D is initially empty. The set U keeps the set of
unseparated pairs and initially is set with all pairs of states.
Set Uµ is used as a temporary storage that keeps the set of
pairs that the current adaptive test case µ cannot separate.
Table 2 gives a list of symbols (nomenclature) in the order
present in Algorithm 2.

In summary, the I-ADS algorithm is an iterative random
algorithm. After initialising its data structures the algorithm
enters a loop and in each iteration of the loop the algorithm
performs the following steps.

Symbol Definitions

F Forest.
D, ℓ Set of distinguished states, upper

bound on length of sequences.
U,Uµ Set of unseparated pairs, temporary storage

to keep pairs that µ cannot separate.
µ, Tµ An adaptive test case, adaptive test case tree.
χ Node of an adaptive test case tree.
µs Adaptive test case that separates s from S \ s.
I(χ), C(χ) The initial and the current set of node χ.

Table 2: List of symbols used in Algorithm 2.

1) It randomly generates a new adaptive test case µ with
depth ℓ, for some predetermined ℓ. The adaptive test
case is used to construct a tree (Tµ) (line 3 of Algo-
rithm 2).

2) It constructs Tµ using µ (Lines 4-6 of Algorithm 2).
3) It determines which states of M are distinguished from

all other states (Lines 10-14 of Algorithm 2).
4) Where possible, it uses invertible sequences to derive

additional adaptive test cases that distinguish states
(Lines 16-17 of Algorithm 2).

5) It determines the set of pairs that µ cannot separate by
selecting the pairs from set I(χ) \ D (Lines 18-19 of
Algorithm 2).

6) It gathers pairs that µ can separate from set U \ Uµ and
constructs adaptive test cases for them (Lines 20-24 of
Algorithm 2).

7) It uses invertible sequences to derive additional adap-
tive test cases that separate states (Lines 25-27 of Algo-
rithm 2).

8) It terminates with success if a complete forest has been
generated (Lines 28-29 of Algorithm 2). If a complete
forest has not been found, and all adaptive test cases of
depth ℓ have been tried, then it terminates with failure
(line 30 of Algorithm 2). Otherwise, if not all adaptive
test cases of depth ℓ have been tried and a complete
forest has not been constructed, then it starts another

x1 x2 x0 x3 x0 x1 x0 x2 x5 x3 x3 x4 x0 x0 x1 x7 x0

(a) The heap represents µ.
x1

x0x7x1x0x0x4x3x3x5x2x0x1x0x3x0x2

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

(b) All the possible traces that can be generated by µ.

Figure 5: The µ constructed using the integer value
2828015502361208 for FSM given in Figure 3, where ℓ = 1
and all possible traces of µ.

iteration.

We now describe these steps in details. After receiving
FSM M , and a depth value ℓ where ℓ ≥ 0, it creates F with
n(n−1)

2 elements where each element corresponds to a pair
of states (si, sj) where i < j and holds an (initially) empty
set of adaptive test cases. Then, the algorithm initiates U

with
n(n−1)

2 elements where each element corresponds to a
pair of states (si, sj) where i < j, and contains a node χ0.
The algorithm sets I(χ0) = C(χ0) = S, σ(χ0) = ε/ε, and
i(χ) = ε for the node χ0.

x0

...x2x2x2

y5
y6

y9
...

Figure 4: Representation of an
adaptive test case µ for the
FSM given in 3 and ℓ = 1.

After initialisation, the
algorithm enters a while
loop (line 2 of Algo-
rithm 2). The first step in
the loop is to assign the
empty set to Uµ and try
to (randomly) construct a
new adaptive test case µ,

with depth ℓ, that has not previously been generated. By
the definition of an adaptive test case, the function µ can
be defined in terms of pairs of the form (σ, x) in which σ
is a trace and x is an input (or ε). Figure 4 shows such an
adaptive test case generated for the FSM given in Figure 3.
In order to construct µ, the algorithm randomly selects an
integer between [0, |X|η), where η is the size6 of µ and adds
this number to a set if it is not a member of this set and then
it represents this integer as a heap using |X|-base notation
using η digits. For example, assume we are given ℓ = 1
for the FSM given in Figure 3 and also assume that the
algorithm randomly selects 0 ≤ 2828015502361208 < 817

(note the range is [0, 817) as η = 17). Since the FSM has eight
inputs i.e. X = {x0, . . . x7}, the algorithm first represents
the integer 2828015502361208 in base 8 using η = 17 digits.
To achieve this it is enough to recursively divide the division
by the base and get the digits from the remainders. After the
process the |X|-base representation of the integer is: 120301
02533400170. Since each element of µ should correspond to

6. Note that for a given FSM with |Y | outputs, an adaptive test case
of depth ℓ can generate at most η = (|Y |ℓ+1 − 1)/(|Y | − 1) inputs
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an input from set X , the algorithm substitutes the values of
digits of the computed notation with symbols from set X .
In this example the algorithm substitutes 0’s with x0, and
1’s with x1 etc. and constructs µ given in Figure 5a.

