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A B S T R A C T   

The main aim of the COVID-19 lockdown was to curtail the person-to-person transmission of COVID-19. How-
ever, it also acted as an air quality intervention. The effect of the lockdown has been extensively analysed on 
NO2, O3, PM10 and PM2.5, however, little has been done on how total (TPN) and nanoparticle numbers (NPN) 
have been affected by the lockdown. This paper quantifies the effect of the lockdown on TPN and NPN in the UK, 
and compares how the effect varies between rural, urban background and traffic sites. Furthermore, the effect on 
particle numbers is compared with particle mass concentrations, mainly PM10 and PM2.5. Two approaches are 
used: (a) comparing measured levels of the pollutants in 2019 with 2020 during the lockdown periods; and (b) 
comparing the predictions of machine learning with measured concentrations using business as usual (BAU) 
scenario during the lockdown period. P100 (particle size ≤100 nm) increased by 39% at Chilbolton Observatory 
(CHO) and decreased by 13% and 14% at London Honor Oak Park (LHO) and London Marylebone Road (LMR), 
respectively. Particles from 101 to 200 nm (P200) showed a similar trend to P100, however, average levels of 
particles 201–605 nm (P605) decreased at all sites. TPN, PM10 and PM2.5 concentrations decreased at LMR and 
LHO sites. Estimated PM10, PM2.5 and TPN decreased at all three sites, however, the amount of change varied 
from site to site. Pollutant concentrations increased back the to pre-pandemic levels, suggesting more sustainable 
interventions for permanent air quality improvement.   

1. Introduction 

Air pollution is a serious environmental issue affecting human health 
globally, especially in large urban areas. According to Lelieveld et al. 
(2020), air pollution contributed to 8.8 million deaths worldwide in 
2015. Air pollution is reported to affect lung function, cause respiratory 
infections, aggravate asthma, and result in ischaemic heart disease, 
stroke and neurodegenerative conditions (WHO, 2021; Landrigan, 
2017). Long-term exposure to air pollution affects people of all ages, 
however, it is particularly harmful to the young, elderly and people with 
existing health conditions (Khallaf, 2011). 

To decrease the adverse effect of air pollution on human health, 
various interventions are implemented from time to time to cut emis-
sions and reduce atmospheric concentrations of air pollutants in urban 
areas. Normally, in the UK air quality interventions are implemented at 
the scales of local authorities. According to the Department for Envi-
ronment, Food and Rural Affairs (DEFRA, 2020), an air quality 

intervention is a deliberate measure aimed at improving air quality. An 
intervention may be primarily aiming at other outcomes but it could also 
indirectly affect air pollution. The COVID-19 pandemic provided an 
opportunity for such an intervention. To curtail the person-to-person 
transmission of COVID-19, the UK government implemented a lock-
down on March 26, 2020, which acted as a national intervention for air 
quality in the UK. The lockdown restrictions included: (a) people to stay 
at home, except for limited purposes; (b) closing of all non-essential 
businesses and public venues (including community centres, libraries, 
and places of worship); and (c) stopping all gatherings of more than two 
people in public (Jephcote et al., 2021). Due to restrictions on mobility 
road traffic decreased abruptly and monthly-average daily traffic counts 
on English A-roads and motorways in April 2020 were down by 69% 
compared with April 2019, with a 74% reduction in light and a 35% 
reduction in heavy vehicles (coaches and HGVs) (Jephcote et al., 2021). 
Therefore, the COVID-19 lockdown improved air quality in major cities 
in the UK and elsewhere (e.g., Shi et al., 2021; Dacre et al., 2020; Munir 
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et al., 2021; Potts et al., 2021; Ropkins and Tate, 2021). 
The focus of most of the studies analysing the effect of COVID-19 

lockdown on air quality has been on NO2. Brown et al. (2021) ana-
lysed the levels of NO2 concentrations at air quality monitoring stations 
within a distance of 500 m of nurseries, primary schools, secondary 
schools and colleges in England. They reported that NO2 concentrations 
had decreased during lockdown by 35% and 41% in the UK at back-
ground and traffic sites, respectively. According to Dacre et al. (2020) 
the largest decreases in NO2 concentrations associated with reduced 
emissions were found in urban traffic (27%) and urban background sites 
(14%), where NO2 concentrations were representative of local areas and 
thus dominated by local reduction in emissions from vehicles. Dacre 
et al. (2020) also reported that NO2 levels even increased at some rural 
and remote sites, where NO2 measurements were representative of large 
areas and thus dominated by the regional advection of secondary NO2 
from Europe. Mohajeri et al. (2021) analysed the concentrations of NO2 
and PM2.5 in four cities in the UK and reported that NO2 levels decreased 
by 21% in Greater London, 19% in Cardiff, 27% in Belfast and 41% in 
Edinburgh. The levels of PM2.5 increased by 7% in Greater London, and 
decreased by 1% in Cardiff, by 15% in Edinburgh, and by 14% in Belfast. 
The reported reduction was greater in NO2 than in PM2.5 levels, which 
was probably because PM2.5 was also affected by non-exhaust regional 
sources. Also, the lockdown period was accompanied by a period of hot 
dry weather and easterly winds, which was likely to increase resus-
pension and import of PM from Europe (Munir et al., 2021). They 
attributed the reductions in pollutant levels to the mobility restrictions 
imposed by the COVID-19 lockdowns. Similarly, Higham et al. (2021) 
reported that NO2 concentration decreased by about 50%, whereas O3 
concentration increased by 10% during the lockdown period. Jephcote 
et al. (2021) analysed measurements from 129 monitoring stations in 
the UK and reported mean reductions of 38.3% in NO2 and 16.5% in 
PM2.5, whereas a positive gain of 7.6% was reported in O3 concentra-
tions. According to their analysis, the reduction in NO2 and PM2.5 con-
centrations was largest at urban traffic sites and modest at the 
background and rural sites across the UK. 

