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Abstract

The modelling and analysis of appliance energy use (AEU) of residential buildings are important for energy consumption
control, energy management and maintenance, building performance evaluation, and so on. Although some traditional machine
learning methods have been applied to produce good prediction results, these models are usually not interpretable, in that they
fail to explain how appliance factors make contributions to the variation of AEU individually and interactively. Explicitly
knowing the role played by each of the appliance factors in explaining AEU, however, is very important for energy saving.
Motivated by this observation, this study introduces an interpretable machine learning approach which is built upon the
nonlinear autoregressive moving average with eXogenous inputs model. The advantage of the proposed model is that in
comparison with other state-of-the-art machine learning methods, for example, feedforward neural network, recurrent neural
network (e.g., gated recurrent unit), and long short-term memory network, the established model is not only able to produce
more accurate energy use prediction, but more importantly, also fully transparent and physically interpretable, clearly and
explicitly indicating which factors significantly affect the variation of AEU. The findings of this study provide meaningful
insights for improving the AEU efficiency.

Keywords Appliance energy use · Residual building · Modelling · Forecasting · Interpretable machine learning · NARMAX
model

1 Introduction

Extensive attention has been paid to the analysis and mod-
elling of appliance energy use (AEU) in the literature [1–3].
Revealing and establishing the inherent dependency relation-
ship of AEU on potential drivers is very useful for energy
control and management [4, 5], building performance anal-
ysis through simulations [6, 7], and energy consumption
control [8]. Many methods have been proposed for AEU
modelling and analysis, such as multiple linear regression
[3], artificial neural networks [9, 10], outlier detection [11],
support vector machines [12], and model ensembles [13].
AEU is determined by many factors, e.g., local temperature
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in and outside the house, humidity in the building, time of
the day, just mention a few [2]. Some space climate factors
such as solar radiation also make contributions to AEU [14].
Studies show that the occupants’ behaviour is also an import
factor that affects AEU [15, 16].

Many machine learning methods including artificial neu-
ral networks (ANNs) have been extensively applied to AEU
modelling and analysis. Traditional neural networks usually
comprise three or less hidden layers. Deep neural networks,
which usually have many hidden layers, are more powerful
for learning and representing nonlinear features [17, 18]. For
most complex systems, well trained neural networks (with a
proper number of hidden layers and trained with sufficiently
large number of samples) can well capture the inherent non-
linear dynamics and provide good predictions of the future
behaviour of complex systems. However, neural networks,
as black-box models, have an important shortcoming: the
lack of interpretability and explainability. In a neural net-
work, all the input variables are usually collectively coupled
into a huge number of hidden neurons (nodes). Although
well-trained neural network models can usually show good
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prediction performance, the resulting structure of such neu-
ral networks are internally informative to nobody (even if
the model builders themselves). It is difficult to know which
inputs or drivers are significantly important and which are not
to the system output because the internal structure is opaque.
Moreover, a significant amount of time may be needed to
build a complex neural network model due to the inclusion
of redundant input variables. Usually, it is impossible to know
which of the individual input variables play an important role
in determining the behaviour of the system, and how the inter-
actions of the input variables affect the system behaviour.
In addition, the inclusion of irrelevant input variables may
lead to overfitting. In recent years, there have been extensive
studies focusing on partially implementing explainable neu-
ral networks. For instance, a convolutional neural network
(CNN) was developed to predict oil prices, production, con-
sumption, and inventory based on online news [19], where the
model was designed to be able to provide the impact values
of input features, thereby offering insight into its function-
ing. Subsequently, an interpretable prediction system named
VMD–ADE–TFT was developed for predicting wind speed,
where the significance of variables can be evaluated. These
systems can greatly enhance the interpretability of neural
networks [20]. Nevertheless, for energy appliance predic-
tion, which requires an even more interpretable approach, it
is highly desirable to have fully transparent and interpretable
models.