The algorithm then builds Tµ by processing all the possi-
ble traces (Figure 5b) that can be retrieved from the adaptive
test case µ in a top-down manner as follows. To construct
Tµ, the algorithm enters a loop that iterates |η| times. At
each iteration, for a given node χ the algorithm retrieves
an input (x) from µ by considering the trace associated
to node χ. Note that the constructed µ is complete, that
is it can return an input from set X ∪ {ε} for every trace
of length ℓ (Figure 5b). Once µ returns an input x, the
algorithm checks the number of elements of I(χ). If the
algorithm reaches node χ having a singleton initial set, the
algorithm will not continue to process this node and marks
it as a leaf, erases input x, and moves to another node.
Otherwise, it checks whether the input x suggested by µ
is not defined for a particular state in C(χ). For such cases,
the algorithm will not continue to process χ and marks it as
a leaf, erases input x, and moves to another node. This step
ensures that µ is defined in all states of I(χ0). Otherwise the
algorithm applies the input x in set C(χ) and sets i(χ) = x.
Then, for each output y observed from states in C(χ), the
algorithm creates a new node χy and initialises it. That is,
it sets i(χy) = ε, σ(χy) = σ(χ)x/y, C(χy) = SC(χ), and
I(χy) = {s|σ(χy) ∈ LM (s)}.

Finally, the algorithm adds new nodes to Tµ and con-
tinues until all inputs in µ are visited (Lines 4-6 of Algo-
rithm 2).

We demonstrate this in Figure 67. In this example, we
have the adaptive test case µ given in Figure 5. The algo-
rithm first creates node (χ0) of Tµ (Figure 6a). This is then
followed by selecting the first input x1 from µ as µ(ε) = x1

and applying it to the current set. Depending on the outputs,
the algorithm can create at most sixteen new nodes as the
FSM in Figure 3 has sixteen outputs, i.e., |Y | = 16. Once
we apply input x1 to χ0, we do not observe output y0 as
no transition having label x1/y0 exists in BeeCount and we
cancel the creation of the second node (χ1) on Tµ (Figure 6b,
and 6c). In addition, we also do not observe y1 as an output
and the algorithm does not introduce node (χ2) as given in
Figures 6c and 6d. Since the FSM BeeCount returns y10 for
input x1 except the eleventh node (χ11), the algorithm does
not create a node (Figures 6e, 6f). In the remaining steps the
algorithm continues applying inputs to non-leaf nodes and
returns the constructed tree (Figure 6g).

Clearly, the root (χ0) has S as the sets of initial and
current states. Note that in deriving the initial and current
sets of a node χ from those of its parents, we potentially
remove edges and nodes so that the adaptive test case
satisfies the following property.

Definition 7.1. Given an FSM M with state set S, an adaptive
test case µ is said to be an adaptive test case for S′, S′ ⊆ S,
if the following properties hold.

1) µ is defined in all states in S′; and

2) Given a trace σ, if σ ∈ tr(µ) then there is some state
s ∈ S′ such that σ ∈ LM (s).

7. We do not provide all details of nodes to reduce visual complexity.

x1 x2 x0 x3 x0 x1 x0 x2 x5 x3 x3 x4 . . .

I(χ0) =
{s1, . . . , s6}
σ(χ0) = ε/ε,
i(χ0) = ε

(a) Creating node (χ0) of Tµ.

x1 x2 x0 x3 x0 x1 x0 x2 x5 x3 x3 x4 . . .

x1

I(χ1) = ∅
σ(χ1) = x1/y0
i(χ1) = ε

y0

(b) Creating node (χ1) of Tµ

associated with output y0.
x1 x2 x0 x3 x0 x1 x0 x2 x5 x3 x3 x4 . . .

x1

ε

y0

I(χ2) = ∅
σ(χ2) = x1/y1
i(χ2) = ε

y1

(c) Second node is a leaf and
creation of the third node (χ2)
of Tµ associated with output
y1.

x1 x2 x0 x3 x0 x1 x0 x2 x5 x3 x3 x4 . . .

x1

ε

y0

ε

y1

(d) Third node becomes a leaf,
and output y2 has not been ob-
served.

x1 x2 x0 x3 x0 x1 x0 x2 x5 x3 x3 x4 . . .

x1

. . .

y0, y1, y2, . . . y9
I(χ11) =

{s1, s2, . . . , s7}
σ(χ11) = x1/y1
i(χ11) = ε

y10

(e) Creation of eleventh node at
output y10.

x1 x2 x0 x3 x0 x1 x0 x2 x5 x3 x3 x4 . . .

x1

ε

y0, y1, . . . , y9

x3

y10

I(χ12) = ∅
σ(χ12) = x1/y11

i(χ12) = ε

y11

(f) Third node becomes a leaf,
and output y2 has not been ob-
served.
x1

εεεεεx3εεεεεεεεεε

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

(g) The resultant Tµ using µ (Figure 5b) on FSM BeeCount
given in Figure 3.

