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ABSTRACT

Content-based image retrieval (CBIR) consists of searching
the most similar images to a given query. Most existing at-
tention mechanisms for CBIR are query non-sensitive and are
only based on single candidate image’s feature regardless of
the actual query content. This can result in incorrect regions
especially when the target object is not salient or surrounded
by distractors. This paper proposes an efficient and effective
query sensitive co-attention mechanism for large scale CBIR
tasks. Local feature selection and clustering are employed
to reduce the computation cost caused by the query sensi-
tivity. Experimental results indicate that the proposed co-
attention method can generate good co-attention maps even
under challenging situations leading to a new state of the art
performance on several benchmark datasets.

Index Terms— Image retrieval, Co-attention mecha-
nisms, Feature clustering.

1. INTRODUCTION

Deep Convolution Neural Network (CNN) based methods for
CBIR can be divided into two categories: global and local
feature methods. Global feature methods extract a compact
feature vector from each image using a single forward pass-
ing through the network. It can be achieved by a fully con-
nected layer [1] or by global spatial pooling [2, 3, 4]. In ad-
dition, several attention mechanisms have been proposed for
feature refinement before global pooling. The Weighted Gen-
eralized Mean pooling (WGeM) [5] employs a trainable spa-
tial weighting module for feature re-weighting. SOLAR [6]
explores the correlation between each entry from the convo-
lution feature tensor with the second order attention. Deep
Orthogonal Local and Global (DOLG) [7] proposes an Or-
thogonal Fusion module to combine the global feature with
critical local features for better image representation, while
a dot-product fusion module is trained in [8]. Local feature
methods treat each entry from the feature tensor as a local de-
scriptor followed by a separate aggregation method to build
the final image representation [9, 10, 11]. In recent works,
selected local features are further used in spatial verification
mechanisms for re-ranking [12, 13]. For example HOW [14]
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combines CNN-based local features with the Aggregated Se-
lective Match Kernel (ASMK) [15] to directly perform many-
to-many local feature matching for image retrieval.

Despite the successes of CNN-based methods, existing at-
tention mechanisms for CBIR [5, 12, 13, 14] are all query
non-sensitive; for the given candidate images they predict the
regions of interest purely based on the knowledge learned dur-
ing the training, regardless of what the query content is about.
These query non-sensitive spatial attention modules are very
likely to fail when the target object is not salient or surrounded
by distractors. For example in Fig. 1, the query-nonsensitive
attention mechanism from the WGeM [5] fails. As the Lou-
vre Pyramid and Palace are both potential objects of inter-
est, when treating the Louvre Pyramid as the query item, it
is always ignored by the WGeM attention module while the
adjacent Louvre Palace attracts more attention.

Fig. 1. Examples of query non-sensitive attention where
WGeM approach fails. Images taken from [5].

Ideally, the attention should be query sensitive, consistent
with the current query content. When the Louvre Pyramid is
treated as query, it should be highlighted in the resulting co-
attention map and vice versa, as shown in the examples 3-4
from Fig. 3. This kind of query sensitive attention, condi-
tioned on the query content, is called co-attention in this pa-
per. In some other co-attention works [16, 17, 18] the query
pattern was shown to be essential for feature extraction.

Our contributions are : 1) we propose an efficient co-
attention method based on local feature selection and cluster-
ing without the requirement of extra parameter training; 2) we
show that our method could generate good co-attention maps
even for some hard situations; 3) the retrieval performance is
greatly improved with our co-attention method according to
the experimental results and reaches new state of art perfor-
mance on several benchmark datasets.