In comparison with complex neural networks, NARMAX
model is much simple [21]. It uses an orthogonal forward
regression (OFR) algorithms [22–25] or other methods, such
as random search or input variable-informed approaches
[26, 27] to detect the model structure. NARMAX model is
transparent and parsimonious, making it easy and straight-
forward to understand and interpret the model response
behaviour. NARMAX methods have been widely applied
to system identification and data modelling in a wide range
of multidisciplinary areas, including engineering [28–30],
energy, ecological and environmental [31–34], space and
geophysical [35–38], medical [39–41], biological and neuro-
physiological studies [42, 43]. A comparison of the features
of NARMAX and neural networks is summarized in Table
1.

This study introduces an interpretable NARMAX mod-
elling framework for predicting the energy use of appliances.
The model is constructed with following considerations:
to capture the inherent system dynamics in an explicitly
transparent way, as well as generating accurate predic-
tions. For comparison purposes, the performance of the
obtained NARMAX model is compared with three state-of-
the-art neural networks, namely, feedforward neural network
(FNNs), gated recurrent unit (GRU, a special class of recur-
rent neural networks), and long short-term memory (LSTM)
network.

The main contributions and novelty of the paper are as
follows:

• It proposes a transparent and explainable machine learning
model for appliance energy use pattern analysis.

• Unlike other machine learning methods which work in
a black-box manner, the proposed model is completely
explainable due to its transparent, interpretable, repro-
ducible and parsimonious (TRIP) properties. It explicitly
tells which factors significantly affect the appliance energy
use, and reveals the relationship between appliance energy
use and external factors.

• The performance of the proposed model is comparable to
that of the state-of-the-art machine learning methods with
regards to prediction accuracy when measured by either the
normalized root mean square error (NRMSE) or weighted
mean absolute percentage error (WMAPE).

The above features possessed by NARMAX model are
highly attractive and crucially useful in cases where the pri-
mary modelling task is to establish an explicit quantitative
representation showing which input variables are important
and how the response variable depends on these important
predictors. In such cases, it usually requires that models
should be transparent and interpretable, but meanwhile the
models should have good prediction ability.

The remainder of this paper is organized as follows.
Section 2 briefly reviews the NARMAX model. A brief
description of the data used is presented in Sect. 3. The exper-
imental results are presented in Sect. 4. Discussions are given
in Sect. 5, and finally the work is concluded in Sect. 6.

2 The NARMAXModel

Consider a process with one output (response) and r inputs
(independent predictors), for which the NARMAX presen-
tation can be written as:

(1)y (t)

� f
[

y (t − 1) , . . . , y
(

t − ny

)

, u1 (t − d) , u1 (t − d − 1) ,

. . . , u1 (t − nu) , u2 (t − d) , u2 (t − d − 1) , . . . ,

u2 (t − nu) , . . . , ur (t − d) , ur (t − d − 1) ,

. . . , ur (t − nu) , e (t − 1) , . . . e (t − ne)] + e (t)

where uk(t)(k � 1, 2, . . . , r), y(t) and e(t) are the system
inputs, output and noise, respectively; nu , ny , and ne are the
associated maximum time lags; d is the time delay, and for
many processes the time delay can be set as d � 0 or d � 1
(in this study, d is set to be zero); f [·] is an unknown function
that needs to be built from available training data. The NARX
model, which does not include the noise moving-averaging
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Table 1 Basic properties of NARMAX and other neural network models

Feature NARMAX Neural networks

Model structure Clear, specific mathematical structure Data-driven with artificial neurons

Model complexity Transparent linear-in-the-parameters with a small number
of parameters

Complex network structure with a large number of
parameters

Model transparency Fully transparent Not transparent or partially transparent

Model interpretability High, produces interpretable models Low, can be less interpretable due to complex internal
structure

Simulatability Model results are repeatable Simulations are not straightforward

Accuracy Good, but limited by assumed mathematical structure High, but highly depending the data size

Training data Can work with either small or large datasets Training data size should be large enough