Figure 6: The construction of Tµ using µ. C vectors are not
drawn to reduce visual complexity.

The first condition is required to avoid applying inputs
where they are not defined. The second condition avoids a
type of redundancy: if the condition does not hold then there
are nodes of the tree that cannot be reached if the associated
adaptive test cases is applied in a state from S′.

Having derived a tree Tµ for an adaptive test case µ
for M (Lines 4-6 of Algorithm 2), the next step involves
constructing an adaptive test case by gathering traces of µ
which distinguish states of M (from all other states) (Lines
10-14 of Algorithm 2) and gathering traces of µ that separate
pairs of M (Lines 18-24 of Algorithm 2). Recall that an
adaptive test case µ′ is a function from traces to inputs and
that the function is applied repeatedly until one obtains a
trace σ such that µ′(σ) = null. Thus, if σ is a trace gathered
and σ′.x/y is a prefix of σ then we require that µ′(σ′) = x;
the adaptive test case applies input x after σ′.

We can provide a condition under which two states are
separated.

Proposition 7.1. Let us suppose that µ is an adaptive test
case for M and states s and s′ are in the set of initial
states of Tµ. Then µ separates s and s′ if and only if there
does not exist a leaf χ of Tµ such that {s, s′} ⊆ I(χ).
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Proof
We first consider the left-to-right case and so assume that
µ separates s from s′; we are required to prove that there
does not exist a leaf node χ of Tµ such that {s, s′} ⊆ I(χ).
Proof by contradiction: assume that there exists a leaf node
χ of Tµ such that {s, s′} ⊆ Iχ. Let σ denote the trace that
labels the path from the root of µ to χ. Then we have that
σ ∈ out(s, µ) and also σ ∈ out(s′, µ). But this means that
µ does not separate s and s′, providing a contradiction as
required.

Now consider the right-to-left case and assume that there
does not exist a leaf χ of Tµ such that {s, s′} ⊆ I(χ). Proof
by contradiction: assume that µ does not separate s and s′

and so there is some σ ∈ out(s, µ) ∩ out(s′, µ). But this
means that s, s′ ∈ I(χ) for the node χ of µ reached by σ.
This provides a contradiction as required. �

We can also give a condition that allows one to determine
whether a state s is separated from all other states by µ′ (is
distinguished by µ′).

Proposition 7.2. Let us suppose that µ is an adaptive test
case for M . Then µ separates s from all other states if
and only if for every leaf node χ of Tµ, if s ∈ I(χ) then
|Iχ| = 1.

Proof
This follows immediately from Proposition 7.1. �

The above conditions are used to determine whether µ′

separates any state s from all other states and also which
pairs of states are separated by µ′.

Adaptive test case µ′ is produced by processing the leaf
nodes of Tµ. For a leaf node χ, we have three cases.

1) C(χ) = C(χ0). Where this is the case, no pair of states
has been separated by µ and hence the algorithm stops
processing µ, clears all the data structures and demands
a new µ to process (Lines 8-9 of Algorithm 2).

2) |I(χ)| = 1 and I = {s} for some state s. The algorithm
checks whether s is contained in a non-singleton initial
set of any other leaf node. If not, then state s is distin-
guished from all the states in set S \ {s} and so s is
added to set D and all pairs containing s are removed
from set U . In this case, the algorithm selects all the leaf
nodes having s and construct their adaptive test cases
using the corresponding set of σ(χ)’s (Lines 10-14 of
Algorithm 2).

3) |I(χ)| > 1 then the algorithm adds the set of pairs
from set {I(χ) \ D} × {I(χ) \ D} to Uµ (Lines 18-19
of Algorithm 2). By Definition 5.1, the pairs in the set
Uµ are not separated by µ. Since the algorithm takes the
union over all such leaves, Uµ becomes the set of pairs
of states that are not separated by µ.

After processing all the leaf nodes of Tµ, the algorithm
selects pairs (s, s′) ∈ U \ Uµ. By Proposition 7.1 all pairs
satisfying the above property are separated. For such pairs,
the algorithm, selects all the leaf nodes having s (or s′) and
constructs their adaptive test cases using the corresponding
σ(χ). Figure 7 illustrates this process.