2. BASELINE MODEL STRUCTURE

The proposed co-attention method serves as a post-processing
module for pre-trained spatial pooling models without requir-



Fig. 2. Illustration of clustering based co-attention generation and weighted feature extraction.

ing the training of any extra parameters. Accordingly, in this
paper, we follow the framework from [4] to construct the
baseline GeM model. ResNet101 [19] is used as the backbone
network for the feature tensor extraction. The output feature
tensor is globally pooled by a GeM layer [4] followed by a
fully connected layer for feature whitening. Let X = [xl] ∈
RH×W×D denote the feature tensor output by the backbone
network before pooling, where H , W , D represent the height,
width and the channel count (D = 2048 for ResNet101), xl

represents the local feature at location l from X. According to
the spatial pooling from [14], any loss function that optimizes
the cosine similarity between global pooling features would
implicitly optimize the following aspects : first, for irrelevant
background locations xbg , the L2 norm is minimized, leading
to little or no contribution to the final similarity score. On the
contrary, for distinct foreground objects or region locations
xbg , the L2 norm is maximized. Accordingly, the L2 norm
can be treated as a spatial attention that the model implicitly
learns at the training stage [14].

3. ENABLING CBIR WITH CO-ATTENTION

In the following we consider the convolution feature tensor
output by the pre-trained GeM model from Section 2 for en-
abling the co-attention generation process.
Local feature selection and clustering. The first challenge
for using co-attention is the computation cost required by the
large number of local features that are extracted from a single
image. Hundreds of local features could be extracted from
a single high resolution image. However, it is impractical to
cache all these features. An intuitive way to reduce the mem-
ory cost is to discard the irrelevant background local features.
L2 norm of each entry on the CNN feature tensor can be used
as an indicator of feature importance. Then, feature selec-
tion can be performed by keeping the top N local features
with the highest L2 norm from feature tensor X, resulting in
a selected local feature set XN ∈ RN×D. To further reduce
the number of local features, k-means clustering is employed
on XN , grouping them into K clusters. Within each cluster,
after performing GeM pooling in order to select the represen-

tative local features centers, followed by whitening with the
fully connected layer, results in the clustered local features
XK ∈ RK×D, K << N .
Co-attention generation with local features. The pipeline
of co-attention generation and weighted feature extraction is
illustrated in Fig. 2. After extracting the representative fea-
tures by feeding the query image Iq and the candidate im-
age Ic through the backbone network, we consider L2 norm
for the feature selection. The selected query local features
Xq,N are then directly GeM pooled and whitened to obtain
the query global feature Vq . In order to extract representa-
tive feature vectors, selected candidate local features Xc,N

are clustered and then whitened, resulting in the local fea-
ture set Xc,K . Then, the co-attention weights a = [ai] ∈ RK

are obtained by calculating the cosine similarity between Vq

and each local feature from Xc,K . However, the range of the
attention weights is within [−1, 1], which may not ensure a
high contrast among the locations. For better controlling the
weight distribution and normalizing them into the range [0, 1],
the SoftMax function is then applied on a :

a′i =
exp(aiT )

K∑
j

exp(ajT )

, (1)

where T is a temperature parameter. The final co-attention
weighted candidate global feature vector Vc is defined by
weighted sum pooling :

Vc =
1

K

K∑
i

aiXc,i. (2)

The similarity measure is performed by evaluating the cosine
similarity between Vq and Vc.
Further computation cost reducing. In order to make the
co-attention practical to large-scale image retrieval and for
further reducing the required computation costs we propose
two extra processing steps during the retrieval stage. First,
PCA dimension reduction is performed on both query global
feature Vq and the candidate image local features from Xc,K .
Second, an inverted file indexing [23] module is applied to re-
duce the candidate image count that need to be compared with



Fig. 3. Attention map visualizations on target images.