System flexibility Limited, works best for specific types of systems High, can model a wide range of systems

Training time Relatively fast, due to limited complexity Can be slow, due to complex internal structure

Strength Interpretation, explanation, and prediction Prediction

model elements e(t − 1), . . . , e(t − ne), is a special case of
the NARMAX model, and can be written in a linear-in-the-
parameters form[21]:

y(t) �

M
∑

m�1

θmϕm(t) + e(t) (2)

where ϕ1(t) . . . ϕr (t) are the model terms generated from
the regressor vector X(t) � [y(t − 1), . . . , y

(

t − ny

)

,
u1(t − d), . . . , u1(t − nu), u2(t − d), . . . , u2(t − nu), . . . ,
ur (t − d), . . . , ur (t − nu)]T , θm are model parameters and
M is the number of model elements (that is, candidate model
terms). The identification of NARMAX model consists of
several key steps including model structure determination,
model parameter estimation, model validation, model expla-
nation, and prediction. Detailed description of these steps
may be found in [21].

2.1 Identification of the NARXModel

In this study, the OFR algorithm is used to build compact
models. The detailed implementation of the OFR algorithm
can be found in [21, 24] or [25]. For ease of reading and facili-
tating the understanding of the OFR algorithm, the associated
pseudocode is provided in the Appendix at the end of the
paper. The basic idea of the OFR algorithm is to use a simple
and effective error reduction ratio (ERR) index, to measure
the contribution of each model term to explaining the vari-
ation in the system output. Let D � {ϕ1(t), . . . , ϕM (t)}

be the dictionary of all the candidate model terms and
Dn �

{

ϕl1(t), . . . , ϕln (t)
}

be the selected significant model
terms, the final NARX model can be identified by the OFR

algorithm, as:

y(t) �

n
∑

i�1

θli ϕli (t) + e(t) (3)

where l1, . . . , ln is the index of the selected model terms and
θli (i � 1, 2, . . . n) is the estimated parameters. Note that the
number of selected model terms, n, is usually much smaller
than the number of the candidate model terms, M , so that
the final identified NARX model is much simpler and eas-
ier to use. With all the significant model terms selected and
ranked by ERR index, the importance of model terms can be
measured and revealed.

As mentioned early, an attractive advantage of NARX
model is that it is fully transparent, that is, it can be explic-
itly known how predictors are coupled or interacted in the
model, and how important of each of the model elements is
for explaining the change of response variable.

2.2 Noise Modelling

With the time delay d � 0 (between the model inputs and
output), the model residual signal ε(t) can be estimated as

ε(t) � y(t) − ŷ(t) (4)

where ŷ(t) represents the value of output at the time instant
t. To refine the model by reducing the impact of the noise,
the NARMAX method uses an extended least squares (ELS)
scheme to estimate the prediction errors ε(t) and uses the
estimates to update the model structure (e.g. adding noise
model terms in the model and update the model structure)
[21]. A NARMAX model can be developed based on the
associated NARX model by including these moving average
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terms as follows:

y(t) � f [p](X1(t)) + f [pn](X2(t)) + f [n](X3(t)) + ε(t) (5)

with

X1(t) � [y(t − 1), ..., y(t − ny), u1(t), u1(t − 1), ...,

u1(t − nu), ..., ur (t), ur (t − 1), ..., ur (t − nu)]T

(5a)

X2(t) � [y(t − 1), ..., y(t − ny),

u1(t), ..., u1(t − nu), ..., ur (t), ...,

ur (t − nu), ε(t − 1), ..., ε(t − ne)]T (5b)

X3(t) � [ε(t − 1), ε(t − 2), ..., ε(t − ne)]T (5c)

where f [p](·) represents the identified NARX model,
f [pn](·) represents the coupled process-noise sub-model, and
f [n](·) represents the noise process sub-model, which are
built based on their own regressor vectors, respectively. A
simple and fast but less effective way is to use a linear mov-
ing average model below:

f [n](·) � α1ε(t − 1) + . . . + αneε(t − ne) (6)