Solberg et al. (2021) analysed the effect of the lockdown measures on 
NO2 in Europe and reported the largest NO2 reductions in Spain, France, 
Italy, Great Britain and Portugal and the smallest in eastern countries 
(Poland and Hungary). In addition to NO2, several authors have studied 
the lockdown effect on ground levels ozone (O3) and PM2.5. Previously, 
Dumka et al. (2020), Jain and Sharma (2020), Ganguly et al., (2021), 
and Kumar et al. (2020) analysed the effect of lockdown on several air 
pollutants including PM10 and PM2.5 in India and reported considerable 
reduction in their concentrations. Similarly, Donzelli et al. (2021) ana-
lysed the effect of lockdown on particulate matter in Italy, Grivas et al. 
(2020) in Greece, Tobías et al. (2020) in Spain, and Shi et al. (2021) 
compared the effect of lockdown in Italy, Spain, UK, France and 
Germany. 

Although several studies have analysed mass concentrations of PM10 
and PM2.5, no study was found in the UK that focused on the effect of 
COVID-19 lockdown on total particle numbers (TPN) and nanoparticle 
numbers (NPN). This is probably due to two main reasons: (a) the data 
availability problem – hourly concentrations of gaseous pollutants (e.g., 
NO2, NO, CO, and O3) and mass concentrations of PM10 and PM2.5 are 
available abundantly throughout the UK, however, the data of TPN and 
NPN is very limited. Hourly data of TPN and monthly data of NPN were 
only available from three sites for the lockdown period in the UK. (b) 
According to the UK Air Quality Standards Regulations 2010, NO2, O3, 
PM10 and PM2.5 are among the regulated outdoor air pollutants, whereas 
TPN and NPN are not regulated. Therefore, measurements of particle 
number concentration are not mandatory. Although evidences suggest 
that particle number concentrations are probably more relevant from 
public health perspectives (AQEG, 2012). Nanoparticles (particle 
diameter <100 nm), also known as ultrafine particles are smaller in size 
with a much larger surface area per unit mass than the fine and course 
particles (PM2.5 and PM10). The human body inflammatory response to 

particles has a strong correlation with particle surface area, rather than 
with particle mass (Sager and Castranova, 2009). Nanoparticles can pass 
through the lungs alveolar membrane and reach the cardiovascular 
system, where they may cause toxic effects (Oberdorster et al., 2004). 
Therefore, nanoparticles are considered more harmful to human health 
due to their large surface area and tiny size. Unlike PM2.5 and PM10, the 
mass of a sample of nanoparticle is too small to be measured accurately 
by normal PM measuring methods. Ultrafine particles are, therefore, not 
generally measured as a mass concentration “PM0.1” in μg/m3 and are 
rather typically characterised by their particle number concentrations or 
particle number counts in units of particles per cubic centimetre (par-
ticles/cm3) or p/cm3 or ppcm− 3). The main objective of this paper are: 
(a) To quantify the effect of COVID-19 lockdown on TPN and NPN in the 
UK. (b) Compare the effect of COVID-19 lockdown on NPN and TPN with 
PM10 and PM2.5. (c) How the effect of COVID-19 lockdown on particu-
late matter varies between rural, urban background and traffic sites. In 
this study, we used two main approaches: (a) comparing measured 
levels of PM10, PM2.5, TPN and NPN in 2019 with 2020 for the months 
when COVID-19 lockdown was in place; and (b) Employing a machine 
learning approach, which was used to predict the levels of these pol-
lutants for the lockdown period in Business As Usual (BAU) scenario, 
and the predicted concentrations were compared with the measured 
levels. The model predictions are basically weather corrected pollutant 
concentrations, which are important for understanding the real change 
caused by changed in emission after removing the effect due to changes 
in meteorological conditions. 

2. Methodology 

The main aim of this paper is to analyse the effect of COVID-19 
lockdown on NPN (particles/cm3), TPN (particles/cm3) and particle 
mass concentration of PM10 (μg/m3) and PM2.5 (μg/m3) at several air 
quality monitoring stations using measured and weather corrected 
concentrations. Meteorological data of several parameters were used 
from the air quality monitoring stations and from London Heathrow 
Airport meteorological station. The meteorological parameters used 
were: air temperature (temp, oC), wind speed (ws, m/s), wind direction 
(wd, degrees from the north), relative humidity (rh, %), atmospheric 
pressure (P, millibars), visibility (vis, m), precipitation (precip, mm), 
ceiling height (m) and dew point (dp, oC). Hour of the day (hour), day of 
the week (wday) and day of the year (yday) were also used to account for 
diurnal, weekly and seasonal variations. Julian day was used in the 
model to account for long term change in pollutant levels. 

2.1. Air quality and meteorology data 

Data of NPN was available only in monthly resolution from five air 
quality monitoring stations: Chilbolton Observatory, Harwell, London 
Honor Oak Park, London N. Kensington, and London Marylebone road. 
Hourly data of TPN was also available from these five sites plus Bir-
mingham Tyburn as shown in Table 1. However, three of the sites, 
namely, Birmingham Tyburn, Harwell and London N. Kensington did 
not have data of both NPN and TPN for 2019 and 2020, and therefore 
were not considered for further analysis in this paper. Hourly data of 
mass concentrations of PM10 and PM2.5 were available for over 60 sites 
in the UK. All these sites also provide modelled temperature, modelled 
wind speed and modelled wind direction data derived from the WRF 
model. However, PM10 and PM2.5 data were only analysed for the sites 
where NPN and TPN data was available. Data of the other weather pa-
rameters (rh, P, dp, precip, vis, and ceiling height) was obtained from 
the London Heathrow Airport (51.479, − 0.449, 25 m above mean sea 
level (amsl)). More details of the monitoring sites are provided in 
Table 1. Fig. 1 shows the air quality and meteorological stations from 
which data was used in this study. 
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2.2. Measurement techniques 

