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ABSTRACT:  We present a mathematical theory of class.  The theory is general, in that it

encompasses many different approaches to type abstraction, such as type constructors, generic

parameters, classes, inheritance and polymorphism.  The theory is elegant, in that it is based on a

simple generalisation of F-bounds.  The theory has timely implications for emerging OMG

standards and future language designs.
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1. Introduction

Programming languages as different as Ada, Smalltalk, ML and Eiffel offer various attractive, but

partial views of type abstraction.  The motivation for the current work arises from a dissatisfaction

with the number of different mechanisms used to explain type abstraction and type compatibility,

such as type constructors, generic parameters, classes, inheritance, and polymorphism.

Accordingly, the focus here is on finding a unifying framework within which all the above

mechanisms are related.  Central to this is a properly-constructed mathematical notion of class.

In section 2, some background history is given on formal models of classification, commenting on

the strengths of each approach.  The state of the art is a mixture of different models of type

polymorphism and subtyping.  The focus of this article is to argue that one model,  F-bounded

quantification (Canning et al., 1989a), is more general than each approach individually and, if

adopted to describe all forms of polymorphism, yields a great simplification in the formal

description of object-oriented languages.  Section 3 provides a guide to the λ-calculus foundations

for the theory, which is not just intended for theory experts.  Section 4 describes the F-bounded

model of class inheritance (Cook et al., 1990).  Section 5 presents a new generalisation of this

theory that describes type constructors, generic parameters and classes with internal polymorphic

components in the same framework.  Section 6 concludes by relating the theory to the often-

misunderstood notion of class.  Suggestions for the simplification of object-oriented languages are

given.

2. A Perspective on Formal Models of Classification

Many different approaches to characterising what is meant by a class have been proposed over the

years.  Influenced by the ability of Smalltalk's classes to provide arbitrary extensions to object



implementations, many were led to believe that objects have class and type independently (Snyder,

1987; America, 1990), since the structure of object extensions did not conform well to theories of

types and subtyping.  There was much discussion of separating specification inheritance from

implementation inheritance (Liskov, 1987; Sakkinen, 1989) and the notion of class was relegated

to a unit of implementation, because of the concern to preserve a clear, type-related interpretation

of inheritance.

Researchers modelling pure types and subtyping (Cardelli and Wegner, 1985; Cardelli, 1988;

America, 1990) eventually determined that, though a class could be treated as a type (for example,

in Trellis (Schaffert et al., 1986) and Modula-3 (Cardelli et al., 1989), the overall effect was to

restrict the usefulness of the static type system.  An example illustrates how it is impossible to type

check statically an intuitively sound method expression involving a mixture of local and inherited

(supertype) methods:

class Number = {plus : Number → Number} recursion unrolled

class Integer = Number ∪  {minus : Integer → Integer}

i, j, k : Integer;

i.plus(j).minus(k); minus applied to a Number

because of the phenomenon of type-loss, something which profoundly affects the type system of

C++ (Stroustrup, 1991) and leads to the unsafe programming practice of type-downcasting

(Meyers, 1992) to recover lost type information.  Eiffel (Meyer, 1992) and Sather (Omohundro,

1994) interpret the notion of class ambiguously as "sometimes" like a type, since redefined

methods may sometimes have type signatures that contravene subtyping rules (Cook, 1989),

preventing any simple identification of class with type and making the formal interpretation of

class unclear.

The most fruitful foundation for object-oriented languages has come from mathematical theories

of polymorphism.  These, which date back to the original Girard-Reynolds formulation of

universal quantification (Girard, 1972; Reynolds, 1974), invariably introduce type parameters,

which range over families of types.  Cardelli and Wegner (Cardelli and Wegner, 1985) generalised

universal quantification with a subtype-bounded theory of polymorphism, also known as bounded

universal quantification, or inclusion polymorphism, which described families of non-recursive

types possessing a minimal interface.  Later, Canning and others (Canning et al., 1989a)

determined that subtype-bounded polymorphism did not function in the presence of type-recursion

and was no more expressive than simple subtyping in this case.  They proposed an alternative

function-bounded theory of polymorphism, also known as F-bounded quantification, which

correctly handles recursive types.  In the latter two approaches, a class is considered a second-

order generalisation over a family of types, more accurately reflecting the intuitions of object-

oriented programmers about classification.