Method
Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M
(A) Local feature
DELF-D2R-R-ASMK*+SP [20] 76.0 64.0 80.2 59.7 52.4 38.1 58.6 29.4
R50−-HOW [14] 79.4 65.8 81.6 61.8 56.9 38.9 62.4 33.7
R101−-HOW (GLDv2)[14] †2 83.9 77.9 87.9 76.4 71.3 52.8 76.0 56.4
(B) Global feature
R101-R-MAC [21] 60.9 39.3 78.9 54.8 32.4 12.5 59.4 28.0
R101-GeM (GLD) [6] 67.3 49.5 80.6 57.3 44.3 25.7 61.5 29.8
R101-DSM [22] 65.3 47.6 77.4 52.8 39.2 23.2 56.2 25.0
R101-SOLAR [6] 69.9 53.5 81.6 59.2 47.9 29.9 64.5 33.4
R50-DELG + SP [13] 78.3 67.2 85.7 69.6 57.9 43.6 71.0 45.7
R101-DELG + SP [13] 81.2 69.1 87.2 71.5 64.0 47.5 72.8 48.7
R101-DELG + SP [13]† 84.1 75.9 91.0 79.2 68.8 53.6 83.0 62.3
R50-DOLG [7]1 81.2 71.4 90.1 79.0 62.6 47.3 79.2 59.8
R101-DOLG [7]1 82.3 73.6 90.9 80.4 64.9 51.6 81.7 62.9
(C) the proposed co-attention method
R50-GeM† 79.8 69.0 87.3 73.1 60.4 44.2 74.0 52.0
R50-GeM†-CA 83.8 75.3 91.5 77.2 67.8 52.4 82.7 56.8
R101-GeM† 83.0 72.8 90.2 77.6 65.5 49.8 80.7 59.1
R101-GeM†-CA 86.4 79.3 93.2 81.8 72.6 59.9 85.6 64.1

Table 1. Image retrieval results on ROxf/RPar datasets and when adding the 1 million distractor set R1M, for the Medium and
Hard evaluation protocols. “†” indicates re-implemented model under the training details from Section 4.

Fig. 4. Ablation results for the hyper-parameters.

the query image at the retrieval stage. At the feature extrac-
tion stage, both selected query image and candidate image
local features Xc,N and Xq,N , after dimension reduction and
whitening, are clustered over the visual words [23] from the
codebook while recording the visual word indices that each
image is assigned to. Then during the retrieval stage, for each
query image we only pick out those candidate database im-
ages that share at least one visual word with the query image
to perform co-attention generation and assess their similarity.
The other images are no longer considered.

4. EXPERIMENTS

Experiment setup. For a fair comparison with the current
state-of-art (SOTA) work Deep Orthogonal Local and Global
(DOLG) [7], the baseline model described in Section 2 is
trained on GLDv2 dataset [24] with ArcFace margin loss [13].
The batch-size is set to 128. The initial learning rate is consid-
ered as 0.05 together with a cosine learning rate decay strat-
egy [7]. The model is trained for no more than 50 epochs. We
set N = 500 for local feature selection, cluster count K = 10
for k-means clustering and T = 10 for the SoftMax temper-
ature in Eq. (1). The feature dimension is reduced to 512 by
PCA. For the inverted file index, we use single scale 60,000
images from the training dataset (GLDv2) to train the code-
book. From each image, 300 local features are picked out and
compressed to a dimension of 128 by the PCA. The visual
word count of the codebook is set to 65,536. In addition, the
multi-scale feature extraction scheme [4] is applied, where we
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. Local features ex-
tracted from different scales are merged together and jointly
selected using the L2 norm. We consider ROxf/RPar datasets
[25] along with a 1 million images distractor set R1M [25] for
the performance evaluation.
Visualization results. Visualization examples of the pro-
posed co-attention are shown in Fig. 3. For comparison, the
query non-sensitive L2 norm attention is shown in the forth
column. As we can observe, the L2 norm attention tends
to highlight regions relevant to the training data, while our
co-attention can accurately highlight regions that match the
query content.
Image retrieval results1. Image retrieval results for the pro-
posed method and comparisons with other methods are pro-
vided in Table 1. For a fair comparison, some of the recent
works are re-implemented and marked with “†”. The group
(A) of results from Table 1 shows the results of local feature
methods. R101−-HOW (GLDv2)†2 is the reimplementation
of HOW [14] on GLDv2 dataset with ResNet101 backbone
and ArcFace loss. It reaches 71.3% mAP on ROxf hard set
before but it has relatively weak performance with the 1 mil-
lion distractors. Group (B) shows the results of the global
feature methods. The original DEep Local and Global fea-
tures (DELG) model [13] was trained on GLDv2 with a small
batch size of 32. R101-DELG† is its re-implemented version
with ResNet101 as the backbone network. It can be seen that
the spatial verification gives limited improvement, especially
when considering the 1 million distractor set. The bottom
group (C) shows the results for the baseline model (GeM†)
as described in Section 2 and when it is combined with the
proposed co-attention method (GeM†-CA). For the results of
GeM† and GeM†+CA, they share the same exact GeM model
with that described in Section 2, the only difference is that
GeM†+CA implements the co-attention method as in Sec-
tion 3 as well as PCA dimension reduction and inverted file
indexing from Section 3) to re-weight the candidate image
feature tensor before global GeM pooling. We observe that by
introducing the co-attention to the CBIR pipeline greatly im-
proves the retrieval performance. Especially, on the hard set
of ROxf (RPar), GeM†+CA reaches the best results of 72.6%
(85.6%). Also the proposed co-attention method still gives
the best retrieval results when considering the 1 million dis-
tractor set.