Hourly TPN concentrations were measured using condensation par-
ticle counters (CPCs), TSI model 3772-CEN at Chilbolton, Honor Oak 
Park and Marylebone Road (NPL, 2021; AQEG, 2018). These CPCs are 
sensitive to particles from about 7 nm up to several μm in size and have a 

concentration measurement range from zero to 50,000 particles/cm− 3. 
The TSI model 3773-CEN has been developed to comply with the re-
quirements of CEN/TS 16976:2016. At all concentrations, each particle 
is counted individually. Particle size distributions were measured using 
a Scanning Mobility Particle Sizer (SMPS). This consists of a CPC (TSI 
model 3775) combined with an electrostatic classifier (TSI model 3080). 
Reference equivalent method Filter Dynamic Measurement System 
(FDMS) was used for measuring PM10 and PM2.5 at these sites, which is 
allowed for regulatory purposes (AQEG, 2012). 

2.3. Data analysis and modelling 

2.3.1. Nanoparticles, total particle numbers and mass concentrations 
Monthly NPN data were downloaded from the three air quality 

monitoring stations: London Marylebone Road, London Honor Oak Park, 
and Chilbolton Observatory (Fig. 1). NPN were measured in the particle 
size diameter (nm) of 16.6, 17.8, 19.2, 20.6, 22.1, 23.7, 25.4, 27.4, 29.5, 
31.7, 34.9, 36.6, 39.3, 42.2, 45.3, 48.7, 52.4, 56.3, 60.5, 65.0, 69.8, 
75.1, 80.6, 86.7, 93.1, 107.5, 115.5, 124.1133.4, 143.3, 154.0, 165.5, 
177.9, 191.2, 205.4, 220.7, 237.2, 254.9, 273.9, 294.3, 316.3, 339.9, 
365.3, 392.5, 421.8, 453.3, 487.1, 523.4, 562.4, and 604.3. For con-
venience the different size ranges were aggregated into three main 
groups: (1) particle size ≤100 nm (P100), (2) particle size between 101 
and 200 nm (P200), and (3) particle size between 201 and 605 nm (P605). 
As given in Table 2, the number of particles was greatest in P100 range at 
all three sites with mean levels (particles/cm3) of 8236, 3291 and 2156 
at London Marylebone road, London Honor Oak Park and Chilbolton 
Observatory, respectively. The mean P200 ranged from 399 to 972 and 
P605 ranged from 121 to 287 (Table 2). This clearly shows that most of 
the particles exist in the smaller particle size (P100). A summary of the 
NPN, TPN, PM10 and PM2.5 is presented in Table 2, showing mean 

Table 1 
Air quality monitoring stations, their environmental types and data availability. 
NPN, TPN, PM2.5, and PM10 stand for nanoparticle numbers, total particle 
numbers, particle of 2.5-μm diameter and particle of 10-μm diameters, 
respectively.  

Site (lat, long) Environment 
type 

Pollutants 
monitored 

data 
availability 

Chilbolton Observatory 
(51.149617, 
− 1.438228) 

Rural 
Background 

NPN, TPN, PM2.5, 
PM10 

2016–2020 

Birmingham Tyburn 
(52.512194, 
− 1.830861) 

Urban 
Background 

TPN, PM2.5, PM10 2010–2013 

Harwell (51.571078, 
− 1.325283) 

Rural 
Background 

NPN, TPN, M2.5, 
PM10 

2010–2015 

London Honor Oak Park 
(51.449674, 
− 0.037418) 

Urban 
Background 

NPN, TPN, M2.5, 
PM10 

2018–2020 

London Marylebone Road 
(51.522530, 
− 0.154611) 

Urban traffic NPN, TPN, M2.5, 
PM10 

2010–2020 

London N. Kensington 
(51.521050, 
− 0.213492) 

Urban 
Background 

NPN, TPN, M2.5, 
PM10 

2010–2018 

Heathrow airport 
(51.479, − 0.449) 

Airport (25 m 
amsl) 

Meteorological 
data 

1948 - to 
date  

Fig. 1. Location of the air quality and meteorology monitoring stations. Here HA stands for Heathrow Airport, LMR stands for London Marylebone Road, LHO stands 
for London Honor Oak Park, and ChO stands for Chilbolton Observatory. 
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concentrations along with their standard deviations for 2019. Concen-
trations of all three pollutants were highest at London Marylebone Road, 
followed by London Honor Oak Park. The lowest levels were observed at 
the Chilbolton Observatory site. London Marylebone road is a busy 
urban traffic (roadside) site, London Honor Oak Park is an urban 
background site, and Chilbolton Observatory is a rural background site, 
which explains why particles pollution was highest at London Mar-
ylebone road and lowest at the Chilbolton Observatory site. 

2.3.2. Machine learning techniques 
Machine learning approaches are frequently used to evaluate the 

effect of different interventions on air quality in urban areas (Jephcote 
et al., 2021; Solberg et al., 2021). Since the beginning of the COVID-19 
pandemic in late 2019, numerous studies using machine learning ap-
proaches have been published, which assessed the effect of the lockdown 
on air quality in urban areas in the UK and worldwide (e.g., Jephcote 
et al., 2021; Solberg et al., 2021; Shi et al., 2021; Collivignarelli et al., 
2020). Several researchers have preferred to employ Generalise Additive 
Model (GAM) for such analysis as it is an interpretable supervised ma-
chine learning technique, easy to apply, and able to address the 
nonlinear association between the response and predictor variables 
(Wood, 2006, 2020; Hastie and Tibshirani, 1990). The performance of 
GAM is comparable to any other advanced machine learning technique, 
for example, Boosted Regression Trees, Random Forest and neural 
network (Solberg et al., 2021; Ropkins and Tate, 2021; Munir et al., 
2021; Carslaw et al., 2007). Therefore, here we employed a GAM to 
assess how the COVID-19 lockdown has affected the levels of TPN, PM10 
and PM2.5 in the UK. No hourly data of NPN was available, therefore, we 
could not model the levels of NPN. 