While constructing adaptive test cases, the algorithm
uses invertible sequences to construct additional adaptive
test cases when it finds one. In such cases, the known in-
vertible sequences are considered, to see whether additional

F(s1) : x2/y5x0/y6
F(s2) : x2/y5x0/y5
F(s3) : x2/y5x0/y5

(a) Adaptive test
cases. Note that
(s2, s3) is not sep-
arated yet.

F(s1) : x2/y5x0/y6
F(s2) : x2/y5x0/y5 , x6/{y0, . . . , y15}x2/y5x0/y5
F(s3) : x2/y5x0/y5 , x6/y5x2/y5x0/y6

(b) Adaptive test case for
s2 and s3 are updated af-
ter invertible sequence x6

is found.

Figure 8: Separating pairs (s2, s3) of FSM given in Figure 3
using invertible sequences.

pairs of states may be separated or additional states sepa-
rated from all other states, with this potentially leading to
additional adaptive test cases. In order to achieve this, when
the algorithm finds µ′ that separates a pair or distinguishes
a state it searches for corresponding invertible sequences of
length one that lead to additional states being distinguished
or pairs of states being separated. If such an invertible
sequence can be found, the algorithm stores the resultant
adaptive test case(s) and repeats this process until no more
states can be distinguished (Lines 16-17 of Algorithm 2) and
no more pairs of states can be separated (Lines 25-27 of
Algorithm 2). This process is illustrated in Figure 8.

I : {s1, s2, s3}
C : {s1, s2, s3}
i(χ0) = x2

I : {s1, s2, s3}
C : {s5, s4, s2}
i(χ1) = x0

I : {s1}
C : {s2}
i(χ2) = ε

I : {s2, s3}
C : {s2, s2}
i(χ3) = ε

Figure 7: Adaptive test
case (µ′(ε/ε) = x2x0) that
separates s1 of FSM given in
Figure 3 from (s2, s3). U =
{(s1, s2), (s1, s3), (s2, s3)}
Uµ = {(s2, s3)}. So pairs
(s1, s2), . . . , (s1, s2) are
separated by µ.

Finally, if every state of
S is either distinguished
or is separated from all
other states then the
algorithm has generated
a complete forest F and
returns it (Lines 28-29 of
Algorithm 2). Otherwise,
if not all adaptive test
cases of depth ℓ have
been processed then the
algorithm repeats the
above steps. Finally, if
all adaptive test cases
of depth ℓ have been
processed then the
algorithm terminates
with failure (Line 30 of
Algorithm 2).

Since the I-ADS algorithm may process all adaptive test
cases of depth ℓ, it is exhaustive. Therefore, it is guaranteed
to return a complete forest if there is such a forest.

Theorem 7.1. Let us assume that the I-ADS algorithm re-
ceives M and ℓ as its inputs. M has a complete forest, in
which the adaptive test cases all have depth at most ℓ, if
and only if the algorithm returns such a complete forest.

There is one final comment regarding the process of
generating adaptive test cases. As explained, the algorithm
randomly selects an integer at the beginning of each it-
eration. This integer is then checked and another value
randomly generated if it has already been used. The results
of experiments suggest that this process is effective and
efficient. However, there could be cases in which many
randomly selected integers are rejected, since they have
already been used. One possible future enhancement to
the algorithm is to abandon random generation if such
a situation is identified. For example, one might include
a bound k and assume that this situation has occurred
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(random generation is inefficient) if k successive randomly
chosen integers have been rejected; the algorithm could
then move to a process of systematically choosing integers
not already used. In principle, it should not be difficult to
incorporate such a heuristic but we see this as future work
and initial experimental results, without this, are promis-
ing. C++ implementation for the algorithm is given here
https://bit.ly/3FH9UlB.

8 EXPERIMENTAL EVALUATION

8.1 Research goals

The motivation behind the controlled experiments is sum-
marised by the following research questions (RQs)

RQ-1: Does the proposed algorithm reduce the size (num-
ber of elements) of test suites?

RQ-2: Does the proposed algorithm reduce the total num-
ber of inputs contained in test suites?

RQ-3: Does the proposed algorithm reduce the time re-
quired to compute test suites?

RQ-4: What percentage of state identifiers are calculated
due to the use of invertible sequences?

RQ-5: How do the existing and the proposed algorithms
behave when

1) The state identifiers are known to be long?
2) The FSM specifications are drawn from real ap-

plications?

Answers to these questions will allow us to judge (i)
whether the proposed algorithm provides cheaper state
identifiers (ii) whether the proposed algorithm is faster
and (iii) whether invertible sequences are useful for non-
deterministic FSMs. In order to study these RQs we investi-
gated various kinds of FSMs including randomly generated
FSMs and FSM specifications of real systems/software.

