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Decision-making and movement of single animals or group of animals
are often treated and investigated as separate processes. However, many
decisions are taken while moving in a given space. In other words, both
processes are optimized at the same time, and optimal decision-making
processes are only understood in the light of movement constraints. To
fully understand the rationale of decisions embedded in an environment
(and therefore the underlying evolutionary processes), it is instrumental to
develop theories of spatial decision-making. Here, we present a framework
specifically developed to address this issue by the means of artificial neural
networks and genetic algorithms. Specifically, we investigate a simple task in
which single agents need to learn to explore their square arena without
leaving its boundaries. We show that agents evolve by developing increas-
ingly optimal strategies to solve a spatially embedded learning task while
not having an initial arbitrary model of movements. The process allows
the agents to learn how to move (i.e. by avoiding the arena walls) in order
to make increasingly optimal decisions (improving their exploration of the
arena). Ultimately, this framework makes predictions of possibly optimal
behavioural strategies for tasks combining learning and movement.
1. Introduction
Animals display a diversity of complex behaviours, both social and in relation
with their physical environment. Foraging, courtship, predator avoidance,
learning and so on are a few examples of the behaviours in which animals
engage—deciding at any particular time which activities are suited to their
current social and physical contexts.

Natural selection is expected to shape the decision-making processes of
animals such that their behaviours are optimized to accomplish fitness-relevant
goals, within the constraints the animals face. In many circumstances, decisions
are made through movements; an animal moving, for instance, towards a food
source rather than towards a member of its group. Any constraints altering
movements, such as locomotor or cognitive abilities or environmental forces
(e.g. water or air flow or obstacles) may therefore be entangled in a decision-
making process observed in fine details [1,2]. Decision-making processes
combined with movement involve a great variety of behaviours across taxa,
including social insects’ building behaviour [3], the effect of the environment
on animal movements [4], predator detection and avoidance [5], learning exper-
iments in a spatial context [6] and collective motion [7,8]. To evaluate the
optimality of decision-making processes when movement is involved is not tri-
vial to formulate mathematically, especially given the high number of factors at
play. There has been extensive research on Lévy-walk models to investigate
what are the optimal movement patterns to optimize foraging [9–12].

This research effort, however, faces several limits to understand animal
movements at the scale of the individuals and their behaviours in response to
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biotic and abiotic stimuli [13,14]. Here, we investigate a class
of models to explore how rules of interaction emerge from
primary goals (finding food, avoiding predators or mating),
given a set of constraints regarding cognitive abilities (in
terms of perception or learning) or locomotor capacities.
Our aim with this framework is therefore to find out whether
or not certain behavioural interactions can arise from first
principles considerations.

This framework is based on self-propelled agents imbued
with cognitive abilities by means of an artificial neural
network, which, given a set of stimuli regarding an agent’s
environment, determines how the agent moves [15,16].
During their lives, the fitness of agents is calculated from
objective functions representing primary goals, and the
parameters of this artificial neural network evolve via a
simple evolutionary algorithm favouring agents with high
fitness. This framework has been used in movement ecology,
as a paradigm to study how animals explore and navigate
in their environment on relatively long time and large
spatial scales [15,17]. Similar approaches have explored
the behavioural rules underlying the emergence of collective
behaviours with reinforcement learning [18,19]. In these
studies, the goal of the optimization process is to find
individual-level behavioural rules responsible for specific col-
lective configurations observed in natural flocking systems.
However, in the existing literature of agent-based models in
which agents have a cognitive model, the behavioural rules
underlying collective patterns are not emerging from first prin-
ciples (foraging, predation or reproduction), and the reasons
why animals would behave likewise are still unknown. We
note an early attempt of addressing these goals in the litera-
ture, which lacked details in the quantification of the
emerging behaviours and collective patterns [20]. Investi-
gating the rationale behind the proximate causes of animal
spatially embedded decisions is crucial to get an integrated
understanding of animal movements, including collective
behaviours, even on small temporal and spatial scales.