2.3.3. Model development and validation 
To model PM10, PM2.5 and TPN, here we used several predictors 

including both meteorological and temporal parameters, following the 
methodology of the previously published papers (e.g., Jephcote et al., 
2021; Solberg et al., 2021; Shi et al., 2021). Meteorological parameters 
used in the models were temperature (temp, oC), wind speed (ws, m/s), 
win direction (wd, degree from the north), relative humidity (rh,%), 
atmospheric pressure (P, millibars), visibility (vis, m), dew point (dp, 
oC), precipitation (precip, mm), and ceiling height (ceil_hgt, m), which is 
the height above ground level of the lowest cloud or any other obscuring 
phenomena layer. Temporal parameters were hour of the day (hr), day 
of the week (dweek), and day of the year (yday) to represent daily, 
weekly and annual variations in pollutant levels. Julian day was 
included to account for long-term temporal trend. 

It should be noted that ws, wd and temp data was available from the 
air quality monitoring stations, whereas the data of the other meteoro-
logical parameters were obtained from the Heathrow airport meteoro-
logical station.  

GAM (PM10 ~ s1 (ws) + s2 (wd) + s3 (temp) + s4 (P) + s5 (rh) + s6 (vis) + s7 
(dp) + s8 (precip) + s9 (ceil_hgt) + s10 (hour) + s11 (dweek) + s12 (dyear)+
s13 (jday))                                                                                      (1)  

GAM (PM2.5 ~ s1 (ws) + s2 (wd) + s3 (temp) + s4 (P) + s5 (rh) + s6 (vis) +
s7 (dp) + s8 (precip) + s9 (ceil_hgt) + s10 (hour) + s11 (dweek) + s12 (dyear) 
+ s13 (jday))                                                                                  (2)  

GAM (TPN ~ s1 (ws) + s2 (wd) + s3 (temp) + s4 (P) + s5 (rh) + s6 (vis) + s7 
(dp) + s8 (precip) + s9 (ceil_hgt) + s10 (hour) + s11 (dweek) + s12 (dyear) +
s13 (jday))                                                                                      (3) 

The above three GAM models (1, 2 and 3) are used to model PM10, 
PM2.5 and TPN, respectively using several predictors. In equations (1)– 
(3), the terms s1 to s13 are the smoothing nonparametric functions, 
which relate the modelled variables with the explanatory variables. The 
models were fitted on randomly selected 75% training data and vali-
dated on 25% randomly selected testing data from hourly measurements 
of 2018–2019. Correlation coefficients (r - values) and Root Mean 
Squared Error (RMSE) for both trained (fitted) and cross-validated 
models were calculated for assessing the model goodness of fit. 

2.3.4. Modelling BAU scenario 
For predicting the levels of PM10, PM2.5 and TPN in the BAU scenario 

for the lockdown period, the models were fitted on 2018–2019 data and 
then used to predict these pollutants for March, April and May 2020. In 
the BAU scenario, local emission sources continue to operate as normal 
under the meteorological conditions observed during the lockdown 
period. These forecasts allow for a direct comparison with the measured 
data. The estimated concentrations could be considered as weather 
corrected, deweathered, normalised or adjusted for meteorological 
variability concentrations. 

2.3.5. Software and packages 
All data analysis and the implementation of machine learning models 

were performed in R programming language (R Core Team, 2021) using 
its core packages and several independent packages. The package ‘mgcv’ 
(Wood, 2020) was used to implement the GAM model, ‘openair’ (Car-
slaw, 2021a) was used to download air quality data and calculate cor-
relation coefficient and RMSE for model assessment, ‘lubridate’ (Spinu, 
2021) was used to edit date and add temporal variables to the dataset, 
and ‘worldmet’ (Carslaw, 2021b) was used to download meteorology 
data from the London Heathrow Airport weather station. 

3. Results and discussion 

3.1. Comparison of the measured data 

To calculate how NPN was affected during the COVID-19 lockdown, 
NPN in 2019 was subtracted from those in 2020. Therefore, a positive 
difference indicated an increase, whereas a negative difference indi-
cated a decrease in the number of nanoparticles during the lockdown 
period. Change in the number of nanoparticles during March, April and 
May are shown in Table 3 for the three monitoring sites. P100 have 
increased by 13%, 46%, and 58% in March, April, and May, respectively 
at Chilbolton Observatory. In contrast, P100 have decreased at London 
Honor Oak Park by 29%, 2%, and 7% and at London Marylebone Road 
by 18%, 15% and 9% in March, April and May, respectively. P200 have 
shown a similar pattern to P100 i.e. their number has increased at Chil-
bolton Observatory and decreased at London Honor Oak Park and 
London Marylebone Road sites. However, P605 have shown slightly 
different results than P100 and PM200, as shown in Table 3 that in 
addition to London Hoor Oak Park and London Marylbone Road, P605 
have decreased even at the Chilbolton Observatory site in April and 
May. On average, the number of particles has increased at the rural sites 
and decreased at the urban background and urban traffic sites. When we 
averaged changes in particle numbers for the three sites, the rural sites 
showed positive gains, background site showed reductions, and urban 
traffic showed higher reductions. The reason for this is that particle 
numbers at urban traffic (roadside) sites are controlled by the local 

Table 2 
A summary of the nanoparticle numbers (NPN) (particles/cm3), total particle 
numbers (TPN) (particles/cm3), PM10 (μg/m3) and PM2.5 (μg/m3) for 2019 at 
the three sites, where LMR stands for London Marylebone Road, LHO for London 
Honor Oak Park, and CHO for Chilbolton Observatory. The values are mean 
levels and their standard deviations.  