If a noise model is insufficient, then lagged noise vari-
ables ε(t − p) for p � 1, 2, . . . ne should be included
in model (2) and (3) in a nonlinear manner. In summary,
the basic regressor vectors in (2) and (3) includes all the
lagged outputs, inputs and noise variables:y(t − 1), . . . ,
y
(

t − ny

)

, u1(t), u1(t − 1), . . . , u1(t − nu), . . . , ur (t),
ur (t − 1), . . . , ur (t − nu), ε(t − 1), . . . , ε(t − ne).

3 Data Description

The AEU dataset used in this study is obtained from [2]. It
involves one response variable, AEU, and a total of 28 pre-
dictors (independent variables) such as energy use of light

fixtures in the house, Humidity in living room area, temper-

ature in laundry room area, Humidity in parent room, and

number of seconds from midnight. Detailed descriptions of
these 28 predictors can be found in [2].

The sampling period for AEU and all the 28 predictors
is 10 min. In this study, the sampling period of 10 min was
selected based on the typical usage patterns of the appliances
being studied and the resolution required for the analysis
[2]). The measurement time window is 11 January (17.00)
to 27 May (18.00), 2016, making the total number of sam-
ples be 19,736. The entire dataset is split to two parts: 75%
for model estimation (training) and another 25% for model
performance test. The entire 19,736 samples of the AEU are

shown in Fig. 1, and the values of AEU in a typical week
(Monday – Sunday, 22—28 Feb, 2016) are shown in Fig. 2.
From the two figures, it can be observed that there are a few
of daily peak periods for AEU, whose values seem obviously
lower at weekends (especially on Sunday) than other days.

4 Experimental Results

4.1 The Identified NARMAXModel

Based on pre-modelling experiments and simulations, the
settings for building NARMAX models are as follows: (1)
the maximum time lag for input variables nu � 2; (2) the
time lag for the response variable (the AEU) ny � 2; and (3)
polynomials are used as the elementary building blocks to
build models, and the nonlinear degree of polynomials is set
to be 2. Larger time lags lead to more extensive search of the
most important and appropriate model terms from a relatively
large candidate dictionary, while smaller time lags allow for
faster training process. These parameters were chosen based
on a balance between efficiency and accuracy. In this study,
following the method proposed in [24], we conducted a series
of pre-experiments with various initial hyperparameters and
found that the selected values yielded the best performance
on the validation set.

The candidate model input vector is:

ϑ(t) � [y(t − 1), y(t − 2),

u1(t), u1(t − 1), u1(t − 2), . . . ,

u28(t), u28(t − 1), u28(t − 2)]T (7)

where um(t), um(t − 1), um(t − 2)(m � 1, . . . , 28) repre-
sent the 28 predictors and their time lagged versions, and
y(t − 1), y(t − 2) represent the previous values (10 and
20 min before) of AEU. Initially, the full dictionary that used
to build models consists of a total of 1770 elements including
all the 28 predictors and all the cross-product terms.

The model complexity (i.e., the number of terms to be
included in the final model) is determined by the APRESS
criterion [44]. The APRESS value is determined by two
components. The first measures the prediction error, and the
second one penalizes the model when more model terms are
added. Therefore, APRESS decreases at first when model
terms are added, and gradually increases with the increase
of the model complexity due to the penalty. Thus, the num-
bers of model terms at these turning points provide a good
suggestion on the determination of how many model terms
should be included in the final model. As shown in Fig. 3,
APRESS has three relatively obvious turning points at 4, 7
and 14, which suggest that the optimal number of model
terms can be 4, 7 or 14, where APRESS starts to increase
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Fig. 1 Graphical illustration of the AEU between 1 January and 27 May, 2016

Fig. 2 An illustration of the AEU in a period of a typical week

Fig. 3 Number of model terms versus APRESS value (alpha: tuning
parameter)

after decreasing for several iterations. Further analysis (e.g.
pre-modelling experiments and simulations) suggests that a
total number of 7 model terms is a good choice, therefore the
identified 7 terms are used to construct the NARX model.
The identified model structure is shown in Table 2.