For some time, then, a collection of different mechanisms for handling type compatibility and type

substitution have coexisted.  Girard-Reynolds universal quantification is still widely used to

characterise the parametric polymorphism of languages like ML (Milner, 1978) or Ada (Ichbiah et

al., 1979) and also to describe the in-built array of... type constructor found in conventional

languages.  Cardelli and Wegner (Cardelli and Wegner, 1985) considered that inclusion and

parametric polymorphism were distinct forms of universal polymorphism, further distinguished

from ad-hoc varieties such as overloading or explicit type coercions.  F-bounded polymorphism

was devised chiefly to explain the compatibility of subclass and superclass interfaces (Canning et



al., 1989b), demonstrating how the inheritance relationship is not the same thing as subtyping

(Cook et al., 1990).  This promoted the use of F-bounded parameters to describe the self-type of

recursive objects, in order to show how this type changes when it is inherited.  Other researchers

have since developed formal languages in which the self-type is described in this way, but type

compatibility between object fields is either handled by subtyping (Bruce et al., 1993) or else the

field-types match exactly (Eifrig et al., 1994).  In another article (Simons, 1995a), we have argued

that object-oriented languages now have too many mechanisms to handle type polymorphism:  for

example, Eiffel has conformance (a kind of pseudo-subtyping), constrained generic and anchored

types (both kinds of F-bounded polymorphism); whereas C++ has subtyping and templates (a kind

of parametric polymorphism).  It is unnecessary to have all these different mechanisms to obtain

the kinds of behaviour we want in object-oriented languages.

3. A Guide to λλ -Calculus Foundations

The theoretical model is motivated by considering that an object is a dynamic entity from which

you obtain behaviour by selecting its methods.  An object is therefore modelled as a record, a set

of fields containing simple functions representing its methods (Canning et al., 1989a, 1989b; Cook

et al., 1990).  In the following, p1, p2 and p3 are records representing cartesian point objects.

The fields of such a record are selected using the dot "." operator:

p1 = {x 
�

 3, y 
�

 4}

p1.x  ⇒   3

where x and y are labels which map "
�

" to values.  In general, the values associated with the

labels are simple functions; and these functions may refer to each other:

p2 = p3 = µself.{x 
�

 2, y 
�

 5, eq 
�

 λp.(self.x = p.x and self.y = p.y)}

p2.eq(p3)  ⇒   true.

Note that the value selected by the label eq is a function λp.(...), which is applied to another point

object, in the style of a binary method expecting an argument.  Now, the method eq refers to other

methods x and y in the same object.  Since the current object is not passed as an argument to the

eq method, the variable self is introduced, standing implicitly for the whole object, such that self.x

and self.y select fields in the same object.  At the head of the record, µself is a convention binding

self to the whole record; this is explained below.

It is so demonstrated that even very simple objects like p2 are recursive, because their methods

invariably call each other.  Recursion presents a problem from the theoretical viewpoint, since a

recursive definition g = f(g) is not so much a definition as an equation which some g may satisfy.

To motivate the existence of a unique solution requires a brief exposition of fixpoint theory.

Recursion is handled in the λ-calculus by introducing a recursion variable, then binding this

variable to the desired structure.  The recursive point object above would be introduced by first

defining a function of self:

φp = λself.{x 
�

 2, y 
�

 5, eq 
�

 λp.(self.x = p.x and self.y = p.y)}



φp is called an object generator, since it is a pattern for all points having fields x=2 and y=5, etc;

however self is not yet bound to anything.  We distinguish object generator names from objects by

prefixing them with φ.  It would be possible to apply this function:

φp(p1)  ⇒   {x 
�

 2, y 
�

 5, eq 
�

 λp.(p1.x = p.x and p1.y = p.y)}

such that self is bound throughout to p1.  However, what we want is to bind self to p2, giving the

recursive paradox:

p2 = φp(p2)

Fixpoint theory says that it is possible gradually to approximate p2 by applying the generator

φp an increasing number of times.  If ⊥  is the undefined value, then the recursive object p2 is the

limit of the infinite sequence:

p2 = φp(φp(φp( ... φp(⊥ ) ...)))