In order to compare test suites, we needed to use the I-
ADSs generated by the proposed technique in a test genera-
tion algorithm and compare the resultant test suites with test
suites generated through some other means. Since we were
interested in the effectiveness of I-ADSs, we used the same
test generation technique [62] throughout, only varying
how state identifiers were produced. The test generation
technique chosen uses HSIs for state identification. Thus,
the following test generation approaches, compared in the
experiments, varied only in how they produced HSIs.

1) As a baseline, we generated test suites using the above
technique and HSIs produced by the Harmonised State
Identifiers Generation Algorithm given in Appendix 2
of [62]. We refer to this as LPB.

2) We also generated I-ADSs using the proposed al-
gorithm (but not taking advantage of invertible se-
quences) and constructed HSIs from the I-ADSs (see
Proposition 5.1), using the HSIs in test generation. We
refer to this as (THBE).

3) We generated I-ADSs using the proposed algorithm,
this time taking advantage of invertible sequences,
again constructing HSIs from the I-ADSs. We refer to
this as (THBE-IS).

The three overall approaches evaluated thus used the
same (complete) test suite generation algorithm but differed
in how they generated the HSIs used in test generation.

Each time we generated a test suite, we recorded the
number of sequences in the test suite, the total number of
inputs, and the amount of time required to construct the test
suite. We used a computer with an Intel I7 CPU with 32GB
of RAM and Microsoft Windows 11. We implemented the
above mentioned algorithms in C++ using Microsoft Visual
Studio version 2019. We used the R tool to produce graphics
and to conduct statistical analyses [67]. The source code, the
FSM specifications, and the R code are publicly available in
a repository https://bit.ly/3FH9UlB.

8.2 Test subjects

8.2.1 Randomly generated FSMs

FSMs were randomly generated with combinations of the
following sets of attributes: n ∈ {40, 50, 60, 70, . . . 150},
(r, v) ∈ {(4, 4), (5, 5), (6, 6)}, and 10% of non-determinism
and partiality8 with l = 7. For each n, (r, v) combination,
we generated 100 FSMs, so we derived 3600 random FSMs
in total.

An FSM M was generated through the following steps:

1) (Constructing deterministic complete FSM) For each
state, introduce |X| transitions, with different inputs,
that end at randomly chosen states and have randomly
chosen outputs.

2) (Transforming FSM into non-deterministic and observ-
able FSM) Add new, randomly generated, transitions,
to increase the number of transitions by ten percent.
This involves adding ϕ = 0.1nr transitions, since the
deterministic FSM had nr transitions. The additional
transitions were generated by randomly generating ϕ
tuples of the form of (state1,input,output,state2) such
that if two transitions have a common input x and
starting state s then they have different outputs (non-
deterministic transitions).

3) (Transforming FSM into partially specified FSM) We
randomly select ten percent of the transitions and re-
move them.

4) (Checking that the FSM has Harmonised traces) We
used the approach described in Section 2 (Algorithm
1) in order to check that an FSM has harmonised traces,
discarding it if it did not.

5) (Checking if FSM has I-ADSs) We checked that each
pair of states can be separated by a sequence of length
at most l.

6) If M has a set of separating sequences then add M to
the set of FSMs.

8.2.2 Benchmark FSMs

We used two classes of benchmark FSMs. In the first class,
we used FSMs such that the shortest state identifier is
relatively long. For this we consider Cérny machines [68]. A
Cérny machine has two inputs (X = {x0, x1}). For a Cérny
machine M , with n states, input x1 takes the automaton
from state si to si+1 if i 6= n. If i = n, then x1 causes
the automaton to move to the initial state. The application
of input x0 does not change the current state if the current

8. To limit the time required to conduct the experiments, we set 150
as the maximum value for the number of states of the FSMs used in the
experiments.
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(a) Results on randomly generated FSMs
with 4 inputs and 4 outputs.
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(b) Results on randomly generated FSMs
with 5 inputs and 5 outputs.
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(c) Results on randomly generated FSMs
with 6 inputs and 6 outputs.

Figure 9: In every figure, x axis increases with the number of states and y axis increases with the total number of inputs.
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Figure 10: Cohen’s d metric analysis performed on the total
number of inputs of test suites.

state of M is not the last state (sn), otherwise, the application
of x0 again causes the machine to transition to the initial
state. Cérny machines do not possess outputs. We therefore
introduced a set of outputs Y = {y0, y1} and we let machine
M produce y1 when input x1 is applied in state sn. The rest
of the transitions produce output y0.

s1 s2

sn−1sn

x0/y0

x1/y0

x0/y0

x
1 /

y
0

x0/y0

x1/y0

x
0
/y

0
,x

1
/y

1

Figure 11: The structure of a
Cérny FSM. Note that states
s1 and s2 can only be sepa-
rated with an input sequence
of length (n− 1).