In this article, we introduce this class of models for the
study of animal behaviour in general and of the cognitive
bases on animal movements in particular. To stress our inten-
tion to use this class of models for the study of animal
behaviour, we name it smart self-propelled particles, an explicit
reference to self-propelled particles, agent-based models
widely used to investigate collective motion [21–23], although
the study of social interactions is beyond the scope of this
article. Here, we describe the framework in detail, and show
how to use it for the study of spatially embedded animal beha-
viours. Furthermore, we demonstrate and discuss an approach
to develop the models based on empirical data and results.
In the present work, wewill investigate the optimalmovement
behaviours of single animals in a bounded space, given
different fitness functions. Wewill also investigate the respect-
ive effects of different locomotor constraints in affecting the
emerging rules of interaction.
2. Methods
The framework we introduce for the study of animal behaviour
consists of a class of agent-based models, with cognitive agents.
‘Cognitive agents’ refers to the movements of agents being con-
trolled by their brain (an artificial neural network) given a set
of stimuli. The parameters of these brains are optimized with a
genetic algorithm to achieve a particular task, given an ecological
context as well as locomotor and cognitive abilities. In this class of
models, we expect the structure of the brains (artificial neural net-
works) to be important in determining the outcome of their
predictions. The structure concerns the number of neurons,
their arrangement (distributed in one or several so-called
hidden layers) and their connections. One possibility to design
an architecture of the artificial neural network appropriate to
the problem under consideration is to optimize the structure of
the network with a genetic algorithm, as part of the brain optim-
ization [24]. Another simpler approach is to incrementally increase
or decrease the number of neurons and to constrain the structure
with empirical approach. The latter is the chosen approach in
the current study. It allows to focus on the effect of the optimiz-
ation of the network parameters in this first investigation but
also to closely monitor the effect of structural changes and to
potentially infer the cognitive difficulty of a task.

2.1. Case study: the emergence of a wall-avoidance
behaviour

In this study, we will focus on one particular situation: a single
individual moving in an enclosed set-up (e.g. a tank or a cage).
Although this seems to be an artificial context, this situation
reproduces the context of animals in captivity, enclosed in an
arena or a tank, a situation of wide interest in Ethology, given
the number of experimental designs (for instance involving
learning or personality research) set in such environments. More-
over, there are ecological contexts in the wild in which the study
of movements when facing boundaries are particularly relevant,
such as flying insects avoiding spider webs during their flight.
By choosing this situation in this study, we pave the way towards
more complex contexts in the future.

Here, cognitive agents are navigating alone (i.e. without inter-
actions with others) in a square arena. They have a lifespan and
their trial either stops (i.e. they die, in genetic algorithm jargon)
when hitting the arena walls or at the end of their lifetime. We
explore how different constraints and goals affect the emerging
rules of interaction of the agent with thewalls and how this relates
to empirical results found in fish.

2.2. Perception, decisions and movements of agents
2.2.1. Perception
Agents perceive two cues in their environment: their distance
from the closest point of any wall and their angle to that wall
(figure 1a). Agents have a simulated brain consisting of an artifi-
cial neural network of two input neurons, a hidden layer and one
output neuron. The two input neurons correspond to each cue
the agents perceive (distance and angle relative to the closest
wall), normalized between 0 and 1.

2.2.2. Decisions
Decisions regardingmovement are made at each time step accord-
ing to the cues (distance and angle relative to the closest wall) the
agent perceives. These cues are transmitted to the input neurons of
the artificial neural network of the agent (a multi-layer percep-
tron), which predicts one output value o1∈ [0, 1] given by the
output neuron. The activation function used in these artificial
neural networks is the sigmoid function f (z) = 1/(1 + e−z), where
z is the weighted sum of the input connections, added to the
bias parameter of the focal neuron (figure 1b). The output value
of o1 controls the direction changes of the agent.

The structure of the artificial neural network (i.e. the number
of neurons in hidden layers) controls the complexity of the beha-
viours displayed by the agents. There is therefore a trade-off
between the emerging complexity, the generalization power of
the networks and the difficulty to optimize the values of the
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Figure 1. Notations used to depict the location of an agent relative to the closest wall and structure of the artificial neural network. (a) The agent (black dot) is
located in (x, y) with a heading θ. Its distance and angle to the closest point of any wall (white dot) are, respectively, dw and θw. (b) Structure of the artificial
neural network of reference in our study, with two input neurons receiving the normalized distance and angle relative to the closest point of any wall �dw and �uw ,
one hidden layer with three neurons and one output neuron. The 13 parameters are made of nine weights wj and four biases bi.
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artificial neural network parameters due to the number of
parameters. In this study, we restrict our analysis to networks
with one hidden layer. We evaluate, qualitatively, the optimal
number of neurons in one hidden layer, between one and six
neurons, by ensuring the chosen number of neurons can at
least reproduce the rule of interaction with the wall of actual fish.