In Table 2, the contributions made by the individual model
terms to explaining the change of the AEU, measured by the

ERR index, are also given in column 3. The model reported
in Table 2 should be written as:

AEU (t) � 0.95526AEU (t − 1) − 0.0003801AEU (t − 1)

× AEU (t − 2) + . . . (8)

Note that these identified model terms provide informa-
tion of which appliance factors or variables are involved in the
model building. The time dependencies between the predic-
tion and explanatory variables are indicated by time lags. For
example,Lights (t)× Hpr (t−2) indicates that the interaction
variable of light fixtures measured at current time and humid-

ity in parents room measured 20 min ago plays an important
role in explaining the variation of the appliance energy use.

4.2 Model Performance and Comparisons

To evaluate the performance of the identified NARMAX
model, we compare its predictive ability with that of feed-
forward neural network, long short-term memory (LSTM)
network, and gated recurrent unit (GRU) on the same dataset.
The feedforward neural network contains one input layer,
three fully connected layers and one output layer. The LSTM
contains one input layer, three LSTM layers and regression
layer. The GRU contains one input layer, three GRU layers
and regression layerææ.
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Table 2 The best model structure
and model terms No Model term ERR (100%) Parameter t-statistics

1 AEU(t − 1) 75.5866 9.5491 × 10−1 61.680

2 AEU(t − 1)× AEU(t − 2) 1.8701 − 3.8022 × 10−4 17.520

3 AEU(t − 1)× AEU(t − 1) 0.4688 − 1.4187 × 10−4 5.3132

4 Lights(t)× Hpr (t − 2) 0.1446 1.2402 × 10−1 6.9959

5 Lights(t)× Hlr (t) 0.0657 − 1.1023 × 10−3 6.0768

6 Tlr (t) × Ns(t) 0.0664 3.3829 × 10−5 11.717

7 Ns (t) × Ns (t − 2) 0.1479 − 7.8808 × 10−9 10.054

Lights � energy use of light fixtures in the house (unit: Wh)
Hpr � Humidity in parent room (unit: %)

Hlr � Humidity in living room (%)
Tlr � Temperature in laundry room area (unit: °C)
Ns � Number of seconds from midnight (unit: second)

Table 3 Model performance on
test data Model CC PE NRMSE WMAPE

NARMAX model 0.7502 0.5619 0.0707 0.3872

Feedforward neural network 0.7383 – 0.1706 0.4241

LSTM 0.7312 0.5345 0.0729 0.4328

GRU 0.7278 0.5283 0.0737 0.7419

CC: correlation coefficient, PE: prediction efficiency, NRMSE: normalised root mean square error

Fig. 4 The scatter plot between the model predicted AEU and the actual observations

The three metrics, correlation coefficient (CC), predic-
tion efficiency (PE), and normalised root mean square error
(NRMS), for the NARMAX model, feedforward neural net-
work, LSTM, GRU are presented in Table 3, and the scatter
plots between the measured AEU and the predictions from
NARMAX, feedforward neural network, LSTM and GRU
are shown in Fig. 4. The correlation coefficient, prediction
efficiency and NRMSE of the NARMAX model on test
dataset are 0.7502, 0.5619 and 0.707, respectively. From the
results, the NARMAX model outperforms the other three
models with regard to prediction accuracy. More importantly,

the NARMAX model is advantageous over the neural net-
works in that the former is transparent, parsimonious and
interpretable.