There is a distinguished function Y, known as the fixpoint finder, which may be used to construct

infinite self-applications of a generator.  Y is not itself recursive, but:

p2 = Y(φp)

= µself.{x 
�

 2, y 
�

 5, eq 
�

 λp.(self.x = p.x and self.y = p.y)}

will always construct a unique recursive object from an object generator.  So, recursion is

established from first principles.  Formally, p2 is known as the least fixed point of the generator

φp.  The rest of the theory makes widespread use of generators to define the recursive structure of

objects and types, which are later fixed using Y.  It is conventional to indicate a recursively-fixed

variable with µ.

The types of objects are also modelled as records, whose fields represent the types of methods.  A

record type is in general recursive:

Point = µσ.{x : Integer, y : Integer, eq : σ → Boolean}

Point.x  ⇒   Integer

Point.eq  ⇒   σ → Boolean

Here, x, y and eq are labels which map ":" to field types.  These generally take the form of function

signatures, since methods may accept further arguments.  In the definition of Point, the method eq

accepts another object that is the same type as Point.  This is handled by introducing a recursion

variable σ standing for the self-type of points, which is bound to the whole record type using µσ.

This in turn is merely a notational convention to indicate that the recursive type Point is the least

fixed point of a type generator ΦPoint:

ΦPoint = Λσ.{x : Integer, y : Integer, eq : σ → Boolean}

Point = Y[ΦPoint]

ΦPoint is a type function Λσ.(...) expecting a single type argument, standing for the self-type, and

which returns a record type as a result.  When ΦPoint is fixed using Y, σ is bound to the whole of



the record type body, yielding the recursive type Point.  We distinguish type generator names

from types by prefixing them with Φ; also we use lower case names for objects and capitalise

types.

4. The Theory of F-Bounds and Inheritance

Type generators play an important role in describing classes and inheritance.  Whereas Cardelli and

Wegner (Cardelli and Wegner, 1985) suggested that a class was the family of all those types τ that

were subtypes of a given base type:  ∀ (τ ⊆  F), Canning and others (Canning et al., 1989a) showed

how this failed to adapt the self-type properly for recursive types.  Instead, they expressed the

constraint on the class in terms of the application of a type generator:  ∀ (τ ⊆  ΦF[τ]).  To see how

this works, consider that we would intuitively like a labelled point lp:

lp = µself.{x 
�

 2, y 
�

 5, eq 
�

 λp.(self.x = p.x and self.y = p.y), lab 
�

 "vertex 1"}

to belong to the class of ordinary points, since it has all methods of p2, plus an extra method

which returns the label string.  The type of lp is the recursive type LabPoint:

LabPoint = µσ.{x : Integer, y : Integer, eq : σ → Boolean, lab : String}

We can show that lp is not a member of the type Point, because the method Point.eq has the type

Point → Boolean, whereas LabPoint.eq has the type LabPoint → Boolean.  Furthermore,

LabPoint is not a subtype of Point, because their respective eq functions are not in a subtyping

relationship (Cook, 1989; Canning et al., 1989a):

LabPoint → Boolean  ⊄   Point → Boolean, because Point ⊄  LabPoint

and this prevents subtype-bounded polymorphism ∀ (τ ⊆  Point) from saying anything useful in this

case.  Instead, function-bounded polymorphism allows the class membership constraint to be

expressed with respect to a type generator ∀ (τ ⊆  ΦPoint[τ]), rather than a type.  We have to

show that LabPoint is one of the types τ satisfying the bound:

LabPoint ⊆  ΦPoint[LabPoint] ⇔
{x : Integer, y : Integer, eq : LabPoint → Boolean, lab : String}

⊆  {x : Integer, y : Integer, eq : LabPoint → Boolean}

which is now demonstrably true by Cardelli's record subtyping rule (Cardelli and Wegner, 1985;

Cardelli, 1988).  In particular, note how the self-type of Point is adapted by the application

ΦPoint[LabPoint].  This expresses formally exactly what object-oriented programmers mean when

they say that a subclass object matches the interface of a superclass (OMG, 1991), even though

there is no simple subtyping relationship between instances of the subclass and superclass.