2.2.3. Movements
Based on the output value o1∈ [0, 1], a coefficient csteering = o1−
0.5 is calculated (csteering ∈ [−0.5, 0.5]) and translated into a
turning angle Δϕ∈ [−π, π],

Df ¼ csteering � isteering,
with isteering the steering increment isteering∈ [0, 2π], a constant par-
ameter of themodel setting the maximal angle turned by agents at
each time step. The heading of the agent at time t is therefore θ 0 =
θ + Δϕ. The position (x, y) of the agent at time t is then updated at
each increment of time (set to 1 in an arbitrary time unit),

x0 ¼ xþ s cosðu0Þ
y0 ¼ yþ s sinðu0Þ,

�

with s the speed of the agent, which is a constant parameter in
this study.

2.3. Genetic algorithm
2.3.1. Initialization
At each generation, the same number n of individuals is gener-
ated. To optimize the exploration of the parameter space across
the n agents, each parameter of the artificial neural networks
(i.e. weights and biases alike) is initialized to a value in
Uð�50, 50Þ with the Latin hypercube sampling method. We use
the Python implementation provided by the Surrogate Modeling
Toolbox Python package, with the maximin criterion, which
maximizes the minimum distance between points and places the
points in a randomized location within their interval [25]. Each
agent is simulated four times with different initial locations,
randomly taken in the arena, with one initial heading h∈ {0;
−π; −π/2; π/2}. A fifth simulation round is executed with
the initial location always set to the centre of the arena, and a head-
ing h = 0. This additional round is not considered to calculate the
fitness of agents but is used to compare the score of agents across
generations with a constant initial location, given that the set of
initial locations influences the final score in the other four rounds.
2.3.2. Selection
During each round, agentsmove in a square arena.We have inves-
tigated two distinct goals for agents: to survive for the longest time
or to maximize the exploration of the arena. With the surviving
goal, the score of agents is the sum of time steps during which
they managed to stay within the boundaries of the arena. In the
exploration goal, agents score one point each time they discover
a new cell of the discretized square arena. This mimics a situation
where an animal explores an environment in which a resource,
such as food, is randomly distributed in space, with a constant
probability to be found and collected in any location.

In both goals, the round of an agent ends when the agent
goes out of the arena boundaries or if its lifespan exceeds the
maximum lifespan of agents (Tmax). When all agents have fin-
ished their four rounds, their scores S are summed over the
rounds and transformed into a fitness.

We investigate the effect of locomotor constraints by focusing
on the effects of speed and turning. In many species, turning is
costly and affects movement strategies [26–28]. We introduce a
penalty to turn, proportional to the squared amount of angle
turned in order to penalize very sharp turns. The penalty is
set to a constant pt, which is applied at each turn an agent
makes such that the total cost to turn across all rounds is
Ct ¼

P
ptjDfj2. The penalized score Sp = S−Ct is then inter-

polated between 0 and 1, where 0 stands for the minimum score
of the generation the current agent belongs to, and 1 for the
maximum of the current generation.

The normalized fitness of an agent i is

fi ¼
SpPn
j¼1 Sp

:

The new generation of n agents is generated from the pre-
vious generation by favouring the highest fitnesses. This
sampling is stochastic (with replacement), with probability of
getting picked proportional to the normalized fitness. Each
individual picked to get through the next generation gets the par-
ameters (weights and biases) of its artificial neural network
copied and mutated. Small and large mutations occur randomly
(33% of the parameters affected by small mutations, 1% by large
mutations), by applying a Gaussian noise of standard deviation
0.5 and 5, respectively. These mutation levels have been set by
trial and error and the standard deviations have been scaled
to the order of magnitude of the parameter values which lie in
[−50, 50].



Table 1. List of parameters of all simulations. Each row stands for a set of simulation including 60 trials with different initial conditions, each trial having
20 000 agents simulated for 150 generations with 5000 time steps each. HL, hidden layer.

name max. turning angle no. of neurons in HL goal speed turning penalty

parameters of reference 6.28 3 explore 50 0

survive objective function 6.28 3 survive 50 0

parameters with a turning penalty 6.28 3 explore 50 0.33

parameters with a slow speed 6.28 3 explore 5 0
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2.4. Simulations
We simulate the model to investigate its predictions. Each gener-
ation consists of n = 20 000 agents navigating a 600 × 600 pixels
square discretized in a 400-cell grid. Each round can last up to
5000 time steps if the agent does not leave the square boundaries
beforehand.