Pollutant LMR LHO CHO 

TPN 28,505 ± 12,468 10,613 ± 5509 4979 ± 3290 
PM10 22.24 ± 12.56 14.67 ± 11.86 11.89 ± 10.06 
PM2.5 14.35 ± 10.96 9.90 ± 9.97 8.03 ± 7.90 
P100 8236 ± 1801 3291 ± 784 2156 ± 624 
P200 972 ± 303 518 ± 182 399 ± 157 
P605 287 ± 100 181 ± 83 121 ± 57  
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emission sources, for example, emissions from the road traffic and 
because road traffic flow was decreased on roads in London, this directly 
affected the levels of NPN. Particle numbers at urban background sites 
are affected by the city scale emissions, whereas particle numbers at 
rural sites are affected by the regional scale emissions. Therefore, par-
ticle numbers at different types of environment demonstrated different 
changes during the COVID-19 lockdown. 

Fig. 2 shows the ratio of different particle size at (a) London Mar-
ylebone road to Chilbolton Observatory (LMR/CHO), (b) London Mar-
ylebone to London Honor Oak (LMR/LHO), and (c) London Honor Oak 
to Chilbolton Observatory (LHO/CHO) for the period of COVID-19 
lockdown. Fig. 2 clearly showed that the ratios at all sites decreased 
during 2020 for the lockdown period. Reduction in the ratio of LMR/ 
CHO showed that NPN has decreased more at urban traffic (LMR) site 
than at the rural site (CHO). Furthermore, P100 demonstrated a greater 
reduction at urban traffic and urban background sites than at rural sites 
as shown by the ratios of LMR/CHO and LHO/CHO. This is because the 
levels of P100 are strongly related to the direct emissions from road 
traffic, whereas relatively larger size particles are of secondary nature i. 
e. secondary particles formed in the atmosphere (Rivas et al., 2020). 
Furthermore, the average ratios of P100/P200 (10.10) and P100/P605 
(37.05) were highest at London Marylebone Road, followed by London 
Honor Oak Park, where the ratios of P100/P200 and P100/P605 were 6.8 
and 22.25, respectively, whereas the lowest ratios of P100/P200 (6.00) 
and P100/P605 (21.45) were observed at Chilbolton Observatory sites. 
Again, this shows that P100 are in much larger proportion at urban traffic 
sites than at urban background and rural sites (Fig. 3), indicating 
emissions from road traffic. 

Changes in TPN, PM10 and PM2.5 during the lockdown period were 
calculated by subtracting their levels in 2019 from those in 2020 
(Table 4). Both PM10 and PM2.5 levels have decreased in all 3 months at 
London Marylebone road and London Honor Oak Park sites, except 
PM2.5 in May at London Honor Oak Park site. Chilbolton Observatory 
showed slightly different results, where both PM2.5 (22.80%) and PM10 
(9.10%) levels decreased in April and increased in March and May 
(Table 4). TPN also decreased in April at London Marylebone road and 
London Honor Oak Park sites. Overall, PM10 and PM2.5 decreased 30% 

Table 3 
Difference in Nanoparticle numbers (particles/cm3) between 2019 and 2020 
during the COVID-19 lockdown.  

Month Size Site y2019 y2020 Diff Diff (%) 

March P100 CHO 1495 1682 187 13 
April P100 CHO 2399 3492 1093 46 
May P100 CHO 2361 3741 1380 58 
March P100 LHO 2824 2257 − 567 − 20 
April P100 LHO 3638 3550 − 88 − 2 
May P100 LHO 3848 3562 − 286 − 7 
March P100 LMR 8515 6964 − 1551 − 18 
April P100 LMR 6407 5459 − 948 − 15 
May P100 LMR 6637 6021 − 616 − 9 
March P200 CHO 295 326 31 11 
April P200 CHO 585 753 168 29 
May P200 CHO 405 426 21 5 
March P200 LHO 415 379 − 36 − 9 
April P200 LHO 706 635 − 71 − 11 
May P200 LHO 544 463 − 81 − 15 
March P200 LMR 949 729 − 220 − 23 
April P200 LMR 1039 796 − 243 − 23 
May P200 LMR 789 641 − 148 − 19 
March P605 CHO 107 137 30 28 
April P605 CHO 249 234 − 15 − 6 
May P605 CHO 138 97 − 41 − 30 
March P605 LHO 167 158 − 9 − 5 
April P605 LHO 375 246 − 129 − 34 
May P605 LHO 195 129 − 66 − 34 
March P605 LMR 272 224 − 48 − 18 
April P605 LMR 423 247 − 176 − 42 
May P605 LMR 251 153 − 98 − 39  

Fig. 2. Ratios of nanoparticle numbers: (a) LMR/CHO; (b) LMR/LHO; (c) LHO/ 
CHO, where LMR stands for London Marylebone Road, LHO for London Honor 
Oak, and CHO for Chilbolton Observatory, P100 for particles of size up to 100 
nm, P200 for particle size 101–200 nm, and P605 for particle size 201–605 nm. 
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and 50% at London Marylebone road, and 18% and 10% at London 
Honor Oak Park, respectively. However, PM10 increased by 8% and 
PM2.5 decreased by 4% at Chilbolton Observatory. So, London Mar-
ylebone road (roadside) showed greater reduction compared to London 
Honor Oak Park (urban background), and no or little reduction was 
observed at Chilbolton Observatory rural site. TPN have decreased 53% 
and 30% at London Marylebone road and London Honor Oak Park sites, 
respectively. Due to missing data, the change in TPN at Chilbolton Ob-
servatory site was not calculated. The reason for this is that particle 
pollution at urban traffic (roadside) sites are controlled by the local 
emission sources, for example, emissions from the road traffic and 
because road traffic flow was decreased on roads in London, this directly 
affected the levels of particulates. Particulate matter at urban 

background sites are affected by the city scale emissions, whereas par-
ticulate matter at rural sites are affected by the regional scale emissions. 
Therefore, particle pollution at different types of environment demon-
strated different changes during the COVID-19 lockdown. 