Classification, or the ability to order classes in a hierarchy, is therefore defined with respect to

generators.  Rather than saying that one type is a subtype of another:  F ⊆  G, we say that a

pointwise subtyping relationship must hold between their generators:  ∀ τ.ΦF[τ] ⊆  ΦG[τ].  This is

sometimes also known as second-order subtyping.  The intuitive notion that objects are members

of an increasingly more general series of classes is captured in the rule:



  Γ  t ⊆  ΦF[t],    Γ  ∀ s.ΦF[s] ⊆  ΦG[s]

                 CLASSIFY

Γ  t ⊆  ΦG[t]

which says that if, in the current context "Γ" you can derive " " that an object type t belongs to a

class t ⊆  ΦF[t] and if the class generator ΦF extends the interface expressed by the class generator 

ΦG, then the object type is also a member of the class t ⊆  ΦG[t].  Rules such as this express

exactly the kind of type compatibility required for object-oriented programming.

Inheritance, or the ability to derive subclasses from superclasses, is also expressed using

generators.  The existence of a record combination operator ⊕  is assumed, which performs field

union with overriding (this, and other primitives, may be defined in λ-calculus terms).  Intuitively,

we should like to create a LabPoint object by adding to the fields of a Point object.  However, the

simple strategy:

lp = p2 ⊕  {lab 
�

 "vertex 1"}

= {x 
�

 2, y 
�

 5, eq 
�

 λp.(p2.x = p.x and p2.y = p.y), lab 
�

 "vertex 1"}

does not work, because in the combined set of fields, self refers back to p2, instead we want self

to refer to the resulting record, lp.  By extending object generators instead of objects:

φlp = λself.(φp(self) ⊕  {lab 
�

 "vertex 1"})

= λself.{x 
�

 2, y 
�

 5, eq 
�

 λp.(self.x = p.x and self.y = p.y), lab 
�

 "vertex 1"}

we may redirect self onto the intended object.  The generator expression φlp introduces a new self

variable, which is passed to the old point generator φp(self).  This application returns an "adapted"

record in which self now refers to the result.   These "inherited" fields are combined with the

additional fields using ⊕ .  Finally, self is bound recursively in lp using:

lp = Y(φlp)

Realistically, the object lp should be given a different eq method, which compares labels as well as

coordinates.  We could provide a completely new method to override the old one:

φlp = λself.(φp(self) ⊕  {eq 
�

 λp.(self.x = p.x and self.y = p.y and self.lab = p.lab),

 lab 
�

 "vertex 1"})

however, it is more satisfying to extend the functionality of the "inherited" method.  By

introducing a new variable super = φp(self), we maintain a handle on the adapted form of the

parent object in inheritance expressions:

φlp = λself.(λsuper.(super ⊕  {eq 
�

 λp.(super.eq(p) and self.lab = p.lab),

lab 
�

 "vertex 1"})

φp(self))

In the record of additional methods, super.eq(p) selects the inherited method from super, which,

as we have established, is the adapted form of a Point object in which self has been redirected.

The adapted eq method is provably equivalent to the earlier version where it was redefined in full.



This model captures exactly the notion of method combination in Smalltalk, or invoking base class

functions in C++.

We have motivated inheritance from an untyped perspective.  Object types evolve in parallel with

the types of their individual fields; for example the ΦLabPoint type generator:

ΦLabPoint = Λσ.(ΦPoint[σ] ∪  {eq : σ → Boolean, lab : String})

= Λσ.{x : Integer, y : Integer, eq : σ → Boolean, lab : String}

may be defined as an extension of the ΦPoint type generator.  Now, by adding types to the object

inheritance model, we may show that such derivations are also type consistent:

φlp : ∀ (τ ⊆  ΦLabPoint[τ]).τ → ΦLabPoint[τ]

φlp = Λ(τ ⊆  ΦLabPoint[τ]).λ(self : τ).