Each simulation runs for 150 generations and is repeated in 60
trials. Parameters explored in our simulations are listed in table 1.
Simulations are implemented in Python 3.10 and analyses per-
formed with both Python and R v. 4.1.3. We infer rules of
interaction with the wall by looking at the average turning angle
as a function of the distance and angle to the closest wall. Average
turning angles are all calculated using the circular mean

�a ¼ a tan 2
Xn
j¼1

sina j,
Xn
j¼1

cosa j

0
@

1
A:

2.5. Empirical data
We use results from a study published on the rummy-nose tetra
Hemigrammus rhodostomus [29]. This study provided a method to
infer rules of interaction with a wall from trajectories of a single
fish. We use these results (i) to validate the structure of our arti-
ficial neural network, (ii) as an empirical reference to our own
simulated results, and (iii) use their method to analyse simulated
trajectories to gain further understanding on the relationship
between behaviour, trajectories and analyses. We use a simplified
rule of interaction of wall avoidance inspired by [29] describing
how fish avoid walls by turning away from them at short dis-
tances. This rule of interaction can be depicted by the product
of two functions, one standing for the direction of wall avoid-
ance, odd function of θw and a second one standing for the
decay of the intensity of the wall repulsion as distance to the
wall rw increases, such as the angle turned by fish due to wall
avoidance is

Df ¼ sinðuwÞ exp � dw
lw

� �2
 !

, ð2:1Þ

where lw is a parameter controlling the range of the wall
interaction.
3. Results
Before analysing simulations in which we varied the goals and
constraints of cognitionand locomotion,wevalidated the struc-
ture of the artificial neural networks used as artificial brains of
the agents in our model. In other words, the capabilities of an
artificial neural network structure in predicting empirical
results was evaluated by varying the number of neurons in
the hidden layer. Our goal was to have a minimal number of
parameters (i.e. a small artificial neural network) to facilitate
convergence to optimal solutions and to get a parsimonious
and tractable model, while having an artificial brain structure
allowing actually observed behaviours to emerge.

3.1. Validating the artificial neural network structure
To validate the structure of the artificial neural networks,
we checked what would be the least complex artificial
neural network that could be trained to predict a known
and measured wall-avoidance behaviour of fish swimming
in a circular tank [29]. The minimal artificial neural network
structure consists of one hidden layer made of one neuron.
We trained artificial neural networks with one hidden layer
with a number of neurons ranging from one to six neurons.
Each artificial neural network is trained to fit the (simplified)
rule of interaction with the wall of H. rhodostomus. We
assessed that a hidden layer made of at least three neurons
is sufficient to broadly reproduce the behaviour measured
in H. rhodostomus (figure 2). Networks with fewer neurons
could not completely reproduce the empirically measured
behaviour, and networks with more neurons did not quanti-
tatively improve the fit (electronic supplementary material,
figure S1). This validation process is effectively a method to
evaluate the cognitive difficulty of any given task. By consid-
ering iteratively the effect of the number of neurons, the
minimal number of neurons required to achieve a particular
task in a specific manner can be inferred and used as an effec-
tive measure of the cognitive difficulty of a task. We therefore
use this structure (one hidden layer made of three neurons) in
the subsequent sections.

3.2. Influence of the objective function
Objective functions define how the fitness of agents is calcu-
lated. Fitness is used to favour agents with the highest fitness
scores in generating the following generation. To test the
effect of the objective function on the emergence of rules of
interaction, we defined two different ecological contexts of
the goal of a single agent in a bounded environment:

(i) the agent has to survive for the longest period of time
(i.e. the largest number of time steps);

(ii) the agent has to explore its environment.

In both situations, as soon as an agent leaves its bounded
environment (i.e. its arena), its life stops and so ends its
capacity to improve its fitness.