The structure of a
Cérny FSM is given in
Figure 11. Note that Cérny
machines are complete
and have harmonised
traces. In addition, if we
consider the pair (s1, s2) of
states of a Cérny machine,
then the shortest state
identifier has n − 1 inputs
and is x1x1 . . . x1. For
our experiments we used
FSMs with n = 4 to
n = 387 states, and so
we generated 384 Cérny
machines.

In the second class, we
used FSMs from the ACM/SIGDA benchmarks, a set of test
suites (FSMs) used in workshops between 1989 and 1993
https://bit.ly/3iIvbhe. We selected FSMs whose transitions
have at most 2 don’t care (“−”) symbols in their outputs.
For each don’t care symbol, we introduced strings in which
the don’t care symbols are replaced by 0 or 1. For example,
−−01010 would have led to 0101010, 1101010, 0001010 and
1001010. We could only use two specifications named train4
and lion which are complete and having harmonised traces.
The rest of the specifications were either deterministic or
were not minimal. FSM lion has 4 states and 17 transitions
and FSM train4 has 4 states and 16 transitions.

8.3 Results

8.3.1 Report for RQ-1

The result of experiments evaluating RQ-1 on randomly
generated FSMs is summarised in Figure 12. Generally (Fig-
ures 12a 12b, and 12c), we observe that THBE-IS generated

test suites with fewer sequences (maximum reduction of
75%) than LPB. We also observe that as the number of states,
inputs and outputs increase, the reductions increase. This is
as expected and is because the THBE-IS algorithm relies on
invertible sequences, which can introduce state identifiers
that can distinguish more pairs of states from the computed
ones. However, in the LPB algorithm, an input sequence is
generated for each pair of states (reducing the set of input
sequences where possible), which may lead to a relatively
large number of sequences. Moreover, we also observe that
the rate of increase in the size of test suites grows relatively
slowly when computed using the THBE-IS algorithm. On
the other hand, we observe that when (r, v) 6= (6, 6) the
THBE algorithm performs better than LPB when n > 90.
However, we observe that THBE and LPB have similar
behaviours when (r, v) = (6, 6).

Number of Elements Number of Inputs Time

Inputs Algorithm LPB THBE LPB THBE LPB THBE

4
THBE 0.0034 - 0.0058 - ≤ 2−16 -
THBE-IS ≤ 2−16 ≤ 2−16 ≤ 2−16 ≤ 2−16 ≤ 2−16 ≤ 2−16

5
THBE 0.0041 - 0.0052 - ≤ 2−16 -
THBE-IS ≤ 2−16 ≤ 2−16 ≤ 2−16 ≤ 2−16 ≤ 2−16 ≤ 2−16

6
THBE 0.12 - 0.18 - ≤ 2−16 -
THBE-IS ≤ 2−16 ≤ 2−16 ≤ 2−16 ≤ 2−16 ≤ 2−16 ≤ 2−16

Table 3: Pairwise Wilcoxon analysis results (p-values) per-
formed on the experiment results.

Table 3 gives the results of Wilcoxon non-parametric
tests [69]. Here, the null hypothesis was that the distributions
are the same; this is accepted if the p-value is greater than
0.05. This test has three assumptions about the populations
(i) two samples are independent of one another, (ii) the two
populations have equal variance/spread, and (iii) the popu-
lations do not possess a known distribution, and therefore it
is non-parametric. The results given in Table 3 are conclusive
and confirm that the LPB and THBE generate comparable
test suites when (r, v) = (6, 6). However THBE performs
better when (r, v) 6= (6, 6). The results also suggest that the
test suites generated by LPB and THBE-IS are different.

In Figure 13, we provide the results of Cohen’s d metric
analysis performed on the size of the test suites. Cohen’s
d analysis is a standard way to compare the means of two
populations and is defined as the difference between two
means divided by the the pooled standard deviation [70]. So
the difference is linearly correlated with the d value: the
higher the d value, the higher difference between means.

The results (Figure 13) suggest that the effect size be-
tween test suites derived by using the LPB and THBE-
IS algorithms increases with the number of inputs. For
example, the effect size for LPB-THBE is small when n < 90
but is negligible when (r, v) = (6, 6). Moreover, the effect
size between LPB and THBE fluctuated, but it increased
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(a) Results on randomly generated FSMs
with 4 inputs and 4 outputs.
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(b) Results on randomly generated FSMs
with 5 inputs and 5 outputs.
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(c) Results on randomly generated FSMs
with 6 inputs and 6 outputs.

Figure 12: In every figure, x axis increases with the number of states and y axis increases with the number of sequences.
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Figure 13: Cohen’s d metric analysis performed on the total
number of elements of the test suites.

when n ≥ 90; we do not follow a pattern that changes with
respect to the number of states and inputs.