5. ABLATION EXPERIMENT AND DISCUSSION

Impact of clustering parameters. We evaluate in the plots
from Figures 4 (a), (b) and (c) the impact of cluster hyper-
parameters features N , clusters k, and temperature T from
Eq. (1), on the model retrieval performance. The proposed

1https://github.com/feymanpriv/DOLG
2R101− represents the ResNet101 without the final convolution block.

According to the study from [14], HOW gives better results when discarding
the final block and we follow this setting for our reimplementation.

method is robust to changes in these hyper-parameters. Vary-
ing the number of clusters k, has implications not only on the
performance but also on the computation cost. The setting de-
scribed in the beginning of Section 4 reaches a good balance
between performance and computation costs.
Computation cost and speed. For the memory cost, it takes
around 21GB to cache the whole ROxf/RPar database with
the 1 million distractor set. For the time cost, the feature ex-
traction takes in average 240ms to cache one candidate im-
age’s local features but it can be performed offline and it is
only done once. It takes on average 530ms with accelera-
tion on a NVIDIA Tesla GPU, when searching on ROxf/RPar
with the 1 million distractor dataset for one query image. De-
tailed computation cost comparision is provided in Table 2.
The proposed method “GeM†+CA” requires a similar mem-
ory cost as DELG [13]. Although the proposed co-attention
method requires more time cost than those simple global fea-
ture methods, like GeM [4] and DOLG [7], it provides the
best retrieval performance.

Method Device Memory (GB)
ROxf/RPar+1M

Retrieval time (ms)
in average

HOW [14] CPU 14 750
GeM [4] Tesla GPU 8 250
DOLG [7] Tesla GPU 2 220
DELG+SP [13] Tesla GPU 22 383
GeM†+CA (ours) Tesla GPU 21 530

Table 2. Computation cost comparison.

6. CONCLUSION

In this paper, we enable large-scale content-based image
retrieval with co-attention mechanisms. The proposed co-
attention method can be treated as a non-trainable-parameter
module for a pre-trained spatial pooling model. It is in-
tuitively based on the similarity score between the global
feature vector of the query image and the clustered local fea-
tures from the candidate image. The extra computation cost
caused by the query-sensitivity is addressed by employing
local feature selection and clustering while also considering
the inverted file indexing to speed up the retrieval procedure.
While straightforward, the proposed co-attention method
generates good co-attention maps even in some challeng-
ing cases. By simply adding our co-attention method to the
pre-trained baseline GeM model, the retrieval performance
is greatly improved and results in a new state of the art re-
trieval performance on benchmark datasets white requirying
comparable computation costs to other models.
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