3.2.1. Survive for the longest period of time
In this first objective function, the fitness score of an agent
corresponds to the number of time steps in which the agent
stays within the boundaries of its arena. The resulting best
rules of interaction with the wall averaged across generations
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Figure 2. Possibilities of the artificial neural networks used as brains of agents. (a) Simplified empirical rule of interaction of fish with the closest point of a circular
wall found in H. rhodostomus [29]. The figure shows how much an agent turns right (red) or left (blue) depending on its position (angle and distance) relative to
the closest point of the wall. An angle of 0 represents an agent orthogonally facing the wall. (b) Fit of an artificial neural network with one neuron in the hidden
layer with the empirical rule of interaction (c). (c) Fit of the artificial neural network of reference (figure 1b) with the empirical rule of interaction (a).
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Figure 3. Effect of the objective function on the emergence of the interaction rules. (a) Best rules of interaction with the wall averaged across generations and trials
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and trials (figure 3a) shows almost no effect of the distance to
the closest point of the wall. The trajectories of optimal agents
in this situation consist of back-and-forth segments of the
shortest length (50 pixels) obtained by doing U-turns at
the end of each segment bout (figure 3b). The directions of
these sharp U-turns made to stay close to a segment-like
trajectory are on average performed away from the wall (i.e.
turning left when the closest wall is on the right-hand side
and right when the closest wall is on the left-hand side).
Trying to move back-and-forth on a segment is a strategy
effectively minimizing the explored area for agents moving
at a constant speed (i.e. not being able to slow down or
to stop), therefore minimizing the risks of hitting a wall.
This is effectively analogous to a freezing behaviour for
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agents that cannot stop moving. Freezing behaviour is a very
common strategy of animals facing predatory threats [30,31].
Although this population-level strategy differs greatly from
the empirical rule of interaction observed in fish, we already
see the emergence of the anti-symmetry resulting in agents
turning away from the closest wall.
lishing.org/journal/rsif
J.R.Soc.Interface

20:20230127
3.2.2. Explore the arena
An alternative ecological context is for the agents to increase
their fitness when exploring this bounded environment.
In this case, the fitness score of an agent corresponds to
the number of cells of the discretized arena explored at least
once (i.e. exploring the same cell several times does not
increase the score).

We find that in this context, there is a strong interaction
between the angle to the closest point of the wall and the dis-
tance to the closest point of the wall (figure 3c). In agreement
with the rules of interaction measured in experiments with
H. rhodostomus, we find that at the population level, when
close to the wall, the direction at which an agent turns
(i.e. left or right) depends on its angle to the wall, turning
left (respectively, right) when the wall is at its right-hand
side (respectively, left-hand side). This corresponds to a
wall-avoidance behaviour, as measured empirically. We also
note a weak interaction of attraction to the wall at distances
from thewall corresponding to slightly more than the smallest
path length of 50 pixels. The optimal trajectories found in this
context result in clear wall-following behaviour (figure 3d ),
where most of the time is spent near the edges of the arena
with a few visits towards the centre of the arena to increase
the number of cells of the discretized arena explored. This is
an already known result found in fish and bacteria with run-
and-tumble motion, in which a wall-avoidance behaviour
coupled with discrete reorientations actually results in wall-
following behaviour [29,32,33]. We find a similar behaviour
when the same agents are set to move in a smaller or a
larger arena (electronic supplementary material, figure S2),
supporting the robustness of the emergent strategies found
by agents. This alternative objective function produces at the
population level interaction rules which are very different
from the previous one, in which agents simply needed to
survive for as long as they could. This highlights how the defi-
nition of the ecological context in our framework affects the
resulting optimal rules of interaction.

We now turn to finer quantitative details regarding the
movements of agents optimizing the exploration criterion
(figure 4; electronic supplementary material, figure S3).
We find that inmost of the cases, agents are found at a distance
of more than 50 pixels away from the closest wall (figure 4a).
The exception is when agents are facing the closest wall
(angle to the wall around 0): in these cases, agents can be
found closer to the wall. Three main behaviours regarding
angle turned can be identified: very small angle turns, angle
turns close to 90° and U-turns (figure 4b). When agents are
close to the wall (within 50 pixels from the wall), they favour
turning away from the wall, specifically with large angles,
around 90° and, mainly, complete U-turns (figure 4c). For
agents far away from the wall (at least at 150 pixels from the
wall), we observe the three modes of the global distribution
(small angles, right angles and U-turns), with the predomi-
nance of small turning angles (figure 4d ). We note that the
distribution of these small angles (less than 60° in magnitude)
is compatiblewith a normal distribution (figure 4d, inset). This
shows the emergence of an apparently stochastic behaviour at
the population level—with agents turning as often to the right
as to the left when far away from the wall—in a strictly deter-
ministic model of movement. This is in agreement with
empirical results found in H. rhodostomus [29].