8.3.2 Report for RQ-2

The experimental results regarding RQ-2 for randomly gen-
erated FSMs are given in Figure 9. In all cases, the THBE-IS
algorithm generates test suites with fewer inputs (reduction
is 39% on average, the maximum is 54%, and the minimum
is 36%). These results are similar to those obtained for RQ-1.
Furthermore, the THBE algorithm produces comparable test
suites with LPB when n < 90 or (r, v) = (6, 6).

In Table 3, we provided the results of Wilcoxon non-
parametric tests performed using R [67]. Except for LPB-
THBE when (r, v) = (6, 6), the analysis rejects the null
hypothesis for each pairwise comparison. Cohen’s d metric
analysis also supports this. The results again confirm that
the means of the total number of inputs observed from LPB,
and THBE-IS differ. On the other hand, the distance between
the means of the total number of inputs observed from LPB
and THBE is close when (r, v) = (6, 6). The distance is
limited when n < 90 but it increases when n ≥ 90 and
(r, v) 6= (6, 6) (Figure 10). The pairwise analysis between
LPB and THBE indicates that the means are different, and
the distance between means increases with the number of
states. Therefore we can say that the number of states affects
the distance.

8.3.3 Report for RQ-3

Time results are given in Figure 14, which contains the
total time required to construct test suites. We observe that
the THBE and THBE-IS algorithms usually take less time
to generate test suites (reduction is 27% on average, the
maximum is 49%, and the minimum is 7%). The reduction
can stem from the fact that the THBE and THBE-IS algo-
rithms rely on input-trees. Recall that once a tree has been
constructed, the algorithm (THBE or THBE-IS) retrieves
as many state identifiers as possible. Another important
observation is that the THBE-IS algorithm is faster than
the THBE algorithm when (r, v) > (4, 4). This is because
with more inputs and outputs, the chance of encountering

invertible sequences increases, and the THBE-IS algorithm
can generate further separating sequences with increasing
options through invertible sequences without constructing
input-trees. This observation is supported by Figures 16a,
16b and Figure 16c.

In contrast, the LPB algorithm first constructs a charac-
terisation set, requiring exponential time in the worst case,
and then generates the state identifiers.

In Table 3, we provided the results of Wilcoxon non-
parametric tests. These reject the null hypotheses for all
pairs. This is supported by Cohen’s d analysis, which is
provided in Figure 15. The results suggest that the effect
size between LPB-THBE and LPB-THBE-IS increases with
the number of inputs and states.

8.3.4 Report for RQ-4

To explore how often the THBE-IS algorithm constructs state
identifiers using invertible sequences (RQ-4), we computed
the percentage of pairs for which the state identifier was
derived using invertible sequences. The results are given
in Figure 16. One can see that many state identifiers are
found using invertible sequences when the number of in-
puts and outputs are larger than four, and the proportion
increases with the number of states. The explanation may
be that when there are more inputs and outputs, the THBE-
IS algorithm has more opportunity to construct invertible
sequences; one expects more sequences to be invertible.
Moreover, as the number of states increases, the number
of pairs that can be separated by a given input sequence in-
creases. This is why the number of input sequences and total
inputs per test suite are less with the THBE-IS algorithm.

8.3.5 Report for RQ-5

This research question was designed to analyse the run-time
behaviour of the LPB, THBE, and THBE-IS algorithms when
they receive (i) an FSM with relatively long state identifiers
and (ii) FSMs retrieved from real applications.

Regarding (i), the LPB algorithm could generate SIs for
Cérny FSM with n ≤ 12 states in 30 secs. The THBE-IS
algorithm, on the other hand, could generate state identifiers
when n ≤ 387 using the same amount of time. This result
indicates that the THBE-IS algorithm is 3000 times more
scalable than the existing algorithm.

The time comparisons for the real FSMs are given in
Table 4. The algorithms generated identical test suites. For
train4 the number of inputs, number of sequences, and av-
erage number of state identifiers per state were 130, 26, and
6.5, respectively. For lion the number of inputs, sequences,
and the average number of state identifiers per state were
95, 23, and 5.75, respectively. Interestingly, in these cases,
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(a) Results on randomly generated FSMs
with 4 inputs and 4 outputs.
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(b) Results on randomly generated FSMs
with 5 inputs and 5 outputs.
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(c) Results on randomly generated FSMs
with 6 inputs and 6 outputs.

Figure 14: In every figure, x axis increases with the number of states and y axis increases with the time used to generate
sequences in millisecond.
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Figure 15: Cohen’s d metric analysis performed on the time
required to compute the test suites.

the LPB algorithm was the fastest, but it is worth noting that
both examples are small, with both having only 4 states.