(λ(super : ΦPoint[τ]).(super ⊕
{eq 

�
 λ(p : τ).(super.eq(p) and self.lab = p.lab), lab 

�
 "vertex 1"})

φp[τ](self))

Typed object generators have an additional type argument Λ(τ ⊆  ΦF[τ]), expressing the fact that

the object generators are polymorphic and may be adapted to objects of different types.  The

constraint on the type argument:  τ ⊆  ΦLabPoint[τ], ensures that any object derived from φlp has

at least the interface of a LabPoint.  Both self and the argument p in the eq method have this type 

τ, ensuring that eq compares objects of the same type.  The type of super is ΦPoint[τ], a Point

type adapted by substituting the new self-type τ.  This is type-correct, since the CLASSIFY rule

allows us to infer τ ⊆  ΦPoint[τ] from τ ⊆  ΦLabPoint[τ] and the pointwise condition

∀ s.ΦLabPoint[s] ⊆  ΦPoint[s].  Assuming that the superclass generator φp is now also typed,

φp[τ](self) adapts the inherited super-record of methods by supplying the self-type and self-

reference of the resulting object.  This expresses exactly the notion of redirecting self-reference in

Smalltalk and the automatic adaptation of anchored types: like Current in Eiffel (Meyer, 1992).

The record combination operator ⊕  then combines two sets of fields in which self refers to the

whole derived object, whose type is τ.

5. The Theory of F-bounds and Generic Polymorphism

The chief achievement of Cook's work (Cook et al., 1990) was in recognising that to model

inheritance, self had to be rebound to refer to the correct structure.  For this reason, generators

were used in which self and its type were flexible.  F-bounds were used to constrain the self-types

that belong to a class.  As a result of this focus, subsequent work has only used F-bounds to

characterise the self-type as it evolves under inheritance (Bruce et al., 1993; Eifrig et al., 1994).

We have further generalised the F-bounded model to incorporate other kinds of polymorphism,

such as standard parametric polymorphism as found in ML (Milner, 1978), C++ templates

(Stroustrup, 1991) and Ada's generic packages (Ichbiah et al., 1979); and the constrained generic

parameters as found in Eiffel (Meyer, 1992).  The claim is that this single theory (which eventually

is higher-order) captures every kind of type abstraction present in these languages.



To motivate the more general theory, consider that a simple recursive integer list may be

constructed as an object having the recursive record type:

IntList = µσ.{add : Integer → σ, head : Integer, tail : σ}

A list object il : IntList has the structure of a single cell, whose head returns an Integer and whose

tail returns an IntList.  To turn this into a polymorphic list type, we must parameterise over the

element-type.  The Girard-Reynolds [Gira72, Reyn74] style of declaration has:

List = Λτ.µσ.{add : τ → σ, head : τ, tail : σ}

Note that τ is introduced before σ, such that σ is declared within the scope of τ.  We say that σ is

closed over τ.  The order of introduction determines that List is a homogeneous list type, in the

style of ML lists, whose elements are all of the same type.  When the recursion is bound using µ,

the type of the list's tail is fixed as the same as the self-type, ensuring that subsequent list elements

have the same type as the head.  List is actually a type function:

List : ∀ τ.τ → List[τ]

rather than a simple type, because it expects any given type τ as an argument and then returns a

recursive list type List[τ] constructed from this element type as a result.  Most programming

languages offer built-in type constructors that work like this, such as the Array of ..., Set of ...,

constructions to be found in Pascal and other languages.

The universal quantification ∀ τ of Girard-Reynolds allows no restrictions on the type of list

element.  However, a much richer family of list types may be constructed if we permit the

introduction of restrictions on the element type.  Consider that a sorted list has the type:

SortList = Λ(τ ⊆  ΦOrder[τ]).µσ.{add : τ → σ, head : τ, tail : σ}

where ΦOrder is a type generator expressing the interface of all those types possessing the total

ordering relationships <, >, <= and >=.