3.3. Individual-level interaction rules versus population-
level interaction rules

The average behaviour shown figure 3c is not the one actually
used by the agents (figure 5). We can indeed find equally good
performances by individuals whose rule of interaction with
the wall greatly differ from the average one. The behaviour
of these agents is very similar in regions of the input variable
space under strong selection—here, when agents are close to a
wall, we see a strong wall-avoidance behaviour. However,
when the agents are far from a wall and therefore in regions
under less selection pressures, we see more variation; for
instance, the distance at which individuals start to avoid the
wall or the strength or existence of a parameter region in
which agents are attracted to the closest wall. This leads to a
diversity of behaviours and forms of trajectories even
though, on average, agents all successfully avoid the wall by
turning left when the wall is on their right and vice versa.
This suggests the possibility for diversity in the presence of
strong selective pressures, where early experience leads to a
diverse yet equally satisfying pool of solutions. It is worth
noting that this diversity is difficult to note in empirical data
and generally overlooked. Most of the empirical studies inves-
tigating rules of interaction in animals report results obtained
from behaviours averaged across individuals, trials, time of
the day and days of experiment [34–37], preventing the find-
ing of diverse solutions from different individuals or
depending on statuses hidden to the experimenter, such as
the state of hunger of a specific individual.

3.4. Effect of locomotor constraints
We study the effect of locomotor constraints by investigating
the costs associated with turning (figure 6a–c; electronic sup-
plementary material, figure S4). We find that overall, the
optimal behaviour stays similar: agents still need to turn
left when the wall is at their right-hand side and vice versa
(figure 6a). We note that agents start turning earlier (i.e.
further away from the wall) when they get to face the wall
and turn later on (i.e. at closest distances from the wall)
when they do not directly face the wall, unlike the rule of
interaction of reference (figure 3c). This is probably the
result of agents minimizing the instances when they need
to turn a lot to avoid the wall.

We also investigated the effect of speed by running simu-
lations in which agents move 10 times slower than in the
conditions of reference—namely five pixels per time unit
instead of 50 (figure 6d,e; electronic supplementary material,
figure S5). This change in the locomotor capacities relative to
the size of the bounded space affects mainly the distance at
which agents start to avoid the closest wall (figure 6d ).
Agents also make much smaller turns, resulting in a distri-
bution of angle turned very different from the distribution
obtained with the parameters of reference (electronic sup-
plementary material, figure S5a). This results in trajectories
being less tortuous than other rules of interaction found for
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previous constraints (figure 6f ). This leads agents to being
distributed closer to the wall on average (electronic sup-
plementary material, figure S5b) with two clear angles
relative to the wall around 54 and 132°.
4. Discussion
We find that the objective function affects the movement
behaviours that emerge, with a great variety of solutions
found to the same problem. In particular, we show that a
wall-following trajectory emerges from wall avoidance be-
haviour of agents actually optimizing the exploration of
their bounded environment. They do so by successfully
learning how to avoid the obstacles of their environment,
based on very simple local cues. The emerging rules of inter-
action with the wall resembles the one found in the fish H.
rhodostomus, where single fish were studied when swimming
freely in small circular tanks [29]. At the population level, we
find indeed a clear anti-symmetric wall avoidance behaviour
at close distances from the wall, in agreement with empirical
data [29]. This is achieved with an extremely simple cognitive
model made of an artificial neural network with only 13 par-
ameters (weights and biases), and whose input is also kept
very simple—only information regarding the position of the
agent relative to the closest point of any wall of the arena is
provided. We note that our cognitive model is not a direct
representation of an actual brain. Future work could use bio-
logically motivated brain structures of the network [1,2] to
investigate the influence of neural network structures on
the behaviours emerging from a smart self-propelled par-
ticles model. Locomotor abilities such as the speed or
turning abilities also affect the emerging behaviours, chan-
ging both the interplay between distance and angle to
the wall in determining wall avoidance and the resulting
trajectories and arena exploration.

We stress the importance of combining the use of this
class of models with empirical data. Such a theoretical
approach provides multiple strategies, many of them
potentially being biologically unrealistic. Empirical data
therefore provide additional context and constraints to
guide the development of meaningful models. Moreover,
adding constraints reduces the diversity of optimal strategies
successfully solving the problem under study and helps
exclude suboptimal solutions.

Our results obtained with an objective function requiring
individuals to maximize their time spent without touching
the wall suggest that freezing behaviours are compatible
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with individuals trying to favour survival against exploration
when facing extreme threats [30,31].