3.2. Machine learning results 

The model results could be considered as weather-corrected air 
pollution changes. Firstly, the model was validated by using an inde-
pendent dataset, which was not included in training the model. Corre-
lation coefficient and RMSE values were calculated for the model 
assessment using both training and tested data. The model performance 
did not get worse for the independent dataset, showing a good model 
transferability. The values of correlation coefficients and RMSE showed 
acceptable model performance (Table 5). Table 6 presents the difference 
between predicted and observed values. 

After validation, the model was retrained using 2018 and 2019 data 
and then used to predict PM10, PM2.5 and TPN for the month of March, 
April and May 2020 for the three sites. Predicted and measured levels of 
PM10, PM2.5 and TPN are compared. As an example, a comparison of the 
three species at London Marylebone Road is depicted in Fig. 4, which 
shows that predicted levels of PM10, PM2.5 and TPN are higher than the 
measured levels, indicating that pollutants levels have decreased during 
the lockdown period. 

The modelling results (Table 6) showed that the concentrations of 
PM10, PM2.5 and TPN decreased at all three sites, however, the amount 
of change varied from site to site. PM10, PM2.5 and TPN levels decreased 

Fig. 3. Ratios of the different size of nanoparticle numbers (a) P100/P200, and 
(b) P100/P605 at Chilbolton Observatory, London Honor Oak and London Mar-
ylebone Road. 

Table 4 
Total particle numbers (TPN) and PM10 and PM2.5 mass concentrations and their 
difference between 2020 and 2019 (2020–2019). No TPN data was available for 
Chilbolton Observatory for year 2019. LMR stands for London Marylebone Road, 
LHO for London Honor Oak Park and CHO for Chilbolton Observatory.  

Month Pollutant Site 2019 2020 diff Diff (%) 

March PM10 LMR 23.71 16.61 − 7.10 − 29.96 
April PM10 LMR 32.26 22.01 − 10.25 − 31.77 
May PM10 LMR 19.59 14.12 − 5.48 − 27.95 
March PM2.5 LMR 16.13 8.45 − 7.68 − 47.60 
April PM2.5 LMR 25.82 13.67 − 12.15 − 47.06 
May PM2.5 LMR 15.14 7.04 − 8.10 − 53.52 
March TPN LMR 26,249 NA NA NA 
April TPN LMR 25,534 12,108 − 13426 − 53 
May TPN LMR NA 11,718 NA NA 
March PM10 CHO 11.77 13.15 1.38 +11.74 
April PM10 CHO 24.69 22.44 − 2.25 − 9.10 
May PM10 CHO 9.78 11.87 2.09 +21.33 
March PM2.5 CHO 8.25 8.51 0.27 +3.26 
April PM2.5 CHO 18.85 14.56 − 4.30 − 22.80 
May PM2.5 CHO 6.60 7.05 0.44 +6.73 
March PM10 LHO 9.99 8.83 − 1.17 − 11.66 
April PM10 LHO 22.24 14.61 − 7.63 − 34.32 
May PM10 LHO 8.32 7.56 − 0.77 − 9.24 
March PM2.5 LHO 14.72 13.80 − 0.92 − 6.25 
April PM2.5 LHO 29.56 21.86 − 7.70 − 26.06 
May PM2.5 LHO 12.59 13.05 0.46 3.62 
March TPN LHO NA 11,703 3066 NA 
April TPN LHO 12,096 8447 − 3649 − 30 
May TPN LHO NA 8189 NA NA  

Table 5 
Comparison of fitted and cross-validated models for predicting PM10, PM2.5 and 
TPN.  

Modelled pollutants Fitted/Cross-validated R - value RMSE 

PM10 Fitted 0.83 8.55 
Cross-validated 0.83 7.36 

PM2.5 Fitted 0.84 7.05 
Cross-validated 0.82 6.08 

TPN Fitted 0.88 7852 
Cross-validated 0.88 7975  
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by 33.05%, 43.42% and 50.32%, respectively at London Marylebone 
Road site. PM10 and PM2.5 decreased by 1.98%, 15.53% at Chilbolton 
Observatory, however, due to missing data of TPN in 2018 and 2019, the 
model could not predict TPN for the lockdown period. PM10, PM2.5 and 
TPN decreased by 20.49%, 26.19% and 16.18%, respectively at London 
Honor Oak Park. The reductions in all three pollutant concentrations 
were highest at the London Marylebone Road site, followed by the 
London Honor Oak Park. Chilbolton Observatory experienced the least 
reduction in PM10 and PM2.5 concentrations. The model results showed 
that the increase in TPN and mass concentrations at Chilbolton Obser-
vatory when comparing measured data in 2019 and 2020 were probably 
caused by the changes in meteorological conditions. 

4. Discussion 

In London during the first lockdown, on average private driving, 
public transport and walking trips decreased by 69%, 86% and 78%, 
respectively (Mohajeriet al., 2021). However, the levels of pollutants did 
not experience similar reductions, which showed nonlinear relationship 
between mobility and pollutant concentrations. In addition to emission 
sources, pollutant levels are affected by the meteorological conditions, 
which vary from time to time. To normalise for the variations in mete-
orological conditions, in machine learning techniques several meteoro-
logical parameters were used. So, basically the model predicts that if 
there was no lockdown (BAU), what the pollutant levels would have 
been. Fig. 5 shows the Hysplit back trajectory during the lockdown 
period for April in 2019 and 2020. Back trajectories are used for un-
derstanding the origins of air masses, which can significantly affect the 
type and levels of air pollutants. This shows that it is not just the local 
reduction in the emission amount that affects the air pollutants but also 
the wind direction, speed and other meteorological parameters. An in-
crease in particles pollution at rural sites could be partly related to 
sudden changes in wind speed, direction and their origin that bring 
different air masses from outside over large parts of the UK or even from 
the EU countries (Fig. 5). However, there was a positive association 
between mobility reduction and the levels of mass and particle con-
centrations at the roadside and urban background concentrations. 