From Fig. 4, it can be observed that the model prediction
errors are significantly large if the actual AEU values are
large; this is especially true for the feedforward neural net-
work model. This is a typical observation occurring with most
machine learning methods when modelling non-stationary
dynamic processes, e.g., a case where (1) the maximum
amplitude of the signal is much larger than the minimum
amplitude, and (2) most of the time series values are small
(‘normal’ periods) and only a small number of values are very
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large (‘peak’ period’). For such a case, many models may
show very good performance for ‘normal’ periods but may
not work well for capturing key behaviors in ‘peak’ periods.
However, ideally, a good model should be able to show satis-
factory performance over the entire prediction period rather
than only show well fellow the ‘normal’ values. In fact, for
many real applications an accurate prediction of the ‘peak’
values may be of more interest than that of the prediction of
‘normal’ values.

To fairly evaluate a model performance for predicting the
energy use of not only during the normal periods, but also the
peak periods, the weighted mean absolute percentage error
(WMAPE), along with the commonly used NRMSE, is con-
sidered in this study. The WMAPE is calculated as:

W M AP E �

∑N
t�1 wt |e(t)|

∑N
t�1 wt |y(t)|

�

∑N
t�1 wt

∣

∣y(t) − ŷ(t)
∣

∣

∑N
t�1 wt |y(t)|

(9)

where y(t) is the observed appliance energy consumption,
ŷ(t) is the predicted appliance energy consumption, and wt

is the validation weight for the prediction at time point t .
In this study, we define wt � 0.7 for samples where the
values of appliance energy consumption are no smaller than
400 and wt � 0.3 for samples where the values of appli-
ance energy consumption are lower than 400. The WMAPE
values calculated from NARMAX, feedforward neural net-
work model, LSTM and GRU models are presented in Table
3, where it can be noted that whilst the values of the three
metrics, three metrics, correlation coefficient, prediction effi-
ciency and normalised root mean square error are close and
comparable, the WMAPE value of the NARMAX model is
much smaller than those of the other three models, indicating
that the performance of NARMAX model for peak periods is
significantly better than those of the other models. A compar-
ison between the predicted AEU values from the NARMAX
model and the actual measurements is shown in Fig. 5, from
which it can be seen that the NARMAX model well captures
the system dynamics. For a closer inspection of the predic-
tion performance, the prediction errors for each of the five
periods illustrated in Fig. 5 are shown in Fig. 6. The dis-
crepancy between the predicted and observed values looks
large, this is understandable as accurately predicting AEU
at peak times is always challenging and difficult, no matter
which method is used. However, it should be noted that the
NARMAX model demonstrates a degree of improvement in
comparison to other models, as evidenced by the scatter plots
shown in Fig. 4. Overall, The NARMAX model outperforms
the other three methods over the entire prediction period of
the test data.

5 Model Interpretability

Our results indicate that the dynamic change of AEU can be
well captured by the NARMAX model, which shows bet-
ter performance than the three compared machine learning
methods (e.g., feed neural network, LSTM, GRU). As shown
in Table 2, one of the advantages of the NARMAX model
is that it is fully transparent, making it easy to explain and
interpret. The detection of significant variables and terms
is important because this can potentially significantly reduce
the time and cost of data for data collection and investigation.
The interpretability of NARMAX models can be understood
from two perspectives as follows. Firstly, the model terms are
intelligible, providing clear information about the variables
appearing in the model, e.g., the time lags give insight into
the temporal dependencies between the prediction variables
and inputs. For instance, the term “Hpr(t − 2)” represents the
humidity in the parent room measured 20 min prior, while
“Lights(t) × Hpr(t − 2)” signifies the interaction between
the current energy usage of light fixtures in the house and
the humidity in the parent room 20 min ago. Secondly, the
models are constructed using linear-in-the-parameter terms,
where the interactions between individual variables and the
connections between model terms are completely clear. All
this makes the model comprehensible and adaptable to new
data and new applications.