Algorithm
train4 lion

Time (ms) Time (ms)
LPB 9 12
THBE 14 17
THBE-IS 11 17

Table 4: Times for the experiments with lion and train4.

8.4 Threats to validity

There are several threats to the validity of the experimental
results. First, there is the question of whether the state
identifiers generated by the implemented algorithms were
correct: whether they really separated pairs/distinguishes
states. To tackle this, we applied a two-phase strategy. In the
first phase, for each constructed state identifier, we checked
whether the sequence separated the states.

If the first phase was a success, we applied the second
phase, employing two metamorphic testing strategies. In the
first strategy, for a given FSM M , we shuffled the states’ ids,
obtained FSM Ms and re-computed the state identifiers for
Ms. Then, we cross-verified the state identifiers by checking
whether the state identifier computed for M really is a state
identifier for Ms and vice versa.

In the second metamorphic strategy, for an FSM M ,
we introduced a state s⋆ that cannot be separated from a
randomly chosen state s1, to form an FSM M⋆. We then
ran the code on M⋆. Since si and s⋆ cannot be separated, we
know that an implementation must be erroneous if it returns
a state separator for this pair of states.

The next threat we considered is whether the results
of the experiments have been misinterpreted. The charts
for the experimental results indeed provide some insights
regarding the performances of the algorithms. However,
variability, noise and uncertainty introduced by the exper-
imental results cannot be evaluated using the charts. To
address this, we applied (i) the Wilcoxon non-parametric
statistical hypotheses test and (ii) Cohen’s d effect size test.
Finally, we reported the result of these tests.

The last threat we considered relates to the variety of
experiments. To address this threat, we used randomly gen-
erated FSMs and benchmark FSMs and FSMs with relatively
long state identifiers.

9 CONCLUSION

The use of state-based languages to specify or model a
wide range of systems has led to significant interest in
testing from an FSM and, in particular, automated test
generation. FSM-based test generation techniques typically
use (possibly adaptive) sequences that distinguish states of
the specification FSM and it is well-known that adaptive
distinguishing sequences (ADSs) bring many benefits. How-
ever, an FSM M need not have an ADS that distinguishes all
of the states of M and this has led to interest in incomplete
adaptive distinguishing sequences (I-ADSs).

This paper explored the notion of I-ADSs for a non-
deterministic FSM M ; previous work on I-ADSs concerned
deterministic FSMs. As a first step, it was necessary to
generalise the notion of I-ADSs to non-deterministic FSMs.
The new definition can be used with completely-specified
and also partial FSMs. We then considered the problem of
deriving a small set of I-ADSs, proving that the problem
of deciding whether an FSM has a set of k I-ADSs that
distinguishes all of the states of a non-deterministic FSM
is PSPACE-hard. Motivated by this, we then proposed a
novel algorithm for generating a set of I-ADSs for a non-
deterministic FSM.

Having proposed a new algorithm, we then reported the
results of experiments that evaluated this algorithm. These
experiments used randomly generated FSMs in order to
provide a large set of experimental subjects through which
we could explore the impact of, for example, the number of
states of an FSM. These were complemented by a set of ‘ex-
treme’ FSMs, where the state identifiers are relatively long,
and two benchmark FSMs. The results were promising, with
the proposed algorithm returning test suites that contain
fewer test cases (53% on average) and fewer inputs in
total (39% on average). In addition, the proposed algorithm
was found to be 3000 times more scalable than the only
previously published technique.

There are several lines of future work. First, it would
be interesting to evaluate the algorithms on additional case
studies. Second, the current algorithm generates trees ran-
domly and there might be potential to introduce a heuristic
to guide the choice. There may also be scope to parallelise
the algorithm. Such a parallel algorithm might then form
the basis for a more scalable GPU algorithm, drawing on
previous GPU-based algorithms [57], [61], [71], [72]. In test
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(a) Results on randomly generated FSMs
with 4 inputs and 4 outputs.
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(b) Results on randomly generated FSMs
with 5 inputs and 5 outputs.
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(c) Results on randomly generated FSMs
with 6 inputs and 6 outputs.

Figure 16: In every figure, x axis increases with the number of states and y axis increases with the percentage of the pairs
for which the state identifiers constructed with invertible sequences.

generation, we used HSIs generated from I-ADSs and there
is scope to instead use the I-ADSs directly: this may lead to
smaller complete test suites and allow test generation from
FSMs that do not have harmonised traces. Finally, there may
be scope to devise different types of invertibile sequences for
use in derivation of I-ADSs.
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[68] Černý Ján, “A note on homogeneous experiments with finite

automata (english),” Matematicko-fyzikálny časopis, vol. 14, pp. 208–
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