Jephcote et al. (2021) reported an average reduction of 12.6% in 
PM2.5 concentrations in London. Furthermore, they reported higher re-
ductions of PM2.5 at urban background and urban traffic sites than the 
suburban and rural sites. According to Jephco te et al. (2021), four out of 
47 sites experienced an overall rise in PM2.5 concentrations. The four 
sites included the Chilbolton Observatory site, which is a rural back-
ground site and experienced 4% increase during the lockdown period. 
Overall, the findings of Jephcote et al. (2021) are in agreement with the 
current study. It was previously reported that Easterly winds from 
Central and Eastern Europe were loaded with high pollutant emissions 
and caused pollution episodes in the UK, especially in London and 
southern England (Pope et al., 2016; Graham et al., 2020). Episodes of 
PM2.5 concentrations from 8th to 12th and 15th to April 17, 2020 were 
associated with easterly air flow from Eastern and Central Europe 
(Jephcote et al., 2021). This showed that meteorology plays an 

important role in controlling the levels of air pollution and therefore has 
the following implications:  

1. Even if emissions are cut from road traffic, emissions from area and 
point sources and changes in meteorological conditions may still 
contribute to air pollution episodes;  

2. The effect of changes in weather needs to be carefully considered, 
when quantifying long term trends, especially in view of the climate 
change and global temperature rising; 

3. For a sustainable air quality improvement, the contribution of con-
tinental air masses to UK air quality needs to be considered, which 
emphasises the need for national and international collaboration. 
Only local efforts alone will have limited impacts on air quality. 

No paper was found on the effect of lockdown intervention on par-
ticle numbers in the UK. However, several studies were conducted in 
other countries. For example, Shen et al. (2021) analysed the impact of 
lockdown measures on particle numbers in Italy. They reported that 
during the lockdown period the primary particle numbers of size 10–25 
and 25–50 nm reduced by 66% and 34%, respectively at a regional 
background site in Ispra, Italy. However, they reported that lockdown 
had no effect on particle numbers at an urban background site in 
Modena, Italy. New particle formation frequency slightly increased 
compared to the same period in 2016–2019 in Ispra. However, the 
particle growth rates were lower during the lockdown at both sites 
compared to other periods. Shen et al. (2021) showed that significant 
decrease in traffic flow had little influence on particulate pollution levels 
in the Po Valley in Italy, which probably suggested that in addition to 
road traffic, other sources and processes also impacted particle numbers 
and mass concentrations. According to Shen et al. (2020) the particle 
number concentrations of nanoparticles decreased by approximately 
40% during the lockdown period compared to the pre-lockdown in 
Beijing, China. However, they reported that accumulation mode parti-
cles increased by approximately 20% as several polluted episodes 
contributed to secondary aerosol formation. Similarly, Kanawade et al. 
(2020) analysed the effect of COVID-19 lockdown on particles number 
in India and reported that the number concentrations of particles <3 nm 
did not decrease, however, the number concentrations of particles >10 
nm diameter decreased by 85% during the lockdown compared to the 
BAU scenario. It probably showed that the reduction in primary 
anthropogenic emissions did not inhibit the formation of particles <3 
nm. Dinoi et al. (2021) analysed submicron particle concentrations, in 
the size range from 10 nm to 800 nm and found that particle numbers 
decreased by 19% in Lecce and 7% in Lamezia Terme, Italy during the 
lockdown period. The above studies were carried out in different cities 
around the world having different weather and emission conditions and 
therefore direct comparison with the UK would not make much sense. 
Rivas et al. (2020) carried out a source contribution in four European 
Cities including London, and concluded that the main emission sources 
were photonucleation, traffic emissions and secondary particle forma-
tion, however, the contribution of each source differed at each site. 
Therefore, the change in particle concentrations reported in different 

Table 6 
Difference and percent difference between the observed and predicted PM10, PM2.5 and TPN using BAU scenario at different monitoring sites.  

Site Pollutant Observed (min, max) Predicted (min, max) Difference (min, max) Diff (%) 
(min, max) 

London Marylebone Road PM10 17.58 (0, 79.8) 26.26 (0, 56) − 8.68 (− 36, 51) − 33.05 (− 321, 499) 
PM2.5 9.73 (0, 72.3) 17.50 (− 2, 44.55) − 7.76 (− 31, 35) − 43.42 (− 123, 675.23) 
TNC 11,958 (1186, 30,107) 24,073 (0, 46,858) − 12115 (− 37273, 11,253) − 50.32 (− 912, 529) 

Chilbolton Observatory PM10 15.84 (0.58, 130) 16.16 (− 2, 36) − 0.32 (− 22, 117) − 1.98 (− 98, 236) 
PM2.5 10 (0.24, 76) 11.91 (− 3, 30) − 1.85 (− 20, 47) − 15.53 (− 222, 350) 
TNC 6334 (260, 27,081) NA NA NA 

London Honor Oak Park PM10 16.29 (0.73, 82) 20.49 (− 5, 52) − 4.20 (− 30, 32) − 20.49 (− 132, 775) 
PM2.5 10.37 (0.35, 67) 14.20 (− 4, 40) − 3.83 (− 26,33) − 26.19 (− 77, 546) 
TNC 9479 (681, 57,197( 11,309 (− 3626, 22,085) − 1830 (− 14913, 41,718) − 16.18 (− 360, 854)  
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cities during the lockdown was different quantitatively, however, they 
all agreed that COVID-19 lockdown changed air quality worldwide, 
acting as a global air quality intervention. Such global interventions are 
very uncommon in recent history. 