ΦOrder = Λσ.{< : σ → Boolean, > : σ → Boolean, <= : σ → Boolean, >= : σ → Boolean}

Now, the add method for sorted lists may be written with the foreknowledge that every element

will be comparable with its fellows.  This generalisation to include F-bounded restrictions captures

a notion similar to constrained generic parameters in Eiffel (Meyer, 1992).  SortList is a type

function expecting an element type τ ⊆  ΦOrder[τ] and returning a recursive sorted list type.  The

element-type must be supplied for the list to be useable:

isl : SortList[Integer];

isl.add(3) ...

capturing the notion of static type parameter replacement in generic schemes.

It should be clear that ordinary Girard-Reynolds parametric polymorphism, which characterises

C++ templates and Eiffel's non-constrained generic parameters, is included in this model, since a

universal bound is a special case of an F-bound:



List = Λτ.µσ.{add : τ → σ, head : τ, tail : σ}⇔
List = Λ(τ ⊆  ΦTop[τ]).µσ.{add : τ → σ, head : τ, tail : σ}

where ΦTop = Λσ.{} is a generator for the type with no restrictions on its interface.  It should

also be clear that an F-bound, rather than a Cardelli-Wegner subtype bound, is necessary to

characterise the element type of SortList.  To see this, consider that the alternative:

SortList2 = Λ(τ ⊆  Order).µσ.{add : τ → σ, head : τ, tail : σ}

would make it impossible to find a useful type to substitute for τ, since the only true subtypes

(τ ⊆  Order) must have comparison methods with the type (τ ⊇  Order) → Boolean to satisfy the

record subtyping rule (Cardelli and Wegner, 1985) this effectively makes Order the only

substitutable type.

To integrate generic polymorphism with the model of classification, it is necessary to show how

the type scheme is well-behaved under inheritance.  A polymorphic list class is obtained by

generalising over the polymorphic list type, yielding a type function which may then be used to

describe an F-bound on the family of list types belonging to the class:

ΦList = Λ(τ ⊆  ΦTop[τ]).Λσ.{add : τ → σ, head : τ, tail : σ}

This function expects two type arguments, one for the element-type and one for the recursive type

of the list.  The objects which belong to this class may have at least the interface of a List having

elements with at least the interface of Top.  We express this type constraint as:

∀ (τ ⊆  ΦTop[τ]).∀ (σ ⊆  ΦList[τ, σ]).σ

Note how the bound on the self-type σ is expressed in terms of ΦList[τ, σ], since the type-

function for lists requires two type arguments.  This construct captures exactly the notion of

generic classes in Eiffel (as stated above, Eiffel is ambiguous in its treatment of class - our model

distinguishes and properly relates the notions of generic type and generic class).

To see how a generic class may be adapted in all the ways desired in object-oriented programming,

consider how applying the type function to an element-type yields the standard form of a generator

seen above:

ΦIntList = ΦList[Integer] = Λσ.{add : Integer → σ, head : Integer, tail : σ}

This captures the notion of inheritance with parameter replacement.  The derived class, whose

objects have one of the types in the family ∀ (σ ⊆  ΦIntList[σ]).σ, is restricted to those lists having

Integer elements, but it is still extensible - for example, a further class may be derived having an

extra method to sum the elements, in the usual manner of inheritance:

ΦSumIntList = Λσ.(ΦIntList[σ] ∪  {sum : Integer})

Instead of replacing the generic parameter with a simple type, it is equally possible to restrict the

bound on the parameter and so derive a generator for the class of sorted lists:



ΦSortList = Λ(τ ⊆  ΦOrder[τ]).Λσ.(ΦList[τ, σ] ∪  {add : τ → σ})

 = Λ(τ ⊆  ΦOrder[τ]).Λσ.{add : τ → σ, head : τ, tail : σ}

This is achieved by introducing the new parameter τ ⊆  ΦOrder[τ] and applying the ΦList

generator to this and the new self-type.  This application is type-correct, since the CLASSIFY

inheritance rule allows us to derive τ ⊆  ΦTop[τ] from τ ⊆  ΦOrder[τ] and the pointwise condition 

∀ s.ΦOrder[s] ⊆  ΦTop[s].  Objects in the class of sorted lists have a type satisfying:

∀ (τ ⊆  ΦOrder[τ]).∀ (σ ⊆  ΦSortList[τ, σ]).σ

and we may prove that these objects are also members of the ordinary list class.  Consider that we

may replace τ by some type Integer ⊆  ΦOrder[Integer].  The generator ΦIntSortList =

ΦSortList[Integer] may be used as the bound for the extensible "sorted list of integer" type family.