The model reported in Table 2 suggests that AEU is closely
related to some weather and house conditions at the present
time and 10 and 20 min earlier as well. Specifically, the result
given in this study shows that the AEU value at present time
is highly correlated with that of its history values (e.g., 10 and
20 min earlier as shown by the first three model terms given
in column 2 in Table 2). This finding is consistent with that
reported in other studies (e.g. [45].) that energy prediction is
correlated with historical data. The inclusion of energy use

of light fixtures in the house in the 4th and 5th model terms
probably can be understood that a large fraction of AEU is
attributed to the lightning fixtures. Humidity in the house (in
the living room and parent room), coupled with the lightning
fixtures, might also makes a contribution to explaining AEU.
This result is consistent with that reported in [2] that lightning
is one of the most significant source of energy consumption.

Our finding that humidity plays an important role in AEU
is also strongly supported by other studies, e.g., [46], where it
is suggested that humidity control material has a great impact
on the energy performance of buildings. The last two model
terms are related to the number of seconds from midnight. It
is reasonable that AEU is highly associated with the specific
time of the day. This finding is consistent with that reported
in some most recent studies (see, e.g., [47, 48]), showing that
occupant behaviour has significant impact on building energy
consumption. The NARMAX method does not include any
predictors that are directly related to weather. This probably
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Fig. 5 A comparison between the predicted AEU from the NARMAX model and the actual measurements over the test data

because that at different seasons the AEU of different types of
buildings may not always be equally sensitive to the change
of weather as explained in [14].

The resulting NARMAX model in this study shows that
the following factors play a clear role in explaining the total
AEU: light fixtures, humidity in living room, temperature

in laundry room, humidity in parent room, and the num-

ber of seconds from midnight. Moreover, the results in this
study add important contribution to knowledge by explic-
itly revealing the interaction variables (cross-product terms),
which were ignored in most previous studies with multi-
ple linear regression where only single individual predictors

were included in the models as determinants of the appliance
energy use.

It is worth mentioning that although neural network mod-
els can produce good prediction results, they cannot give
clear indications of which inputs are important and which
are not for explaining the change of the response variable
[9, 10, 49]. Neural network models usually use all available
model input variables together regardless of their signifi-
cance. A consequence of allowing redundant variables to
participate the model training process is that the resulting
models may be overfitting and lack generalization ability.
There are some interpretable machine learning models that
have been applied to AEU modelling and analysis, however,
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Fig. 6 Errors between the predicted AEU values from the NARMAX model and the actual measurements over the test data

the prediction performance of these models is lower than
that of neural networks [2]. The NARMAX method used in
this study is unique in comparing with other AEU modelling
methods: the resulting models are transparent, parsimonious
and interpretable, and meanwhile maintain excellent predic-
tive capability.

6 Conclusions

In the field of building energy consumption, interpretability
and accountability of machine learning models are highly
desirable and demanded. While traditional machine learning

techniques have been widely applied to achieve accurate pre-
diction outcomes, the models used often lack interpretability,
failing to explain how the individual appliance contributes
to the overall energy use, and interactively and collectively
determine the overall AEU patterns. Motivated by these
observations, this study developed NARMAX models for
explaining and predicting the energy consumption. The pro-
posed method outperforms other state-of-the-art machine
learning models, including feedforward neural networks,
LSTM, and GRU, in that resulting NARMAX model exhibits
a clear dependent relationship between AEU and the associ-
ated factors. More importantly, the model developed can be
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used to analyse and isolate the sources of energy consump-
tion, such as specific rooms and appliances, and the time lags
in historical consumption measurements. Such information
is particularly highly valuable for identifying the most impor-
tant factors from a large number of potential variables. The
findings of this study can be used by public organizations and
governments for developing more effective energy policies
for new buildings.

A limitation of this paper is that it only investigates the
impact of 28 predictors. Other factors, such as lockdowns
and climate changes can also be considered to improve the
model predictive and explanatory ability. Therefore, one of
the future research directions will be to collect more data
and investigate the effectiveness of other potential predictors,
and hence further improve the model predictive ability and
interpretability.
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Appendix

The pseudo-code of the orthogonal forward regression (OFR)
algorithm [21, 25] is given below.
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