Several processes affect particle number counts and size such as 
nucleation, evaporation, condensation, deposition, and coagulation 
(Harrison et al., 2018). As freshly emitted particles move away from the 
emissions source their particle number and size distribution change due 
to these processes. Therefore, primary particles normally affect air 
quality near the emission source, however, as they travel away from the 
emission source secondary particles are formed, which affect air quality 
at the urban background and rural sites (Morawska et al., 2008). This is 
probably the main reason that both particle numbers and their compo-
sition are different at urban traffic, background and rural sites and they 
demonstrated different change during the lockdown period. Rivas et al. 
(2020) have provided a detailed analysis on how particle numbers in 
different size range are affected by local, city scale and regional scale 
emission sources and how the effect varies at different monitoring sites 
with different environment types. They have particularly analysed the 
effect of emissions from the Heathrow Airport on urban background 
monitoring sites in London. 

Here it should be noted that this study has only considered the first 
lockdown for three reasons: (1) The data of the pollutants considered in 
this study was only available for the first lockdown period; (2) The first 
lockdown had a much greater impact on the mobility and air quality 
than the second and third lockdowns; and (3) the first lockdown was 
implemented simultaneously in all cities in the UK, whereas the later 
lockdowns were implemented at different times. Mohajeri et al. (2021) 
analysed the effect of COVID-19 lockdown on air quality in Greater 
London, Cardiff and Belfast and reported that the effect of the first 
lockdown on mobility was more abrupt and much stronger than the 
second lockdown. Quinio and Enenkel (2020) reported that the 
improvement in air quality was short lived and pollution levels 
increased again after the lockdown was relaxed. The recovery in 
pollution level was of three types: (a) V-shaped recovery, when the 
pollution levels returned back to their previous levels; (b) 
Plateau-shaped recovery, when the pollution increased but it didn’t 
reach the previous levels observed before the lockdown period; and (c) 
Tick-shaped recovery, when pollution levels increased even more than 
those observed before the lockdown period. This shows that the effect of 
lockdown was not sustainable and hence the implementation of Clean 
Air Zones in large cities in the UK should go ahead as planned. 

5. Conclusions 

The novelty of the study is that it focuses on particle numbers 
considering both total particle and nanoparticle numbers. This study 
uses more meteorological parameters than previous studies, which 
include wind speed, wind direction, temperature, relative humidity, 
atmospheric pressure, dew point, visibility, and ceiling height. 
Furthermore, the study considers both raw data and weather corrected 
data to quantify the effect of the lockdown on air quality. In this paper, 
the effect of COVID-19 lockdown on the levels of PM10, PM2.5, TPN and 
NPN is analysed using measured data from a rural, an urban background 
and an urban traffic site during the first lockdown in the UK. It is shown 
that although COVID-19 lockdown was implemented to curtail person- 
to-person transmissions of the virus, it acted as an air quality interven-
tion and improved air quality in urban areas, particularly at urban traffic 
sites. Two approaches are employed to extract the effect of lockdown: 
(1) Comparing the measured concentrations for the lockdown equiva-
lent months in the year 2019 and 2020; (2) Comparing the prediction of 
machine learning with the measured concentration for the lockdown 
period of 2020. Overall, according to measured concentrations particle 
numbers including both nanoparticles and total particles increased at 
Chilbolton Observatory (a rural site) and decreased at both London 
Honor Oak Park (urban background site) and London Marylebone Road 

Fig. 4. Comparing predicted and measured PM10, PM2.5 and TPN concentra-
tions for the lockdown period at Marylebone Road. 

S. Munir et al.                                                                                                                                                                                                                                   



Atmospheric Pollution Research 13 (2022) 101548

9

(urban traffic site). Likewise, the mass concentrations of PM10 and PM2.5 
demonstrated reductions at London Honor Oak Park (18% and 10%) and 
London Marylebone Road (30% and 50%) and increase at Chilbolton 
Observatory (8% and 4%), respectively. Using measured data, the 
average for all three sites demonstrated increase in P100 and reductions 
for all other metrics i.e. PM10, PM2.5, TPN, P200 and P605. However, 
quantitatively the amount of change was significantly different for each 

species. This shows that different metrics used for the expression of 
particles pollution are affected differently by their emission sources, 
meteorological parameters and policy interventions. The machine 
learning techniques results, however, showed that the concentrations of 
PM10, PM2.5 and TPN decreased at all three sites, but the amount of 
change varied from site to site. London Marylebone Road showed a 
significantly greater reduction than the other two sites. 

Fig. 5. Hysplit back trajectories centred on London UK for the month of April in 2019 and 2020.  
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Different changes in pollutant levels at different environment types 
demonstrate the complexity of the atmospheric system. On average, 
road traffic flow decreased by about 70% during the lockdown period in 
the UK, however, reductions in pollutant concentrations are relatively 
much milder. This probably shows the nonlinear association between 
the emissions and atmospheric concentrations of various pollutants. It is 
shown by several studies that after the COVID-19 pandemic air pollution 
levels increased back to the levels observed before the lockdown period, 
which demonstrated that the reductions in pollutant levels were not 
sustainable. Therefore, sustainable interventions are required to cut 
emissions, induce behaviour change and introduce legal policies at local, 
national and international levels. 

The major limitation of this study is the data availability of NPN and 
TPN only from a few monitoring stations in the UK. Gaseous pollutants 
(e.g., NO2) and mass concentrations of PM2.5 and PM10 are measured at 
more than 150 air quality monitoring stations, which are part of the 
automatic urban and rural network (AURN) in the UK. In contrast, 
particles number concentrations, especially of nanoparticles are 
measured only at three monitoring stations. This is probably the main 
reason why very few studies have focused on particles numbers 
concentrations. 
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