The CLASSIFY rule allows us to infer that all objects of this class are also members of the

extensible "list of integer" family, bounded by ΦIntList = ΦList[Integer].  This in turn is a smaller

family than the entire list family, shown above.  Now, by generalising from Integer to all types τ ⊆
ΦOrder[τ], the assertion is proved on a pointwise basis.

Although this example did not extend the interface of ΦList (the add method was redefined to

enforce ordered element insertion), there is no reason why we should not extend the interface at

the same time.  Consider a merge-sorted list derived from a general list:

ΦMrgSortList = Λ(τ ⊆  ΦOrder[τ]).Λσ.(ΦList[τ, σ] ∪  {add : τ → σ, merge : σ → σ})

 = Λ(τ ⊆  ΦOrder[τ]).Λσ.{add : τ → σ, head : τ, tail : σ, merge : σ → σ}

Here, σ is rebound so that add and tail also return merge-sorted lists.  It can be proven that object

types belonging to the class: ∀ (τ ⊆  ΦOrder[τ]).∀ (σ ⊆  ΦMrgSortList[τ, σ]).σ are also members

of the sorted list class, using a pointwise argument like that given above; and therefore also

members of the ordinary list class.

6. Implications of the Theory of Class

A theory has been presented, which unites the treatment of inheritance based polymorphism with

generic parameter based polymorphism.  In particular, a type model based on F-bounds has been

shown powerful enough to capture all existing forms of parametric polymorphism.  Classical ML

parametric polymorphism and C++ templates were shown to be a special case of F-bounded

polymorphism, applied to types.  It was demonstrated that the theory held when parameterised

types were generalised to generic classes containing internal polymorphic components.  In

particular, types were well-behaved under inheritance and the formal model captured all the

intuitions present in Eiffel's generic classes.  The theory shows how the notion of classification

extends properly to parameterised structures:  there are families of parameterised types which

enclose each other and which are describable within the same framework as ordinary classes.  In

particular, ordinary classes were shown to be equivalent to generic classes in which the generic

parameters were replaced by types.  Generic classes could have their parameters restricted and

their interfaces extended.



The theory makes a strong claim that class is a well-founded mathematical notion.  Unlike earlier

work (Snyder, 1987; America, 1990) which relegated class to an implementation construct, it has

been shown here that, just as a simple type is inhabited by a monomorphic family of objects having

identical method type signatures, a class is inhabited by a polymorphic family of objects, belonging

to different types satisfying the class F-bound.  In particular, there is no need to divorce type from

implementation, since the (mono- or polymorphic) type of an object follows from the structure of

its method interface.  The current OMG standard (OMG, 1991) skirts round problematic

definitions of class by talking in terms of types (= simple types) and interfaces (= generators for F-

bounds).  In this theory, a recursive type is the least fixed point of the generator for a class

interface.  The two concepts are therefore properly linked.

The theory has implications for future language design - currently, languages like Eiffel and C++

have too many mechanisms for handling polymorphism (Simons, 1995a).  In particular, subtyping

is too weak, conformance is incorrect (Cook, 1989), constrained generic parameters and anchored

types describe the same kind of polymorphism as class inheritance (Simons, 1995a), which is best

described using F-bounds.  F-bounds also provide a formal explanation for where-clauses (Day, et

al., 1995), matching (Abadi and Cardelli, 1995; Bruce, 1994; Bruce et al., 1993) open types

(Eifrig et al., 1994) and similar expressions of constraint upon interfaces.

Future work in this field must provide a suitably secure typing for ⊕ , the record combination

operator.  Cook's operator (Cook et al., 1990) was simply-typed.  We have generalised this to a

second-order and higher-order operator (Simons, 1995b).  A second-order theory is necessary to

extend classes whose components are parameterised over simple types.  A higher-order theory is

necessary to extend classes whose components are parameterised over type functions (ie over

classes and type constructors) and also to integrate properly with heterogeneous polymorphism

within the same model (Simons, 1995b).
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