The good agreement between our findings and empirical
results in fish occur at the population level, on aggregated
and averaged simulated data. However, this fit overlies a
complexity largely unexplored in biology. Our simulation
results look similar once averaged across multiple agents
but the individual behaviours actually encompass an impor-
tant variety of strategies for exploring the arena while
avoiding the wall, although not in high-risk zones, which
are less diverse in the exhibited behaviours. The discrepancy
between individual- and population-level behaviours and the
heterogeneity of behaviours at the individual level are rarely
investigated when looking for rules of interaction, while it
could occur that none of the individuals actually behaves as
the average behaviour. Identifying whether the average
behaviour is exhibited by many individuals may allow to
identify behaviours emerging from either high or low selec-
tive pressures. The very simplicity of our model and the
convergence to many different solutions stress that particular
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attention should be given to heterogeneity of behaviours at
the individual level when analysing empirical data.

In our study,we find apparently stochastic behaviour emer-
ging at the population level: when agents are moving far away
from the closest wall, their average behaviour is Gaussian and
apparently stochastic at the population level—they turn as
often to the left as to the right on average. This apparently
stochastic behaviour emerges in a model of movement
which is strictly deterministic: when submitted with the same
cues, the agents will always move exactly in the same way.
Stochastic behaviours are often interpreted as the signature of
free will or noise in empirical data [29]. Our result here stresses
that, in practice, one needs to be carefulwhenpooling empirical
data from multiple individuals together, e.g. to calculate an
average behaviour: apparent stochasticity may arise even
when agents with various strategies have a rationale and
unnoisy behaviour. This underlines the importance of provid-
ing evidence that animals exhibit a stochastic behaviour at the
individual level rather than at the group or population level.

Our results highlight the value of our approach to test
thedirect effect of an ecological context in evaluating the optim-
ality of rules of interaction of animals with their social and
physical environments. It is an holistic approach providing a
class of models to explore how animals solve tasks, fulfil their
needs, in the presence of complex trade-offs and constraints
brought by their environment and their own perceptory, cogni-
tive, physiological and locomotor machineries. This class of
models therefore fills a gap by providing a method to investi-
gate systems combining two distinct aspects of spatially
embedded behaviours: decision-making and movements. In
other words, this class of models allows integrated research
of the cognitive bases of animalmovements, specifically by uni-
fying two research bodies often divided. For instance, in the
field of collective motion which studies how groups of animals
such as bird flocks or fish schools coordinate andmove in a syn-
chronized manner, the literature is split between studies
focusing on the decision-making underlying movements in
groups and studies looking at the spatial mechanisms ofmove-
ments. Recent studies, however, demonstrate how the interplay
between movement and how individuals represent space
underlies a continuous feedback between decision-making
and movements [1,2]. Here, we propose to explore optimal
decision-making under the constraints of spatially embedded
tasks—that is taking into account the respective effects of
intent, perception, locomotion and obstacles. Although this
class of models pre-existed our study [15], it was mainly used
to study the optimality of animal movements on large spatial
and temporal scales, i.e. on scales on which the resolution of
empirical data does not allow the study of cognition—or
lacked analysis of emerging behaviours in relation to empirical
data [16,20].

We show here how this framework can be used with
empirical data on fine temporal and spatial scales, to both
constrain the exploration and guide the modelling choices to
successfully study the cognitive bases of animal movements.
The smart self-propelled particles approach potentially
benefits several scales of description. In addition to its use in
behavioural ecology to investigate animal movements, for
instance investigating the optimal spatial distribution of ani-
mals given a set of constraints, the class of models can also
be applied in Ethology, for instance to compare experimental
results of learning experiments involving movements with
theoretical predictions. While most empirical studies are
descriptive and do not really explain why animals behave
theway they do, we propose here, from the descriptive empiri-
cal knowledge of animal behaviours, to reverse engineer the
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fitness functions shaping the behaviours of animals. Doing so
will help understand why animals adopt the rules of
interaction predicted by the smart self-propelled particles
framework. On the other hand, should the predictions
differ from empirical observations, it will help formulating
an improved model by adding or removing constraints or
changing the goal agents have to achieve, essentially inferring
the fitness function of the animal. This study paves the way
towards the development of normative models aimed at
understanding better the cognitive bases of decision-making
of moving animals with an holistic and integrated approach
allowing to evaluate the respective effects of cognitive,
locomotor and environmental constraints.
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